JP6463007B2 - Muddy water distance measuring method, muddy water distance measuring device and underwater equipment - Google Patents

Muddy water distance measuring method, muddy water distance measuring device and underwater equipment Download PDF

Info

Publication number
JP6463007B2
JP6463007B2 JP2014122253A JP2014122253A JP6463007B2 JP 6463007 B2 JP6463007 B2 JP 6463007B2 JP 2014122253 A JP2014122253 A JP 2014122253A JP 2014122253 A JP2014122253 A JP 2014122253A JP 6463007 B2 JP6463007 B2 JP 6463007B2
Authority
JP
Japan
Prior art keywords
distance
signal
acoustic
sound
sound wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014122253A
Other languages
Japanese (ja)
Other versions
JP2016003864A (en
Inventor
雅彦 篠野
雅彦 篠野
譲司 山本
譲司 山本
中島 康晴
康晴 中島
聡太郎 正信
聡太郎 正信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Maritime Port and Aviation Technology
Original Assignee
National Institute of Maritime Port and Aviation Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Maritime Port and Aviation Technology filed Critical National Institute of Maritime Port and Aviation Technology
Priority to JP2014122253A priority Critical patent/JP6463007B2/en
Publication of JP2016003864A publication Critical patent/JP2016003864A/en
Application granted granted Critical
Publication of JP6463007B2 publication Critical patent/JP6463007B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

本発明は、濁水中距離測定方法及び濁水中距離測定装置並びに水中機器に関する。   The present invention relates to a muddy water distance measuring method, a muddy water distance measuring device, and an underwater device.

水中や海底等に存在する対象物までの距離を計測する従来の音響装置は、送波器と受波器が一体になっているものが多い。これらの装置は、対象物で反射した音波を受波器で受信して音響信号を検出し、現場水域における既知の水中音速値(例えば1500m/s)を用いることにより、その往復伝播時間から対象物までの水中距離を計測する。
しかし、極端に濁った水の中では、音波が濁水中で散乱し、対象物からの反射音が判別しづらくなるため、水中距離の計測が困難である。例えば海底での掘削作業においては対象物までの水中距離の計測が必須であるが、海中掘削機が岩石等を削ることによって周囲に多数の粒子が浮遊し、その粒子によって音波が散乱して水中距離の計測が困難となり、作業効率が低下してしまう。
そこで、濁水中においても対象物までの距離を的確に測定できる方法及び装置が求められている。
ここで、特許文献1は、測定環境における温度の影響を払拭して測定を行えるようにした超音波距離計に関し、測定対象面に対して略直角に超音波を出射する第1の電気−音響変換手段と、第1の電気−音響変換手段から所定距離を隔てて配置され、測定対象面で反射した超音波が入射する第2の電気−音響変換手段が記載されている。
また、特許文献2は、計測対象に据え付けられた標的の表面に照射されたビーム光の照射点の位置を、計測対象の近くで照射点検出センサで検出することによって、濁った水の中でも位置を遠隔で計測できる装置を提案している。
また、特許文献3には、超音波の発信の完了時から反射超音波の減衰時までを、測定対象物が超音波を反射してその反射超音波を受信するまでの時間とし、浮遊物による超音波の反射があっても距離を測定できるとする超音波距離計が記載されている。
また、特許文献4は、物体間距離測定装置に関し、2つの異なる周波数の超音波信号を用いることによって外乱ノイズの影響を抑制することが記載されている。
Many conventional acoustic devices that measure the distance to an object existing underwater or on the seabed, etc., have an integrated transmitter and receiver. These devices receive sound waves reflected by an object with a receiver to detect an acoustic signal, and use a known underwater sound speed value (for example, 1500 m / s) in an in-situ water area. Measure underwater distance to an object.
However, in extremely turbid water, sound waves are scattered in turbid water, making it difficult to determine the reflected sound from the object, making it difficult to measure underwater distance. For example, in the excavation work on the sea floor, it is essential to measure the underwater distance to the object, but when an underwater excavator cuts rocks etc., a large number of particles float around and the sound waves are scattered by the particles. It becomes difficult to measure the distance, and work efficiency is reduced.
Therefore, there is a need for a method and apparatus that can accurately measure the distance to an object even in muddy water.
Here, Patent Document 1 relates to an ultrasonic distance meter that can perform measurement by eliminating the influence of temperature in a measurement environment, and is a first electro-acoustic that emits ultrasonic waves at a substantially right angle to the measurement target surface. There is described a conversion means and a second electro-acoustic conversion means that is arranged at a predetermined distance from the first electro-acoustic conversion means and that receives an ultrasonic wave reflected from the measurement target surface.
Further, Patent Document 2 discloses that the position of the irradiation point of the beam light irradiated on the surface of the target installed on the measurement target is detected in the turbid water by detecting the position of the irradiation point near the measurement target with an irradiation point detection sensor. We have proposed a device that can measure the distance remotely.
Further, in Patent Document 3, the time from when the transmission of ultrasonic waves is completed to when the reflected ultrasonic waves are attenuated is defined as the time until the measurement object reflects the ultrasonic waves and receives the reflected ultrasonic waves. An ultrasonic distance meter is described that can measure the distance even when there is reflection of ultrasonic waves.
Patent Document 4 describes an object-to-object distance measurement device that suppresses the influence of disturbance noise by using ultrasonic signals of two different frequencies.

特開平11−83600号公報JP-A-11-83600 特開平9−223222号公報JP-A-9-223222 特開平10−325870号公報JP-A-10-325870 特開平6−102350号公報JP-A-6-102350

しかし、特許文献1は、濁水中での音波の散乱による測定への影響を考慮して距離を計測するものではない。
また、特許文献2は、計測対象の近くでビーム光の照射点を検出して距離を計測するものであり、計測対象で反射した音波を検出して計測対象までの水中距離を計測するものではなく、音波は照射点検出センサの粗位置決めに利用されているだけに過ぎない。
また、特許文献3は、超音波の発信の完了時から反射超音波の減衰時までの時間を用いることで、浮遊物による超音波の反射が計測結果に与える影響を少なくしようとするものであるが、超音波の発信と受信が一体となった超音波センサを用いるものであり、送波信号の散乱による対象物からの反射音の判別のしづらさを解消するものではない。
また、特許文献4は、超音波信号は油圧ショベルの安全装置等に用いられるものであって、濁水中で対象物までの距離を計測するものではない。
However, Patent Document 1 does not measure the distance in consideration of the influence on measurement due to scattering of sound waves in muddy water.
Patent Document 2 measures the distance by detecting the irradiation point of the beam light near the measurement target, and does not measure the underwater distance to the measurement target by detecting the sound wave reflected by the measurement target. In addition, the sound wave is merely used for rough positioning of the irradiation point detection sensor.
Further, Patent Document 3 tries to reduce the influence of the reflection of the ultrasonic wave by the suspended matter on the measurement result by using the time from the completion of the transmission of the ultrasonic wave to the attenuation of the reflected ultrasonic wave. However, it uses an ultrasonic sensor in which transmission and reception of ultrasonic waves are integrated, and does not eliminate the difficulty of discriminating reflected sound from an object due to scattering of a transmission signal.
In Patent Document 4, the ultrasonic signal is used for a safety device of a hydraulic excavator, and does not measure the distance to an object in muddy water.

そこで、本発明は、濁水中においても対象物までの距離を的確に測定できる濁水中距離測定方法及び濁水中距離測定装置並びに水中機器を提供することを目的とする。   Therefore, an object of the present invention is to provide a muddy water distance measuring method, a muddy water distance measuring device, and an underwater device that can accurately measure the distance to an object even in muddy water.

請求項1記載の本発明に対応した濁水中距離測定方法においては、粒子が浮遊した濁水中に存在する対象物までの距離を測定する濁水中距離測定方法であって、対象物に対して音響送信手段から音波を送信し、音響送信手段と所定の計測基準長を有して設けた音響受信手段により対象物から反射した音波を受信し、音響受信手段で受信した音波の信号から、受信した音波の信号の1つ目のピークを粒子からの散乱信号、2つ目以降のピークを対象物からの反射信号として判別し、音波の送信時刻から2つ目以降のピークの受信時刻までの時間に基づいて対象物までの距離を導出したことを特徴とする。請求項1に記載の本発明によれば、対象物に対して音波を送信する位置と対象物から反射した音波を受信する位置を離すことで、音波を同位置で送受信する場合と比べて散乱信号と反射信号の判別がし易くなり、濁水中においても対象物までの距離を的確に導出できる。また、粒子からの散乱信号と対象物からの反射信号を受信した音波の信号のピークから判別することで、浮遊する粒子を対象物と誤認する可能性を低減することができる。また、音響送信手段の近傍に浮遊する粒子を対象物と誤認することなく、例えば計測基準長の相当時間を考慮して対象物までの距離を導出できる。 In the muddy water distance measuring method corresponding to this invention of Claim 1, it is a muddy water distance measuring method which measures the distance to the target object which exists in the muddy water which particle | grains floated, Comprising: A sound wave is transmitted from the transmission means, and a sound wave reflected from the object is received by the acoustic transmission means and an acoustic reception means provided with a predetermined measurement reference length, and is received from a sound wave signal received by the acoustic reception means . scatter signal of first peaks of the waves of the signals from the particles, the second and subsequent peaks determined by the reflected signal from the object, until the time of receiving the second and subsequent peaks from the transmission time of sound waves It is characterized in that the distance to the object is derived based on the time . According to the first aspect of the present invention, by separating the position where the sound wave is transmitted to the object and the position where the sound wave reflected from the object is received, the sound wave is scattered as compared with the case where the sound wave is transmitted and received at the same position. The signal and the reflected signal can be easily distinguished, and the distance to the object can be accurately derived even in muddy water. Moreover, the possibility of misidentifying floating particles as an object can be reduced by discriminating the scattering signal from the particle and the peak of the sound wave signal received from the object. In addition, the distance to the object can be derived in consideration of, for example, the time corresponding to the measurement reference length without misidentifying particles floating in the vicinity of the acoustic transmission means as the object.

求項記載の本発明に対応した濁水中距離測定方法においては、粒子が浮遊した濁水中に存在する対象物までの距離を測定する濁水中距離測定方法であって、対象物に対して音響送信手段から音波を送信し、音響送信手段と所定の計測基準長を有して設けた音響受信手段により対象物から反射した音波を受信し、音響受信手段で受信した音波の信号から、受信した音波の信号の1つ目のピークを粒子からの散乱信号、2つ目以降のピークを対象物からの反射信号として判別し、1つ目のピークの受信時刻から2つ目以降のピークの受信時刻までの時間に基づいて対象物までの距離を導出したことを特徴とする。請求項に記載の本発明によれば、対象物に対して音波を送信する位置と対象物から反射した音波を受信する位置を離すことで、音波を同位置で送受信する場合と比べて散乱信号と反射信号の判別がし易くなり、濁水中においても対象物までの距離を的確に導出できる。また、粒子からの散乱信号と対象物からの反射信号を受信した音波の信号のピークから判別することで、浮遊する粒子を対象物と誤認する可能性を低減することができる。また、音響送信手段の近傍に浮遊する粒子を対象物と誤認することなく直接的に、対象物までの距離を導出できる。 In turbid medium range measuring method corresponding to the invention of Motomeko 2, wherein a turbid medium distance measuring method for measuring a distance to an object present in the turbid water particles suspended, to the object A sound wave is transmitted from the sound transmission means, and a sound wave reflected from the object is received by the sound transmission means and the sound reception means provided with a predetermined measurement reference length, and received from the sound wave signal received by the sound reception means. The first peak of the sound wave signal is determined as the scattering signal from the particle, the second and subsequent peaks as the reflected signal from the object, and the second and subsequent peaks from the reception time of the first peak. The distance to the object is derived based on the time until the reception time. According to the second aspect of the present invention, by separating the position where the sound wave is transmitted to the object and the position where the sound wave reflected from the object is received, the sound wave is scattered as compared with the case where the sound wave is transmitted and received at the same position. The signal and the reflected signal can be easily distinguished, and the distance to the object can be accurately derived even in muddy water. Moreover, the possibility of misidentifying floating particles as an object can be reduced by discriminating the scattering signal from the particle and the peak of the sound wave signal received from the object. In addition, the distance to the object can be derived directly without misidentifying particles floating in the vicinity of the acoustic transmission means as the object.

請求項記載の本発明は、受信した音波の信号のピークに基づいて異常を判定したことを特徴とする。請求項に記載の本発明によれば、音波の送信方向の対象物からのずれや、音響送信手段又は音響受信手段の故障などによって、測定が正常に行えなかったことや完了しなかったことを検知できる。 The present invention according to claim 3 is characterized in that an abnormality is determined based on a peak of a received sound wave signal. According to the third aspect of the present invention, the measurement could not be performed normally or was not completed due to a deviation from the object in the sound wave transmission direction or a failure of the sound transmitting means or the sound receiving means. Can be detected.

請求項記載の本発明は、距離の導出に当っては、対象物と音響送信手段と音響受信手段の幾何学的配置を考慮して導出したことを特徴とする。請求項に記載の本発明によれば、幾何学的配置を考慮して対象物までの距離を的確に導出できる。 The present invention described in claim 4 is characterized in that the distance is derived in consideration of the geometric arrangement of the object, the acoustic transmission means, and the acoustic reception means. According to the fourth aspect of the present invention, the distance to the object can be accurately derived in consideration of the geometric arrangement.

請求項記載の本発明は、距離の導出に当っては、予め求めた時間と距離の関係に基づいて導出したことを特徴とする。請求項に記載の本発明によれば、計測基準長により異なる時間と距離の関係に基づいて対象物までの距離を簡便かつ的確に導出できる。 The present invention according to claim 5 is characterized in that the distance is derived based on the relationship between time and distance obtained in advance. According to the fifth aspect of the present invention, the distance to the object can be easily and accurately derived based on the relationship between the time and the distance that varies depending on the measurement reference length.

請求項記載の本発明は、音響受信手段を走査させたこと、又は音響受信手段として音響センサーアレイを用いたことを特徴とする。請求項に記載の本発明によれば、対象物を的確に把握し、対象物までの距離を的確に導出できるとともに、対象物の形状情報を得ることができる。 The present invention described in claim 6 is characterized in that the acoustic receiving means is scanned or an acoustic sensor array is used as the acoustic receiving means. According to this invention of Claim 6 , while grasping | ascertaining a target object correctly and being able to derive | lead-out the distance to a target object accurately, the shape information of a target object can be obtained.

請求項記載の本発明は、音響送信手段を走査させたこと、又は音響送信手段として音響発信アレイを用いたことを特徴とする。請求項に記載の本発明によれば、対象物を的確に把握すること、対象物までの距離を的確に導出すること、対象物の形状情報を得ることを可能とすることができる。 The present invention according to claim 7 is characterized in that the acoustic transmission means is scanned or an acoustic transmission array is used as the acoustic transmission means. According to the seventh aspect of the present invention, it is possible to accurately grasp the object, accurately derive the distance to the object, and obtain shape information of the object.

請求項記載の本発明に対応した濁水中距離測定装置においては、粒子が浮遊した濁水中に存在する対象物までの距離を測定する濁水中距離測定装置であって、対象物に対して音波を送信する音響送信手段と、音響送信手段と所定の計測基準長を有して設けた対象物から反射した音波を受信する音響受信手段と、音響受信手段で受信した音波の信号から粒子からの散乱信号と対象物からの反射信号とを判別する判別手段と、反射信号に基づいて対象物までの距離を導出する距離導出手段とを備え、判別手段は、受信した音波の信号の1つ目のピークを粒子からの散乱信号、信号の2つ目以降のピークを対象物からの反射信号として判別したことを特徴とする。請求項に記載の本発明によれば、対象物に対して音波を送信する位置と対象物から反射した音波を受信する位置を離すことで、音波を同位置で送受信する場合と比べて散乱信号と反射信号の判別がし易くなり、対象物までの距離を的確に導出できる。また、音響送信手段の近傍に浮遊する粒子を対象物と誤認する可能性を低減することができる。 The turbid water distance measuring device corresponding to the present invention according to claim 8 is a turbid water distance measuring device for measuring a distance to an object existing in turbid water in which particles are suspended, wherein the turbid water distance measuring apparatus An acoustic transmission means for transmitting the sound, an acoustic reception means for receiving a sound wave reflected from the object provided with the acoustic transmission means and a predetermined measurement reference length, and a signal from the sound wave received by the acoustic reception means from the particle A discriminating unit for discriminating a scattered signal and a reflected signal from the object; and a distance deriving unit for deriving a distance to the object based on the reflected signal . The discriminating unit is a first signal of the received sound wave. The second peak of the signal is discriminated as a scattering signal from the particle, and the second and subsequent peaks of the signal are discriminated as reflection signals from the object . According to the present invention described in claim 8 , by separating the position for transmitting the sound wave to the object and the position for receiving the sound wave reflected from the object, the sound wave is scattered as compared with the case of transmitting and receiving the sound wave at the same position. The signal and the reflected signal can be easily distinguished, and the distance to the object can be accurately derived. In addition, it is possible to reduce the possibility of misidentifying particles floating in the vicinity of the acoustic transmission means as an object.

求項記載の本発明は、距離導出手段は、音波の送信時刻から2つ目以降のピークの受信時刻までの時間に基づいて対象物までの距離を導出したことを特徴とする。請求項に記載の本発明によれば、音響送信手段の近傍に浮遊する粒子を対象物と誤認することなく、例えば計測基準長の相当時間を考慮して対象物までの距離を導出できる。 The present invention Motomeko 9 wherein the distance deriving means, characterized in that to derive the distance to the object based on the time to the reception time of the second and subsequent peaks from the transmission time of sound waves. According to the ninth aspect of the present invention, the distance to the object can be derived in consideration of, for example, the time corresponding to the measurement reference length without misidentifying particles floating in the vicinity of the acoustic transmission means as the object.

請求項10記載の本発明は、距離導出手段は、対象物と音響送信手段と音響受信手段との幾何学的配置を考慮して予め求めた時間と距離の関係に基づいて対象物までの距離を導出したことを特徴とする。請求項10に記載の本発明によれば、幾何学的配置を考慮して対象物までの距離を的確に導出できる。 According to the tenth aspect of the present invention, in the distance deriving unit, the distance to the target is determined based on the relationship between the time and the distance obtained in advance in consideration of the geometric arrangement of the target, the acoustic transmitting unit, and the acoustic receiving unit. Is derived. According to the present invention described in claim 10 , the distance to the object can be accurately derived in consideration of the geometric arrangement.

請求項11記載の本発明は、音響受信手段をスキャン型音響センサー又は音響センサーアレイとしたことを特徴とする。請求項11に記載の本発明によれば、対象物を的確に把握し、対象物までの距離を的確に導出できるとともに、対象物の形状情報を得ることができる。 The present invention according to claim 11 is characterized in that the acoustic receiving means is a scanning acoustic sensor or an acoustic sensor array. According to this invention of Claim 11 , while grasping | ascertaining a target object correctly and being able to derive | lead-out the distance to a target object accurately, the shape information of a target object can be obtained.

請求項12記載の本発明は、音響送信手段をスキャン型送波器又は音響発信アレイとしたことを特徴とする。請求項12に記載の本発明によれば、対象物を的確に把握すること、対象物までの距離を的確に導出すること、対象物の形状情報を得ることを可能とすることができる。 The present invention according to claim 12 is characterized in that the acoustic transmission means is a scan type transmitter or an acoustic transmission array. According to the present invention described in claim 12 , it is possible to accurately grasp the object, accurately derive the distance to the object, and obtain shape information of the object.

請求項13記載の本発明は、受信した音波の信号のピークに基づいて異常を判定する異常判定手段を備えたことを特徴とする。請求項13に記載の本発明によれば、音波の送信方向の対象物からのずれや、音響送信手段又は音響受信手段の故障などによって、測定が正常に行えなかったことや完了しなかったことを検知できる。 The invention according to claim 13 is characterized by comprising an abnormality determining means for determining an abnormality based on the peak of the received sound wave signal. According to the present invention as set forth in claim 13 , the measurement could not be performed normally or was not completed due to a deviation from the object in the transmission direction of the sound wave or a failure of the sound transmitting means or the sound receiving means. Can be detected.

請求項14記載の本発明に対応した水中機器においては、濁水中距離測定装置を搭載したことを特徴とする。請求項14に記載の本発明によれば、濁水中においても対象物までの距離を的確に導出できる機能を有する水中機器を提供できる。 The underwater device corresponding to the present invention according to claim 14 is characterized in that a muddy water distance measuring device is mounted. According to the present invention as set forth in claim 14 , it is possible to provide an underwater device having a function capable of accurately deriving the distance to an object even in muddy water.

本発明の濁水中距離測定方法によれば、対象物に対して音波を送信する位置と対象物から反射した音波を受信する位置を離すことで、音波を同位置で送受信する場合と比べて散乱信号と反射信号の判別がし易くなり、濁水中においても対象物までの距離を的確に導出できる。また、粒子からの散乱信号と対象物からの反射信号を受信した音波の信号のピークから判別することで、浮遊する粒子を対象物と誤認する可能性を低減することができる。また、音響送信手段の近傍に浮遊する粒子を対象物と誤認することなく、例えば計測基準長の相当時間を考慮して対象物までの距離を導出できる。 According to the muddy water distance measurement method of the present invention, the position where the sound wave is transmitted to the object is separated from the position where the sound wave reflected from the object is separated, so that the sound wave is scattered as compared with the case where the sound wave is transmitted and received at the same position. The signal and the reflected signal can be easily distinguished, and the distance to the object can be accurately derived even in muddy water. Moreover, the possibility of misidentifying floating particles as an object can be reduced by discriminating the scattering signal from the particle and the peak of the sound wave signal received from the object. In addition, the distance to the object can be derived in consideration of, for example, the time corresponding to the measurement reference length without misidentifying particles floating in the vicinity of the acoustic transmission means as the object.

た、本発明の濁水中距離測定方法によれば、対象物に対して音波を送信する位置と対象物から反射した音波を受信する位置を離すことで、音波を同位置で送受信する場合と比べて散乱信号と反射信号の判別がし易くなり、濁水中においても対象物までの距離を的確に導出できる。また、粒子からの散乱信号と対象物からの反射信号を受信した音波の信号のピークから判別することで、浮遊する粒子を対象物と誤認する可能性を低減することができる。また、音響送信手段の近傍に浮遊する粒子を対象物と誤認することなく直接的に、対象物までの距離を導出できる。 Also, according to the turbid medium distance measuring method of the present invention, by separating the position for receiving the waves reflected from the position and the object for transmitting acoustic waves to an object, and for sending and receiving sound waves at the same position Compared to the scattered signal and the reflected signal, the distance to the object can be accurately derived even in muddy water. Moreover, the possibility of misidentifying floating particles as an object can be reduced by discriminating the scattering signal from the particle and the peak of the sound wave signal received from the object. In addition, the distance to the object can be derived directly without misidentifying particles floating in the vicinity of the acoustic transmission means as the object.

また、受信した音波の信号のピークに基づいて異常を判定した場合には、音波の送信方向の対象物からのずれや、音響送信手段又は音響受信手段の故障などによって、測定が正常に行えなかったことや完了しなかったことを検知できる。   In addition, when an abnormality is determined based on the peak of the received sound wave signal, the measurement cannot be performed normally due to a deviation from the object in the sound wave transmission direction or a failure of the sound transmission means or the sound reception means. Can be detected or not completed.

また、距離の導出に当っては、対象物と音響送信手段と音響受信手段の幾何学的配置を考慮して導出した場合には、幾何学的配置を考慮して対象物までの距離を的確に導出できる。   In addition, when the distance is derived in consideration of the geometric arrangement of the object, the acoustic transmission means, and the acoustic reception means, the distance to the object is accurately determined in consideration of the geometric arrangement. Can be derived.

また、距離の導出に当っては、予め求めた時間と距離の関係に基づいて導出した場合には、計測基準長により異なる時間と距離の関係に基づいて対象物までの距離を簡便かつ的確に導出できる。   In addition, when the distance is derived based on the relationship between time and distance obtained in advance, the distance to the object can be easily and accurately determined based on the relationship between time and distance that varies depending on the measurement reference length. Can be derived.

また、音響受信手段を走査させたこと、又は音響受信手段として音響センサーアレイを用いた場合には、対象物を的確に把握し、対象物までの距離を的確に導出できるとともに、対象物の形状情報を得ることができる。   In addition, when the acoustic receiving means is scanned or an acoustic sensor array is used as the acoustic receiving means, the object can be accurately grasped and the distance to the object can be accurately derived, and the shape of the object Information can be obtained.

また、音響送信手段を走査させたこと、又は音響送信手段として音響発信アレイを用いた場合には、対象物を的確に把握すること、対象物までの距離を的確に導出すること、対象物の形状情報を得ることを可能とすることができる。   In addition, when the acoustic transmission unit is scanned or the acoustic transmission array is used as the acoustic transmission unit, the target object is accurately grasped, the distance to the target object is accurately derived, It may be possible to obtain shape information.

また、本発明の濁水中距離測定装置によれば、対象物に対して音波を送信する位置と対象物から反射した音波を受信する位置を離すことで、音波を同位置で送受信する場合と比べて散乱信号と反射信号の判別がし易くなり、対象物までの距離を的確に導出できる。また、音響送信手段の近傍に浮遊する粒子を対象物と誤認する可能性を低減することができる。 Further, according to the muddy water distance measuring device of the present invention, by separating the position for transmitting the sound wave to the object and the position for receiving the sound wave reflected from the object, compared with the case of transmitting and receiving the sound wave at the same position. Therefore, it becomes easy to distinguish the scattered signal and the reflected signal, and the distance to the object can be accurately derived. In addition, it is possible to reduce the possibility of misidentifying particles floating in the vicinity of the acoustic transmission means as an object.

また、距離導出手段は、音波の送信時刻から2つ目以降のピークの受信時刻までの時間に基づいて対象物までの距離を導出した場合には、音響送信手段の近傍に浮遊する粒子を対象物と誤認することなく、例えば計測基準長の相当時間を考慮して対象物までの距離を導出できる。 In addition, the distance deriving means targets particles suspended in the vicinity of the acoustic transmitting means when the distance to the object is derived based on the time from the transmission time of the sound wave to the reception time of the second and subsequent peaks. Without mistaking it as an object, for example, the distance to the object can be derived in consideration of the time equivalent to the measurement reference length.

また、距離導出手段は、対象物と音響送信手段と音響受信手段との幾何学的配置を考慮して予め求めた時間と距離の関係に基づいて対象物までの距離を導出した場合には、幾何学的配置を考慮して対象物までの距離を的確に導出できる。   In addition, when the distance deriving means derives the distance to the object based on the relationship between the time and the distance obtained in advance in consideration of the geometric arrangement of the object, the sound transmitting means, and the sound receiving means, The distance to the object can be accurately derived in consideration of the geometric arrangement.

また、音響受信手段をスキャン型音響センサー又は音響センサーアレイとした場合には、対象物を的確に把握し、対象物までの距離を的確に導出できるとともに、対象物の形状情報を得ることができる。   Further, when the acoustic receiving means is a scanning acoustic sensor or acoustic sensor array, the object can be accurately grasped, the distance to the object can be accurately derived, and the shape information of the object can be obtained. .

また、音響送信手段をスキャン型送波器又は音響発信アレイとした場合には、対象物を的確に把握すること、対象物までの距離を的確に導出すること、対象物の形状情報を得ることを可能とすることができる。   In addition, when the acoustic transmission means is a scanning transmitter or an acoustic transmission array, the object is accurately grasped, the distance to the object is accurately derived, and the shape information of the object is obtained. Can be made possible.

また、受信した音波の信号のピークに基づいて異常を判定する異常判定手段を備えた場合には、音波の送信方向の対象物からのずれや、音響送信手段又は音響受信手段の故障などによって、測定が正常に行えなかったことや完了しなかったことを検知できる。   In addition, when equipped with an abnormality determination means for determining an abnormality based on the peak of the received sound wave signal, due to a deviation from the object in the sound wave transmission direction, a failure of the acoustic transmission means or the acoustic reception means, It is possible to detect that the measurement has not been performed normally or has not been completed.

また、本発明の水中機器によれば、濁水中においても対象物までの距離を的確に導出できる機能を有する。   Moreover, according to the underwater apparatus of this invention, it has a function which can derive | lead-out the distance to a target object correctly also in muddy water.

本発明の一実施形態による濁水中距離測定装置の構成を示す概略構成図The schematic block diagram which shows the structure of the muddy water distance measuring apparatus by one Embodiment of this invention. 対象物までの距離が3mの場合の音波経路の一例を示す図The figure which shows an example of the sound wave path | route in case the distance to a target object is 3 m 音響受信手段で受信した音波の信号の一例を示す図The figure which shows an example of the signal of the sound wave received by the acoustic receiving means 対象物までの距離が3mの場合の受信信号強度の一例を示す図The figure which shows an example of the received signal strength in case the distance to a target object is 3 m 対象物までの距離が1〜10mの場合の音波経路の一例を示す図The figure which shows an example of the sound wave path | route in case the distance to a target object is 1-10 m 受信信号のピーク観測時間の一例を示す図Diagram showing an example of the peak observation time of the received signal 受信信号のピーク数の例を示す図Diagram showing an example of the peak number of received signals 送受信手段一体型の測定装置による音波の送受信の例を示す図The figure which shows the example of transmission / reception of the sound wave by the measuring device of a transmission / reception means integrated type

以下に、本発明の実施形態による濁水中距離測定装置及び濁水中距離測定方法について説明する。   Below, the muddy water distance measuring apparatus and muddy water distance measuring method by embodiment of this invention are demonstrated.

図1は、本発明の一実施形態による濁水中距離測定装置の構成を示す概略構成図である。
本実施形態による濁水中距離測定装置は、岩石などの対象物10に対して音波を送信する音響送信手段20と、対象物10から反射した音波を受信する音響受信手段30とを備え、音響送信手段20と音響受信手段30とは、所定の計測基準長Lを有して設けている。
このように、対象物10に対して音波を送信する位置と対象物10から反射した音波を受信する位置を所定の計測基準長L離すことで、音波を同位置で送受信する場合と比べて、濁水中においても粒子11からの散乱信号と対象物10からの反射信号の判別がし易くなる。
FIG. 1 is a schematic configuration diagram showing a configuration of a muddy water distance measuring device according to an embodiment of the present invention.
The muddy water distance measuring device according to the present embodiment includes an acoustic transmission unit 20 that transmits a sound wave to an object 10 such as a rock, and an acoustic reception unit 30 that receives a sound wave reflected from the object 10. The means 20 and the sound receiving means 30 are provided with a predetermined measurement reference length L.
Thus, by separating the position for transmitting the sound wave to the object 10 and the position for receiving the sound wave reflected from the object 10 by a predetermined measurement reference length L, compared to the case of transmitting and receiving the sound wave at the same position, Even in muddy water, it becomes easy to distinguish the scattered signal from the particles 11 and the reflected signal from the object 10.

図2は、対象物10までの距離が3mの場合の音波経路の一例を示す図である。本図においては、音波を同位置で送受信する従来の測定装置(送受信手段一体型)の音波経路を実線で表し、音響送信手段20と音響受信手段30が所定の計測基準長Lを有して設けられる本実施形態の濁水中距離測定装置(送受信手段分離型)の音波経路を破線で表している。なお、本図においては計測基準長Lを6mとしている。   FIG. 2 is a diagram illustrating an example of a sound wave path when the distance to the object 10 is 3 m. In this figure, the sound wave path of a conventional measuring apparatus (transmitter / receiver integrated type) that transmits and receives sound waves at the same position is indicated by a solid line, and the sound transmitting means 20 and the sound receiving means 30 have a predetermined measurement reference length L. The sound wave path of the muddy water distance measuring apparatus (transmission / reception means separation type) of this embodiment provided is represented by a broken line. In this figure, the measurement reference length L is 6 m.

音響送信手段20と音響受信手段30には、例えばソナーヘッドを用いることができる。
拡がり角約5°、指向性有、周波数100kHz程度の音波を、音響送信手段(送信ソナーヘッド)20から粒子11が浮遊した濁水中に存在する対象物10に向けて送信すると、音響送信手段20と同期された音響受信手段(受信ソナーヘッド)30において、対象物10から反射した音波が観測される。
は音響送信手段20から対象物10までの距離、rは対象物10から音響受信手段30までの距離、r’は音響送信手段20から粒子11までの距離、r’は粒子11から音響受信手段30までの距離である。
For example, a sonar head can be used for the acoustic transmission unit 20 and the acoustic reception unit 30.
When a sound wave having a spread angle of about 5 °, directivity, and a frequency of about 100 kHz is transmitted from the acoustic transmission means (transmission sonar head) 20 toward the target object 10 in the muddy water in which the particles 11 are suspended, the acoustic transmission means 20 is transmitted. The sound wave reflected from the object 10 is observed in the acoustic receiving means (reception sonar head) 30 synchronized with.
r 1 is the distance from the acoustic transmission means 20 to the object 10, r 2 is the distance from the object 10 to the acoustic reception means 30, r 1 ′ is the distance from the acoustic transmission means 20 to the particle 11, and r 2 ′ is the particle 11 to the sound receiving means 30.

なお、音響受信手段30をスキャン型音響センサー又は音響センサーアレイとし、音響送信手段20をスキャン型送波器又は音響発信アレイとしても良い。このように構成した場合には、対象物10の位置が多少ずれた場合や対象物10が大きい場合に、対象物10に的確に音波を当て反射した音波を的確に観測できる。このため対象物10を的確に把握し、対象物10までの距離をより的確に導出できるとともに、対象物10の形状情報を得ることができる。
ここで、音響センサーアレイには、音響センサーを多数アレイ状に配列したもの以外に、音響センサーは単数あるいは少数であっても送波・受波の際に音響レンズを使って音波を拡散・集中させる等、実質的に音響センサーアレイの機能を有した音響レンズ方式を含む。
The acoustic receiving means 30 may be a scan type acoustic sensor or an acoustic sensor array, and the acoustic transmission means 20 may be a scan type transmitter or an acoustic transmission array. When configured in this way, when the position of the target object 10 is slightly shifted or when the target object 10 is large, it is possible to accurately observe the sound wave reflected and reflected by the target object 10. Therefore, the object 10 can be accurately grasped, the distance to the object 10 can be derived more accurately, and the shape information of the object 10 can be obtained.
Here, the acoustic sensor array diffuses and concentrates sound waves using acoustic lenses when transmitting and receiving waves, even if there are a single or a small number of acoustic sensors in addition to an array of acoustic sensors. And an acoustic lens system having substantially the function of an acoustic sensor array.

図3は、音響受信手段30で受信した音波の信号の一例を示す図であり、波形とその包絡線を表示している。但し、波形は詳細な表現を省略し、包絡線を中心に表現している。
音響受信手段30は、対象物10から反射した音波以外に、濁水中に浮遊する粒子11から反射した音波も受信する。音響送信手段20と音響受信手段30とは、所定の計測基準長Lを有して設けているため、音響送信手段20と対象物10の間に浮遊する粒子11から反射した音波が、対象物10から反射した音波よりも先に音響受信手段30で受信される。また、音響送信手段20と対象物10の間に浮遊する粒子11から反射した音波は、計測基準長Lに相当する分の時間が経過した後に音響受信手段30で受信され始める。
時間が経過すると伝播距離が長くなるため粒子11から反射した音波の受信信号強度は徐々に下がっていくが、対象物10からの反射信号を受けると受信信号強度は一気に上がる。
FIG. 3 is a diagram showing an example of a sound wave signal received by the acoustic receiving means 30, and displays a waveform and its envelope. However, the detailed description of the waveform is omitted, and the waveform is expressed around the envelope.
The acoustic receiving means 30 receives sound waves reflected from the particles 11 floating in the muddy water, in addition to the sound waves reflected from the object 10. Since the acoustic transmission means 20 and the acoustic reception means 30 are provided with a predetermined measurement reference length L, the sound wave reflected from the particles 11 floating between the acoustic transmission means 20 and the target object 10 is the target object. The sound is received by the acoustic receiving means 30 before the sound wave reflected from the sound wave 10. The sound wave reflected from the particles 11 floating between the acoustic transmission unit 20 and the object 10 starts to be received by the acoustic reception unit 30 after a time corresponding to the measurement reference length L has elapsed.
Since the propagation distance becomes longer with time, the received signal intensity of the sound wave reflected from the particles 11 gradually decreases. However, when the reflected signal from the object 10 is received, the received signal intensity increases rapidly.

判別手段40は、音響受信手段30で受信した音波の信号から粒子11からの散乱信号と対象物10からの反射信号を判別する。
本実施形態においては、判別手段40は、受信した音波の信号の1つ目のピークを粒子11からの散乱信号、信号の2つ目のピークを対象物10からの反射信号として判別する。なお、ここでピークとは、包絡線のピークをいう。
このように判別することで、音響送信手段20の近傍に浮遊する粒子11を対象物10と誤認する可能性を低減することができる。
The discriminating means 40 discriminates the scattered signal from the particle 11 and the reflected signal from the object 10 from the sound wave signal received by the acoustic receiving means 30.
In the present embodiment, the discriminating means 40 discriminates the first peak of the received sound wave signal as a scattered signal from the particle 11 and the second peak of the signal as a reflected signal from the object 10. Here, the peak means an envelope peak.
By discriminating in this way, it is possible to reduce the possibility of misidentifying the particles 11 floating in the vicinity of the acoustic transmission means 20 as the object 10.

図4は、対象物10までの距離が3mの場合の受信信号強度の一例を示す図である。本図においては、従来の送受信手段一体型の受信信号強度を三角記号で表し、送受信手段分離型の受信信号強度を丸記号で表している。なお、計測基準長Lを6mとしている。
本図に示すように、送受信手段一体型は、1つ目のピークが2つ目のピークよりも信号強度が大きいため対象物10からの反射信号が隠れてしまうのに対して、送受信手段分離型は、2つ目のピークが1つ目のピークよりも信号強度が大きいため粒子11からの散乱信号と対象物10からの反射信号の判別がし易い。すなわち、従来の送受信手段一体型では、送受信手段の近傍に大きめの粒子11があった場合等に、対象物10からの反射信号よりも粒子11からの散乱信号の受信信号強度が高くなり、かつピーク状になるため、対象物10からの反射信号と判別を誤る確率が高くなるが、本実施形態における送受信手段分離型は、このような誤判別が低減できる。
FIG. 4 is a diagram illustrating an example of the received signal strength when the distance to the object 10 is 3 m. In this figure, the conventional transmission / reception means integrated reception signal strength is represented by a triangle symbol, and the transmission / reception device separation type reception signal strength is represented by a circle symbol. The measurement reference length L is 6 m.
As shown in this figure, the transmission / reception means integrated type has a signal intensity higher than that of the second peak because the reflected signal from the object 10 is hidden, whereas the transmission / reception means separation is performed. Since the second peak has a higher signal intensity than the first peak, it is easy to distinguish the scattered signal from the particle 11 and the reflected signal from the object 10. That is, in the conventional transmission / reception means integrated type, when there is a larger particle 11 near the transmission / reception means, the received signal intensity of the scattered signal from the particle 11 becomes higher than the reflected signal from the object 10, and Since it has a peak shape, the probability of misjudgment as a reflected signal from the object 10 is increased, but the transmission / reception means separation type in the present embodiment can reduce such misjudgment.

なお、対象物10までの距離は、用途により変えることができる。図5は、対象物10までの距離が1〜10mの場合の音波経路の一例を示す図である。本図においては、送受信手段一体型の音波経路を実線で表し、送受信手段分離型の音波経路を破線で表している。なお、計測基準長Lを6mとしている。但し、計測基準長Lに対して対象物10までの距離は、計測基準長Lを大きく越えない範囲が好ましく、2倍又は1/2倍までの距離が更に好ましく、略等距離であることが最も好ましい。   Note that the distance to the object 10 can be changed depending on the application. FIG. 5 is a diagram illustrating an example of a sound wave path when the distance to the object 10 is 1 to 10 m. In this figure, the transmission / reception means integrated type sound wave path is indicated by a solid line, and the transmission / reception means separation type sound wave path is indicated by a broken line. The measurement reference length L is 6 m. However, the distance to the object 10 with respect to the measurement reference length L is preferably within a range that does not greatly exceed the measurement reference length L, more preferably a distance of 2 times or 1/2 times, and a substantially equal distance. Most preferred.

図6は、受信信号のピークの観測時間の一例を示す図である。本図においては、送受信手段一体型を三角記号で表し、送受信手段分離型を丸記号で表している。なお、計測基準長Lを6mとしている。この図6に示すようなピーク観測時間と対象物10までの距離の関係を予め求めておくことにより、ピーク観測時間から対象物10までの距離を簡便に、的確に導出できるという効果が得られる。特に、濁水中距離測定装置として対象物10の距離レンジに応じて、計測基準長Lを変更するような型式の場合に、この効果は更に顕著となる。   FIG. 6 is a diagram illustrating an example of the observation time of the peak of the received signal. In this figure, the transmission / reception means integrated type is represented by a triangle symbol, and the transmission / reception means separation type is represented by a circle symbol. The measurement reference length L is 6 m. By obtaining in advance the relationship between the peak observation time and the distance to the target object 10 as shown in FIG. 6, the effect that the distance from the peak observation time to the target object 10 can be derived easily and accurately is obtained. . In particular, this effect becomes more noticeable when the muddy water distance measuring device is a model in which the measurement reference length L is changed according to the distance range of the object 10.

図7は、受信信号のピーク数について、(a)は清水中、(b)は均一濁水中、(c)は拡散濁水中、(d)は濁水濃淡逆転水中、(e)は濁水中異物介在時を示している。このように、粒子11の分布状態や粒子11以外の異物12の介在などによってピーク数は変動することがあるので、例えばピーク数が3つ出現する場合は3つ目のピークを対象物10からの反射信号として判別するなど、測定状況に応じて対象物10からの反射信号として判別するピークを変更する。このような場合であっても、対象物10から反射した受信信号強度は、最大となる場合が多いため最大のピークから判別してもよいが、所定の閾値と組み合わせて判別してもよい。また、予め粒子11の分布の傾向や、周囲の環境条件が分かっている場合には、これらの傾向や条件を加味して判別することも可能である。   FIG. 7 shows the number of received signal peaks, (a) clear water, (b) uniform turbid water, (c) diffused turbid water, (d) turbid water concentration reverse water, (e) turbid water foreign matter. The intervening time is shown. As described above, the number of peaks may vary depending on the distribution state of the particles 11 and the presence of foreign substances 12 other than the particles 11. For example, when three peaks appear, the third peak is removed from the object 10. For example, the peak to be determined as a reflected signal from the object 10 is changed according to the measurement situation. Even in such a case, the received signal intensity reflected from the target object 10 is often maximized, so that it may be determined from the maximum peak, or may be determined in combination with a predetermined threshold value. Further, when the distribution tendency of the particles 11 and the surrounding environmental conditions are known in advance, it is also possible to make a determination by taking these tendencies and conditions into consideration.

距離導出手段50は、反射信号に基づいて対象物10までの距離を導出する。
本実施形態においては、音波の送信時刻から2つ目のピークの受信時刻までの時間と、対象物10と音響送信手段20と音響受信手段30との幾何学的配置を考慮して予め求めた時間と距離の関係に基づいて対象物10までの距離を導出する。このように導出することで、濁水中においても音響送信手段20の近傍に浮遊する粒子11を対象物10と誤認することなく、幾何学的配置を考慮して対象物10までの距離を的確に導出できる。
幾何学的配置として対象物10と音響送信手段20と音響受信手段30の凡その位置関係が分かっていると、ピークの判別もより容易となる。また、例えば、1つ目のピークを粒子11からの散乱信号、2つ目のピークを対象物10からの反射信号として判別し、音波の送信時刻から2つ目のピークの受信時刻までの時間に基づいて対象物10までの距離を導出する場合、図6に適用して対象物10までの距離を容易に導出することができる。
また、計測基準長Lの相当時間を予め求めておくことにより、音波の送信時刻から2つ目のピークの受信時刻までの時間から計測基準長Lの相当時間を引いて正味の伝播時間を求め、これに基づいて距離を導出することもできる。
なお、音波の送信時刻から2つ目のピークの受信時刻までの時間に代えて、1つ目のピークの受信時刻から2つ目のピークの受信時刻までの時間に基づいて対象物10までの距離を導出してもよい。この場合は、直接正味の伝播時間を求め、対象物10までの距離を導出することができる。
The distance deriving unit 50 derives the distance to the object 10 based on the reflected signal.
In the present embodiment, it is obtained in advance in consideration of the time from the transmission time of the sound wave to the reception time of the second peak and the geometrical arrangement of the object 10, the acoustic transmission means 20, and the acoustic reception means 30. The distance to the object 10 is derived based on the relationship between time and distance. By deriving in this way, the distance to the object 10 can be accurately determined in consideration of the geometrical arrangement without misidentifying the particle 11 floating in the vicinity of the acoustic transmission means 20 even in muddy water as the object 10. Can be derived.
If the approximate positional relationship among the object 10, the acoustic transmission unit 20, and the acoustic reception unit 30 is known as a geometrical arrangement, it is easier to determine the peak. For example, the first peak is determined as a scattering signal from the particle 11, the second peak is determined as a reflection signal from the object 10, and the time from the transmission time of the sound wave to the reception time of the second peak When the distance to the object 10 is derived based on the above, the distance to the object 10 can be easily derived by applying to FIG.
Also, by calculating the equivalent time of the measurement reference length L in advance, the net propagation time is obtained by subtracting the equivalent time of the measurement reference length L from the time from the transmission time of the sound wave to the reception time of the second peak. Based on this, the distance can be derived.
In addition, instead of the time from the transmission time of the sound wave to the reception time of the second peak, the time until the object 10 is reached based on the time from the reception time of the first peak to the reception time of the second peak. The distance may be derived. In this case, the net propagation time can be obtained directly and the distance to the object 10 can be derived.

異常判定手段60は、受信した音波の信号のピークに基づいて異常を判定する。例えば、音波の送信方向が対象物10からずれて音波が対象物10から反射して来ない場合や、音響送信手段20又は音響受信手段30の故障などによってピークが1つも無い場合、また対象物10との間に異物12が存在してピークが正常時よりも多く出る場合等は異常と判定することによって、測定が正常に行えなかったことや完了しなかったことを検知できる。   The abnormality determination unit 60 determines abnormality based on the peak of the received sound wave signal. For example, when the sound wave transmission direction is deviated from the object 10 and the sound wave does not reflect from the object 10, or when there is no peak due to a failure of the acoustic transmission unit 20 or the acoustic reception unit 30, In the case where the foreign substance 12 exists between 10 and the peak appears more than normal, it can be determined that the measurement has not been performed normally or has not been completed by determining that it is abnormal.

ここで、対象物10に対して音波を送信する位置と対象物10から反射した音波を受信する位置を所定の計測基準長L離すことで、音波を同位置で送受信する場合と比べて、水中に浮遊する粒子11からの散乱信号と対象物10からの反射信号の判別がし易くなることについて数式を用いて説明する。
図8(a)は、送受信手段一体型の測定装置であるソナー100による清水中における音波の送受信を示す図であり、図8(b)は図8(a)における受信信号の波形とその包絡線を示している。また、図8(c)は、ソナー100による濁水中における音波の送受信を示す図であり、図8(d)は図8(c)における受信信号の波形とその包絡線を示している。但し、波形は詳細な表現を省略し、包絡線を中心に表現している。
まず、ソナー100の受信信号強度は、I(t)を時刻tにおける受信信号強度(音波強度又は電気信号値)、I(t)を送信ヘッドから出るパルス音の強度(パルス幅程度)、Aを受信ヘッドの面積、rをソナー100から対象物10までの距離、θを入射方向と反射方向のなす角、k(r)を位置rでの音の減衰係数とすると、次の数式で表される。
Here, the position where the sound wave is transmitted to the object 10 and the position where the sound wave reflected from the object 10 is received are separated by a predetermined measurement reference length L, so that the sound wave is transmitted and received at the same position. It will be described using mathematical formulas that it becomes easy to distinguish the scattering signal from the particle 11 floating on the surface and the reflection signal from the object 10.
FIG. 8A is a diagram showing transmission and reception of sound waves in clean water by the sonar 100 which is a measuring device integrated with transmission and reception means, and FIG. 8B is a waveform of the received signal and its envelope in FIG. A line is shown. FIG. 8C is a diagram showing transmission and reception of sound waves in muddy water by the sonar 100, and FIG. 8D shows the waveform of the received signal and its envelope in FIG. 8C. However, the detailed description of the waveform is omitted, and the waveform is expressed around the envelope.
First, the received signal intensity of the sonar 100 is as follows: I (t) is the received signal intensity at the time t (sonic wave intensity or electrical signal value), I (t 0 ) is the intensity of the pulse sound from the transmission head (about the pulse width), When A is the area of the receiving head, r is the distance from the sonar 100 to the object 10, θ is the angle between the incident direction and the reflection direction, and k (r) is the sound attenuation coefficient at the position r, expressed.

ここで、送波信号(拡がり角約5°)は、幾何学的に全て対象物10に当たる方向と仮定する。σ(r,θ)は音波の微分散乱断面積であり、θ≒180°(後方散乱)である。
そして、距離(位置)と時刻tは、r=2v(t−t)で表されるので、送信ヘッド近傍の受信信号((t−t)〜小)ほど強調され、図8(b)、(d)に示すように、送信ヘッドの近傍に浮遊する粒子11からの散乱信号に、対象物10からの反射信号が隠れやすいことが分かる。
Here, it is assumed that the transmission signal (a spread angle of about 5 °) is geometrically directed to the object 10. σ (r, θ) is a differential scattering cross section of the sound wave, and θ≈180 ° (back scattering).
Since the distance (position) and time t are represented by r = 2v (t−t 0 ), the received signal ((t−t 0 ) to smaller) in the vicinity of the transmission head is emphasized, and FIG. ), (D), it can be seen that the reflected signal from the object 10 is easily hidden in the scattered signal from the particles 11 floating in the vicinity of the transmission head.

これに対し、本実施形態の濁水中距離測定装置のように、音響送信手段(送信ソナーヘッド)20と音響受信手段(受信ソナーヘッド)30が分離して設けられる送受信手段分離型のソナーの受信信号強度は、I(t)を時刻tにおける受信信号強度(音波強度又は電気信号値)、I(t)を送信ソナーヘッド20から出るパルス音の強度(パルス幅程度)、Cをソナー装置定数、Aを受信ソナーヘッド30の面積、rを送信ソナーヘッド20から対象物10までの距離、rを対象物10から受信ソナーヘッド30までの距離、θを入射方向と反射方向のなす角、k(r)を位置rでの音の減衰係数とすると、次の数式で表される。 On the other hand, as in the muddy water distance measuring device of this embodiment, the transmission of the transmission / reception means separation type sonar in which the acoustic transmission means (transmission sonar head) 20 and the acoustic reception means (reception sonar head) 30 are separately provided is provided. As for the signal intensity, I s (t) is the received signal intensity (sonic wave intensity or electric signal value) at time t, I 0 (t 0 ) is the intensity of the pulse sound (about pulse width) emitted from the transmitting sonar head 20, and C is The sonar device constant, A is the area of the receiving sonar head 30, r 1 is the distance from the transmitting sonar head 20 to the object 10, r 2 is the distance from the object 10 to the receiving sonar head 30, and θ is the incident direction and the reflecting direction. When k (r) is an attenuation coefficient of sound at the position r, it is expressed by the following equation.

ここで、送波信号(拡がり角約5°)は、幾何学的に全て対象物10に当たる方向と仮定する。σ(r,θ)は音波の微分散乱断面積であり、θ≒90°(大角度散乱)である。
そして、距離(位置)と時刻tは、r=2v((t−t)+(t−t))で表されるので、送信ソナーヘッド20近傍の粒子11からの散乱信号ほどrが大きくなる。また、θ≒90°で、濁水中の粒子11による微分散乱断面積σ(r,θ)は最小である。よって、図3、図4に示すように、送信ソナーヘッド20近傍の粒子11からの散乱信号を抑制することができ、対象物10からの反射信号を的確に得ることができる。
Here, it is assumed that the transmission signal (a spread angle of about 5 °) is geometrically directed to the object 10. σ (r 1 , θ) is a differential scattering cross section of the sound wave, and θ≈90 ° (large angle scattering).
Since the distance (position) and time t are represented by r = 2v ((t 1 −t 0 ) + (t 2 −t 1 )), the scattered signal from the particles 11 in the vicinity of the transmission sonar head 20 increases. r 2 becomes large. Further, when θ≈90 °, the differential scattering cross section σ (r 1 , θ) due to the particles 11 in the muddy water is minimum. Therefore, as shown in FIGS. 3 and 4, the scattered signal from the particles 11 in the vicinity of the transmission sonar head 20 can be suppressed, and the reflected signal from the object 10 can be obtained accurately.

次に、送受信手段分離型のソナーの受信シグナルは、I(t)を時刻tにおける受信シグナル音の信号強度(音波強度又は電気信号値)、I(Δt)を送信ソナーヘッド20から出るパルス音の強度(パルス幅程度)、Cをソナー装置定数、Aを受信ソナーヘッド30の面積、σref(θ,φ)を音波が対象物10に入射し、角度(θ,φ)方向(受信ソナーヘッド30方向)に反射するときの反射率、rを送信ソナーヘッド20から対象物10までの距離、rを対象物10から受信ソナーヘッド30までの距離、θを入射方向と反射方向のなす角、φを入射方向と受信ソナーヘッド30を含む平面と散乱方向のなす角、k(r)を位置rでの音の減衰係数とすると、次の数式で表される。 Next, the reception signal of the transmission / reception means separation type sonar is output from the transmission sonar head 20 with I s (t) being the signal intensity (sonic wave intensity or electric signal value) of the reception signal sound at time t and I 0 (Δt). The intensity of the pulse sound (about the pulse width), C is the sonar device constant, A is the area of the receiving sonar head 30, σ ref (θ, φ) is incident on the object 10, and the angle (θ, φ) direction ( The reflectance when reflecting in the direction of the receiving sonar head 30), r 1 is the distance from the transmitting sonar head 20 to the object 10, r 2 is the distance from the object 10 to the receiving sonar head 30, and θ is reflected from the incident direction. When the angle between the direction, φ is the angle between the incident direction and the plane including the receiving sonar head 30 and the scattering direction, and k (r) is the sound attenuation coefficient at the position r, it is expressed by the following equation.

また、送受信手段分離型のソナーの受信ノイズは、I(t)を時刻tにおける受信ノイズ音の信号強度(音波強度又は電気信号値)、σscat(γ’,θ’,φ’)を位置γ’で音波が浮遊物である粒子11と相互作用し、角度(θ’,φ’)方向(受信ソナーヘッド30方向)に散乱するときの散乱断面積、rを送信ソナーヘッド20から対象物10までの距離、r’を送信ソナーヘッド20から散乱体である粒子11までの距離、r’を散乱体である粒子11から受信ソナーヘッド30までの距離、θ’を入射方向と反射方向のなす角、φ’を入射方向と受信ソナーヘッド30を含む平面と散乱方向のなす角、k(r)を位置rでの音の減衰係数とすると、次の数式で表される。 The reception noise of the transmission / reception means separation type sonar is expressed as follows: I N (t) is the signal intensity (sound wave intensity or electrical signal value) of the received noise sound at time t, and σ scat (γ ′, θ ′, φ ′). At the position γ ′, the sound wave interacts with the suspended particle 11 and scatters the scattering cross section r 1 when scattered in the angle (θ ′, φ ′) direction (reception sonar head 30 direction) from the transmission sonar head 20. The distance from the object 10, r 1 ′ is the distance from the transmitting sonar head 20 to the scatterer particle 11, r 2 ′ is the distance from the scatterer particle 11 to the receiving sonar head 30, and θ ′ is the incident direction. And the reflection direction, φ ′ is the angle between the incident direction and the plane including the receiving sonar head 30 and the scattering direction, and k (r) is the sound attenuation coefficient at the position r. .

これら数式(3)のI(t)と数式(4)のI(t)の和が、本実施形態の濁水中距離測定装置の観測信号となる。また、I(t)とI(t)の比が、本実施形態の濁水中距離測定装置の信号SN比(シグナル−ノイズ比)となる。
また、距離(位置)と時刻tは、r=v(t−t−Δt)、r=r+rの関係で表される。
The sum of I s (t) in Equation (3) and I N (t) in Equation (4) is the observation signal of the muddy water distance measuring device of this embodiment. Further, the ratio of I s (t) and I N (t) is the signal SN ratio (signal-noise ratio) of the muddy water distance measuring device of the present embodiment.
The distance (position) and time t are represented by the relationship r = v (t 2 −t 0 −Δt), r = r 1 + r 2 .

そして比較のために、送受信手段一体型のソナー100の、受信シグナルと受信ノイズの数式を示す。まず受信シグナルは、次の数式で表される。   For comparison, equations of the received signal and the received noise of the sonar 100 integrated with transmission / reception means are shown. First, the received signal is expressed by the following formula.

また、受信ノイズは、次の数式で表される。 The reception noise is expressed by the following formula.

これら数式(5)のI(t)と数式(6)のI(t)の和が、ソナー100の観測信号となる。また、I(t)とI(t)の比が、ソナー100の信号SN比となる。
また、距離(位置)と時刻tは、r=v/2(t−t−Δt)で表される。
The sum of I s (t) in Equation (5) and I N (t) in Equation (6) is the observation signal of the sonar 100. The ratio of I s (t) to I N (t) is the signal SN ratio of the sonar 100.
The distance (position) and time t are expressed by r = v / 2 (t−t 0 −Δt).

ここで、ソナー100は、r>r’となるのに対し、送受信手段分離型のソナーは、r<r’となることから、送受信手段分離型のソナーの方がSN比が向上することが分かる。
したがって、対象物10に対して音波を送信する位置と対象物10から反射した音波を受信する位置を所定の計測基準長L離すことで、音波を同位置で送受信する場合と比べて、水中に浮遊する粒子11からの散乱信号と対象物10からの反射信号の判別がし易くなる。
Here, sonar 100 'whereas the transmission and reception means separation type sonar, r 2 <r 2' r > r from becoming a, towards transceiver means separation type sonar is improved SN ratio I understand that.
Therefore, by separating the position for transmitting the sound wave with respect to the object 10 and the position for receiving the sound wave reflected from the object 10 by a predetermined measurement reference length L, the sound wave is submerged in the water as compared with the case where the sound wave is transmitted and received at the same position. It becomes easy to distinguish the scattered signal from the floating particles 11 and the reflected signal from the object 10.

本発明の一実施形態による濁水中距離測定装置は、例えば海底で鉱物資源を掘削する水中掘削機に適用される。水中掘削機の一例を挙げると、水中を走行するためのクローラを本体の左右に有し、前方中央に左右に旋回し上下に移動(俯仰を含む)するブームとその先端にカッターを有している。鉱物資源を掘削するに当り、掘削物(対象物10)までの距離を知り、あるいは対象物10の形状情報を知り的確にブームを動かし、カッターを作動させる必要がある。カッターによる鉱物掘削に伴い、周囲には削られた鉱物の微粒子や海底に存在する粒子(粒子11)、異物12が舞い上がり、水中に浮遊する結果となる。
このような水中掘削機において、従来の送受信手段一体型の測定装置は、水中掘削機の前方中央に存在するブームが邪魔になり設置ができなかった。ブームを外して設置することは可能であるが、型式として粒子11と対象物10の判別が困難であること以外にも、斜めから計測になるため距離に誤差が生じる問題が予想された。
一方、本実施形態の濁水中距離測定装置においては、音響送信手段20と音響受信手段30が所定の計測基準長Lを有しているため、丁度この距離の間にブームを設けることができ、設置上の問題も無くせる利点も併せて有している。なお、ブームが左右に旋回して掘削を行ったり、上下に移動して掘削を行う場合は、ブームに連動して音響送信手段20と音響受信手段30を所定の計測基準長Lを維持しつつ旋回させたり移動させることにより、どのような作業状況においても的確に対象とする掘削物(対象物10)までの距離や形状情報を把握することができる。
The muddy water distance measuring apparatus according to an embodiment of the present invention is applied to an underwater excavator that excavates mineral resources on the seabed, for example. As an example of an underwater excavator, there are crawlers for traveling underwater on the left and right of the main body, a boom that pivots left and right at the front center and moves up and down (including elevation), and a cutter at its tip Yes. When excavating mineral resources, it is necessary to know the distance to the excavated object (object 10), or to know the shape information of the object 10 and move the boom accurately to operate the cutter. Along with the excavation of the mineral by the cutter, fine particles of the mined mineral, particles (particles 11) existing on the sea floor, and foreign matter 12 rise and float in the water.
In such an underwater excavator, the conventional transmitter / receiver-integrated measuring device cannot be installed because the boom existing at the front center of the underwater excavator gets in the way. Although it is possible to install with the boom removed, it is expected that there is an error in the distance because the measurement is performed obliquely, in addition to the difficulty of distinguishing the particles 11 from the object 10 as a model.
On the other hand, in the muddy water distance measuring apparatus of this embodiment, since the acoustic transmission means 20 and the acoustic reception means 30 have a predetermined measurement reference length L, a boom can be provided just between this distance, It also has the advantage of eliminating installation problems. When excavating by turning the boom left and right, or excavating by moving up and down, the acoustic transmission means 20 and the acoustic reception means 30 are maintained at a predetermined measurement reference length L in conjunction with the boom. By turning or moving, it is possible to accurately grasp the distance to the excavated object (object 10) and the shape information in any work situation.

本発明の濁水中距離測定装置は、海底地形観測用三次元ソナーである、サイドスキャンソナー、マルチビームソナー、水中音響カメラ型ソナー及びインターフェロメトリーソナーにも適用できる。
また、本発明の濁水中距離測定装置を、海底掘削機以外にも、ROV(遠隔操作型無人水中探査機)、AUV(自律型無人水中探査機)等の水中機器に搭載することで、濁水中においても対象物までの距離を的確に導出できる機能を有する水中機器を提供できる。
The muddy water distance measuring device of the present invention can also be applied to side scan sonar, multi-beam sonar, underwater acoustic camera type sonar, and interferometry sonar which are three-dimensional sonars for observing seabed topography.
In addition to the submarine excavator, the muddy water distance measuring device of the present invention is mounted on underwater equipment such as ROV (remotely operated unmanned underwater explorer), AUV (autonomous unmanned underwater explorer), etc. It is possible to provide an underwater device having a function capable of accurately deriving the distance to an object even inside.

10 対象物
11 粒子
20 音響送信手段
30 音響受信手段
40 判別手段
50 距離導出手段
60 異常判定手段

DESCRIPTION OF SYMBOLS 10 Target object 11 Particle | grains 20 Acoustic transmission means 30 Acoustic reception means 40 Discriminating means 50 Distance deriving means 60 Abnormality judging means

Claims (14)

粒子が浮遊した濁水中に存在する対象物までの距離を測定する濁水中距離測定方法であって、前記対象物に対して音響送信手段から音波を送信し、前記音響送信手段と所定の計測基準長を有して設けた音響受信手段により前記対象物から反射した前記音波を受信し、前記音響受信手段で受信した前記音波の信号から、受信した前記音波の前記信号の1つ目のピークを前記粒子からの散乱信号、2つ目以降の前記ピークを前記対象物からの反射信号として判別し、前記音波の送信時刻から2つ目以降の前記ピークの受信時刻までの時間に基づいて前記対象物までの前記距離を導出したことを特徴とする濁水中距離測定方法。 A turbid water distance measuring method for measuring a distance to an object existing in turbid water in which particles are suspended, wherein a sound wave is transmitted from an acoustic transmission means to the object, and the acoustic transmission means and a predetermined measurement standard The sound wave reflected from the object is received by an acoustic receiving unit provided with a length, and the first peak of the signal of the received sound wave is obtained from the sound wave signal received by the acoustic receiving unit. scattering signals from the particles, two and subsequent of said peak determined by the reflected signal from the object, based on the time to the reception time of the peak of the second and subsequent from the transmission time of the sound wave The muddy water distance measuring method, wherein the distance to the object is derived. 粒子が浮遊した濁水中に存在する対象物までの距離を測定する濁水中距離測定方法であって、前記対象物に対して音響送信手段から音波を送信し、前記音響送信手段と所定の計測基準長を有して設けた音響受信手段により前記対象物から反射した前記音波を受信し、前記音響受信手段で受信した前記音波の信号から、受信した前記音波の前記信号の1つ目のピークを前記粒子からの散乱信号、2つ目以降の前記ピークを前記対象物からの反射信号として判別し、1つ目の前記ピークの受信時刻から2つ目以降の前記ピークの受信時刻までの時間に基づいて前記対象物までの前記距離を導出したことを特徴とする濁水中距離測定方法。 A turbid water distance measuring method for measuring a distance to an object existing in turbid water in which particles are suspended, wherein a sound wave is transmitted from an acoustic transmission means to the object, and the acoustic transmission means and a predetermined measurement standard receiving the wave reflected from the object by an acoustic receiving means provided with a long, from the signal of said sound waves received by the acoustic receiver means, first peak over the signal of the sound waves received scattering signal from said click particles, two and subsequent of said peak to determine a reflection signal from the object, first the reception time of the peaks of the second and subsequent from the reception time of the peak water distance measuring method turbidimetry you characterized in that derived the distance to the object based on the time to. 受信した前記音波の前記信号の前記ピークに基づいて異常を判定したことを特徴とする請求項1又は請求項に記載の濁水中距離測定方法。 The muddy water distance measuring method according to claim 1 or 2 , wherein abnormality is determined based on the peak of the signal of the received sound wave. 前記距離の導出に当っては、前記対象物と前記音響送信手段と前記音響受信手段の幾何学的配置を考慮して導出したことを特徴とする請求項から請求項のうちの1項に記載の濁水中距離測定方法。 Is hitting the derivation of the distance, one of claims claims 1 to 3, characterized in that derived by considering the geometry between the object and the sound transmission means the sound receiving means The muddy water distance measuring method according to 1. 前記距離の導出に当っては、予め求めた時間と距離の関係に基づいて導出したことを特徴とする請求項に記載の濁水中距離測定方法。 5. The muddy water distance measuring method according to claim 4 , wherein the distance is derived based on a relationship between time and distance obtained in advance. 前記音響受信手段を走査させたこと、又は前記音響受信手段として音響センサーアレイを用いたことを特徴とする請求項1から請求項のうちの1項に記載の濁水中距離測定方法。 Wherein it was scanned acoustic reception means, or turbid medium distance measuring method according to claims 1 to one of the claims 5, characterized in that it uses an acoustic sensor array as said acoustic receiver means. 前記音響送信手段を走査させたこと、又は前記音響送信手段として音響発信アレイを用いたことを特徴とする請求項1から請求項のうちの1項に記載の濁水中距離測定方法。 Wherein it was scanned acoustic transmission means, or turbid medium distance measuring method according to claims 1 to one of the claims 6, characterized in that it uses an acoustic transmitter array as the sound transmission means. 粒子が浮遊した濁水中に存在する対象物までの距離を測定する濁水中距離測定装置であって、前記対象物に対して音波を送信する音響送信手段と、前記音響送信手段と所定の計測基準長を有して設けた前記対象物から反射した前記音波を受信する音響受信手段と、前記音響受信手段で受信した前記音波の信号から前記粒子からの散乱信号と前記対象物からの反射信号とを判別する判別手段と、前記反射信号に基づいて前記対象物までの前記距離を導出する距離導出手段とを備え、前記判別手段は、受信した前記音波の前記信号の1つ目のピークを前記粒子からの前記散乱信号、前記信号の2つ目以降の前記ピークを前記対象物からの前記反射信号として判別したことを特徴とする濁水中距離測定装置。 A muddy water distance measuring device for measuring a distance to an object existing in turbid water in which particles are suspended, the sound transmitting means transmitting sound waves to the object, the sound transmitting means and a predetermined measurement standard A sound receiving means for receiving the sound wave reflected from the object provided with a length; a scattered signal from the particle and a reflected signal from the object from the sound wave signal received by the sound receiving means; And a distance deriving unit for deriving the distance to the object based on the reflected signal , wherein the determining unit determines the first peak of the signal of the received sound wave as the first peak. The turbid water distance measuring apparatus characterized by discriminating the scattering signal from particles and the second and subsequent peaks of the signal as the reflected signal from the object . 前記距離導出手段は、前記音波の送信時刻から2つ目以降の前記ピークの受信時刻までの時間に基づいて前記対象物までの前記距離を導出したことを特徴とする請求項に記載の濁水中距離測定装置。 9. The muddy water according to claim 8 , wherein the distance deriving unit derives the distance to the object based on a time from a transmission time of the sound wave to a reception time of the second and subsequent peaks. Medium distance measuring device. 前記距離導出手段は、前記対象物と前記音響送信手段と前記音響受信手段との幾何学的配置を考慮して予め求めた時間と距離の関係に基づいて前記対象物までの前記距離を導出したことを特徴とする請求項8又は請求項に記載の濁水中距離測定装置。 The distance deriving means derives the distance to the object based on a relationship between time and distance obtained in advance in consideration of a geometric arrangement of the object, the sound transmitting means, and the sound receiving means. The muddy water distance measuring device according to claim 8 or 9 , wherein 前記音響受信手段をスキャン型音響センサー又は音響センサーアレイとしたことを特徴とする請求項から請求項10のうちの1項に記載の濁水中距離測定装置。 Turbid medium distance measuring apparatus according to one of claims 10 claim 8, characterized in that the said acoustic receiver means scanning acoustic sensor or an acoustic sensor array. 前記音響送信手段をスキャン型送波器又は音響発信アレイとしたことを特徴とする請求項から請求項11のうちの1項に記載の濁水中距離測定装置。 Turbid medium distance measuring apparatus according to one of claims 11 claim 8, characterized in that the scan type wave transmitter or acoustic transmitter array the acoustic transmission means. 受信した前記音波の前記信号の前記ピークに基づいて異常を判定する異常判定手段を備えたことを特徴とする請求項から請求項12のうちの1項に記載の濁水中距離測定装置。 Turbid medium distance measuring apparatus according to one of claims 12, further comprising an abnormality judging means for determining abnormality based on the peak of the signal of said received sound waves from claim 8. 前記請求項から請求項13のうちの1項に記載の濁水中距離測定装置を搭載したことを特徴とする水中機器。 Underwater equipment, characterized in that mounting the turbid medium range measuring device according to one of claims 13 from the claims 8.
JP2014122253A 2014-06-13 2014-06-13 Muddy water distance measuring method, muddy water distance measuring device and underwater equipment Active JP6463007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014122253A JP6463007B2 (en) 2014-06-13 2014-06-13 Muddy water distance measuring method, muddy water distance measuring device and underwater equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014122253A JP6463007B2 (en) 2014-06-13 2014-06-13 Muddy water distance measuring method, muddy water distance measuring device and underwater equipment

Publications (2)

Publication Number Publication Date
JP2016003864A JP2016003864A (en) 2016-01-12
JP6463007B2 true JP6463007B2 (en) 2019-01-30

Family

ID=55223255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014122253A Active JP6463007B2 (en) 2014-06-13 2014-06-13 Muddy water distance measuring method, muddy water distance measuring device and underwater equipment

Country Status (1)

Country Link
JP (1) JP6463007B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597279A (en) * 1982-07-05 1984-01-14 Oki Electric Ind Co Ltd Measuring device of distance
JP2543610B2 (en) * 1990-02-27 1996-10-16 古野電気株式会社 Submarine reflected wave position detector
JPH08338870A (en) * 1995-06-13 1996-12-24 Uniden Corp Fish detector
JP4415192B2 (en) * 2005-01-31 2010-02-17 株式会社日立製作所 Riverbed measuring device

Also Published As

Publication number Publication date
JP2016003864A (en) 2016-01-12

Similar Documents

Publication Publication Date Title
JP5317177B2 (en) Target detection apparatus, target detection control program, and target detection method
JP5917534B2 (en) Remote detection of flooded components
CN105629307A (en) Subsea pipeline detection and measurement acoustic system and method
JP5148353B2 (en) Underwater vehicle and obstacle detection device
CN108680234A (en) A kind of water-depth measurement method of quarice layer medium
CN108398690A (en) A kind of seabed backscatter intensity measurement method
JP5470146B2 (en) Underwater acoustic imaging device
Balk et al. Surface-induced errors in target strength and position estimates during horizontal acoustic surveys.
EP2477042A1 (en) Method and device for measuring distance and orientation using a single electro-acoustic transducer
US20210278373A1 (en) Ultrasonic probe
RU2548596C1 (en) Method of determining iceberg submersion
JP6463007B2 (en) Muddy water distance measuring method, muddy water distance measuring device and underwater equipment
RU2541435C1 (en) Method of determining iceberg immersion
RU132571U1 (en) HYDRAULIC DETECTION OF LOCATION OF THE SOURCE OF THE GAS LEAKAGE OF THE UNDERWATER GAS PIPELINE
RU2125278C1 (en) Method measuring distance to controlled object ( its versions )
JP2009162498A (en) Survey/classification method and device for object under water bottom
JP5317176B2 (en) Object search device, object search program, and object search method
Grelowska et al. Acoustic imaging of selected areas of gdansk bay with the aid of parametric echosounder and side-scan sonar
RU2625041C1 (en) Method for measuring object immersion depth
RU2478983C1 (en) Method for detection of splashing-down object submersion depth
JP2012225934A (en) Underwater sailing body and obstacle detection device
CN111650159B (en) Sea surface backscattering strength measuring method
RU2161319C1 (en) Method for detection of underwater objects on sea bound in shallow sea
RU2570100C1 (en) Hydroacoustic determination of object spatial characteristics
CN219320167U (en) Soil penetrating type target bulk acoustic wave detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181228

R150 Certificate of patent or registration of utility model

Ref document number: 6463007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150