JP6459428B2 - ORGANIC ELECTROLUMINESCENT ELEMENT AND MATERIAL FOR ORGANIC ELECTROLUMINESCENT ELEMENT - Google Patents

ORGANIC ELECTROLUMINESCENT ELEMENT AND MATERIAL FOR ORGANIC ELECTROLUMINESCENT ELEMENT Download PDF

Info

Publication number
JP6459428B2
JP6459428B2 JP2014237463A JP2014237463A JP6459428B2 JP 6459428 B2 JP6459428 B2 JP 6459428B2 JP 2014237463 A JP2014237463 A JP 2014237463A JP 2014237463 A JP2014237463 A JP 2014237463A JP 6459428 B2 JP6459428 B2 JP 6459428B2
Authority
JP
Japan
Prior art keywords
organic
layer
group
compound
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014237463A
Other languages
Japanese (ja)
Other versions
JP2016100500A (en
Inventor
山田 哲也
哲也 山田
昇 関根
昇 関根
貴宗 服部
貴宗 服部
麻由香 蟇目
麻由香 蟇目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2014237463A priority Critical patent/JP6459428B2/en
Publication of JP2016100500A publication Critical patent/JP2016100500A/en
Application granted granted Critical
Publication of JP6459428B2 publication Critical patent/JP6459428B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子用材料に関する。より詳しくは、発光効率が高く、耐久性に優れた有機エレクトロルミネッセンス素子と当該有機エレクトロルミネッセンス素子に用いられる有機エレクトロルミネッセンス素子用材料に関する。   The present invention relates to an organic electroluminescence element and a material for an organic electroluminescence element. More specifically, the present invention relates to an organic electroluminescence element having high light emission efficiency and excellent durability and an organic electroluminescence element material used for the organic electroluminescence element.

有機エレクトロルミネッセンス素子(以下、「有機EL素子」ともいう。)は、陽極と陰極の間を、有機発光物質が含有された有機薄膜層(単層部又は多層部)で構成する薄膜型の全固体素子である。この様な有機EL素子に電圧を印加すると、有機薄膜層に陰極から電子が、陽極から正孔が注入され、これらが発光層(有機発光物質含有層)において再結合して励起子が生じる。有機EL素子はこれら励起子からの光の放出(蛍光・リン光)を利用した発光素子であり、次世代の平面ディスプレイや照明として期待されている技術である。   An organic electroluminescence element (hereinafter also referred to as “organic EL element”) is an all-film thin film type composed of an organic thin film layer (single layer portion or multilayer portion) containing an organic light-emitting substance between an anode and a cathode. It is a solid element. When a voltage is applied to such an organic EL element, electrons are injected from the cathode into the organic thin film layer and holes are injected from the anode, and these are recombined in the light emitting layer (organic light emitting substance-containing layer) to generate excitons. The organic EL element is a light-emitting element using light emission (fluorescence / phosphorescence) from these excitons, and is a technology expected as a next-generation flat display and illumination.

さらに、蛍光発光を利用する有機EL素子に比べ、原理的に約4倍の発光効率が実現可能である励起三重項からのリン光発光を利用する有機EL素子がプリンストン大学から報告されて以来、室温でリン光を示す材料の開発を始めとし、発光素子の層構成や電極の研究開発が世界中で行われている。
このように、リン光発光方式は大変ポテンシャルの高い方式であるが、リン光発光を利用する有機ELデバイスにおいては、蛍光発光を利用するそれとは大きく異なり、発光中心の位置をコントロールする方法、とりわけ発光層の内部で再結合を行い、いかに発光を安定に行わせることができるかが、素子の効率・寿命を捕らえる上で重要な技術的課題となっている。
Furthermore, since an organic EL element using phosphorescence emission from an excited triplet, which can realize a luminous efficiency of about 4 times in principle in comparison with an organic EL element using fluorescence emission, has been reported from Princeton University, Starting with the development of materials that exhibit phosphorescence at room temperature, research and development of light-emitting element layer configurations and electrodes are being carried out around the world.
As described above, the phosphorescence emission method is a method having a very high potential. However, in an organic EL device using phosphorescence emission, a method for controlling the position of the emission center is significantly different from that using fluorescence emission. How to recombine within the light emitting layer to stabilize the light emission is an important technical issue for capturing the efficiency and lifetime of the device.

そこで近年は発光層に隣接する形で、発光層の陽極側に位置する正孔輸送層や、発光層の陰極側に位置する電子輸送層等を備えた多層積層型の素子がよく知られている。また、発光層には発光ドーパントとしてのリン光発光性化合物とホスト化合物とを用いた混合層が多く用いられている。
一方、材料の観点からは素子性能向上に対する新規材料創出の期待が大きい。特に青色リン光発光を利用するにあたっては、青色リン光発光性化合物自身が高い三重項励起状態(T)のエネルギー(以下、「Tエネルギー」ともいう。)を有しているために、青色リン光発光性化合物よりも十分に高い三重項励起エネルギーを有する周辺材料の開発が強く求められている。
Therefore, in recent years, multilayer stacked devices having a hole transport layer located on the anode side of the light emitting layer and an electron transport layer located on the cathode side of the light emitting layer in a form adjacent to the light emitting layer are well known. Yes. In addition, a mixed layer using a phosphorescent compound as a light emitting dopant and a host compound is often used for the light emitting layer.
On the other hand, from the viewpoint of materials, there is a great expectation for creating new materials for improving device performance. In particular, when utilizing blue phosphorescence, the blue phosphorescent compound itself has high triplet excited state (T 1 ) energy (hereinafter also referred to as “T 1 energy”). There is a strong demand for the development of peripheral materials having triplet excitation energy sufficiently higher than that of blue phosphorescent compounds.

高いTエネルギーを有する周辺材料として、例えばピラゾール誘導体又はイミダゾールを環化三量化し、トリアジン環にそれぞれ3個のピラゾール環又はイミダゾール環が縮環した化合物、すなわちピラゾールトリマー又はイミダゾールトリマーを用いた有機EL素子用材料も報告されている(例えば、特許文献1〜3参照。)。 As a peripheral material having high T 1 energy, for example, a pyrazole derivative or imidazole is cyclized and trimerized, and a compound in which three pyrazole rings or imidazole rings are condensed to a triazine ring, that is, organic using pyrazole trimer or imidazole trimer, respectively. Materials for EL elements have also been reported (for example, see Patent Documents 1 to 3).

上記文献に記載のピラゾールトリマー及びイミダゾールトリマーは高いTエネルギーを有しているが、青色リン光発光材料の周辺材料としての利用はいまだ報告されていない。
例えば、特許文献1では、ピラゾールトリマーを緑色に発光するリン光ドーパントのホスト材料へ適用した例が開示されているが、青色発光ドーパントと組み合わせて使用された記載はない。これは、ピラゾールトリマーを有機EL素子用材料として用いるにあたり、薄膜として積層した際に、その会合状態により本来の高いTエネルギーを発揮できていないためであると推測される。
The pyrazole trimer and imidazole trimer described in the above documents have high T 1 energy, but their use as a peripheral material for blue phosphorescent light emitting materials has not yet been reported.
For example, Patent Document 1 discloses an example in which a pyrazole trimer is applied to a host material of a phosphorescent dopant that emits green light, but there is no description used in combination with a blue light emitting dopant. This is presumed to be because, when pyrazole trimer is used as a material for an organic EL device, when it is laminated as a thin film, the inherent high T 1 energy cannot be exhibited due to its associated state.

特開2007−81050号公報JP 2007-81050 A 特開2005−082644号公報Japanese Patent Laying-Open No. 2005-082644 特開2010−199592号公報JP 2010-199592 A

本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、発光効率が高く、耐久性に優れた有機EL素子を提供することである。また、当該有機EL素子に適用可能な、青色発光ドーパントと組み合わせて使用することができる有機EL素子用材料を提供することである。   The present invention has been made in view of the above problems and situations, and a problem to be solved is to provide an organic EL element having high light emission efficiency and excellent durability. Moreover, it is providing the organic EL element material which can be used in combination with the blue light emission dopant applicable to the said organic EL element.

本発明者は、上記課題を解決すべく上記問題の原因等について検討した結果、特定構造を有するピラゾールトリマーが薄膜状態でも高いTエネルギーを保持し、青色発光ドーパントの周辺材料として適用可能であることを見いだし、本発明に至った。
すなわち、本発明の上記課題は、下記の手段により解決される。
As a result of studying the cause of the above-mentioned problem in order to solve the above-mentioned problems, the present inventor retains a high T 1 energy even in a thin film state and can be applied as a peripheral material of a blue light-emitting dopant. As a result, the present invention has been achieved.
That is, the said subject of this invention is solved by the following means.

1.陽極と陰極に挟まれた少なくとも発光層を含む有機層を有する有機エレクトロルミネッセンス素子であって、
前記有機層の少なくとも1層が前記発光層であり、当該発光層が、下記一般式(I)で表される構造を有する化合物と、発光性ドーパントとを含有していることを特徴とする。
1. An organic electroluminescence device having an organic layer including at least a light emitting layer sandwiched between an anode and a cathode,
At least one of the organic layers is the light emitting layer, and the light emitting layer contains a compound having a structure represented by the following general formula (I) and a light emitting dopant .

Figure 0006459428
Figure 0006459428

(一般式(I)中、Rは、水素原子、ハロゲノ原子又はシアノ基を表す。Rは、無置換又は置換基を有する、アリール基又はヘテロアリール基を表す。) (In general formula (I), R 1 represents a hydrogen atom , a halogeno atom or a cyano group . R 2 represents an aryl group or a heteroaryl group which is unsubstituted or has a substituent.)

.前記一般式(I)において、Rが、水素原子であることを特徴とする第1項に記載の有機エレクトロルミネッセンス素子。 2 . In the said general formula (I), R < 1 > is a hydrogen atom, The organic electroluminescent element of 1st term | claim characterized by the above-mentioned.

下記一般式(I)で表される構造を有する化合物を含有することを特徴とする有機エレクトロルミネッセンス素子用材料。

Figure 0006459428
(一般式(I)中、R は、水素原子、ハロゲノ原子又はシアノ基を表す。R は、無置換又は置換基を有する、アリール基又はヘテロアリール基を表す。) 3 . A material for an organic electroluminescence device characterized by containing a compound having a structure represented by the following general formula (I).
Figure 0006459428
(In general formula (I), R 1 represents a hydrogen atom, a halogeno atom or a cyano group. R 2 represents an aryl group or a heteroaryl group which is unsubstituted or has a substituent.)

本発明の上記手段により、発光効率が高く、耐久性に優れた有機EL素子を提供することができる。また、当該有機EL素子に適用可能な、青色発光ドーパントと組み合わせて使用することができる有機EL素子用材料を提供することができる。   By the above means of the present invention, an organic EL element having high luminous efficiency and excellent durability can be provided. Moreover, the organic EL element material which can be used in combination with the blue light emission dopant applicable to the said organic EL element can be provided.

本発明の効果の発現機構又は作用機構については、明確にはなっていないが、以下のように推察している。
一般的に、Tエネルギーを大きくするためには、π共役平面を小さくすることが望ましいことが知られている。しかしながら、π共役平面の小さい化合物すなわち単環の芳香族化合物は、分子量が低いために熱的安定性が低く、また昇華が不可能となるなど有機EL素子用材料として用いるには不適であった。
The expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
In general, it is known that it is desirable to reduce the π conjugate plane in order to increase the T 1 energy. However, a compound having a small π-conjugated plane, that is, a monocyclic aromatic compound is not suitable for use as a material for an organic EL device because its molecular weight is low and thermal stability is low and sublimation is impossible. .

これに対して、ピラゾールトリマー及びイミダゾールトリマーは、単環の芳香族化合物に比較して大きな分子量と高い熱的安定性を持ち、しかも特異的に高いTエネルギーを有していることから、有機EL素子用材料として興味深い構造であるが、青色リン光発光材料の周辺材料としての利用はいまだ報告されていない。
これは、ピラゾールトリマーを有機EL素子用材料として用いるにあたり、薄膜として積層した際に、本来の高いTエネルギーを発揮できなくなってしまうためであると推測される。
この原因としては、薄膜中で一部のピラゾールトリマーが、その構造の平面性の高さのために凝集や結晶化するなどして、低いTエネルギー成分へと変化してしまうことなどが考えられる。
そこで、ピラゾールトリマーの周囲に配した置換基を有する、本発明に係る一般式(I)で表される構造を有する化合物(以下、ピラゾールトリマーともいう。)が、ピラゾールトリマーの平面からねじれて存在するため、分子全体の平面性は大きく低下すると考えられる点で青色発光ドーパントとの組み合わせに適しているとの発想に至った。すなわち、周囲の置換基の立体障害によってピラゾールトリマー分子同士の凝集性が低減し、また結晶性も低下すると考えられる。よって、化合物の凝集及び結晶化を抑制することができ、これらにより引き起こされる低Tエネルギー成分の生成や、キャリア移動のトラップサイト生成に代表される、発光効率や寿命の低下の原因となる不具合の発生確率を下げることができるものと推察している。
In contrast, pyrazole trimers and imidazole trimers have higher molecular weight and higher thermal stability than monocyclic aromatic compounds, and also have a particularly high T 1 energy. Although it is an interesting structure as a material for an EL element, use of a blue phosphorescent material as a peripheral material has not been reported yet.
This is presumed to be because, when pyrazole trimer is used as a material for an organic EL element, when it is laminated as a thin film, the original high T 1 energy cannot be exhibited.
This may be because some pyrazole trimers in the thin film are aggregated or crystallized due to the high planarity of the structure, thereby changing to a low T 1 energy component. It is done.
Therefore, a compound having a substituent represented by the general formula (I) according to the present invention having a substituent arranged around the pyrazole trimer (hereinafter also referred to as pyrazole trimer) is twisted from the plane of the pyrazole trimer. Therefore, the inventors have come up with the idea that the planarity of the whole molecule is suitable for combination with a blue light-emitting dopant in that it is considered that the planarity of the whole molecule is greatly reduced. That is, it is considered that the steric hindrance of surrounding substituents reduces the aggregation property between pyrazole trimer molecules and also reduces the crystallinity. Therefore, the aggregation and crystallization of the compound can be suppressed, and the generation of the low T 1 energy component caused by these and the failure that causes the decrease in the light emission efficiency and the life represented by the generation of the trap site for the carrier movement. It is assumed that the probability of occurrence can be lowered.

比較化合物(1)の立体構造をピラゾールトリマー環平面から見た模式図Schematic view of the three-dimensional structure of comparative compound (1) as seen from the pyrazole trimer ring plane 本発明に係る例示化合物H−1の立体構造をピラゾールトリマー環平面から見た模式図The schematic diagram which looked at the three-dimensional structure of exemplary compound H-1 which concerns on this invention from the pyrazole trimer ring plane 有機EL素子から構成される表示装置の一例を示した模式図Schematic diagram showing an example of a display device composed of organic EL elements 表示部Aの模式図Schematic diagram of display part A 画素の模式図Schematic diagram of pixels パッシブマトリクス方式フルカラー表示装置の模式図Schematic diagram of passive matrix type full color display device 照明装置の概略図Schematic of lighting device 照明装置の模式図Schematic diagram of lighting device 有機ELフルカラー表示装置の概略構成図Schematic configuration diagram of organic EL full-color display device

本発明の有機EL素子は、陽極と陰極に挟まれた少なくとも発光層を含む有機層を有する有機エレクトロルミネッセンス素子であって、前記有機層の少なくとも1層が、前記一般式(I)で表される構造を有する化合物を含有していることを特徴とする。
この特徴は、請求項1から請求項5までの請求項に係る発明に共通する技術的特徴である。なお、本発明において記す「ピラゾールトリマー」とは、一般式(I)の中心骨格である、ヘキサヒドロトリアジン環に3個のピラゾール環が縮環した構造を表す。
The organic EL device of the present invention is an organic electroluminescence device having an organic layer including at least a light emitting layer sandwiched between an anode and a cathode, wherein at least one of the organic layers is represented by the general formula (I). It contains a compound having the following structure.
This feature is a technical feature common to the inventions according to claims 1 to 5. The “pyrazole trimer” described in the present invention represents a structure in which three pyrazole rings are condensed to a hexahydrotriazine ring, which is the central skeleton of the general formula (I).

本発明の実施態様としては、Rが水素原子、ハロゲノ基又はシアノ基であることが好ましい。これにより、立体障害の観点から、薄膜を形成した際のエントロピーが増大し、安定な膜を得ることができる。 In an embodiment of the present invention, R 1 is preferably a hydrogen atom, a halogeno group or a cyano group. Thereby, the entropy at the time of forming a thin film increases from a viewpoint of steric hindrance, and a stable film can be obtained.

また、本発明の実施態様としては、本発明の効果発現の観点から、前記一般式(I)において、Rが水素原子であることが好ましい。 As an embodiment of the present invention, from the viewpoint of manifesting the effects of the present invention, in the general formula (I), R 1 is preferably a hydrogen atom.

また、本発明の実施態様としては、前記発光層が、前記一般式(I)で表される構造を有する化合物を含有していることにより、発光効率の向上を図ることができ好ましい。   Further, as an embodiment of the present invention, it is preferable that the light emitting layer contains a compound having a structure represented by the general formula (I), so that the light emission efficiency can be improved.

本発明に係る前記一般式(I)で表される構造を有する化合物は、有機エレクトロルミネッセンス素子用材料に含有され得る。これにより、青色発光ドーパントと組み合わせて使用することができる。   The compound which has a structure represented with the said general formula (I) based on this invention may be contained in an organic electroluminescent element material. Thereby, it can be used in combination with a blue light emitting dopant.

以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、以下の説明において示す「〜」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。   Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In addition, "-" shown in the following description is used with the meaning which includes the numerical value described before and behind that as a lower limit and an upper limit.

《有機EL素子の構成層》
本発明の有機EL素子における代表的な素子構成としては、以下の構成を挙げることができるが、これらに限定されるものではない。
(1)陽極/発光層/陰極
(2)陽極/発光層/電子輸送層/陰極
(3)陽極/正孔輸送層/発光層/陰極
(4)陽極/正孔輸送層/発光層/電子輸送層/陰極
(5)陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(6)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極
(7)陽極/正孔注入層/正孔輸送層/(電子阻止層/)発光層/(正孔阻止層/)電子輸送層/電子注入層/陰極
<< Constituent layers of organic EL elements >>
As typical element structures in the organic EL element of the present invention, the following structures can be exemplified, but the invention is not limited thereto.
(1) Anode / light emitting layer / cathode (2) Anode / light emitting layer / electron transport layer / cathode (3) Anode / hole transport layer / light emitting layer / cathode (4) Anode / hole transport layer / light emitting layer / electron Transport layer / cathode (5) anode / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (6) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / cathode ( 7) Anode / hole injection layer / hole transport layer / (electron blocking layer /) light emitting layer / (hole blocking layer /) electron transport layer / electron injection layer / cathode

上記の中で(7)の構成が好ましく用いられるが、これに限定されるものではない。
本発明に係る発光層は、単層又は複数層で構成されており、発光層が複数の場合は各発光層の間に非発光性の中間層を設けてもよい。
必要に応じて、発光層と陰極との間に正孔阻止層(正孔障壁層ともいう。)や電子注入層(陰極バッファー層ともいう。)を設けてもよく、また、発光層と陽極との間に電子阻止層(電子障壁層ともいう。)や正孔注入層(陽極バッファー層ともいう。)を設けてもよい。
Among the above, the configuration (7) is preferably used, but is not limited thereto.
The light emitting layer according to the present invention is composed of a single layer or a plurality of layers, and when there are a plurality of light emitting layers, a non-light emitting intermediate layer may be provided between the light emitting layers.
If necessary, a hole blocking layer (also referred to as a hole blocking layer) or an electron injection layer (also referred to as a cathode buffer layer) may be provided between the light emitting layer and the cathode. An electron blocking layer (also referred to as an electron barrier layer) or a hole injection layer (also referred to as an anode buffer layer) may be provided therebetween.

本発明に係る電子輸送層とは、電子を輸送する機能を有する層であり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれ、複数層で構成されていてもよい。
本発明に係る正孔輸送層とは、正孔を輸送する機能を有する層であり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれ、複数層で構成されていてもよい。
上記の代表的な素子構成において、陽極と陰極を除いた層を「有機層」という。
The electron transport layer according to the present invention is a layer having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer, and may be composed of a plurality of layers.
The hole transport layer according to the present invention is a layer having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer, and are composed of a plurality of layers. Also good.
In the above-described typical element configuration, a layer excluding the anode and the cathode is referred to as an “organic layer”.

(タンデム構造)
本発明の有機EL素子は、少なくとも1層の発光層を含む発光ユニットを複数積層した、いわゆるタンデム構造の素子であってもよい。
タンデム構造の代表的な素子構成としては、例えば以下の構成を挙げることができる。
陽極/第1発光ユニット/中間層/第2発光ユニット/中間層/第3発光ユニット/陰極
ここで、上記複数の発光ユニットは全て同じであっても異なっていてもよい。また二つの発光ユニットが同じであり、残る一つが異なっていてもよい。複数の発光ユニットは直接積層されていても、中間層(中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層とも呼ばれる。)を介して積層されていてもよく、陽極側の隣接層に電子を、陰極側の隣接層に正孔を供給する機能を持った層であれば、公知の材料構成を用いることができる。
(Tandem structure)
The organic EL element of the present invention may be a so-called tandem structure element in which a plurality of light emitting units including at least one light emitting layer are stacked.
As typical element configurations of the tandem structure, for example, the following configurations can be given.
Anode / first light emitting unit / intermediate layer / second light emitting unit / intermediate layer / third light emitting unit / cathode Here, the plurality of light emitting units may all be the same or different. Two light emitting units may be the same, and the remaining one may be different. The plurality of light emitting units may be laminated directly or via an intermediate layer (also referred to as an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, or an intermediate insulating layer), A known material structure can be used as long as it has a function of supplying electrons to the anode-side adjacent layer and holes to the cathode-side adjacent layer.

中間層に用いられる材料としては、例えば、ITO(インジウム・スズ酸化物)、IZO(インジウム・亜鉛酸化物)、ZnO、TiN、ZrN、HfN、TiOx、VOx、CuI、InN、GaN、CuAlO、CuGaO、SrCu、LaB、RuO、Al等の導電性無機化合物層、これら導電性無機化合物の2層膜や多層膜、またC60等のフラーレン類、オリゴチオフェン等の導電性有機物層、金属フタロシアニン類、無金属フタロシアニン類、ポルフィリン類等の導電性有機化合物層等が挙げられるが、本発明はこれらに限定されない。
発光ユニット内の好ましい構成としては、例えば上記の代表的な素子構成で挙げた(1)〜(7)の構成から、陽極と陰極を除いたもの等が挙げられるが、本発明はこれらに限定されない。
Examples of materials used for the intermediate layer include ITO (indium tin oxide), IZO (indium zinc oxide), ZnO 2 , TiN, ZrN, HfN, TiOx, VOx, CuI, InN, GaN, and CuAlO 2. , CuGaO 2 , SrCu 2 O 2 , LaB 6 , RuO 2 , Al and other conductive inorganic compound layers, two-layer films and multilayer films of these conductive inorganic compounds, fullerenes such as C 60 , and conductive such as oligothiophene Examples include conductive organic compound layers, conductive organic compound layers such as metal phthalocyanines, metal-free phthalocyanines, and porphyrins, but the present invention is not limited thereto.
Examples of a preferable configuration in the light emitting unit include those obtained by removing the anode and the cathode from the configurations (1) to (7) described in the above representative element configurations, but the present invention is not limited thereto. Not.

タンデム型有機EL素子の具体例としては、例えば、米国特許第7420203号明細書、米国特許第7473923号明細書、米国特許第6872472号明細書、米国特許第6107734号明細書、米国特許第6337492号明細書、特開2011−96679号公報、特開2010−192719号公報、特開2009−076929号公報、特開2008−078414号公報、特開2007−059848号公報、国際公開第2005/094130号等に記載の素子構成や構成材料等が挙げられるが、本発明はこれらに限定されない。
以下、本発明の有機EL素子を構成する各層について説明する。
Specific examples of the tandem organic EL element include, for example, US Pat. No. 7,420,203, US Pat. No. 7,473,923, US Pat. No. 6,872,472, US Pat. No. 6,107,734, US Pat. No. 6,337,492. Description, JP 2011-96679 A, JP 2010-192719 A, JP 2009-076929 A, JP 2008-078414 A, JP 2007-059848 A, International Publication No. 2005/094130. However, the present invention is not limited to these.
Hereinafter, each layer which comprises the organic EL element of this invention is demonstrated.

《発光層》
本発明に係る発光層は、電極又は電子輸送層及び正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
発光層の層厚の総和は特に制限はないが、層を構成する膜の均質性や、発光時に不必要な高電圧を印加することを防止し、かつ、駆動電流に対する発光色の安定性向上の観点から、好ましくは2nm〜5μmの範囲に調整され、更に好ましくは2〜200nmの範囲に調整され、特に好ましくは5〜100nmの範囲に調整される。
<Light emitting layer>
The light emitting layer according to the present invention is a layer that emits light by recombination of electrons and holes injected from the electrode or the electron transport layer and the hole transport layer, and the light emitting portion is in the layer of the light emitting layer. May be the interface between the light emitting layer and the adjacent layer.
The total thickness of the light-emitting layers is not particularly limited, but the uniformity of the films that make up the layers and the prevention of applying unnecessary high voltages during light emission, as well as improving the stability of the emission color against the drive current From this viewpoint, it is preferably adjusted to a range of 2 nm to 5 μm, more preferably adjusted to a range of 2 to 200 nm, and particularly preferably adjusted to a range of 5 to 100 nm.

発光層の作製には、後述する発光ドーパントやホスト化合物を用いて、例えば、真空蒸着法、湿式法(ウェットプロセスともいい、例えば、スピンコート法、キャスト法、ダイコート法、ブレードコート法、ロールコート法、インクジェット法、印刷法、スプレーコート法、カーテンコート法、LB法(ラングミュア・ブロジェット(Langmuir Blodgett法))等を挙げることができる。)等により成膜して形成することができる。
本発明の有機EL素子の発光層が、発光ドーパント(リン光発光性ドーパントや蛍光発光性ドーパント等)化合物と、ホスト化合物とを含有することが好ましい。
For the production of the light-emitting layer, a light-emitting dopant or a host compound, which will be described later, is used, for example, a vacuum deposition method, a wet method (also referred to as a wet process, for example, a spin coating method, a casting method, a die coating method, a blade coating method, a roll coating). Or the like, the ink jet method, the printing method, the spray coating method, the curtain coating method, the LB method (Langmuir Brodgett method, etc.).
The light emitting layer of the organic EL device of the present invention preferably contains a light emitting dopant (phosphorescent dopant, fluorescent light emitting dopant, etc.) compound and a host compound.

(1)ホスト化合物
本発明に係る下記一般式(I)で表される構造を有する化合物は、有機EL素子用材料として用いることができ、特にホスト化合物として用いられることが好ましい。
(1) Host compound The compound having a structure represented by the following general formula (I) according to the present invention can be used as a material for an organic EL device, and is particularly preferably used as a host compound.

Figure 0006459428
Figure 0006459428

一般式(I)中、Rは、水素原子又は電子求引性の置換基を表す。Rは、無置換又は置換基を有する、アリール基又はヘテロアリール基を表す。 In general formula (I), R 1 represents a hydrogen atom or an electron-withdrawing substituent. R 2 represents an aryl group or a heteroaryl group which is unsubstituted or has a substituent.

当該化合物が、ホスト化合物として好ましく用いられる理由を説明する。
これまでに、ピラゾールトリマーの骨格を有する化合物は知られており、置換基としてアリール基又はヘテロアリール基を有するものも開示されている。また、これらの化合物を有機EL素子用材料として用いた例も報告されている。しかしながら、ピラゾールトリマーの骨格を有する化合物を用いた有機EL素子には、耐熱性や素子寿命等の耐久性の点で問題があった。
The reason why the compound is preferably used as a host compound will be described.
So far, compounds having a pyrazole trimer skeleton are known, and those having an aryl group or a heteroaryl group as a substituent are also disclosed. Moreover, the example which used these compounds as an organic EL element material is also reported. However, organic EL devices using a compound having a pyrazole trimer skeleton have problems in terms of durability such as heat resistance and device life.

これは、これまでに合成されたピラゾールトリマーが、平面性が高いためにスタッキングによる凝集が起きやすく、また対称性が高いために結晶化が起きやすい点が要因であったと考えられる。したがって、ピラゾールトリマーの平面性や対称性に由来する膜物性の変化によって有機EL素子内に劣化が起きたため耐熱性や素子寿命等の耐久性の問題を引き起こしていたものと推測している。   This is thought to be due to the fact that pyrazole trimers synthesized so far are likely to aggregate due to stacking due to their high planarity, and that crystallization is likely to occur due to their high symmetry. Therefore, it is presumed that deterioration in the organic EL device was caused by a change in film physical properties derived from the planarity and symmetry of the pyrazole trimer, which caused problems of durability such as heat resistance and device life.

また、特に青色リン光発光性化合物の周辺材料としてピラゾールトリマー誘導体が用いられた例はなかった。これは、ピラゾールトリマー誘導体のうち、青色リン光発光性化合物よりも三重項励起状態のエネルギーが十分に高いものが、これまで見いだされていないためであると考えられる。
例えば、既に化合物の報告がされている、ピラゾールトリマーのそれぞれのピラゾール環の3位及び4位をアリール基又はヘテロアリール基とした化合物は、ピラゾールトリマーのπ平面がアリール基又はヘテロアリール基へと拡張されるために三重項励起状態のエネルギーが低下すると考えられる。
In particular, there was no example in which a pyrazole trimer derivative was used as a peripheral material of a blue phosphorescent compound. This is considered to be because no pyrazole trimer derivative having a sufficiently high triplet excited state energy than the blue phosphorescent compound has been found so far.
For example, a compound in which the pyrazole trimer has an aryl group or heteroaryl group at the 3-position and 4-position of each pyrazole ring in which the pyrazole trimer has already been reported is converted to an aryl group or a heteroaryl group. It is thought that the energy of the triplet excited state decreases due to the expansion.

これに対して本発明では、有機EL素子用材料としても適用可能な、青色リン光発光性化合物の周辺材料として、一般式(I)で表される構造を有する化合物である、置換基を適切に導入したピラゾールトリマーを用いる。
すなわち、本発明に係る一般式(I)で表される構造を有する化合物は、ピラゾールトリマーのそれぞれのピラゾール環の4位にRが表す置換基として、アリール基又はヘテロアリール基を有することを特徴としている。
このような分子設計としたのは、ピラゾール環の4位に適切なアリール基又はヘテロアリール基を導入することにより、分子のHOMO準位及びLUMO準位が調節されるためである。また、固有のHOMO準位及びLUMO準位を有するピラゾールトリマーに対し、様々な準位を有する、アリール基又はヘテロアリール基を組み合わせることで、分子全体の準位を、所望の目的に合わせて調整することが可能となる。
On the other hand, in the present invention, a substituent having a structure represented by the general formula (I) is appropriately used as a peripheral material of a blue phosphorescent compound that can be applied as a material for an organic EL device. The pyrazole trimer introduced in is used.
That is, the compound having the structure represented by the general formula (I) according to the present invention has an aryl group or a heteroaryl group as a substituent represented by R 2 at the 4-position of each pyrazole ring of the pyrazole trimer. It is a feature.
This molecular design is because the HOMO level and LUMO level of the molecule are adjusted by introducing an appropriate aryl group or heteroaryl group at the 4-position of the pyrazole ring. In addition, by combining an aryl group or heteroaryl group having various levels with a pyrazole trimer having intrinsic HOMO levels and LUMO levels, the level of the whole molecule can be adjusted according to the desired purpose. It becomes possible to do.

また、4位に導入したアリール基又はヘテロアリール基は、ピラゾールトリマー本体によって立体障害を受け、ピラゾールトリマーと同一平面となるコンフォメーションを取ることが困難となり、分子全体の平面性が低下する。
図1には、3位にフェニル基を導入し4位を水素原子としたピラゾールトリマー(後述の比較化合物(1))の立体構造を示した。図2には、4位にフェニル基を導入し3位を水素原子としたピラゾールトリマー(本発明に係る一般式(I)で表される構造を有する化合物である例示化合物H−1)の立体構造を示している。
3位にフェニル基を導入した図1に示す比較化合物(1)は、フェニル基がピラゾールトリマーと同一平面となるのに対し、4位にフェニル基を導入した図2に示す例示化合物H−1は、フェニル基がピラゾールトリマーの面に対してねじれて存在している。すなわち、分子全体の平面性が低下していることが見てとれる。
In addition, the aryl group or heteroaryl group introduced at the 4-position is sterically hindered by the pyrazole trimer main body, making it difficult to take a conformation that is coplanar with the pyrazole trimer, and the planarity of the whole molecule is lowered.
FIG. 1 shows the three-dimensional structure of a pyrazole trimer (Comparative Compound (1) described later) having a phenyl group introduced at the 3-position and a hydrogen atom at the 4-position. FIG. 2 shows a three-dimensional structure of a pyrazole trimer (Exemplary Compound H-1 which is a compound having a structure represented by Formula (I) according to the present invention) in which a phenyl group is introduced at the 4-position and a 3-position is a hydrogen atom. The structure is shown.
The comparative compound (1) shown in FIG. 1 having a phenyl group introduced at the 3-position is exemplified by the compound H-1 shown in FIG. 2 having a phenyl group introduced at the 4-position, whereas the phenyl group is in the same plane as the pyrazole trimer. Has a phenyl group twisted with respect to the surface of the pyrazole trimer. That is, it can be seen that the planarity of the whole molecule is lowered.

このように分子の平面性が低下することにより、分子のスタッキングや結晶化が抑制され、有機EL素子の白濁化を回避することができるものと考えられる。
及びRが表す置換基は、それらの置換基を有する一般式(I)で表される構造を有する化合物が有機EL素子内において青色リン光発光性化合物の周辺材料として使用可能なものであれば、特に限定されない。
なお、図1及び図2に示した分子構造は、米国Gaussian社製の分子軌道計算用ソフトウェアであるGaussian03(Gaussian03、Revision D02,M.J.Frisch,et al,Gaussian,Inc.,Wallingford CT,2004.)を用い、キーワードとしてB3LYP/6−31G*を用いて、対象とする分子構造の構造最適化を行ったものである。
Thus, it is considered that the molecular planarity is reduced, thereby suppressing the stacking and crystallization of the molecules and avoiding the white turbidity of the organic EL element.
As the substituents represented by R 1 and R 2 , compounds having a structure represented by the general formula (I) having those substituents can be used as peripheral materials of blue phosphorescent compounds in organic EL devices. If it is, it will not be specifically limited.
The molecular structure shown in FIGS. 1 and 2 is Gaussian 03 (Gaussian 03, Revision D02, MJ Frisch, et al, Gaussian, Inc., Wallingford CT, software for molecular orbital calculation manufactured by Gaussian, USA). 2004.) and the structure of the target molecular structure was optimized using B3LYP / 6-31G * as a keyword.

本発明の実施態様としては、前記一般式(I)において、Rが水素原子、ハロゲノ基又はシアノ基であることが好ましい。これにより、立体障害の観点から、薄膜を形成した際のエントロピーが増大し、安定な膜を得ることができる。
また、R及びRが表す置換基は、Tエネルギーが2.70eV以上(460nm以下)となるものが好ましい。例えば、Rとしてフェニル基を用いる場合に、Rとピラゾールトリマーとの結合を水素結合に置き換えた化合物、すなわちベンゼンのTエネルギーが2.70eV以上であれば、Rが表す置換基として好ましく用いることができる。
また、R及びRが表す置換基は、一般式(I)で表される構造を有する化合物のガラス転移温度Tgを向上させるもの又は適度な分子量を持ち一般式(I)で表される構造を有する化合物に減圧下での昇華性を付与するもの等も好ましく、目的によって適宜選択できる。
As an embodiment of the present invention, in the general formula (I), R 1 is preferably a hydrogen atom, a halogeno group or a cyano group. Thereby, the entropy at the time of forming a thin film increases from a viewpoint of steric hindrance, and a stable film can be obtained.
The substituent represented by R 1 and R 2 is preferably one having a T 1 energy of 2.70 eV or more (460 nm or less). For example, when a phenyl group is used as R 1 , a compound in which the bond between R 1 and a pyrazole trimer is replaced with a hydrogen bond, that is, when the T 1 energy of benzene is 2.70 eV or more, the substituent represented by R 1 is It can be preferably used.
In addition, the substituent represented by R 1 and R 2 improves the glass transition temperature Tg of the compound having the structure represented by the general formula (I) or is represented by the general formula (I) having an appropriate molecular weight. Those imparting sublimation properties under reduced pressure to a compound having a structure are also preferred and can be appropriately selected depending on the purpose.

は、置換基を示し、具体的にはアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アミノ基、アルコキシ基、アリールオキシ基、ヘテロ環オキシ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルホニル基、スルフィニル基、ウレイド基、リン酸アミド基、ヒドロキシ基、メルカプト基、ハロゲノ基、シアノ基、スルホ基、カルボキシ基、ニトロ基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロアリール基、シリル基又はシリルオキシ基等を示す。 R 1 represents a substituent, specifically an alkyl group, alkenyl group, alkynyl group, aryl group, heteroaryl group, amino group, alkoxy group, aryloxy group, heterocyclic oxy group, acyl group, alkoxycarbonyl group Aryloxycarbonyl group, acyloxy group, acylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group, sulfonylamino group, sulfamoyl group, carbamoyl group, alkylthio group, arylthio group, heterocyclic thio group, sulfonyl group, sulfinyl group, Ureido group, phosphoric acid amide group, hydroxy group, mercapto group, halogeno group, cyano group, sulfo group, carboxy group, nitro group, sulfino group, hydrazino group, imino group, heteroaryl group, silyl group or silyloxy group .

ここでアルキル基としては、直鎖状、分岐状又は環状を含んでおり、好ましくは炭素数1〜30、より好ましくは炭素数1〜20、さらに好ましくは炭素数1〜10である。例えば、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、t−ブチル、n−オクチル、n−ノニル、n−デシル、n−ドデシル、n−オクタデシル、n−ヘキサデシル、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロオクチル、2−エチルヘキシル及び1−アダマンチル等が挙げられる。   Here, the alkyl group includes linear, branched or cyclic, and preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and still more preferably 1 to 10 carbon atoms. For example, methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, n-octyl, n-nonyl, n-decyl, n-dodecyl, n-octadecyl, n-hexadecyl, cyclopropyl, cyclobutyl, cyclopentyl , Cyclohexyl, cyclooctyl, 2-ethylhexyl, 1-adamantyl and the like.

また、アルコキシ基としては、好ましくは炭素数1〜30、より好ましくは炭素数1〜20、さらに好ましくは炭素数1〜10であり、例えばメトキシ、エトキシ、ブトキシ、2−エチルヘキシロキシ等が挙げられる。
また、アリールオキシ基としては、好ましくは炭素数6〜30、より好ましくは炭素数6〜20、さらに好ましくは炭素数6〜12であり、例えばフェニルオキシ、1−ナフチルオキシ及び2−ナフチルオキシ等が挙げられる。
また、ヘテロ環オキシ基としては、好ましくは炭素数1〜30、より好ましくは炭素数1〜20、さらに好ましくは炭素数1〜12であり、例えば、ピリジルオキシ、ピラジルオキシ、ピリミジルオキシ及びキノリルオキシ等が挙げられる。
Moreover, as an alkoxy group, Preferably it is C1-C30, More preferably, it is C1-C20, More preferably, it is C1-C10, for example, methoxy, ethoxy, butoxy, 2-ethylhexyloxy etc. are mentioned. It is done.
Moreover, as an aryloxy group, Preferably it is C6-C30, More preferably, it is C6-C20, More preferably, it is C6-C12, for example, phenyloxy, 1-naphthyloxy, 2-naphthyloxy, etc. Is mentioned.
Moreover, as a heterocyclic oxy group, Preferably it is C1-C30, More preferably, it is C1-C20, More preferably, it is C1-C12, for example, pyridyloxy, pyrazyloxy, pyrimidyloxy, quinolyloxy, etc. are mentioned. It is done.

また、アシル基としては、好ましくは炭素数1〜30、より好ましくは炭素数1〜20、さらに好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル及びピバロイル等が挙げられる。
また、アルコキシカルボニル基としては、好ましくは炭素数2〜30、より好ましくは炭素数2〜20、さらに好ましくは炭素数2〜12であり、例えばメトキシカルボニル及びエトキシカルボニル等が挙げられる。
Moreover, as an acyl group, Preferably it is C1-C30, More preferably, it is C1-C20, More preferably, it is C1-C12, for example, acetyl, benzoyl, formyl, pivaloyl etc. are mentioned.
Moreover, as an alkoxycarbonyl group, Preferably it is C2-C30, More preferably, it is C2-C20, More preferably, it is C2-C12, for example, methoxycarbonyl, ethoxycarbonyl, etc. are mentioned.

アリールオキシカルボニル基としては、好ましくは炭素数7〜30、より好ましくは炭素数7〜20、さらに好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニル等が挙げられる。
また、アシルオキシ基としては、好ましくは炭素数2〜30、より好ましくは炭素数2〜20、さらに好ましくは炭素数2〜10であり、例えばアセトキシ及びベンゾイルオキシ等が挙げられる。
また、アシルアミノ基としては、好ましくは炭素数2〜30、より好ましくは炭素数2〜20、さらに好ましくは炭素数2〜10であり、例えばアセチルアミノ及びベンゾイルアミノ等が挙げられる。
The aryloxycarbonyl group preferably has 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, and still more preferably 7 to 12 carbon atoms, and examples thereof include phenyloxycarbonyl.
Moreover, as an acyloxy group, Preferably it is C2-C30, More preferably, it is C2-C20, More preferably, it is C2-C10, for example, acetoxy, benzoyloxy, etc. are mentioned.
Moreover, as an acylamino group, Preferably it is C2-C30, More preferably, it is C2-C20, More preferably, it is C2-C10, for example, acetylamino, benzoylamino, etc. are mentioned.

また、アルキルチオ基としては、好ましくは炭素数1〜30、より好ましくは炭素数1〜20、さらに好ましくは炭素数1〜12であり、例えばメチルチオ及びエチルチオ等が挙げられる。
また、アリールチオ基としては、好ましくは炭素数6〜30、より好ましくは炭素数6〜20、さらに好ましくは炭素数6〜12であり、例えばフェニルチオ等が挙げられる。
また、ヘテロ環チオ基としては、好ましくは炭素数1〜30、より好ましくは炭素数1〜20、さらに好ましくは炭素数1〜12であり、例えばピリジルチオ、2−ベンズイミゾリルチオ、2−ベンズオキサゾリルチオ及び2−ベンズチアゾリルチオ等が挙げられる。
Moreover, as an alkylthio group, Preferably it is C1-C30, More preferably, it is C1-C20, More preferably, it is C1-C12, for example, methylthio, ethylthio, etc. are mentioned.
Moreover, as an arylthio group, Preferably it is C6-C30, More preferably, it is C6-C20, More preferably, it is C6-C12, for example, phenylthio etc. are mentioned.
The heterocyclic thio group preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and still more preferably 1 to 12 carbon atoms. For example, pyridylthio, 2-benzimidazolylthio, 2-benz Examples thereof include oxazolylthio and 2-benzthiazolylthio.

また、スルホニル基としては、好ましくは炭素数1〜30、より好ましくは炭素数1〜20、さらに好ましくは炭素数1〜12であり、例えばメシル、トシル及びトリフルオロメタンスルホニル等が挙げられる。
また、スルフィニル基としては、好ましくは炭素数1〜30、より好ましくは炭素数1〜20、さらに好ましくは炭素数1〜12であり、例えばメタンスルフィニル及びベンゼンスルフィニル等が挙げられる。
また、リン酸アミド基としては、好ましくは炭素数1〜30、より好ましくは炭素数1〜20、さらに好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミド等が挙げられる。
Moreover, as a sulfonyl group, Preferably it is C1-C30, More preferably, it is C1-C20, More preferably, it is C1-C12, for example, mesyl, tosyl, trifluoromethanesulfonyl etc. are mentioned.
Moreover, as a sulfinyl group, Preferably it is C1-C30, More preferably, it is C1-C20, More preferably, it is C1-C12, for example, methanesulfinyl, benzenesulfinyl, etc. are mentioned.
Moreover, as a phosphoric acid amide group, Preferably it is C1-C30, More preferably, it is C1-C20, More preferably, it is C1-C12, for example, diethyl phosphoric acid amide, phenylphosphoric acid amide etc. are mentioned. It is done.

また、ハロゲノ基としては、例えばフルオロ基、クロロ基、ブロモ基、ヨード基等が挙げられる。
また、シリル基としては、好ましくは炭素数3〜40、より好ましくは炭素数3〜30、さらに好ましくは炭素数3〜24であり、例えばトリメチルシリル及びトリフェニルシリル等が挙げられる。
また、シリルオキシ基としては、好ましくは炭素数3〜40、より好ましくは炭素数3〜30、さらに好ましくは炭素数3〜24であり、例えばトリメチルシリルオキシ及びトリフェニルシリルオキシ等が挙げられる。
Examples of the halogeno group include a fluoro group, a chloro group, a bromo group, and an iodo group.
Moreover, as a silyl group, Preferably it is C3-C40, More preferably, it is C3-C30, More preferably, it is C3-C24, for example, trimethylsilyl, a triphenylsilyl, etc. are mentioned.
Moreover, as a silyloxy group, Preferably it is C3-C40, More preferably, it is C3-C30, More preferably, it is C3-C24, for example, trimethylsilyloxy, a triphenylsilyloxy, etc. are mentioned.

が表す置換基として好ましくは、水素原子又は電子求引性の置換基である。電子求引性置換基が好ましい理由としては、Rに電子求引性基を導入することで、ピラゾールトリマー上の電子密度が低下し、これによってピラゾールトリマー同士のπ−πスタッキングが弱まるため、ピラゾールトリマーの結晶性を低下させることができるためである。
また、水素原子は、ピラゾールトリマーの電子密度を増加させないため好ましい。Rを表す置換基としてより好ましくは、水素原子、フッ素原子又はシアノ基であり、さらに好ましくは水素原子である。
これらの置換基が好ましい理由としては、立体障害が小さいことが挙げられる。
にかさ高い置換基を導入すると、隣接するRとの立体的な反発作用によりピラゾールトリマー骨格に微少な歪みを生じ、この構造的歪みがTエネルギーの低下を引き起こすことが分かった。
そのため、立体的にコンパクトな水素原子及びフッ素原子又は直線状構造のシアノ基が好ましく、その中でも最も小さな水素原子が特に好ましい。
The substituent represented by R 1 is preferably a hydrogen atom or an electron withdrawing substituent. The reason why electron-withdrawing substituents are preferable is that by introducing an electron-withdrawing group into R 1 , the electron density on the pyrazole trimer is lowered, thereby weakening π-π stacking between the pyrazole trimers, This is because the crystallinity of the pyrazole trimer can be reduced.
A hydrogen atom is preferable because it does not increase the electron density of the pyrazole trimer. More preferred as a substituent for R 1 is a hydrogen atom, a fluorine atom or a cyano group, and even more preferred is a hydrogen atom.
The reason why these substituents are preferable is that steric hindrance is small.
It was found that when a bulky substituent was introduced into R 1 , a steric repulsion effect with the adjacent R 2 caused a slight distortion in the pyrazole trimer skeleton, and this structural distortion caused a decrease in T 1 energy.
Therefore, a sterically compact hydrogen atom and a fluorine atom or a linear cyano group are preferred, and the smallest hydrogen atom is particularly preferred among them.

が表す置換基としては、アリール基又はヘテロアリール基が好ましく、例えば、フェニル基、トリフェニレン基、フルオレン基、ピロリル基、フラニル基、チエニル基、ピラゾリル基、イミダゾリル基、1,2,3−トリアゾリル基、1,2,4−トリアゾリル基、テトラゾリル基、オキサゾリル基、イソオキサゾリル基、オキサジアゾリル基、チアゾリル基、イソチアゾリル基、チアジアゾリル基、カルバゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基を挙げることができる。
を表す置換基としてさらに好ましくは、ヘテロアリール基である。なお、Rがヘテロアリール基であり、その環を構成する炭素以外のヘテロ原子とピラゾールトリマーとの間で共有結合を形成しうる場合には、ヘテロ原子で結合した方がより好ましい。
The substituent represented by R 2 is preferably an aryl group or a heteroaryl group. For example, a phenyl group, a triphenylene group, a fluorene group, a pyrrolyl group, a furanyl group, a thienyl group, a pyrazolyl group, an imidazolyl group, 1,2,3- Examples include triazolyl group, 1,2,4-triazolyl group, tetrazolyl group, oxazolyl group, isoxazolyl group, oxadiazolyl group, thiazolyl group, isothiazolyl group, thiadiazolyl group, carbazolyl group, dibenzofuranyl group, dibenzothiophenyl group .
More preferred as a substituent for R 2 is a heteroaryl group. In addition, when R 2 is a heteroaryl group and a covalent bond can be formed between a heteroatom other than carbon constituting the ring and a pyrazole trimer, it is more preferable that they are bonded with a heteroatom.

例えば、カルバゾリル基は1位から8位までの炭素原子又は窒素原子で結合することが可能であるが、窒素原子で結合したものがより好ましい。具体的には、窒素原子で結合したカルバゾリル基やベンゾイミダゾリル基及びジフェニルトリアゾリル基等を挙げることができる。
これらの置換基をピラゾールトリマーの適切な位置に導入することにより、分子の平面性の低下と、分子のHOMO準位及びLUMO準位の調節が同時に達成できるので、性能の優れた有機EL素子を得ることができる。
なお、Rが有する置換基としては、R又はRで表される置換基と同義の置換基を挙げることができる。
For example, the carbazolyl group can be bonded by carbon atoms or nitrogen atoms from the 1st position to the 8th position, but those bonded by a nitrogen atom are more preferable. Specific examples include a carbazolyl group, a benzimidazolyl group, and a diphenyltriazolyl group bonded with a nitrogen atom.
By introducing these substituents into appropriate positions of the pyrazole trimer, the planarity of the molecule can be lowered and the HOMO and LUMO levels of the molecule can be adjusted simultaneously. Can be obtained.
As the substituent R 2 has, it can be exemplified by the substituents as defined for the substituents represented by R 1 or R 2.

以下、本発明に係る一般式(I)で表される構造を有する化合物の具体例を挙げるが、本発明はこれらに限定されない。なお、以下に示した化合物については機能を阻害しない程度に更に置換基を有することも好ましい。   Hereinafter, although the specific example of the compound which has a structure represented with general formula (I) based on this invention is given, this invention is not limited to these. In addition, about the compound shown below, it is also preferable to have a substituent further to such an extent that a function is not inhibited.

Figure 0006459428
Figure 0006459428

Figure 0006459428
Figure 0006459428

Figure 0006459428
Figure 0006459428

Figure 0006459428
Figure 0006459428

Figure 0006459428
Figure 0006459428

[一般式(I)で表される構造を有する化合物の合成方法]
(1.1)H−1の合成例
一般式(I)で表される構造を有する化合物は、Chem.Heterocycl.Compd.,30巻、540頁、1994年及びChem.Heterocycl.Compd.,32巻、789頁、1996年を参考に合成した。
例えば、H−1は、4−フェニル−5−ピラゾロンをオキシ塩化リンの存在下で加熱することで得られた。得られた化合物のH−NMR及び質量分析を測定し、目的物であると同定した。
[Method for Synthesizing Compound Having Structure Represented by General Formula (I)]
(1.1) Synthesis Example of H-1 The compound having the structure represented by the general formula (I) is described in Chem. Heterocycl. Compd. 30, 540, 1994 and Chem. Heterocycl. Compd. 32, p. 789, 1996.
For example, H-1 was obtained by heating 4-phenyl-5-pyrazolone in the presence of phosphorus oxychloride. 1 H-NMR and mass spectrometry of the obtained compound were measured and identified as the target product.

Figure 0006459428
Figure 0006459428

(1.2)H−14の合成例
H−14は、ピラゾロンをオキシ塩化リンの存在下で加熱して得られる中間体をブロモ化し、続いてパラジウム触媒を用いた5−ピリミジルボロン酸との鈴木−宮浦カップリングを行うことで得られた。得られた化合物のH−NMR及び質量分析を測定し、目的物であると同定した。
(1.2) Synthesis Example of H-14 H-14 was obtained by bromination of an intermediate obtained by heating pyrazolone in the presence of phosphorus oxychloride, followed by Suzuki with 5-pyrimidylboronic acid using a palladium catalyst. -Obtained by performing Miyaura coupling. 1 H-NMR and mass spectrometry of the obtained compound were measured and identified as the target product.

Figure 0006459428
Figure 0006459428

本発明に用いることができるホスト化合物(発光ホスト、発光ホスト化合物ともいう。)は、発光層に含有される化合物の内で、その層中での質量比が20%以上であり、かつ室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物と定義される。好ましくはリン光量子収率が0.01未満である。また、発光層に含有される化合物の中で、その層中での質量比が20%以上であることが好ましい。   A host compound (also referred to as a light-emitting host or a light-emitting host compound) that can be used in the present invention has a mass ratio in the layer of 20% or more among the compounds contained in the light-emitting layer, and a room temperature ( 25 ° C.) is defined as a compound having a phosphorescence quantum yield of phosphorescence of less than 0.1. The phosphorescence quantum yield is preferably less than 0.01. Moreover, it is preferable that the mass ratio in the layer is 20% or more among the compounds contained in a light emitting layer.

また、本発明においては、従来公知のホスト化合物を一つ又は複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。また、後述するリン光ドーパントとして用いられるイリジウム錯体及び/又は従来公知の化合物を複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。   In the present invention, one or a plurality of conventionally known host compounds may be used in combination. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient. Moreover, it becomes possible to mix different light emission by using multiple types of iridium complexes and / or conventionally well-known compounds used as a phosphorescence dopant mentioned later, and can thereby obtain arbitrary luminescent colors.

本発明に併用することができる公知のホスト化合物としては正孔輸送能、電子輸送能を有しつつ、かつ、発光の長波長化を防ぎ、なおかつ高Tg(ガラス転移温度)である化合物が好ましい。
また、本発明に用いられるホスト化合物としては、低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(重合性ホスト化合物)でもよく、このような化合物を1種又は複数種用いても良い。
As the known host compound that can be used in combination with the present invention, a compound that has a hole transporting ability and an electron transporting ability, prevents the emission of light from being long-wavelength, and has a high Tg (glass transition temperature) is preferable. .
The host compound used in the present invention may be a low molecular compound, a high molecular compound having a repeating unit, or a low molecular compound (polymerizable host compound) having a polymerizable group such as a vinyl group or an epoxy group. Of course, one or more of such compounds may be used.

公知のホスト化合物の具体例としては、以下の文献に記載の化合物が挙げられる。
特開2001−257076号公報、同2002−308855号公報、同2001−313179号公報、同2002−319491号公報、同2001−357977号公報、同2002−334786号公報、同2002−8860号公報、同2002−334787号公報、同2002−15871号公報、同2002−334788号公報、同2002−43056号公報、同2002−334789号公報、同2002−75645号公報、同2002−338579号公報、同2002−105445号公報、同2002−343568号公報、同2002−141173号公報、同2002−352957号公報、同2002−203683号公報、同2002−363227号公報、同2002−231453号公報、同2003−3165号公報、同2002−234888号公報、同2003−27048号公報、同2002−255934号公報、同2002−260861号公報、同2002−280183号公報、同2002−299060号公報、同2002−302516号公報、同2002−305083号公報、同2002−305084号公報、同2002−308837号公報等である。
Specific examples of known host compounds include compounds described in the following documents.
JP-A-2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579, 2002-105445 gazette, 2002-343568 gazette, 2002-141173 gazette, 2002-352957 gazette, 2002-203683 gazette, 2002-363227 gazette, 2002-231453 gazette, No. 003-3165, No. 2002-234888, No. 2003-27048, No. 2002-255934, No. 2002-286061, No. 2002-280183, No. 2002-299060, No. 2002. -302516, 2002-305083, 2002-305084, 2002-308837, and the like.

(2)発光性ドーパント
発光性ドーパント(発光ドーパント、ドーパント化合物、単にドーパントともいう)について説明する。
発光性ドーパントとしては、蛍光発光性ドーパント(蛍光ドーパント、蛍光性化合物、蛍光発光性化合物ともいう。)、リン光発光性ドーパント(リン光ドーパント、リン光性化合物、リン光発光性化合物等ともいう。)を用いることができる。
(2) Luminescent dopant The luminescent dopant (a luminescent dopant, a dopant compound, and also only a dopant) is demonstrated.
As the luminescent dopant, a fluorescent luminescent dopant (also referred to as a fluorescent dopant, a fluorescent compound, or a fluorescent luminescent compound), a phosphorescent dopant (also referred to as a phosphorescent dopant, a phosphorescent compound, a phosphorescent compound, or the like). .) Can be used.

(2.1)リン光ドーパント
リン光ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明で用いられるリン光ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。
(2.1) Phosphorescent dopant A phosphorescent dopant is a compound in which light emission from an excited triplet is observed, specifically a compound that emits phosphorescence at room temperature (25 ° C.), and a phosphorescence quantum yield. Is defined as a compound of 0.01 or more at 25 ° C., but a preferable phosphorescence quantum yield is 0.1 or more.
The phosphorescence quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of Experimental Chemistry Course 4 of the 4th edition. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence dopant used in the present invention achieves the phosphorescence quantum yield (0.01 or more) in any solvent. Just do it.

リン光ドーパントの発光は原理としては2種挙げられ、一つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こって発光性ホスト化合物の励起状態が生成し、このエネルギーをリン光ドーパントに移動させることでリン光ドーパントからの発光を得るというエネルギー移動型である。もう一つはリン光ドーパントがキャリアトラップとなり、リン光ドーパント上でキャリアの再結合が起こり、リン光ドーパントからの発光が得られるというキャリアトラップ型である。いずれの場合においても、リン光ドーパントの励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。   There are two types of light emission of the phosphorescent dopant in principle. One is the recombination of carriers on the host compound to which carriers are transported to generate the excited state of the luminescent host compound, and this energy is used as the phosphorescent dopant. It is an energy transfer type in which light emission from a phosphorescent dopant is obtained by moving to. The other is a carrier trap type in which a phosphorescent dopant becomes a carrier trap, and carrier recombination occurs on the phosphorescent dopant, and light emission from the phosphorescent dopant is obtained. In any case, it is a condition that the excited state energy of the phosphorescent dopant is lower than the excited state energy of the host compound.

以下、一般式(DP)で表され、本発明において好適に用いられるリン光発光性化合物(リン光発光性ドーパント)について説明する。   Hereinafter, the phosphorescent compound (phosphorescent dopant) represented by the general formula (DP) and suitably used in the present invention will be described.

Figure 0006459428
Figure 0006459428

式中、Mは、Ir、Pt、Rh、Ru、Ag、Cu又はOsを表す。A、A、B及びBは、それぞれ、炭素原子又は窒素原子を表す。環Zは、A及びAとともに形成される6員の芳香族炭化水素環又は5員若しくは6員の芳香族複素環を表す。環Zは、B及びBとともに形成される5員又は6員の芳香族複素環を表す。環Z及び環Zは置換基を有していてもよく、さらに置換基同士が結合して縮環構造を形成していてもよい。また、各々の配位子の置換基が、互いに結合して、配位子同士が連結していてもよい。L′は、Mに配位したモノアニオン性の二座配位子を表す。m′は、0〜2の整数を表す。n′は、1〜3の整数を表す。m′+n′は、2又は3である。m′及びn′が2以上の場合、環Z及び環Zで表される配位子及びL′は、各々、同じでも異なっていてもよい。 In the formula, M represents Ir, Pt, Rh, Ru, Ag, Cu, or Os. A 1 , A 2 , B 1 and B 2 each represent a carbon atom or a nitrogen atom. Ring Z 1 represents a 6-membered aromatic hydrocarbon ring or 5-membered or 6-membered aromatic heterocycle formed together with A 1 and A 2 . Ring Z 2 represents a 5-membered or 6-membered aromatic heterocycle formed together with B 1 and B 2 . Ring Z 1 and ring Z 2 may have a substituent, and the substituents may be bonded to each other to form a condensed ring structure. Moreover, the substituent of each ligand may couple | bond together and the ligands may connect. L ′ represents a monoanionic bidentate ligand coordinated to M. m ′ represents an integer of 0 to 2. n ′ represents an integer of 1 to 3. m ′ + n ′ is 2 or 3. When m ′ and n ′ are 2 or more, the ligands represented by the ring Z 1 and the ring Z 2 and L ′ may be the same or different.

一般式(DP)において、Mは、Ir、Pt、Rh、Ru、Ag、Cu又はOsを挙げることができ、Ir、Pt、Rh、Ru又はOsであることがより好ましく、Ir、Pt又はOsであることがより好ましい。
、A、B及びBは、各々炭素原子又は窒素原子を表し、環Zは、A及びAとともに形成される6員の芳香族炭化水素環、又は5員又は6員の芳香族複素環を表し、環ZはB及びBとともに形成される5員又は6員の芳香族複素環を表す。
In the general formula (DP), M can include Ir, Pt, Rh, Ru, Ag, Cu or Os, more preferably Ir, Pt, Rh, Ru or Os, and Ir, Pt or Os. It is more preferable that
A 1 , A 2 , B 1 and B 2 each represent a carbon atom or a nitrogen atom, and ring Z 1 is a 6-membered aromatic hydrocarbon ring formed together with A 1 and A 2 , or 5 or 6 represents an aromatic heterocyclic ring membered, ring Z 2 represents an aromatic 5- or 6-membered heterocyclic ring formed with B 1 and B 2.

環Zは、5員の芳香族複素環であることが好ましく、B及びBは少なくとも一方が、窒素原子であることが好ましい。
環Z及び環Zは、置換基を有していてもよく、置換基として好ましくは、アリール基、ヘテロアリール基、シリル基、アルキル基であり、さらに好ましくはフェニル基、カルバゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、トリフェニルシリル基、メチル基、イソプロピル基であって、より好ましくはフェニル基、カルバゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、トリフェニルシリル基が挙げられる。また、環Z及び環Zの置換基は、さらに置換基同士が結合して縮環構造を形成していてもよい。また、各々の配位子の置換基が互いに結合して、配位子同士が連結していてもよい。
Ring Z 2 is preferably a 5-membered aromatic heterocyclic ring, and at least one of B 1 and B 2 is preferably a nitrogen atom.
Ring Z 1 and ring Z 2 may have a substituent, and the substituent is preferably an aryl group, heteroaryl group, silyl group, or alkyl group, more preferably a phenyl group, a carbazolyl group, or a dibenzo group. A furanyl group, a dibenzothiophenyl group, a triphenylsilyl group, a methyl group, and an isopropyl group, more preferably a phenyl group, a carbazolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, and a triphenylsilyl group. Moreover, the substituents of the ring Z 1 and the ring Z 2 may be further bonded to each other to form a condensed ring structure. Moreover, the substituent of each ligand may mutually couple | bond together and the ligands may connect.

L′はMに配位したモノアニオン性の二座配位子を表す。
m′は0〜2の整数を表し、n′は1〜3の整数を表し、m′+n′は2又は3である。
m′及びn′が2以上のとき、環Z及び環Zで表される配位子及びL′は各々同じでも異なっていてもよい。
一般式(DP)の構造は、好ましくは下記一般式(DP−1)又は(DP−2)の構造で表される。
L ′ represents a monoanionic bidentate ligand coordinated to M.
m ′ represents an integer of 0 to 2, n ′ represents an integer of 1 to 3, and m ′ + n ′ is 2 or 3.
When m ′ and n ′ are 2 or more, the ligands represented by ring Z 1 and ring Z 2 and L ′ may be the same or different.
The structure of the general formula (DP) is preferably represented by the following general formula (DP-1) or (DP-2).

Figure 0006459428
Figure 0006459428

一般式(DP−1)において、M、A、A、B、B、環Z、L′、m′及びn′は、一般式(DP)におけるM、A、A、B、B、環Z、L′、m′及びn′と同義である。
〜Bは、芳香族複素環を形成する原子群であり、水素原子又は置換基を有していてもよい炭素原子、窒素原子、酸素原子又は硫黄原子を表す。B〜Bが有する置換基としては、前述の一般式(DP)における環Z及び環Zが有する置換基と同義の基が挙げられる。
In the general formula (DP-1), M, A 1 , A 2 , B 1 , B 2 , ring Z 1 , L ′, m ′ and n ′ are M, A 1 , A 2 in the general formula (DP). , B 1 , B 2 , ring Z 1 , L ′, m ′ and n ′.
B 3 to B 5 are an atomic group forming an aromatic heterocyclic ring, and represent a hydrogen atom or a carbon atom, nitrogen atom, oxygen atom or sulfur atom which may have a substituent. Examples of the substituent that B 3 to B 5 have include the same groups as the substituents that the ring Z 1 and the ring Z 2 have in the general formula (DP).

一般式(DP−1)においてB〜Bで形成される芳香族複素環は、下記一般式(DP−1a)、(DP−1b)及び(DP−1c)の構造のいずれかで表されることが好ましく、一般式(DP−1c)の構造で表されることがより好ましい。 The aromatic heterocycle formed by B 1 to B 5 in the general formula (DP-1) is represented by any one of the structures of the following general formulas (DP-1a), (DP-1b), and (DP-1c). It is preferable to be represented by the structure of the general formula (DP-1c).

Figure 0006459428
Figure 0006459428

一般式(DP−1a)、(DP−1b)及び(DP−1c)において、*1は一般式(DP−1)のAとの結合部位を表し、*2はMとの結合部位を表す。
Rb〜Rbは水素原子又は置換基を表し、Rb〜Rbで表される置換基としては、前述の一般式(DP)における環Z及び環Zが有する置換基と同義の基が挙げられる。
一般式(DP−1a)におけるB及びBは、炭素原子又は窒素原子であり、より好ましくは少なくとも一つが炭素原子である。
一般式(DP−1b)におけるB〜Bは、炭素原子又は窒素原子であり、より好ましくは少なくとも一つは炭素原子である。
一般式(DP−1c)におけるB及びBは、炭素原子又は窒素原子であり、より好ましくは少なくとも一つは炭素原子であり、RbとRbで表される置換基がさらに互いに結合して縮環構造を形成していることがより好ましく、このとき新たに形成される縮環構造は芳香族環であることが好ましく、ベンゾイミダゾール環、イミダゾピリジン環、イミダゾピラジン環又はプリン環のいずれかであることが好ましい。Rbはアルキル基、アリール基であることが好ましく、フェニル基であることがより好ましい。
In the general formulas (DP-1a), (DP-1b), and (DP-1c), * 1 represents a binding site with A 2 in the general formula (DP-1), and * 2 represents a binding site with M. Represent.
Rb 3 ~Rb 5 represents a hydrogen atom or a substituent, as the substituent represented by Rb 3 ~Rb 5, the same as the substituents possessed by the ring Z 1 and the ring Z 2 in the above general formula (DP) Groups.
B 4 and B 5 in the general formula (DP-1a) are a carbon atom or a nitrogen atom, and more preferably at least one is a carbon atom.
B 3 to B 5 in the general formula (DP-1b) are carbon atoms or nitrogen atoms, more preferably at least one is a carbon atom.
B 3 and B 4 in the general formula (DP-1c) are a carbon atom or a nitrogen atom, more preferably at least one is a carbon atom, and the substituents represented by Rb 3 and Rb 4 are further bonded to each other. It is more preferable that a condensed ring structure is formed, and the newly formed condensed ring structure is preferably an aromatic ring, and includes a benzimidazole ring, an imidazopyridine ring, an imidazopyrazine ring, or a purine ring. Either is preferable. Rb 5 is preferably an alkyl group or an aryl group, and more preferably a phenyl group.

Figure 0006459428
Figure 0006459428

一般式(DP−2)において、M、A、A、B、B、環Z、L′、m′及びn′は、一般式(DP)におけるM、A、A、B、B、環Z、L′、m′及びn′と同義である。
環Zは、B〜Bとともに形成される5員の芳香族複素環を表す。
及びBは炭素原子又は窒素原子を表し、L″は2価の連結基を表す。L″で表される2価の連結基としては、例えば、アルキレン基、アルケニレン基、アリーレン基、ヘテロアリーレン基、2価の複素環基、−O−、−S−、又はこれらを任意に組み合わせた連結基等が挙げられる。
一般式(DP−2)は、さらに一般式(DP−2a)で表されることが好ましい。
In the general formula (DP-2), M, A 1 , A 2 , B 1 , B 2 , ring Z 1 , L ′, m ′ and n ′ are M, A 1 , A 2 in the general formula (DP). , B 1 , B 2 , ring Z 1 , L ′, m ′ and n ′.
Ring Z 2 represents a 5-membered aromatic heterocycle formed together with B 1 to B 3 .
A 3 and B 3 represent a carbon atom or a nitrogen atom, L ″ represents a divalent linking group. Examples of the divalent linking group represented by L ″ include an alkylene group, an alkenylene group, an arylene group, Examples include a heteroarylene group, a divalent heterocyclic group, —O—, —S—, or a linking group in which these are arbitrarily combined.
The general formula (DP-2) is preferably further represented by the general formula (DP-2a).

Figure 0006459428
Figure 0006459428

一般式(DP−2a)において、M、A、A、B、B、環Z、環Z、L′、m′及びn′は、一般式(DP−2)におけるM、A、A、B、B、環Z、環Z、L′、m′及びn′と同義である。
L″及びL″はC−Rb又は窒素原子を表し、Rbは水素原子又は置換基を表す。L″及びL″がC−Rbの場合はRb同士が互いに結合し環を形成してもよい。
一般式(DP)、(DP−1)、(DP−2)及び(DP−2a)において、Aが炭素原子であることが好ましく、さらにAが炭素原子であることが好ましい。より好ましくは環Zが置換又は無置換のベンゼン環又はピリジン環であり、さらに好ましくはベンゼン環である。
In the general formula (DP-2a), M, A 1 , A 2 , B 1 , B 2 , ring Z 1 , ring Z 2 , L ′, m ′ and n ′ are M in the general formula (DP-2). , A 1 , A 2 , B 1 , B 2 , ring Z 1 , ring Z 2 , L ′, m ′ and n ′.
L ″ 1 and L ″ 2 represent C—Rb 6 or a nitrogen atom, and Rb 6 represents a hydrogen atom or a substituent. When L ″ 1 and L ″ 2 are C—Rb 6 , Rb 6 may be bonded to each other to form a ring.
In the general formulas (DP), (DP-1), (DP-2), and (DP-2a), A 2 is preferably a carbon atom, and A 1 is preferably a carbon atom. More preferably, the ring Z 1 is a substituted or unsubstituted benzene ring or pyridine ring, and more preferably a benzene ring.

(2.2)蛍光ドーパント
蛍光ドーパントとしては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、又は希土類錯体系蛍光体等や、レーザー色素に代表される蛍光量子収率が高い化合物が挙げられる。
(2.2) Fluorescent dopant Examples of fluorescent dopants include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, Examples include perylene dyes, stilbene dyes, polythiophene dyes, rare-earth complex phosphors, and compounds having high fluorescence quantum yields typified by laser dyes.

[従来公知のドーパントとの併用]
また、本発明に用いられる発光ドーパントは、複数種の化合物を併用して用いてもよく、構造の異なるリン光ドーパント同士の組み合わせや、リン光ドーパントと蛍光ドーパントを組み合わせて用いてもよい。
本発明に使用できる公知のリン光ドーパントの具体例としては、以下の文献に記載されている化合物等が挙げられる。
Nature,395,151(1998)、Appl.Phys.Lett.,78,1622(2001)、Adv.Mater.,19,739(2007)、Chem.Mater.,17,3532(2005)、Adv.Mater.,17,1059(2005)、国際公開第2009/100991号、国際公開第2008/101842号、国際公開第2003/040257号、米国特許出願公開第2006/835469号明細書、米国特許出願公開第2006/0202194号明細書、米国特許出願公開第2007/0087321号明細書、米国特許出願公開第2005/0244673号明細書、Inorg.Chem.,40,1704(2001)、Chem.Mater.,16,2480(2004)、Adv.Mater.,16,2003(2004)、Angew.Chem.lnt.Ed.,2006,45,7800、Appl.Phys.Lett.,86,153505(2005)、Chem.Lett.,34,592(2005)、Chem.Commun.,2906(2005)、Inorg.Chem.,42,1248(2003)、国際公開第2009/050290号、国際公開第2002/015645号、国際公開第2009/000673号、米国特許出願公開第2002/0034656号明細書、米国特許第7332232号明細書、米国特許出願公開第2009/0108737号明細書、米国特許出願公開第2009/0039776号明細書、米国特許第6921915号明細書、米国特許第6687266号明細書、米国特許出願公開第2007/0190359号明細書、米国特許出願公開第2006/0008670号明細書、米国特許出願公開第2009/0165846号明細書、米国特許出願公開第2008/0015355号明細書、米国特許第7250226号明細書、米国特許第7396598号明細書、米国特許出願公開第2006/0263635号明細書、米国特許出願公開第2003/0138657号明細書、米国特許出願公開第2003/0152802号明細書、米国特許第7090928号明細書、Angew.Chem.lnt.Ed.,47,1(2008)、Chem.Mater.,18,5119(2006)、Inorg.Chem.,46,4308(2007)、Organometallics,23,3745(2004)、Appl.Phys.Lett.,74,1361(1999)、国際公開第2002/002714号、国際公開第2006/009024号、国際公開第2006/056418号、国際公開第2005/019373号、国際公開第2005/123873号、国際公開第2005/123873号、国際公開第2007/004380号、国際公開第2006/082742号、米国特許出願公開第2006/0251923号明細書、米国特許出願公開第2005/0260441号明細書、米国特許第7393599号明細書、米国特許第7534505号明細書、米国特許第7445855号明細書、米国特許出願公開第2007/0190359号明細書、米国特許出願公開第2008/0297033号明細書、米国特許第7338722号明細書、米国特許出願公開第2002/0134984号明細書、米国特許第7279704号明細書、米国特許出願公開第2006/098120号明細書、米国特許出願公開第2006/103874号明細書、国際公開第2005/076380号、国際公開第2010/032663号、国際公開第2008/140115号、国際公開第2007/052431号、国際公開第2011/134013号、国際公開第2011/157339号、国際公開第2010/086089号、国際公開第2009/113646号、国際公開第2012/020327号、国際公開第2011/051404号、国際公開第2011/004639号、国際公開第2011/073149号、米国特許出願公開第2012/228583号明細書、米国特許出願公開第2012/212126号明細書、特開2012−069737号公報、特開2011−181303号公報、特開2009−114086号公報、特開2003−81988号公報、特開2002−302671号公報、特開2002−363552号公報等である。
中でも、好ましいリン光ドーパントとしてはIrを中心金属に有する有機金属錯体が挙げられる。さらに好ましくは、金属−炭素結合、金属−窒素結合、金属−酸素結合、金属−硫黄結合のうち少なくとも一つの配位様式を含む錯体が好ましい。
ここで、本発明に使用できる公知のリン光ドーパントの具体例を挙げるが、本発明はこれらに限定されない。
[Combination with conventionally known dopants]
In addition, the light emitting dopant used in the present invention may be used in combination of a plurality of types of compounds, a combination of phosphorescent dopants having different structures, or a combination of a phosphorescent dopant and a fluorescent dopant.
Specific examples of known phosphorescent dopants that can be used in the present invention include compounds described in the following documents.
Nature, 395, 151 (1998), Appl. Phys. Lett. 78, 1622 (2001), Adv. Mater. , 19, 739 (2007), Chem. Mater. 17, 3532 (2005), Adv. Mater. , 17, 1059 (2005), International Publication No. 2009/100991, International Publication No. 2008/101842, International Publication No. 2003/040257, US Patent Application Publication No. 2006/835469, US Patent Application Publication No. 2006. No. 0202194, U.S. Patent Application Publication No. 2007/0087321, U.S. Patent Application Publication No. 2005/0244673, Inorg. Chem. , 40, 1704 (2001), Chem. Mater. 16, 2480 (2004), Adv. Mater. 16, 2003 (2004), Angew. Chem. lnt. Ed. , 2006, 45, 7800, Appl. Phys. Lett. 86, 153505 (2005), Chem. Lett. , 34, 592 (2005), Chem. Commun. , 2906 (2005), Inorg. Chem. , 42, 1248 (2003), International Publication No. 2009/050290, International Publication No. 2002/015645, International Publication No. 2009/000673, US Patent Application Publication No. 2002/0034656, and US Pat. No. 7,332,232. United States Patent Application Publication No. 2009/0108737, United States Patent Application Publication No. 2009/0039776, United States Patent No. 6921915, United States Patent No. 6,687,266, United States Patent Application Publication No. 2007/0190359. No., US Patent Application Publication No. 2006/0008670, US Patent Application Publication No. 2009/0165846, US Patent Application Publication No. 2008/0015355, US Pat. No. 7,250,226, US Patent No. 7396598 Writing, U.S. Patent Application Publication No. 2006/0263635, U.S. Patent Application Publication No. 2003/0138657, U.S. Patent Application Publication No. 2003/0152802, U.S. Patent No. 7090928, Angew. Chem. lnt. Ed. 47, 1 (2008), Chem. Mater. , 18, 5119 (2006), Inorg. Chem. 46, 4308 (2007), Organometallics, 23, 3745 (2004), Appl. Phys. Lett. , 74, 1361 (1999), International Publication No. 2002/002714, International Publication No. 2006/009024, International Publication No. 2006/056418, International Publication No. 2005/019373, International Publication No. 2005/123873, International Publication. No. 2005/123873, International Publication No. 2007/004380, International Publication No. 2006/082742, US Patent Application Publication No. 2006/0251923, US Patent Application Publication No. 2005/0260441, US Pat. No. 7,393,599. No. 7, U.S. Pat. No. 7,534,505, U.S. Pat. No. 7,445,855, U.S. Patent Application Publication No. 2007/0190359, U.S. Patent Application Publication No. 2008/0297033, U.S. Pat. No. 7,338,722. Letter, United States Published Patent Application No. 2002/0134984, U.S. Pat. No. 7,279,704, U.S. Patent Application Publication No. 2006/098120, U.S. Patent Application Publication No. 2006/103874, International Publication No. 2005/076380. International Publication No. 2010/032663, International Publication No. 2008/140115, International Publication No. 2007/052431, International Publication No. 2011/134013, International Publication No. 2011/157339, International Publication No. 2010/086089, International Publication No. Publication No. 2009/113646, International Publication No. 2012/020327, International Publication No. 2011/051404, International Publication No. 2011/004639, International Publication No. 2011/073149, US Patent Application Publication No. 2012/228583 , Rice Japanese Patent Application Publication No. 2012/212126, Japanese Patent Application Laid-Open No. 2012-069737, Japanese Patent Application Laid-Open No. 2011-181303, Japanese Patent Application Laid-Open No. 2009-114086, Japanese Patent Application Laid-Open No. 2003-81988, Japanese Patent Application Laid-Open No. 2002-302671. Japanese Patent Laid-Open No. 2002-363552.
Among these, a preferable phosphorescent dopant includes an organometallic complex having Ir as a central metal. More preferably, a complex containing at least one coordination mode among a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond, and a metal-sulfur bond is preferable.
Here, although the specific example of the well-known phosphorescence dopant which can be used for this invention is given, this invention is not limited to these.

Figure 0006459428
Figure 0006459428

Figure 0006459428
Figure 0006459428

Figure 0006459428
Figure 0006459428

Figure 0006459428
Figure 0006459428

Figure 0006459428
Figure 0006459428

Figure 0006459428
Figure 0006459428

Figure 0006459428
Figure 0006459428

Figure 0006459428
Figure 0006459428

本発明に係る一般式(I)で表される構造を有する化合物とリン光発光性化合物の組み合わせとしては、青色リン光ドーパントについて特に好適に使用できる。
特に好ましく用いられるドーパントとしては、D−36、D−37、D−41、D−53、D−54、D−55、D−56、D−61、D−63、D−67、D−80が挙げられる。また、より深い青色、すなわち低いCIE y値を達成するという観点では、D−41、D−53、D−54、D−55、D−56がより好ましく、より長寿命で高い耐久性を達成するという観点では、D−36、D−37、D−63がより好ましい。
As a combination of the compound having the structure represented by the general formula (I) and the phosphorescent compound according to the present invention, a blue phosphorescent dopant can be particularly preferably used.
Particularly preferably used dopants include D-36, D-37, D-41, D-53, D-54, D-55, D-56, D-61, D-63, D-67, D- 80. In terms of achieving a deeper blue color, that is, a lower CIE y value, D-41, D-53, D-54, D-55, and D-56 are more preferable, achieving a longer life and higher durability. From the viewpoint of doing, D-36, D-37, and D-63 are more preferable.

《電子輸送層》
電子輸送層とは、電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層若しくは複数層を設けることができる。
電子輸送層は、陰極より注入された電子を発光層に伝達する機能を有していればよく、電子輸送層の構成材料としては従来公知の化合物の中から任意のものを選択し併用することも可能である。
《Electron transport layer》
The electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided with a single layer or a plurality of layers.
The electron transport layer only needs to have a function of transmitting electrons injected from the cathode to the light emitting layer, and as a constituent material of the electron transport layer, any one of conventionally known compounds may be selected and used in combination. Is also possible.

電子輸送層に用いられる従来公知の材料(以下、電子輸送材料という。)の例としては、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレンペリレン等の多環芳香族炭化水素、複素環テトラカルボン酸無水物、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体、カルボリン誘導体又は該カルボリン誘導体のカルボリン環を構成する炭化水素環の炭素原子の少なくとも一つが窒素原子で置換されている環構造を有する誘導体、ヘキサアザトリフェニレン誘導体等が挙げられる。
更に、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引性基として知られているキノキサリン環を有するキノキサリン誘導体も電子輸送材料として用いることができる。
これらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
Examples of conventionally known materials used for the electron transport layer (hereinafter referred to as electron transport materials) include polycyclic aromatic hydrocarbons such as nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, naphthalene perylene, Heterocyclic tetracarboxylic anhydride, carbodiimide, fluorenylidenemethane derivative, anthraquinodimethane and anthrone derivative, oxadiazole derivative, carboline derivative or at least one carbon atom of the hydrocarbon ring constituting the carboline ring of the carboline derivative And derivatives having a ring structure in which one is substituted with a nitrogen atom, hexaazatriphenylene derivatives and the like.
Furthermore, in the oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as an electron transport material.
It is also possible to use a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain.

また、8−キノリノール誘導体の金属錯体、例えば、トリス(8−キノリノール)アルミニウム(Alq)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も電子輸送材料として用いることができる。
その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも電子輸送材料として用いることができる。
また、n型−Si、n型−SiC等の無機半導体も電子輸送材料として用いることができる。
In addition, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), and the like, and the central metals of these metal complexes are In, Mg, Metal complexes replaced with Cu, Ca, Sn, Ga, or Pb can also be used as the electron transport material.
In addition, metal-free or metal phthalocyanine, or those having a terminal substituted with an alkyl group or a sulfonic acid group can be used as the electron transport material.
In addition, inorganic semiconductors such as n-type-Si and n-type-SiC can also be used as the electron transport material.

電子輸送層は電子輸送材料を、例えば、真空蒸着法、湿式法(ウェットプロセスともいい、例えば、スピンコート法、キャスト法、ダイコート法、ブレードコート法、ロールコート法、インクジェット法、印刷法、スプレーコート法、カーテンコート法、LB法(ラングミュア・ブロジェット(Langmuir Blodgett法)等を挙げることができる。))等により、薄膜化することで形成することが好ましい。   The electron transport layer is made of an electron transport material such as a vacuum deposition method, a wet method (also referred to as a wet process, such as a spin coating method, a casting method, a die coating method, a blade coating method, a roll coating method, an ink jet method, a printing method, or a spraying method. It is preferable to form the thin film by a coating method, a curtain coating method, an LB method (such as Langmuir-Blodgett method)).

電子輸送層の層厚については特に制限はないが、通常は5〜5000nm程度、好ましくは5〜200nmである。この電子輸送層は上記材料の1種又は2種以上からなる1層構造であってもよい。
また、金属錯体やハロゲン化金属など金属化合物等のn型ドーパントをドープして用いてもよい。
Although there is no restriction | limiting in particular about the layer thickness of an electron carrying layer, Usually, about 5-5000 nm, Preferably it is 5-200 nm. The electron transport layer may have a single layer structure composed of one or more of the above materials.
Further, an n-type dopant such as a metal compound such as a metal complex or a metal halide may be doped.

本発明の有機EL素子の電子輸送層の形成に好ましく用いられる従来公知の電子輸送材料の一例として、国際公開第2013/061850号に記載の化合物を好適に用いることができるが、本発明はこれらに限定されない。   As an example of a conventionally known electron transport material preferably used for forming the electron transport layer of the organic EL device of the present invention, the compounds described in International Publication No. 2013/061850 can be preferably used. It is not limited to.

《陰極》
一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する。)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
"cathode"
On the other hand, as the cathode, a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like. Among these, from the point of durability against electron injection and oxidation, etc., a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this, for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.

陰極は、これらの電極物質を蒸着やスパッタリング等の方法で薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm〜5μm、好ましくは50〜200nmの範囲で選ばれる。
なお、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が透明又は半透明であれば発光輝度が向上し好都合である。
また、陰極に上記金属を1〜20nmの膜厚で作製した後に、後述する陽極の説明で挙げる導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 to 200 nm.
In order to transmit the emitted light, if either one of the anode or the cathode of the organic EL element is transparent or translucent, the emission luminance is advantageously improved.
In addition, a transparent or translucent cathode can be produced by producing a conductive transparent material mentioned in the explanation of the anode described later on the cathode after producing the metal with a thickness of 1 to 20 nm on the cathode. By applying this, an element in which both the anode and the cathode are transmissive can be manufactured.

《注入層:電子注入層(陰極バッファー層)、正孔注入層》
注入層は、必要に応じて設け、電子注入層と正孔注入層があり、上記のように陽極と発光層又は正孔輸送層の間、及び陰極と発光層又は電子輸送層との間に存在させてもよい。
注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。
<< Injection layer: electron injection layer (cathode buffer layer), hole injection layer >>
The injection layer is provided as necessary, and includes an electron injection layer and a hole injection layer, and as described above, between the anode and the light emitting layer or the hole transport layer, and between the cathode and the light emitting layer or the electron transport layer. May be present.
An injection layer is a layer provided between an electrode and an organic layer in order to reduce drive voltage and improve light emission luminance. “Organic EL element and its forefront of industrialization (issued by NTT Corporation on November 30, 1998) 2), Chapter 2, “Electrode Materials” (pages 123 to 166) in detail, and includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).

陽極バッファー層(正孔注入層)は、特開平9−45479号公報、同9−260062号公報、同8−288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、特表2003−519432号公報や特開2006−135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体バッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層、トリス(2−フェニルピリジン)イリジウム錯体等に代表されるオルトメタル化錯体層等が挙げられる。   The details of the anode buffer layer (hole injection layer) are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069 and the like. As a specific example, copper phthalocyanine is used. Typical phthalocyanine buffer layer, hexaazatriphenylene derivative buffer layer, oxide buffer layer typified by vanadium oxide, amorphous carbon Examples thereof include a buffer layer, a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) and polythiophene, and an orthometalated complex layer represented by tris (2-phenylpyridine) iridium complex.

陰極バッファー層(電子注入層)は、特開平6−325871号公報、同9−17574号公報、同10−74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウム、フッ化カリウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウム、フッ化セシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nm〜5μmの範囲が好ましい。   The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium, aluminum, etc. Metal buffer layer typified by, alkali metal compound buffer layer typified by lithium fluoride and potassium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride and cesium fluoride, typified by aluminum oxide Examples thereof include an oxide buffer layer. The buffer layer (injection layer) is preferably a very thin film, and the film thickness is preferably in the range of 0.1 nm to 5 μm although it depends on the material.

《阻止層:正孔阻止層、電子阻止層》
阻止層は、上記のごとく有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11−204258号公報、同11−204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
<Blocking layer: hole blocking layer, electron blocking layer>
As described above, the blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film. For example, it is described in JP-A Nos. 11-204258, 11-204359, and “Organic EL elements and their forefront of industrialization” (issued by NTT, Inc. on November 30, 1998). There is a hole blocking (hole blocking) layer.

正孔阻止層とは、広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。
また、前述する電子輸送層の構成を必要に応じて、正孔阻止層として用いることができる。
本発明の有機EL素子の正孔阻止層は、発光層に隣接して設けられていることが好ましい。
正孔阻止層には、前述のホスト化合物として挙げた、カルバゾール誘導体、カルボリン誘導体、ジアザカルバゾール誘導体(ここで、ジアザカルバゾール誘導体とは、カルボリン環を構成する炭素原子のいずれか一つが窒素原子で置き換わったものをいう。)を含有することが好ましい。
The hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material having a function of transporting electrons and a very small ability to transport holes. By blocking the holes, the probability of recombination of electrons and holes can be improved.
Moreover, the structure of the electron carrying layer mentioned above can be used as a hole-blocking layer as needed.
The hole blocking layer of the organic EL device of the present invention is preferably provided adjacent to the light emitting layer.
The hole blocking layer includes a carbazole derivative, a carboline derivative, a diazacarbazole derivative (the diazacarbazole derivative is a nitrogen atom in which any one of carbon atoms constituting the carboline ring is cited as the host compound described above. It is preferable to contain the thing replaced by.

一方、電子阻止層とは、広い意味では正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。
また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明に係る正孔阻止層、電子輸送層の層厚としては、好ましくは3〜100nmであり、更に好ましくは5〜30nmである。
On the other hand, the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material having a function of transporting holes while having a remarkably small ability to transport electrons. The probability of recombination of electrons and holes can be improved by blocking.
Moreover, the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed. The layer thickness of the hole blocking layer and the electron transport layer according to the present invention is preferably 3 to 100 nm, and more preferably 5 to 30 nm.

《正孔輸送層》
正孔輸送層とは、正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層又は複数層設けることができる。
正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。
また、特表2003−519432号公報や特開2006−135145号公報等に記載されているようなアザトリフェニレン誘導体も同様に正孔輸送材料として用いることができる。
《Hole transport layer》
The hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. The hole transport layer can be provided as a single layer or a plurality of layers.
The hole transport material has any of hole injection or transport and electron barrier properties, and may be either organic or inorganic. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers, particularly thiophene oligomers.
Further, azatriphenylene derivatives such as those described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as a hole transport material.

正孔輸送材料としては、上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。
芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′−テトラフェニル−4,4′−ジアミノフェニル;N,N′−ジフェニル−N,N′−ビス(3−メチルフェニル)−〔1,1′−ビフェニル〕−4,4′−ジアミン(TPD);2,2−ビス(4−ジ−p−トリルアミノフェニル)プロパン;1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン;N,N,N′,N′−テトラ−p−トリル−4,4′−ジアミノビフェニル;1,1−ビス(4−ジ−p−トリルアミノフェニル)−4−フェニルシクロヘキサン;ビス(4−ジメチルアミノ−2−メチルフェニル)フェニルメタン;ビス(4−ジ−p−トリルアミノフェニル)フェニルメタン;N,N′−ジフェニル−N,N′−ジ(4−メトキシフェニル)−4,4′−ジアミノビフェニル;N,N,N′,N′−テトラフェニル−4,4′−ジアミノジフェニルエーテル;4,4′−ビス(ジフェニルアミノ)クオードリフェニル;N,N,N−トリ(p−トリル)アミン;4−(ジ−p−トリルアミノ)−4′−〔4−(ジ−p−トリルアミノ)スチリル〕スチルベン;4−N,N−ジフェニルアミノ−(2−ジフェニルビニル)ベンゼン;3−メトキシ−4′−N,N−ジフェニルアミノスチルベン;N−フェニルカルバゾール、更には米国特許第5061569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル(NPD)、特開平4−308688号公報に記載されているトリフェニルアミンユニットが三つスターバースト型に連結された4,4′,4″−トリス〔N−(3−メチルフェニル)−N−フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。
Although the above-mentioned thing can be used as a positive hole transport material, It is preferable to use a porphyrin compound, an aromatic tertiary amine compound, and a styryl amine compound, especially an aromatic tertiary amine compound.
Representative examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ', N'-tetraphenyl-4,4'-diaminophenyl; N, N'-diphenyl-N, N'- Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminophenyl) phenylmethane; N, N'-diphenyl-N, N ' − (4-methoxyphenyl) -4,4'-diaminobiphenyl; N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether; 4,4'-bis (diphenylamino) quadriphenyl; N, N, N-tri (p-tolyl) amine; 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene; 4-N, N-diphenylamino- (2-diphenylvinyl) benzene; 3-methoxy-4'-N, N-diphenylaminostilbene; N-phenylcarbazole, and also two fused aromatic rings described in US Pat. No. 5,061,569. What is contained in the molecule, for example, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), Japanese Patent Laid-Open No. 4-308688 4,4 ′, 4 ″ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine (MTDATA), etc., in which three triphenylamine units described in 1 are linked in a starburst type Is mentioned.

更にこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
また、p型−Si、p型−SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。
また、特開平11−251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、いわゆるp型正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られることからこれらの材料を用いることが好ましい。
Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
In addition, inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
JP-A-11-251067, J. Org. Huang et. al. A so-called p-type hole transport material as described in a book (Applied Physics Letters 80 (2002), p. 139) can also be used. In the present invention, these materials are preferably used because a light-emitting element with higher efficiency can be obtained.

正孔輸送層は、上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。
正孔輸送層の層厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5〜200nmである。この正孔輸送層は上記材料の1種又は2種以上からなる1層構造であってもよい。
The hole transport layer is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. Can do.
Although there is no restriction | limiting in particular about the layer thickness of a positive hole transport layer, Usually, 5 nm-about 5 micrometers, Preferably it is 5-200 nm. This hole transport layer may have a single layer structure composed of one or more of the above materials.

また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4−297076号公報、特開2000−196140号公報、同2001−102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
本発明においては、このようなp性の高い正孔輸送層を用いることが、より低消費電力の素子を作製することができるため好ましい。
Alternatively, a hole transport layer having a high p property doped with impurities can be used. Examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
In the present invention, it is preferable to use a hole transport layer having such a high p property because a device with lower power consumption can be produced.

《陽極》
有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、ITO、SnO、ZnO等の導電性透明材料が挙げられる。
また、IDIXO(In−ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、又はパターン精度を余り必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。
"anode"
As the anode in the organic EL element, an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such an electrode substance include metals such as Au, and conductive transparent materials such as CuI, ITO, SnO 2 , and ZnO.
Alternatively, an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used. For the anode, a thin film may be formed by vapor deposition or sputtering of these electrode materials, and a pattern of a desired shape may be formed by photolithography, or when pattern accuracy is not required (about 100 μm or more) A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.

または、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等の湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。更に膜厚は材料にもよるが、通常10〜1000nm、好ましくは10〜200nmの範囲で選ばれる。   Or when using the substance which can be apply | coated like an organic electroconductivity compound, wet film-forming methods, such as a printing system and a coating system, can also be used. When light emission is extracted from the anode, it is desirable that the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred Ω / □ or less. Further, although the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.

《支持基板》
本発明の有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等ともいう。)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
《Support substrate》
The support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention is not particularly limited in the type of glass, plastic, etc., and is transparent. Or opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.

樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル又はポリアリレート類、アートン(商品名JSR社製)又はアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等のフィルムを挙げることができる。   Examples of the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones, Cycloolefin resins such as polyether imide, polyether ketone imide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic or polyarylate, Arton (trade name, manufactured by JSR) or Appel (trade name, manufactured by Mitsui Chemicals) Can be mentioned.

樹脂フィルムの表面には、無機物、有機物の被膜又はその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129−1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%)が0.01g/m・24h以下のガスバリアー性フィルムであることが好ましく、更には、JIS K 7126−1987に準拠した方法で測定された酸素透過度が、1×10−3ml/m・24h・atm以下、水蒸気透過度が、1×10−5g/m・24h以下の高ガスバリアー性フィルムであることが好ましい。 An inorganic film, an organic film, or a hybrid film of both may be formed on the surface of the resin film, and the water vapor permeability (25 ± 0.5 ° C.) measured by a method according to JIS K 7129-1992. , And a relative humidity (90 ± 2)%) of 0.01 g / m 2 · 24 h or less is preferable. Further, the oxygen permeability measured by a method according to JIS K 7126-1987 is preferable. However, it is preferable that it is a high gas-barrier film whose 1 * 10 < -3 > ml / m < 2 > * 24h * atm or less and water vapor permeability are 1 * 10 < -5 > g / m < 2 > * 24h or less.

ガスバリアー層を形成する材料としては、水分や酸素等の素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。   The material for forming the gas barrier layer may be any material as long as it has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like can be used. . Further, in order to improve the brittleness of the film, it is more preferable to have a laminated structure of these inorganic layers and organic material layers. Although there is no restriction | limiting in particular about the lamination | stacking order of an inorganic layer and an organic layer, It is preferable to laminate | stack both alternately several times.

ガスバリアー層の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004−68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。
不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。
The method for forming the gas barrier layer is not particularly limited. For example, the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, and the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
Examples of the opaque support substrate include metal plates such as aluminum and stainless steel, films, opaque resin substrates, and ceramic substrates.

本発明の有機EL素子の発光の室温における外部取り出し収率は、1%以上であることが好ましく、5%以上であるとより好ましい。
ここで、外部取り出し量子収率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。
また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を、蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。色変換フィルターを用いる場合においては、有機EL素子の発光のλmaxは480nm以下が好ましい。
The external extraction yield at room temperature for light emission of the organic EL device of the present invention is preferably 1% or more, and more preferably 5% or more.
Here, the external extraction quantum yield (%) = the number of photons emitted to the outside of the organic EL element / the number of electrons sent to the organic EL element × 100.
In addition, a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination. In the case of using a color conversion filter, the λmax of light emission of the organic EL element is preferably 480 nm or less.

《有機EL素子用材料》
本発明の有機EL素子用材料は、前記一般式(I)で表される構造を有する化合物を含有することを特徴とする。
前記一般式(I)で表される構造を有する化合物は、特にホスト化合物として機能することが期待されるため発光層に用いられることが好ましい。また、前記一般式(I)で表される構造を有する化合物の他に種々の機能性材料を含有してもよい。
<< Materials for organic EL elements >>
The material for an organic EL device of the present invention contains a compound having a structure represented by the general formula (I).
Since the compound having the structure represented by the general formula (I) is expected to function as a host compound, it is preferably used for the light emitting layer. In addition to the compound having the structure represented by the general formula (I), various functional materials may be contained.

《有機EL素子の作製方法》
有機EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層(電子注入層)/陰極からなる素子の作製方法について説明する。
まず、適当な基体上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10〜200nmの膜厚になるように形成させ、陽極を作製する。
次に、この上に素子材料である正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層、陰極バッファー層等の有機化合物を含有する薄膜を形成させる。
<< Method for producing organic EL element >>
As an example of a method for producing an organic EL device, a device comprising an anode / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode buffer layer (electron injection layer) / cathode Will be described.
First, a desired electrode material, for example, a thin film made of an anode material is formed on a suitable substrate so as to have a thickness of 1 μm or less, preferably 10 to 200 nm, and an anode is manufactured.
Next, a thin film containing an organic compound such as a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, or a cathode buffer layer, which is an element material, is formed thereon.

薄膜の形成方法としては、例えば、真空蒸着法、湿式法(ウェットプロセスともいう。)等により成膜して形成することができる。
湿式法としては、スピンコート法、キャスト法、ダイコート法、ブレードコート法、ロールコート法、インクジェット法、印刷法、スプレーコート法、カーテンコート法、LB法等があるが、精密な薄膜が形成可能で、かつ高生産性の点から、ダイコート法、ロールコート法、インクジェット法、スプレーコート法などのロールtoロール方式適性の高い方法が好ましい。また、層ごとに異なる成膜法を適用してもよい。
As a method for forming a thin film, for example, a thin film can be formed by a vacuum deposition method, a wet method (also referred to as a wet process), or the like.
Wet methods include spin coating, casting, die coating, blade coating, roll coating, ink jet, printing, spray coating, curtain coating, and LB, but precise thin films can be formed. From the viewpoint of high productivity, a method having high suitability for the roll-to-roll method such as a die coating method, a roll coating method, an ink jet method, and a spray coating method is preferable. Different film formation methods may be applied for each layer.

本発明に用いられる発光ドーパント等の有機EL素子用材料を溶解又は分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、ジメチルホルムアミド(DMF)、DMSO等の有機溶媒を用いることができる。
また、分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。
Examples of the liquid medium for dissolving or dispersing the organic EL device material such as a light-emitting dopant used in the present invention include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, and halogenated hydrocarbons such as dichlorobenzene. , Aromatic hydrocarbons such as toluene, xylene, mesitylene, and cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin, and dodecane, and organic solvents such as dimethylformamide (DMF) and DMSO can be used.
Moreover, as a dispersion method, it can disperse | distribute by dispersion methods, such as an ultrasonic wave, high shear force dispersion | distribution, and media dispersion | distribution.

これらの層の形成後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは50〜200nmの範囲の膜厚になるように形成させ、陰極を設けることにより所望の有機EL素子が得られる。
また、順序を逆にして、陰極、陰極バッファー層、電子輸送層、正孔阻止層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。
本発明の有機EL素子の作製は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる成膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行うことが好ましい。
After the formation of these layers, a thin film made of a cathode material is formed thereon so as to have a thickness of 1 μm or less, preferably in the range of 50 to 200 nm, and a desired organic EL device can be obtained by providing a cathode. .
Further, the order can be reversed, and the cathode, cathode buffer layer, electron transport layer, hole blocking layer, light emitting layer, hole transport layer, hole injection layer, and anode can be formed in this order.
The organic EL device of the present invention is preferably produced from the hole injection layer to the cathode consistently by a single evacuation, but it may be taken out halfway and subjected to different film forming methods. At that time, it is preferable to perform the work in a dry inert gas atmosphere.

《その他の構成》
本発明に用いることができる封止手段、保護膜、保護板、光取り出し効率を向上させる技術及び集光シートとしては、特開2014−152151号公報等に記載の公知の技術を用いることができる。
<Other configuration>
As a sealing means, a protective film, a protective plate, a technique for improving light extraction efficiency, and a light collecting sheet that can be used in the present invention, a known technique described in JP 2014-152151 A can be used. .

《用途》
本発明の有機EL素子は、電子デバイス、表示装置、ディスプレイ、各種発光装置として用いることができる。発光装置として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
<Application>
The organic EL element of the present invention can be used as an electronic device, a display device, a display, and various light emitting devices. Examples of light emitting devices include lighting devices (home lighting, interior lighting), clocks and backlights for liquid crystals, billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light Although the light source of a sensor etc. are mentioned, It is not limited to this, Especially, it can use effectively for the use as a backlight of a liquid crystal display device, and a light source for illumination.

本発明の有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。   In the organic EL element of the present invention, patterning may be performed by a metal mask, an ink jet printing method, or the like as needed during film formation. In the case of patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned. In the fabrication of the element, a conventionally known method is used. Can do.

本発明の有機EL素子や本発明で用いられる化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図7.16において、分光放射輝度計CS−1000(コニカミノルタ(株)製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。
また、本発明の有機EL素子が白色素子の場合には、白色とは、2度視野角正面輝度を上記方法により測定した際に、1000cd/mでのCIE1931表色系における色度がX=0.33±0.07、Y=0.33±0.1の領域内にあることをいう。
The light emission color of the organic EL device of the present invention and the compound used in the present invention is shown in FIG. 7.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with the luminance meter CS-1000 (manufactured by Konica Minolta Co., Ltd.) is applied to the CIE chromaticity coordinates.
When the organic EL element of the present invention is a white element, white means that the chromaticity in the CIE1931 color system at 1000 cd / m 2 is X when the 2 ° viewing angle front luminance is measured by the above method. = 0.33 ± 0.07 and Y = 0.33 ± 0.1.

《表示装置》
本発明の有機EL素子は、表示装置に用いることができる。表示装置は単色でも多色でもよいが、ここでは多色表示装置について説明する。
多色表示装置の場合は発光層形成時のみシャドーマスクを設け、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で膜を形成できる。
発光層のみパターニングを行う場合、その方法に限定はないが、好ましくは蒸着法、インクジェット法、スピンコート法、印刷法である。
<Display device>
The organic EL element of the present invention can be used for a display device. The display device may be single color or multicolor, but here, the multicolor display device will be described.
In the case of a multicolor display device, a shadow mask is provided only at the time of forming a light emitting layer, and a film can be formed on one surface by vapor deposition, casting, spin coating, ink jet, printing, or the like.
In the case of patterning only the light emitting layer, the method is not limited. However, the vapor deposition method, the ink jet method, the spin coating method, and the printing method are preferable.

表示装置に具備される有機EL素子の構成は、必要に応じて上記の有機EL素子の構成例の中から選択される。
また、有機EL素子の製造方法は、上記の本発明の有機EL素子の製造の一態様に示したとおりである。
このようにして得られた多色表示装置に直流電圧を印加する場合には、陽極を+、陰極を−の極性として電圧2〜40V程度を印加すると発光が観測できる。また、逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。更に交流電圧を印加する場合には、陽極が+、陰極が−の状態になったときのみ発光する。なお、印加する交流の波形は任意でよい。
The configuration of the organic EL element provided in the display device is selected from the above-described configuration examples of the organic EL element as necessary.
Moreover, the manufacturing method of an organic EL element is as having shown to the one aspect | mode of manufacture of the organic EL element of said invention.
When a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode. Further, even when a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Further, when an AC voltage is applied, light is emitted only when the anode is in the + state and the cathode is in the-state. The alternating current waveform to be applied may be arbitrary.

多色表示装置は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。表示デバイス、ディスプレイにおいて、青、赤、緑発光の3種の有機EL素子を用いることによりフルカラーの表示が可能となる。
表示デバイス、ディスプレイとしては、テレビ、パソコン、モバイル機器、AV機器、文字放送表示、自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生する表示装置として使用してもよく、動画再生用の表示装置として使用する場合の駆動方式は単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。
発光光源としては家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、本発明はこれらに限定されない。
The multicolor display device can be used as a display device, a display, and various light emission sources. In a display device or display, full-color display is possible by using three types of organic EL elements of blue, red, and green light emission.
Examples of the display device and display include a television, a personal computer, a mobile device, an AV device, a character broadcast display, and an information display in an automobile. In particular, it may be used as a display device for reproducing still images and moving images, and the driving method when used as a display device for reproducing moving images may be either a simple matrix (passive matrix) method or an active matrix method.
Light sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, light sources for optical sensors, etc. The present invention is not limited to these examples.

以下、本発明の有機EL素子を有する表示装置の一例を図面に基づいて説明する。
図3は有機EL素子から構成される表示装置の一例を示した模式図である。有機EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの模式図である。
ディスプレイ1は、複数の画素を有する表示部A、画像情報に基づいて表示部Aの画像走査を行う制御部B、表示部Aと制御部Bとを電気的に接続する配線部C等を有する。
制御部Bは、表示部Aと配線部Cを介して電気的に接続され、複数の画素それぞれに外部からの画像情報に基づいて走査信号と画像データ信号を送り、走査信号により走査線ごとの画素が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部Aに表示する。
Hereinafter, an example of a display device having the organic EL element of the present invention will be described with reference to the drawings.
FIG. 3 is a schematic view showing an example of a display device composed of organic EL elements. It is a schematic diagram of a display such as a mobile phone that displays image information by light emission of an organic EL element.
The display 1 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, a wiring unit C that electrically connects the display unit A and the control unit B, and the like. .
The control unit B is electrically connected via the display unit A and the wiring unit C, and sends a scanning signal and an image data signal to each of a plurality of pixels based on image information from the outside. The pixels sequentially emit light in accordance with the image data signal, perform image scanning, and display image information on the display unit A.

図4はアクティブマトリクス方式による表示装置の模式図である。
表示部Aは、基板上に、複数の走査線5及びデータ線6を含む配線部Cと複数の画素3等とを有する。表示部Aの主要な部材の説明を以下に行う。
図4においては、画素3の発光した光(発光光L)が白矢印方向(下方向)へ取り出される場合を示している。
FIG. 4 is a schematic diagram of a display device using an active matrix method.
The display unit A includes a wiring unit C including a plurality of scanning lines 5 and data lines 6, a plurality of pixels 3 and the like on a substrate. The main members of the display unit A will be described below.
FIG. 4 shows a case where the light emitted from the pixel 3 (the emitted light L) is extracted in the direction of the white arrow (downward).

配線部の走査線5及び複数のデータ線6はそれぞれ導電材料からなり、走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している(詳細は図示していない)。
画素3は、走査線5から走査信号が印加されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。
発光の色が赤領域の画素、緑領域の画素、青領域の画素を適宜同一基板上に並置することによって、フルカラー表示が可能となる。
The scanning line 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions (details are illustrated). Not)
When a scanning signal is applied from the scanning line 5, the pixel 3 receives an image data signal from the data line 6 and emits light according to the received image data.
Full-color display is possible by appropriately arranging pixels in the red region, the green region, and the blue region on the same substrate.

次に、画素の発光プロセスを説明する。図5は画素の回路を示した概略図である。
画素は、有機EL素子10、スイッチングトランジスタ11、駆動トランジスタ12、コンデンサー13等を備えている。複数の画素に有機EL素子10として、赤色、緑色及び青色発光の有機EL素子を用い、これらを同一基板上に並置することでフルカラー表示を行うことができる。
Next, the light emission process of the pixel will be described. FIG. 5 is a schematic diagram showing a pixel circuit.
The pixel includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like. A full color display can be performed by using red, green, and blue light emitting organic EL elements as the organic EL elements 10 in a plurality of pixels, and juxtaposing them on the same substrate.

図5において、制御部Bからデータ線6を介してスイッチングトランジスタ11のドレインに画像データ信号が印加される。そして、制御部Bから走査線5を介してスイッチングトランジスタ11のゲートに走査信号が印加されると、スイッチングトランジスタ11の駆動がオンし、ドレインに印加された画像データ信号がコンデンサー13と駆動トランジスタ12のゲートに伝達される。   In FIG. 5, an image data signal is applied from the control unit B to the drain of the switching transistor 11 through the data line 6. When a scanning signal is applied from the control unit B to the gate of the switching transistor 11 via the scanning line 5, the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is supplied to the capacitor 13 and the driving transistor 12. Is transmitted to the gate.

画像データ信号の伝達により、コンデンサー13が画像データ信号の電位に応じて充電されるとともに、駆動トランジスタ12の駆動がオンする。駆動トランジスタ12は、ドレインが電源ライン7に接続され、ソースが有機EL素子10の電極に接続されており、ゲートに印加された画像データ信号の電位に応じて電源ライン7から有機EL素子10に電流が供給される。   By transmitting the image data signal, the capacitor 13 is charged according to the potential of the image data signal, and the drive of the drive transistor 12 is turned on. The drive transistor 12 has a drain connected to the power supply line 7 and a source connected to the electrode of the organic EL element 10, and the power supply line 7 connects to the organic EL element 10 according to the potential of the image data signal applied to the gate. Current is supplied.

制御部Bの順次走査により走査信号が次の走査線5に移ると、スイッチングトランジスタ11の駆動がオフする。しかし、スイッチングトランジスタ11の駆動がオフしてもコンデンサー13は充電された画像データ信号の電位を保持するので、駆動トランジスタ12の駆動はオン状態が保たれて、次の走査信号の印加が行われるまで有機EL素子10の発光が継続する。順次走査により次に走査信号が印加されたとき、走査信号に同期した次の画像データ信号の電位に応じて駆動トランジスタ12が駆動して有機EL素子10が発光する。
すなわち、有機EL素子10の発光は、複数の画素それぞれの有機EL素子10に対して、アクティブ素子であるスイッチングトランジスタ11と駆動トランジスタ12を設けて、複数の画素3それぞれの有機EL素子10の発光を行っている。このような発光方法をアクティブマトリクス方式と呼んでいる。
When the scanning signal is moved to the next scanning line 5 by the sequential scanning of the control unit B, the driving of the switching transistor 11 is turned off. However, since the capacitor 13 holds the charged potential of the image data signal even if the driving of the switching transistor 11 is turned off, the driving of the driving transistor 12 is kept on and the next scanning signal is applied. Until then, the light emission of the organic EL element 10 continues. When the scanning signal is next applied by sequential scanning, the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
That is, the organic EL element 10 emits light by the switching transistor 11 and the drive transistor 12 that are active elements for the organic EL element 10 of each of the plurality of pixels, and the light emission of the organic EL element 10 of each of the plurality of pixels 3. It is carried out. Such a light emitting method is called an active matrix method.

ここで、有機EL素子10の発光は複数の階調電位を持つ多値の画像データ信号による複数の階調の発光でもよいし、2値の画像データ信号による所定の発光量のオン、オフでもよい。また、コンデンサー13の電位の保持は次の走査信号の印加まで継続して保持してもよいし、次の走査信号が印加される直前に放電させてもよい。
本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査されたときのみデータ信号に応じて有機EL素子を発光させるパッシブマトリクス方式の発光駆動でもよい。
Here, the light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials, or by turning on / off a predetermined light emission amount by a binary image data signal. Good. The potential of the capacitor 13 may be held continuously until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied.
In the present invention, not only the active matrix method described above, but also a passive matrix light emission drive in which the organic EL element emits light according to the data signal only when the scanning signal is scanned.

図6は、パッシブマトリクス方式による表示装置の模式図である。図6において、複数の走査線5と複数の画像データ線6が画素3を挟んで対向して格子状に設けられている。
順次走査により走査線5の走査信号が印加されたとき、印加された走査線5に接続している画素3が画像データ信号に応じて発光する。
パッシブマトリクス方式では画素3にアクティブ素子が無く、製造コストの低減が計れる。
本発明の有機EL素子を用いることにより、発光効率が向上した表示装置が得られた。
FIG. 6 is a schematic diagram of a passive matrix display device. In FIG. 6, a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape so as to face each other with the pixel 3 interposed therebetween.
When the scanning signal of the scanning line 5 is applied by sequential scanning, the pixels 3 connected to the applied scanning line 5 emit light according to the image data signal.
In the passive matrix system, the pixel 3 has no active element, and the manufacturing cost can be reduced.
By using the organic EL element of the present invention, a display device with improved luminous efficiency was obtained.

《照明装置》
本発明の有機EL素子は、照明装置に用いることもできる。
本発明の有機EL素子は、共振器構造を持たせた有機EL素子として用いてもよい。このような共振器構造を有した有機EL素子の使用目的としては、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定されない。また、レーザー発振をさせることにより上記用途に使用してもよい。
また、本発明の有機EL素子は、照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。
動画再生用の表示装置として使用する場合の駆動方式は、パッシブマトリクス方式でもアクティブマトリクス方式でもどちらでもよい。または、異なる発光色を有する本発明の有機EL素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。
《Lighting device》
The organic EL element of the present invention can also be used for a lighting device.
The organic EL element of the present invention may be used as an organic EL element having a resonator structure. Examples of the purpose of use of the organic EL element having such a resonator structure include a light source of an optical storage medium, a light source of an electrophotographic copying machine, a light source of an optical communication processing machine, and a light source of an optical sensor. It is not limited. Moreover, you may use for the said use by making a laser oscillation.
Further, the organic EL element of the present invention may be used as a kind of lamp for illumination or exposure light source, a projection device for projecting an image, or a type for directly viewing a still image or a moving image. It may be used as a display device (display).
The driving method when used as a display device for reproducing a moving image may be either a passive matrix method or an active matrix method. Alternatively, a full-color display device can be manufactured by using two or more organic EL elements of the present invention having different emission colors.

また、本発明に係る一般式(I)で表される構造を有する化合物は、照明装置として、実質的に白色の発光を生じる有機EL素子に適用できる。例えば、複数の発光材料を用いる場合、複数の発光色を同時に発光させて、混色することで白色発光を得ることができる。複数の発光色の組み合わせとしては、赤色、緑色及び青色の三原色の三つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した二つの発光極大波長を含有したものでもよい。   Moreover, the compound which has a structure represented by general formula (I) based on this invention is applicable to the organic EL element which produces substantially white light emission as a lighting device. For example, when a plurality of light emitting materials are used, white light emission can be obtained by simultaneously emitting a plurality of light emission colors and mixing the colors. As a combination of a plurality of light emission colors, the light emission may include three light emission maximum wavelengths of three primary colors of red, green and blue, or two light emission utilizing a complementary color relationship such as blue and yellow, blue green and orange, etc. It may contain a maximum wavelength.

また、本発明の有機EL素子の形成方法は、発光層、正孔輸送層又は電子輸送層等の形成時のみマスクを設け、マスクにより塗り分ける等単純に配置するだけでよい。他層は共通であるのでマスク等のパターニングは不要であり、一面に蒸着法、キャスト法、スピンコート法、インクジェット法及び印刷法等で、例えば、電極膜を形成でき、生産性も向上する。
この方法によれば、複数色の発光素子をアレー状に並列配置した白色有機EL装置と異なり、素子自体が発光白色である。
In addition, the method for forming the organic EL device of the present invention may be simply arranged by providing a mask only when forming a light emitting layer, a hole transport layer, an electron transport layer, or the like, and separately coating with the mask. Since the other layers are common, patterning of a mask or the like is unnecessary, and for example, an electrode film can be formed on one surface by a vapor deposition method, a cast method, a spin coating method, an ink jet method, a printing method, or the like, and productivity is improved.
According to this method, unlike a white organic EL device in which light emitting elements of a plurality of colors are arranged in parallel in an array, the elements themselves are luminescent white.

[照明装置の一態様]
本発明の有機EL素子を具備した、照明装置の一態様について説明する。
本発明の有機EL素子の非発光面をガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止し、図7及び図8に示すような照明装置を形成することができる。
[One aspect of lighting device]
One mode of a lighting device including the organic EL element of the present invention will be described.
The non-light emitting surface of the organic EL device of the present invention is covered with a glass case, a 300 μm thick glass substrate is used as a sealing substrate, and an epoxy photocurable adhesive (LUX The track LC0629B) is applied, and this is superimposed on the cathode and brought into close contact with the transparent support substrate, irradiated with UV light from the glass substrate side, cured, sealed, and illuminated as shown in FIGS. A device can be formed.

図7は、照明装置の概略図を示し、本発明の有機EL素子(照明装置内の有機EL素子101)はガラスカバー102で覆われている(なお、ガラスカバーでの封止作業は、照明装置内の有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行った。)。
図8は、照明装置の断面図を示し、図8において、105は陰極、106は有機層、107は透明電極付きガラス基板を示す。なお、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。
本発明の有機EL素子を用いることにより、発光効率が向上した照明装置が得られた。
FIG. 7 shows a schematic diagram of a lighting device, and the organic EL element (organic EL element 101 in the lighting device) of the present invention is covered with a glass cover 102 (note that the sealing operation with the glass cover is performed by lighting. This was performed in a glove box under a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more) without bringing the organic EL element 101 in the apparatus into contact with the air.
FIG. 8 shows a cross-sectional view of the lighting device. In FIG. 8, 105 denotes a cathode, 106 denotes an organic layer, and 107 denotes a glass substrate with a transparent electrode. The glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
By using the organic EL element of the present invention, an illumination device with improved luminous efficiency was obtained.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「%」の表示を用いるが、特に断りがない限り「体積%」を表す。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "%" is used in an Example, unless otherwise indicated, "volume%" is represented.

〔実施例1〕
《発光層単膜の作製》
(1)発光層単膜1−1の作製
30mm×30mm、厚さ0.7mmの石英基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
真空蒸着装置内の蒸着用るつぼの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。蒸着用るつぼはモリブデン製又はタングステン製の抵抗加熱用材料で作製されたものを用いた。
[Example 1]
<Production of single layer of light emitting layer>
(1) Production of light-emitting layer single film 1-1 A quartz substrate having a size of 30 mm × 30 mm and a thickness of 0.7 mm was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes. This transparent substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus.
Each of the vapor deposition crucibles in the vacuum vapor deposition apparatus was filled with the constituent material of each layer in an amount optimal for device fabrication. The evaporation crucible used was made of a resistance heating material made of molybdenum or tungsten.

真空度1×10−4Paまで減圧した後、ホスト材料として比較化合物(1)及びリン光発光性化合物としてD−41がそれぞれ85%、15%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、層厚30nmの発光層を形成した。
窒素雰囲気下にて、石英基板の上部を、UV硬化樹脂を用いて缶状ガラスカバーを接着し、発光層のみからなる膜(以下、「発光層単膜」とする。)である、発光層単膜1−1を作製した。
なお、本実施例において使用される化合物は、下記のとおりの化学構造式を有するものである。
After reducing the vacuum to 1 × 10 −4 Pa, the deposition rate is 0.1 nm so that the comparative compound (1) as the host material and the D-41 as the phosphorescent compound are 85% and 15% by volume, respectively. Co-evaporation was performed at a rate of / sec to form a light emitting layer having a layer thickness of 30 nm.
In a nitrogen atmosphere, the upper part of the quartz substrate is bonded to a can-shaped glass cover using a UV curable resin, and is a light-emitting layer that is a film made of only a light-emitting layer (hereinafter referred to as “light-emitting layer single film”). Single film 1-1 was produced.
In addition, the compound used in a present Example has the following chemical structural formula.

Figure 0006459428
Figure 0006459428

(2)発光層単膜1−2〜1−13の作製
発光層単膜1−1の作製において、ホスト化合物である比較化合物(1)を表1に記載の化合物に変えた以外は発光層単膜1−1の作製と同様にして発光層単膜1−2〜1−13を作製した。
(2) Production of light-emitting layer single film 1-2 to 1-13 In production of light-emitting layer single film 1-1, except that comparative compound (1) as a host compound was changed to the compounds shown in Table 1, the light-emitting layer The light emitting layer single films 1-2 to 1-13 were produced in the same manner as the production of the single film 1-1.

《発光層単膜1−1〜1−13の評価》
各発光層単膜(サンプル)について加熱保存性評価を行った。
具体的には、最初に各サンプルの外観を観察し、各サンプルを60℃の恒温槽にて1時間保存し、再びその外観を観察した。その後さらに各サンプルを60℃の恒温槽に戻してさらに12時間保存し、その外観を観察した。結果を表1に示す。
<< Evaluation of Light-Emitting Layer Single Films 1-1 to 1-13 >>
Each light emitting layer single film (sample) was evaluated for heat storage stability.
Specifically, first, the appearance of each sample was observed, each sample was stored in a thermostat at 60 ° C. for 1 hour, and the appearance was observed again. Thereafter, each sample was returned to a constant temperature bath at 60 ° C. and stored for 12 hours, and the appearance was observed. The results are shown in Table 1.

Figure 0006459428
Figure 0006459428

以上より、比較の化合物が蒸着後に加熱することで白濁、すなわち結晶化したのに対して、本発明に係る一般式(I)で表される構造を有する化合物は蒸着後に加熱しても無色透明のままであった。これにより、本発明に係る一般式(I)で表される構造を有する化合物の薄膜は、比較化合物(1)〜(3)に対して結晶化が起きにくく、加熱条件においても成膜当初のアモルファス性を維持していることが分かった。膜物性の変化、特に結晶化は有機EL素子の寿命低下に大きく関与するため、アモルファス性を維持した本発明に係る一般式(I)で表される構造を有する化合物は、有機EL素子用材料として好ましい。   From the above, the comparative compound became cloudy, that is, crystallized by heating after vapor deposition, whereas the compound having the structure represented by the general formula (I) according to the present invention was colorless and transparent even when heated after vapor deposition. It remained. Thereby, the thin film of the compound having the structure represented by the general formula (I) according to the present invention is less likely to be crystallized with respect to the comparative compounds (1) to (3). It was found that the amorphous state was maintained. Since changes in film properties, particularly crystallization, are greatly involved in reducing the lifetime of the organic EL device, the compound having the structure represented by the general formula (I) according to the present invention maintaining the amorphous property is a material for organic EL devices. As preferred.

〔実施例2〕
《有機EL素子の作製》
(1)有機EL素子2−1の作製
50mm×50mm、厚さ0.7mmのガラス基板上に、陽極としてITO(インジウムチンオキシド)を150nmの厚さで成膜し、パターニングを行った後、このITO透明電極を付けた透明基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
さらにこの基板上に、ポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホネート(PEDOT/PSSと略記、Bayer製、Baytron P Al 4083)を純水で希釈した溶液をスピンコート法により成膜した後、140℃にて1時間乾燥し、層厚50nmの正孔注入層を設けた。この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
真空蒸着装置内の蒸着用るつぼの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。蒸着用るつぼはモリブデン製又はタングステン製の抵抗加熱用材料で作製されたものを用いた。
[Example 2]
<< Production of organic EL element >>
(1) Preparation of organic EL element 2-1 After forming ITO (indium tin oxide) with a thickness of 150 nm as a positive electrode on a glass substrate having a size of 50 mm × 50 mm and a thickness of 0.7 mm, and performing patterning, The transparent substrate with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
Further, a solution obtained by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (abbreviated as PEDOT / PSS, manufactured by Bayer, Baytron P Al 4083) with pure water was formed on this substrate by spin coating. Then, it dried at 140 degreeC for 1 hour, and provided the positive hole injection layer with a layer thickness of 50 nm. This transparent substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus.
Each of the vapor deposition crucibles in the vacuum vapor deposition apparatus was filled with the constituent material of each layer in an amount optimal for device fabrication. The evaporation crucible used was made of a resistance heating material made of molybdenum or tungsten.

真空度1×10−4Paまで減圧した後、化合物HT−1の入った蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒で正孔注入層上に蒸着し、層厚10nmの正孔輸送層を形成した。
次いで、ホスト化合物として比較化合物(1)及びリン光発光性化合物としてD−41がそれぞれ85%、15%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、層厚30nmの発光層を形成した。
After depressurizing to a vacuum of 1 × 10 −4 Pa, the deposition crucible containing compound HT-1 was energized and heated, deposited on the hole injection layer at a deposition rate of 0.1 nm / second, and a layer thickness of 10 nm. The hole transport layer was formed.
Next, the comparative compound (1) as the host compound and the D-41 as the phosphorescent compound were co-deposited at a deposition rate of 0.1 nm / second so that the volume percentage was 85% and 15%, respectively, and the layer thickness was 30 nm. A light emitting layer was formed.

次いで、化合物HB−1を蒸着速度0.1nm/秒で蒸着し、層厚5nmの正孔阻止層を形成し、続いて化合物Alq(tris(8−hydroxyquinolinato)aluminium)を蒸着速度0.1nm/秒で蒸着し、層厚30nmの電子輸送層を形成した。さらに、フッ化カリウムを膜厚2nmで形成した後に、アルミニウム100nmを蒸着して陰極を形成した。
上記素子の非発光面側を、窒素雰囲気下、UV硬化樹脂を用いて缶状ガラスカバーを接着し、有機EL素子2−1を作製した。
なお、本実施例において使用される化合物は、下記のとおりの化学構造式を有するものである。
Next, compound HB-1 was deposited at a deposition rate of 0.1 nm / second to form a hole blocking layer having a layer thickness of 5 nm, and subsequently compound Alq (tris (8-hydroxyquinolinato) aluminum) was deposited at a deposition rate of 0.1 nm / second. Vapor deposition was performed in seconds to form an electron transport layer having a layer thickness of 30 nm. Furthermore, after forming potassium fluoride with a film thickness of 2 nm, 100 nm of aluminum was vapor-deposited to form a cathode.
A can-shaped glass cover was adhered to the non-light-emitting surface side of the above element using a UV curable resin in a nitrogen atmosphere to prepare an organic EL element 2-1.
In addition, the compound used in a present Example has the following chemical structural formula.

Figure 0006459428
(2)有機EL素子2−2〜2−7の作製
有機EL素子2−1の作製において、ホスト化合物である比較化合物(1)を表2に記載の化合物に変えた以外は有機EL素子2−1の作製と同様にして有機EL素子2−2〜2−7を作製した。
Figure 0006459428
(2) Preparation of organic EL elements 2-2 to 2-7 In the preparation of organic EL element 2-1, organic EL element 2 except that the comparative compound (1) as the host compound was changed to the compounds shown in Table 2. Organic EL elements 2-2 to 2-7 were prepared in the same manner as in Preparation of -1.

《有機EL素子2−1〜2−7の評価》
各有機EL素子について評価を行い、評価結果は、有機EL素子2−1を100とする相対値で表2に示した。
(1)発光効率(EQE、外部取出し量子効率)
有機EL素子を室温(25℃)、2.5mA/cmの定電流条件下による通電を行い、発光開始直後の発光輝度(L)[cd/m]を測定することにより、外部取出し量子効率(η)を算出した。
ここで、発光輝度の測定はCS−2000(コニカミノルタ製)を用いて行い、外部取出し量子効率は有機EL素子2−1を100とする相対値で表した。
なお、値が大きい方が比較に対して効率が優れていることを示す。
<< Evaluation of Organic EL Elements 2-1 to 2-7 >>
Each organic EL element was evaluated, and the evaluation results are shown in Table 2 as relative values with the organic EL element 2-1 being 100.
(1) Luminous efficiency (EQE, external extraction quantum efficiency)
The organic EL device was energized under a constant current condition of room temperature (25 ° C.) and 2.5 mA / cm 2 , and the light emission luminance (L 0 ) [cd / m 2 ] immediately after the start of light emission was measured. The quantum efficiency (η) was calculated.
Here, the measurement of emission luminance was performed using CS-2000 (manufactured by Konica Minolta), and the external extraction quantum efficiency was expressed as a relative value with the organic EL element 2-1 being 100.
In addition, the one where a value is large shows that efficiency is excellent with respect to a comparison.

(2)半減寿命
下記に示す測定法に従って、半減寿命の評価を行った。
各有機EL素子を初期輝度4000cd/mを与える電流で定電流駆動して、初期輝度の1/2になる時間を求め、これを半減寿命の尺度とした。なお、半減寿命は有機EL素子2−1を100とする相対値で表した。
なお、値が大きい方が比較に対して耐久性が優れていることを示す。
(2) Half-life The half-life was evaluated according to the measurement method shown below.
Each organic EL element was driven at a constant current with a current giving an initial luminance of 4000 cd / m 2 , and a time during which the initial luminance was ½ was obtained. The half life was expressed as a relative value where the organic EL element 2-1 was 100.
In addition, the one where a value is large shows that durability is excellent with respect to the comparison.

Figure 0006459428
Figure 0006459428

以上より、比較化合物(1)及び(2)に対し、本発明に係る一般式(I)で表される構造を有する化合物を用いると発光効率が高く、半減寿命の長い有機EL素子が得られることが分かった。   From the above, when the compound having the structure represented by the general formula (I) according to the present invention is used for the comparative compounds (1) and (2), an organic EL device having high luminous efficiency and a long half-life can be obtained. I understood that.

〔実施例3〕
《有機EL素子の作製》
(1)有機EL素子3−1の作製
有機EL素子2−1の作製において、発光層の形成において、ホスト化合物として比較化合物(3)及びリン光発光性化合物としてD−54をそれぞれ85%、15%の体積%になるように30nmの発光層を形成し、さらに正孔阻止層の形成において、正孔阻止材料をHB−1からBAlq(ビス(2−メチル−8−キノリノラト)(4−フェニルフェノラト)アルミニウム(III))に変更した以外は有機EL素子2−1の作製と同様にして、有機EL素子3−1を作製した。
Example 3
<< Production of organic EL element >>
(1) Preparation of organic EL element 3-1 In preparation of organic EL element 2-1, in the formation of the light emitting layer, comparative compound (3) as a host compound and 85% of D-54 as a phosphorescent compound, A 30 nm light emitting layer is formed so as to be 15% by volume. Further, in forming the hole blocking layer, the hole blocking material is changed from HB-1 to BAlq (bis (2-methyl-8-quinolinolato) (4- An organic EL element 3-1 was produced in the same manner as in the production of the organic EL element 2-1, except that it was changed to (phenylphenolato) aluminum (III)).

(2)有機EL素子3−2〜3−6の作製
有機EL素子3−1の作製において、ホスト化合物である比較化合物(3)を表3に記載の化合物に変えた以外は有機EL素子3−1の作製と同様にして有機EL素子3−2〜3−6を作製した。
(2) Preparation of organic EL element 3-2 to 3-6 Organic EL element 3 except that in the preparation of organic EL element 3-1, comparative compound (3) as a host compound was changed to the compounds shown in Table 3. The organic EL elements 3-2 to 3-6 were produced in the same manner as the production of -1.

≪有機EL素子3−1〜3−6の評価≫
各有機EL素子について実施例2と同様の評価を行った。有機EL素子3−2を100とする相対値で評価結果を表3に示した。
<< Evaluation of organic EL elements 3-1 to 3-6 >>
Evaluation similar to Example 2 was performed about each organic EL element. The evaluation results are shown in Table 3 as relative values with the organic EL element 3-2 being 100.

Figure 0006459428
Figure 0006459428

以上より、リン光発光性化合物としてD−54を用いた場合においても、比較化合物(3)に対し、本発明に係る一般式(I)で表される構造を有する化合物を用いると発光効率が高く、半減寿命の長い有機EL素子が得られることが分かった。   From the above, even when D-54 is used as the phosphorescent compound, the luminous efficiency is improved when the compound having the structure represented by the general formula (I) according to the present invention is used for the comparative compound (3). It was found that an organic EL device having a high half-life can be obtained.

〔実施例4〕
《有機EL素子の作製》
(1)有機EL素子4−1の作製
有機EL素子2−1の作製において、ホスト化合物を比較化合物(2)に変更し、リン光発光性化合物をD−63に変更し、それぞれ90%、10%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、層厚30nmの発光層を形成した以外は有機EL素子2−1の作製と同様にして、有機EL素子4−1を作製した。
Example 4
<< Production of organic EL element >>
(1) Preparation of organic EL element 4-1 In preparation of organic EL element 2-1, the host compound was changed to comparative compound (2), the phosphorescent compound was changed to D-63, and each was 90%. The organic EL element 4- was prepared in the same manner as in the production of the organic EL element 2-1, except that it was co-deposited at a deposition rate of 0.1 nm / second so as to be 10% by volume and a light emitting layer having a layer thickness of 30 nm was formed. 1 was produced.

(2)有機EL素子4−2〜4−7の作製
有機EL素子4−1の作製において、ホスト化合物である比較化合物(2)を表4に記載のホスト化合物に変えた以外は有機EL素子4−1の作製と同様にして有機EL素子4−2〜4−7を作製した。
(2) Preparation of organic EL element 4-2 to 4-7 In preparation of organic EL element 4-1, organic EL element except having changed the comparative compound (2) which is a host compound into the host compound of Table 4. Organic EL elements 4-2 to 4-7 were produced in the same manner as in 4-1.

《有機EL素子4−1〜4−7の評価》
各有機EL素子について実施例2と同様の評価を行った。有機EL素子4−3を100とする相対値で評価結果を表4に示した。
<< Evaluation of Organic EL Elements 4-1 to 4-7 >>
Evaluation similar to Example 2 was performed about each organic EL element. The evaluation results are shown in Table 4 as relative values with the organic EL element 4-3 as 100.

Figure 0006459428
Figure 0006459428

以上より、リン光発光性化合物としてD−63を用いた場合においても、本発明に係る一般式(I)で表される構造を有する化合物をホスト化合物として用いた有機EL素子は、比較化合物(2)又は(3)を用いた場合に比べて発光効率が高く、かつ寿命は長くなることが分かった。   From the above, even when D-63 is used as the phosphorescent compound, the organic EL device using the compound having the structure represented by the general formula (I) according to the present invention as the host compound is a comparative compound ( It has been found that the luminous efficiency is higher and the life is longer than when 2) or (3) is used.

〔実施例5〕
《有機EL素子の作製》
(1)有機EL素子5−1の作製
有機EL素子3−1の作製において、ホスト化合物を比較化合物(3)に変更し、リン光発光性化合物をD−20に変更し、それぞれ90%、10%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、層厚30nmの発光層を形成した以外は有機EL素子3−1の作製と同様にして、有機EL素子5−1を作製した。
Example 5
<< Production of organic EL element >>
(1) Preparation of organic EL element 5-1 In preparation of organic EL element 3-1, the host compound was changed to comparative compound (3), the phosphorescent compound was changed to D-20, and each was 90%. The organic EL element 5- was prepared in the same manner as in the production of the organic EL element 3-1, except that the light emitting layer having a layer thickness of 30 nm was formed by co-evaporation at a deposition rate of 0.1 nm / second so as to be 10% by volume. 1 was produced.

(2)有機EL素子5−2〜5−4の作製
有機EL素子5−1の作製において、ホスト化合物である比較化合物(1)を表5に記載のホスト化合物に変えた以外は有機EL素子5−1の作製と同様にして有機EL素子5−2〜5−4を作製した。
(2) Preparation of organic EL element 5-2 to 5-4 In preparation of organic EL element 5-1, organic EL element except having changed comparative compound (1) which is a host compound into the host compound of Table 5. Organic EL elements 5-2 to 5-4 were produced in the same manner as in the production of 5-1.

《有機EL素子5−1〜5−4の評価》
各有機EL素子について実施例2と同様の評価を行った。有機EL素子5−1を100とする相対値で評価結果を表5に示した。
<< Evaluation of Organic EL Elements 5-1 to 5-4 >>
Evaluation similar to Example 2 was performed about each organic EL element. The evaluation results are shown in Table 5 as relative values with the organic EL element 5-1 as 100.

Figure 0006459428
Figure 0006459428

以上より、リン光発光材料としてD−20を用いた場合においても、本発明の化合物を用いた有機EL素子は、比較化合物(3)を用いた場合に比べて発光効率が同等又はそれ以上であり、かつ寿命が長くなることが分かった。   From the above, even when D-20 is used as the phosphorescent material, the organic EL device using the compound of the present invention has a luminous efficiency equivalent to or higher than that when the comparative compound (3) is used. It has been found that the lifetime is long.

〔実施例6〕
《有機EL素子の作製》
(1)有機EL素子6−1の作製
50mm×50mm、厚さ0.7mmのガラス基板上に、陽極としてITO(インジウムチンオキシド)を150nmの厚さで成膜し、パターニングを行った後、このITO透明電極を付けた透明基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った後、この透明基板を真空蒸着装置の基板ホルダーに固定した。
真空蒸着装置内の蒸着用るつぼの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。蒸着用るつぼはモリブデン製又はタングステン製の抵抗加熱用材料で作製されたものを用いた。
真空度1×10−4Paまで減圧した後、化合物HATの入った蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒でITO透明電極上に蒸着し、層厚15nmの正孔注入層を形成した。
Example 6
<< Production of organic EL element >>
(1) Preparation of organic EL element 6-1 After forming ITO (indium tin oxide) with a thickness of 150 nm as a positive electrode on a glass substrate of 50 mm × 50 mm and a thickness of 0.7 mm and performing patterning, The transparent substrate with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes, and then the transparent substrate was fixed to a substrate holder of a vacuum deposition apparatus.
Each of the vapor deposition crucibles in the vacuum vapor deposition apparatus was filled with the constituent material of each layer in an amount optimal for device fabrication. The evaporation crucible used was made of a resistance heating material made of molybdenum or tungsten.
After reducing the vacuum to 1 × 10 −4 Pa, the deposition crucible containing the compound HAT was energized and heated, deposited on the ITO transparent electrode at a deposition rate of 0.1 nm / second, and a hole with a layer thickness of 15 nm. An injection layer was formed.

次いで、化合物HT−1を同様にして蒸着し、層厚70nmの正孔輸送層を形成した。
次いで、ホスト化合物(1)、リン光発光性化合物D−20、リン光発光性化合物D−4が、それぞれ88%、10%、2%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、層厚15nmの第1発光層を形成した。
次いで、本発明に係る一般式(I)で表される構造を有する化合物H−26、リン光発光性化合物D−63が、それぞれ90%、10%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、層厚20nmの第2発光層を形成した。
Next, Compound HT-1 was vapor-deposited in the same manner to form a hole transport layer having a layer thickness of 70 nm.
Next, the deposition rate was 0.1 nm / second so that the host compound (1), the phosphorescent compound D-20, and the phosphorescent compound D-4 were 88%, 10%, and 2% by volume, respectively. The first light emitting layer having a layer thickness of 15 nm was formed.
Next, the deposition rate was adjusted so that the compound H-26 having the structure represented by the general formula (I) and the phosphorescent compound D-63 according to the present invention were 90% and 10% by volume, respectively. Co-evaporation was performed at 1 nm / second to form a second light emitting layer having a layer thickness of 20 nm.

次いで、化合物HB−1を蒸着速度0.1nm/秒で蒸着し、層厚5nmの正孔阻止層を形成した。その後、化合物E−1を蒸着速度0.1nm/秒で蒸着し、層厚45nmの電子輸送層を形成した。さらに、フッ化カリウムを膜厚2.0nmで形成した後に、アルミニウム100nmを蒸着して陰極を形成した。
上記素子の非発光面側を、純度99.999%以上の高純度窒素ガスの雰囲気下、缶状ガラスカバーで覆い、電極取り出し配線を設置して、有機EL素子6−1を作製した。
また、有機EL素子6−1を用いて図7及び図8に示すような照明装置を形成して通電したところ、白色の発光が得られ、本発明に係る一般式(I)で表される構造を有する化合物をホスト化合物として用いた有機EL素子は照明装置として利用可能なことが分かった。
Next, Compound HB-1 was deposited at a deposition rate of 0.1 nm / second to form a hole blocking layer having a layer thickness of 5 nm. Thereafter, Compound E-1 was deposited at a deposition rate of 0.1 nm / second to form an electron transport layer having a layer thickness of 45 nm. Furthermore, after forming potassium fluoride with a film thickness of 2.0 nm, 100 nm of aluminum was vapor-deposited to form a cathode.
The non-light-emitting surface side of the above element was covered with a can-shaped glass cover in an atmosphere of high purity nitrogen gas having a purity of 99.999% or more, and an electrode lead-out wiring was installed to prepare an organic EL element 6-1.
Moreover, when the lighting device as shown in FIGS. 7 and 8 is formed using the organic EL element 6-1 and energized, white light emission is obtained, which is represented by the general formula (I) according to the present invention. It was found that an organic EL element using a compound having a structure as a host compound can be used as a lighting device.

〔実施例7〕
《有機ELフルカラー表示装置の作製》
図9は、有機ELフルカラー表示装置の概略構成図を示す。
ガラス基板201上に、陽極としてITO透明電極202を100nm成膜した基板(NHテクノグラス社製NA45)に100μmのピッチでパターニングを行った後(図9(a)参照)、このガラス基板201上であってITO透明電極202の間に非感光性ポリイミドの隔壁203(幅20μm、厚さ2.0μm)をフォトリソグラフィーで形成した(図9(b)参照)。
Example 7
<< Production of organic EL full-color display device >>
FIG. 9 shows a schematic configuration diagram of an organic EL full-color display device.
After patterning at a pitch of 100 μm on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) having an ITO transparent electrode 202 formed as an anode on a glass substrate 201 with a thickness of 100 nm (see FIG. 9A), on this glass substrate 201 Then, a non-photosensitive polyimide partition wall 203 (width 20 μm, thickness 2.0 μm) was formed between the ITO transparent electrodes 202 by photolithography (see FIG. 9B).

ITO電極202上であって隔壁203同士の間に下記組成の正孔注入層組成物を、インクジェットヘッド(エプソン社製:MJ800C)を用いて吐出注入し、紫外光を200秒間照射し、60℃、10分間の乾燥処理により、層厚40nmの正孔注入層204を設けた(図9(c)参照)。
この正孔注入層204上に、各々下記組成の青色発光層組成物、緑色発光層組成物、赤色発光層組成物を、同様にインクジェットヘッドを使用して吐出注入し、60℃、10分間乾燥処理し、各色の発光層205B、205G、205Rを設けた(図9(d)参照)。
A hole injection layer composition having the following composition is ejected and injected on the ITO electrode 202 between the partition walls 203 using an inkjet head (manufactured by Epson Corporation: MJ800C), irradiated with ultraviolet light for 200 seconds, 60 ° C. A hole injection layer 204 having a layer thickness of 40 nm was provided by a drying process for 10 minutes (see FIG. 9C).
On the hole injection layer 204, a blue light emitting layer composition, a green light emitting layer composition and a red light emitting layer composition having the following compositions are respectively discharged and injected using an inkjet head, and dried at 60 ° C. for 10 minutes. The light emitting layers 205B, 205G, and 205R for each color were provided (see FIG. 9D).

(正孔注入層組成物)
HT−1:20質量部
シクロヘキシルベンゼン:50質量部
イソプロピルビフェニル:50質量部
(青色発光層組成物)
H−29:0.8質量部
D−41:0.04質量部
シクロヘキシルベンゼン:50質量部
イソプロピルビフェニル:50質量部
(緑色発光層組成物)
ホスト化合物(1):0.7質量部
D−20:0.04質量部
シクロヘキシルベンゼン:50質量部
イソプロピルビフェニル:50質量部
(赤色発光層組成物)
ホスト化合物(1):0.7質量部
D−4:0.04質量部
シクロヘキシルベンゼン:50質量部
イソプロピルビフェニル:50質量部
(Hole injection layer composition)
HT-1: 20 parts by mass Cyclohexylbenzene: 50 parts by mass Isopropylbiphenyl: 50 parts by mass (Blue light emitting layer composition)
H-29: 0.8 parts by mass D-41: 0.04 parts by mass Cyclohexylbenzene: 50 parts by mass Isopropyl biphenyl: 50 parts by mass (green light emitting layer composition)
Host compound (1): 0.7 parts by mass D-20: 0.04 parts by mass Cyclohexylbenzene: 50 parts by mass Isopropyl biphenyl: 50 parts by mass (red light emitting layer composition)
Host compound (1): 0.7 parts by mass D-4: 0.04 parts by mass Cyclohexylbenzene: 50 parts by mass Isopropyl biphenyl: 50 parts by mass

次に、各発光層205B、205G、205Rを覆うように電子輸送材料(化合物E−1)を蒸着して層厚45nmの電子輸送層(図示略)を設け、更にフッ化リチウムを蒸着して層厚0.5nmの電子注入層(図示略)を設け、Alを蒸着して膜厚130nmの陰極206を設けて有機EL素子を作製した(図9(e)参照)。
作製した有機EL素子はそれぞれ電極に電圧を印加することにより青色、緑色、赤色の発光を示し、フルカラー表示装置として利用できることが分かった。
以上のように、本発明によれば、発光効率が高く、耐久性に優れた有機エレクトロルミネッセンス素子及び有機EL素子材料を提供することができる。
また、ウェットプロセスによっても、上記効果を有する有機EL素子を製造することができる。
Next, an electron transport material (Compound E-1) is deposited so as to cover each of the light emitting layers 205B, 205G, and 205R, an electron transport layer (not shown) having a layer thickness of 45 nm is provided, and lithium fluoride is further deposited. An electron injection layer (not shown) having a layer thickness of 0.5 nm was provided, Al was vapor-deposited, and a cathode 206 having a thickness of 130 nm was provided to produce an organic EL element (see FIG. 9E).
It was found that the produced organic EL elements each emitted blue, green, and red light when a voltage was applied to the electrodes, and could be used as a full-color display device.
As described above, according to the present invention, it is possible to provide an organic electroluminescence element and an organic EL element material having high luminous efficiency and excellent durability.
Moreover, the organic EL element which has the said effect can be manufactured also by a wet process.

1 ディスプレイ
3 画素
5 走査線
6 データ線
7 電源ライン
10 有機EL素子
11 スイッチングトランジスタ
12 駆動トランジスタ
13 コンデンサー
101 照明装置内の有機EL素子
102 ガラスカバー
105 陰極
106 有機EL層
107 透明電極付きガラス基板
108 窒素ガス
109 捕水剤
201 ガラス基板
202 透明電極
203 隔壁
204 正孔注入層
205B、205G、205R 各色の発光層
A 表示部
B 制御部
C 配線部
L 発光光
DESCRIPTION OF SYMBOLS 1 Display 3 Pixel 5 Scan line 6 Data line 7 Power supply line 10 Organic EL element 11 Switching transistor 12 Drive transistor 13 Capacitor 101 Organic EL element 102 in an illuminating device Glass cover 105 Cathode 106 Organic EL layer 107 Glass substrate 108 with a transparent electrode Nitrogen Gas 109 Water-absorbing agent 201 Glass substrate 202 Transparent electrode 203 Partition wall 204 Hole injection layer 205B, 205G, 205R Light emitting layer A for each color A Display unit B Control unit C Wiring unit L Light emission

Claims (3)

陽極と陰極に挟まれた少なくとも発光層を含む有機層を有する有機エレクトロルミネッセンス素子であって、
前記有機層の少なくとも1層が前記発光層であり、当該発光層が、下記一般式(I)で表される構造を有する化合物と、発光性ドーパントとを含有していることを特徴とする有機エレクトロルミネッセンス素子。
Figure 0006459428
(一般式(I)中、Rは、水素原子、ハロゲノ原子又はシアノ基を表す。Rは、無置換又は置換基を有する、アリール基又はヘテロアリール基を表す。)
An organic electroluminescence device having an organic layer including at least a light emitting layer sandwiched between an anode and a cathode,
At least one of the organic layers is the light emitting layer, and the light emitting layer contains a compound having a structure represented by the following general formula (I) and a light emitting dopant. Electroluminescence element.
Figure 0006459428
(In general formula (I), R 1 represents a hydrogen atom , a halogeno atom or a cyano group . R 2 represents an aryl group or a heteroaryl group which is unsubstituted or has a substituent.)
前記一般式(I)において、Rが、水素原子であることを特徴とする請求項に記載の有機エレクトロルミネッセンス素子。 In the general formula (I), R 1 is an organic electroluminescent device according to claim 1, characterized in that a hydrogen atom. 下記一般式(I)で表される構造を有する化合物を含有することを特徴とする有機エレクトロルミネッセンス素子用材料。
Figure 0006459428
(一般式(I)中、R は、水素原子、ハロゲノ原子又はシアノ基を表す。R は、無置換又は置換基を有する、アリール基又はヘテロアリール基を表す。)
A material for an organic electroluminescence device characterized by containing a compound having a structure represented by the following general formula (I).
Figure 0006459428
(In general formula (I), R 1 represents a hydrogen atom, a halogeno atom or a cyano group. R 2 represents an aryl group or a heteroaryl group which is unsubstituted or has a substituent.)
JP2014237463A 2014-11-25 2014-11-25 ORGANIC ELECTROLUMINESCENT ELEMENT AND MATERIAL FOR ORGANIC ELECTROLUMINESCENT ELEMENT Active JP6459428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014237463A JP6459428B2 (en) 2014-11-25 2014-11-25 ORGANIC ELECTROLUMINESCENT ELEMENT AND MATERIAL FOR ORGANIC ELECTROLUMINESCENT ELEMENT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014237463A JP6459428B2 (en) 2014-11-25 2014-11-25 ORGANIC ELECTROLUMINESCENT ELEMENT AND MATERIAL FOR ORGANIC ELECTROLUMINESCENT ELEMENT

Publications (2)

Publication Number Publication Date
JP2016100500A JP2016100500A (en) 2016-05-30
JP6459428B2 true JP6459428B2 (en) 2019-01-30

Family

ID=56078110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014237463A Active JP6459428B2 (en) 2014-11-25 2014-11-25 ORGANIC ELECTROLUMINESCENT ELEMENT AND MATERIAL FOR ORGANIC ELECTROLUMINESCENT ELEMENT

Country Status (1)

Country Link
JP (1) JP6459428B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4259236B2 (en) * 2003-09-05 2009-04-30 東洋インキ製造株式会社 Material for organic electroluminescence device and organic electroluminescence device
TWI246356B (en) * 2003-10-17 2005-12-21 Lg Chemical Ltd New organic compound and organic light emitting device using the same
JP2007081050A (en) * 2005-09-13 2007-03-29 Fujifilm Corp Organic electroluminescence element

Also Published As

Publication number Publication date
JP2016100500A (en) 2016-05-30

Similar Documents

Publication Publication Date Title
JP6428267B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, LIGHTING DEVICE AND DISPLAY DEVICE
JP5880274B2 (en) Organic electroluminescence element, lighting device and display device
WO2014038456A1 (en) Organic electroluminescent element, lighting device and display device
WO2013114674A1 (en) Iridium complex compound, material for organic electroluminescence element, organic electroluminescence element, lighting device, and display device
WO2013168688A1 (en) Organic electroluminescence element, illumination device, and display device
WO2012098996A1 (en) Organic electroluminescent element, display device, lighting device, and organic electroluminescent element material
JP6319096B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP6146415B2 (en) Organic electroluminescence element, lighting device and display device
WO2018079459A1 (en) Organic electroluminescence element and material for organic electroluminescence
JP6011542B2 (en) Organic electroluminescence element, display device and lighting device
JP2014111549A (en) Iridium complex, organic electroluminescent element material, and organic electroluminescent element using the same
JP2016207954A (en) Organic electroluminescent element and organic electroluminescent element material
KR102307090B1 (en) Material for organic electroluminescent elements, organic electroluminescent element, display device and lighting device
WO2016056562A1 (en) Iridium complex, organic electroluminescence material, organic electroluminescence element, display device, and illumination device
JP6020473B2 (en) Iridium complex compound, organic electroluminescence device material, organic electroluminescence device, lighting device and display device
WO2016190014A1 (en) Method for producing material for organic electroluminescent elements, and organic electroluminescent element
JP6036313B2 (en) ORGANIC ELECTROLUMINESCENCE ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE HAVING THE SAME
WO2013161739A1 (en) Organic electroluminescence element, illumination device and display device
JP6459428B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND MATERIAL FOR ORGANIC ELECTROLUMINESCENT ELEMENT
JP6520071B2 (en) Organic electroluminescent device
WO2016084639A1 (en) Organic electroluminescent element and material for organic electroluminescent elements
WO2019176384A1 (en) Organic electroluminescence element, material for organic electroluminescence, display device, and illumination device
WO2013161468A1 (en) Organic electroluminescent element
WO2018079211A1 (en) Organic electroluminescence element and material for organic electroluminescence

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181217

R150 Certificate of patent or registration of utility model

Ref document number: 6459428

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250