JP6454442B1 - Deep seafloor flow change observation equipment based on differential pressure measurement - Google Patents

Deep seafloor flow change observation equipment based on differential pressure measurement Download PDF

Info

Publication number
JP6454442B1
JP6454442B1 JP2018171170A JP2018171170A JP6454442B1 JP 6454442 B1 JP6454442 B1 JP 6454442B1 JP 2018171170 A JP2018171170 A JP 2018171170A JP 2018171170 A JP2018171170 A JP 2018171170A JP 6454442 B1 JP6454442 B1 JP 6454442B1
Authority
JP
Japan
Prior art keywords
differential pressure
chamber
floating body
deep sea
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2018171170A
Other languages
Japanese (ja)
Other versions
JP2019066467A (en
Inventor
▲劉▼涛
魏冠立
郭磊
▲楊▼秀卿
▲張▼▲艶▼
朱志▲鵬▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ocean University of China
Original Assignee
Ocean University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ocean University of China filed Critical Ocean University of China
Application granted granted Critical
Publication of JP6454442B1 publication Critical patent/JP6454442B1/en
Publication of JP2019066467A publication Critical patent/JP2019066467A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V9/00Prospecting or detecting by methods not provided for in groups G01V1/00 - G01V8/00

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

【課題】 差圧測定に基づく深海底層流変化観測装置【解決手段】 本発明は差圧測定に基づく深海底層流変化観測装置に関し、差圧センシングチャンバ、ベース、コントローラ、浮体、解放装置を含み、差圧センシングチャンバとベースの間に接続部により接続され、コントローラは接続部の内部に設置され、浮体は差圧センシングチャンバの上に位置し、解放装置により回収、放出を行い、解放装置は浮体と差圧センシングチャンバの間に設置され、差圧センシングチャンバは静水圧チャンバと環境水圧チャンバを含み、環境水圧チャンバの頂部は静水圧チャンバと連通し、スプリングピースにより隔てられ、スプリングピースに光ファイバセンサーが内蔵され、静水圧チャンバは常に海をつなぎ、環境水圧チャンバは常に海底堆積層内をつなぎ、解放装置は電動ウィンドラスを備え、電動ウィンドラスに音響信号発生器が設置され、ベースに土圧センサー及びカウンターウエイトが設置され、光ファイバセンサー、音響信号発生器、土圧センサーは全部コントローラに接続され、各センサーのフィードバックにより該位置の差圧を測定することができる。本発明は、深海底層流の影響を低減し、海洋底層流の変化を観測することができる。PROBLEM TO BE SOLVED To provide a deep sea bottom layer flow change observation device based on differential pressure measurement. The present invention relates to a deep sea bottom layer flow change observation device based on differential pressure measurement, including a differential pressure sensing chamber, a base, a controller, a floating body, and a release device. Connected between the differential pressure sensing chamber and the base by a connecting part, the controller is installed inside the connecting part, the floating body is located above the differential pressure sensing chamber, and is collected and released by a releasing device, and the releasing device is a floating body The differential pressure sensing chamber includes a hydrostatic pressure chamber and an environmental hydraulic pressure chamber, the top of the environmental hydraulic pressure chamber communicates with the hydrostatic pressure chamber and is separated by a spring piece, and an optical fiber is connected to the spring piece. Sensors are built-in, the hydrostatic chamber is always connected to the sea, and the environmental hydrostatic chamber is always in the seabed. Nagi, the release device has an electric windlass, an acoustic signal generator is installed on the electric windlass, an earth pressure sensor and a counterweight are installed on the base, and the optical fiber sensor, acoustic signal generator, and earth pressure sensor are all controllers. The differential pressure at the position can be measured by feedback of each sensor. The present invention can reduce the influence of deep sea bottom current and observe changes in ocean bottom current.

Description

本発明は、海洋観測技術分野に関し、具体的に深海底層流による堆積層堆積状態の変化を実現するための観測装置に関する。 The present invention relates to the field of ocean observation technology, and more particularly to an observation apparatus for realizing a change in a deposition layer deposition state due to a deep sea bottom layer flow.

深海底層流は、一般的な地質現象であり、それによる海底搬送堆積も一般的な堆積形態である。深海底層流の堆積物は主に砕屑性堆積物、火山噴出物或いは珪質堆積物を含み、堆積構造においてもよく見られる水平な微細層理を特徴とする。底層流搬送堆積は、海底と地形の再構築に大きな影響を与え、地質ボーリングにより得られた底層流堆積移動状態に合わせて、深海地質構造の進化過程の研究にも非常に重要な指導的意義を有する。海底浅層堆積物の過剰間隙水圧値の動的変化過程を観測して、深海底層流の直感的な搬送堆積状態を取得することができる。 Deep seabed flow is a common geological phenomenon, and the seabed transport deposition is also a common form of sedimentation. Deep-seafloor sediments mainly include detrital deposits, volcanic eruptions or siliceous deposits and are characterized by horizontal microstratigraphy often found in sedimentary structures. Bottom flow transport deposition has a great influence on the reconstruction of the sea floor and topography, and is also very important for research on the evolution process of deep sea geological structure according to the bottom flow deposition movement obtained by geological boring. Have By observing the dynamic change process of the excess pore water pressure value of shallow seabed sediments, it is possible to obtain an intuitive transport deposition state of deep seabed flow.

通常、海底浅層堆積物中の過剰間隙水圧値を取得する手段としては、穴あけにより間隙水圧計を埋設し、長期観測を行うことである。具体的な実施方法は、水中ロボットを採用し、間隙水圧計を土層中の特定位置に埋設し、グラウト作業により孔を充填密封し、センサーと外部水環境の接触による測定の不正確という現象を防ぐ。得られた間隙水圧値を修正して、過剰間隙水圧値に変換する。それに分析を行い、底層流搬送堆積作用の堆積層状態への影響が得られる。 Usually, as a means of obtaining the excess pore water pressure value in the shallow sea bottom sediment, a pore water pressure gauge is buried by drilling and long-term observation is performed. The specific implementation method employs an underwater robot, embeds a pore water pressure gauge at a specific position in the soil layer, fills and seals the hole by grouting, and causes a measurement inaccuracy due to contact between the sensor and the external water environment. prevent. The obtained pore water pressure value is corrected and converted to an excessive pore water pressure value. It is analyzed and the effect of bottom flow transport deposition on the deposition layer condition is obtained.

技術の進歩と革新により、既存の圧力センサーの大部分は、差圧測定を行うことができる。そのうち、光ファイバーセンサーは耐食性、水に強いなどの特性を有するので、過剰間隙水圧の監視・測定に優れた構造基礎を提供する。測定時は、密封された過剰間隙水圧測定装置の一部を海底堆積物に挿入し、残りの部分を海水中に位置する。装置の接続配管を上部海水と連通し、静水圧を装置の内部チャンバに導入し、センサーの一側に作用する。堆積物中の間隙水圧をポーラスストーンによりセンサーの他側にかける。センサー両側に作用する圧力差は該位置の堆積物の過剰間隙水圧値である。 Due to technological advances and innovations, most existing pressure sensors can make differential pressure measurements. Among them, the optical fiber sensor has characteristics such as corrosion resistance and resistance to water, and provides an excellent structural foundation for monitoring and measuring excess pore water pressure. At the time of measurement, a part of the sealed excess pore water pressure measuring device is inserted into the seabed sediment, and the remaining part is located in the seawater. The connecting pipe of the device communicates with the upper seawater, and hydrostatic pressure is introduced into the internal chamber of the device and acts on one side of the sensor. The pore water pressure in the sediment is applied to the other side of the sensor with a porous stone. The pressure differential acting on both sides of the sensor is the excess pore water pressure value of the deposit at that location.

ただし、常に変化する海洋底層流により、観測箇所に浸食や堆積が形成し、すなわち、海底面が底層流の作用で高くなったり低くなることがある。浅層に埋設される堆積物中のセンサーは海底表面の変化と伴い、完全に埋められたり、海底表面から露出することがあり、過剰間隙水圧の測定に影響を与えたり、さらに過剰間隙水圧値を測定できない可能性もある。現在の圧力観測装置は、環境の動的変化の影響を軽減するのにまだ多くの欠点が存在する。 However, constantly changing ocean floor currents may cause erosion and sedimentation at observation sites, that is, the bottom of the sea may become higher or lower due to the effects of bottom currents. Sensors in sediments buried in shallow layers may be completely buried or exposed from the seafloor surface with changes in the seafloor surface, affecting the measurement of excess pore water pressure, and the excess pore water pressure value. May not be measured. Current pressure monitoring devices still have many drawbacks in mitigating the effects of dynamic environmental changes.

上記の問題に対して、本発明の目的は、深海底層流の影響を低減し、海洋底層流の変化を観測する装置を提供することである。 In view of the above problems, an object of the present invention is to provide an apparatus for reducing the influence of deep sea bottom current and observing changes in sea bottom current.

本発明が使用する技術的解決手段は以下の通りである。 The technical solutions used by the present invention are as follows.

差圧測定に基づく深海底層流変化観測装置は、差圧センシングチャンバ3、ベース8、コントローラ5、浮体4、解放装置2を含む。差圧センシングチャンバ3とベース8の間には接続部により接続され、前記コントローラ5は接続部の内部に設置され、浮体4は差圧センシングチャンバ3に位置し、解放装置2により回収と放出を行う。解放装置2は浮体4と差圧センシングチャンバ3の間に設置される。前記差圧センシングチャンバ3は、静水圧チャンバ11及び環境水圧チャンバ12を含み、前記環境水圧チャンバ12の頂部は静水圧チャンバと連通し、連通箇所はスプリングピース15により隔てられる。前記スプリングピース15に光ファイバセンサーが内蔵される。前記静水圧チャンバ11の頂部は静水圧通路1を通じて海をつなぎ、静水圧通路1の吸水口は浮体4に位置し、前記静水圧通路1は伸縮可能な通路であり、浮体4の回収と放出により伸縮する。前記環境水圧チャンバ12の底部は環境水圧通路16を通じて海底堆積層内をつなぎ、静水圧通路16の入口に第1のポーラスストーン14が設けられる。前記解放装置2は電動ウィンドラスを備え、前記ウィンドラスにワイヤーロープが巻きつけられ、ワイヤーロープの末端は浮体4に接続され、前記電動ウィンドラスに音響信号発生器が設置される。前記ベース8に土圧センサー7及びカウンターウエイト17が設置される。光ファイバセンサー、音響信号発生器、土圧センサー7は全部コントローラ5に接続される。コントローラは土圧センサーの信号フィードバックにより、音響信号発生器による信号の送信を制御し、電動ウィンドラスの回転でワイヤーロープを巻き取り、巻き出して浮体4を回収、放出すると同時に、静水圧通路1は浮体4の回収や放出に伴い伸縮し、静水圧通路の吸水口は常に海水中に保持することを確保する。全体装置は安定化した後、コントローラ5は光ファイバセンサーの信号により該位置の差圧を測定することができる。 The deep sea bottom layer flow change observation device based on the differential pressure measurement includes a differential pressure sensing chamber 3, a base 8, a controller 5, a floating body 4, and a release device 2. The differential pressure sensing chamber 3 and the base 8 are connected by a connecting portion, the controller 5 is installed inside the connecting portion, the floating body 4 is located in the differential pressure sensing chamber 3, and the release device 2 collects and discharges it. Do. The release device 2 is installed between the floating body 4 and the differential pressure sensing chamber 3. The differential pressure sensing chamber 3 includes a hydrostatic pressure chamber 11 and an environmental hydraulic pressure chamber 12, the top of the environmental hydraulic pressure chamber 12 communicates with the hydrostatic pressure chamber, and the communication location is separated by a spring piece 15. An optical fiber sensor is built in the spring piece 15. The top of the hydrostatic pressure chamber 11 connects the sea through the hydrostatic pressure passage 1, the water inlet of the hydrostatic pressure passage 1 is located in the floating body 4, and the hydrostatic pressure passage 1 is an extendable and retractable passage. It expands and contracts by. The bottom of the environmental water pressure chamber 12 is connected to the inside of the seabed through an environmental water pressure passage 16, and a first porous stone 14 is provided at the entrance of the hydrostatic pressure passage 16. The release device 2 includes an electric windlass, a wire rope is wound around the windlass, an end of the wire rope is connected to the floating body 4, and an acoustic signal generator is installed in the electric windlass. An earth pressure sensor 7 and a counterweight 17 are installed on the base 8. The optical fiber sensor, acoustic signal generator, and earth pressure sensor 7 are all connected to the controller 5. The controller controls the transmission of the signal by the acoustic signal generator by the signal feedback of the earth pressure sensor, winds the wire rope by the rotation of the electric windlass, unwinds and collects and discharges the floating body 4, and at the same time the hydrostatic pressure passage 1 Expands and contracts as the floating body 4 is collected and released, ensuring that the water inlet of the hydrostatic pressure passage is always kept in seawater. After the whole apparatus is stabilized, the controller 5 can measure the differential pressure at the position by the signal of the optical fiber sensor.

さらに、前記静水圧通路1は伸縮性ホース或いは波型管である。 Further, the hydrostatic pressure passage 1 is a stretchable hose or a corrugated tube.

さらに、前記静水圧通路1の頂部に第2のポーラスストーン9が設けられる。 Further, a second porous stone 9 is provided at the top of the hydrostatic pressure passage 1.

さらに、前記ベース8と差圧センシングチャンバ3の間の接続部は多段式連接棒22であり、止め金具18により締め付けられ、止め金具18はコントローラ5に接続される。 Further, the connecting portion between the base 8 and the differential pressure sensing chamber 3 is a multistage connecting rod 22, which is tightened by a stopper 18, and the stopper 18 is connected to the controller 5.

さらに、ベース8とコントローラ5の間の最大相対変位は差圧センシングチャンバ3チャンバの長さの4分の3よりも小さい。 Furthermore, the maximum relative displacement between the base 8 and the controller 5 is less than three quarters of the length of the differential pressure sensing chamber 3 chamber.

さらに、前記浮体はドア型フレームであり、差圧センシングチャンバ3の外部にかけられ、差圧センシングチャンバ3の間に隙間がある。 Further, the floating body is a door-type frame and is placed outside the differential pressure sensing chamber 3, and there is a gap between the differential pressure sensing chambers 3.

さらに、前記パワーウィンドラスは対称的に設置される。 Furthermore, the power windlass are installed symmetrically.

さらに、前記解放装置2とコントローラ5は防水密封を行う。 Further, the release device 2 and the controller 5 are waterproof and sealed.

さらに、前記カウンターウエイト17はベース8に均一に分布される。 Further, the counterweight 17 is uniformly distributed on the base 8.

さらに、前記ベース8上に透水孔6が設置され、前記透水孔6は上下貫通する貫通孔であり、均一にベース8に設置される。 Further, a water permeable hole 6 is installed on the base 8, and the water permeable hole 6 is a through hole penetrating vertically, and is uniformly installed in the base 8.

本発明は複雑な海底環境下で、堆積層の環境圧力と静水圧を同時に感知、測定し、測定対象位置の差圧値を取得することができる。後期のデータ修正により、差圧値を過剰間隙水圧に変換すれば、海洋底層流の影響作用下での堆積層の動的変化状態を取得、分析することができる。また、該発明は海洋底層流の侵食・堆積作用の測定への影響を巧みに回避することができる。底層流は海底面を流して、海底面が下降し、装置のベース構造も、ポーラスストーン構造が堆積層により覆われるまで下降する。底層流の搬送と堆積により、海底面が上昇すると同時に、装置を持ち上げ、センサーは静水圧をセンシングすることができる。該装置は、差圧センサーの外部環境適応性を効果的に高め、直感的な海底浅層堆積物の過剰間隙水圧が得られる。
The present invention can simultaneously sense and measure the environmental pressure and hydrostatic pressure of a sedimentary layer under a complex seafloor environment, and obtain a differential pressure value at a measurement target position. If the differential pressure value is converted into excess pore water pressure by correcting the data at the later stage, the dynamic change state of the sedimentary layer under the influence of the ocean bottom current can be acquired and analyzed. In addition, the invention can skillfully avoid the influence on the measurement of the erosion / deposition action of the ocean bottom layer flow. The bottom current flows on the bottom of the sea, the bottom of the sea is lowered, and the base structure of the device is also lowered until the porous stone structure is covered by the sedimentary layer. Conveying and depositing the bottom current raises the sea floor and simultaneously lifts the device, allowing the sensor to sense hydrostatic pressure. The device effectively enhances the external environment adaptability of the differential pressure sensor and provides an intuitive excess pore water pressure of shallow seabed sediments.

本発明の立体構造概略図である。It is the three-dimensional structure schematic of this invention. 本発明の断面図である。It is sectional drawing of this invention. 本発明の動作状態模擬概略図1である。It is the operation state simulation schematic 1 of this invention. 本発明の動作状態模擬概略図2である。FIG. 3 is an operational state simulation schematic diagram 2 of the present invention. 本発明の動作状態模擬概略図3である。It is the operation state simulation schematic 3 of this invention. 本発明の止め金具開放状態動作概略図である。It is an operation | movement schematic diagram of the clasp open state of this invention.

1 静水圧通路
2 解放装置
3 差圧センシングチャンバ
4 浮体
5 コントローラ
6 透水孔
7 土圧センサー
8 ベース
9 吸水管ポーラスストーン
10 ワイヤーロープ
11 静水圧チャンバ
12 環境水圧チャンバ
13 ウィンドラス
14 ポーラスストーン
15 スプリングピース
16 環境水圧通路
17 カウンターウエイト
18 止め金具
19 パワーウィンドラスA
20 パワーウィンドラスB
21 海底面
22 多段式連接棒
DESCRIPTION OF SYMBOLS 1 Hydrostatic pressure passage 2 Release apparatus 3 Differential pressure sensing chamber 4 Floating body 5 Controller 6 Water permeability hole 7 Earth pressure sensor 8 Base 9 Water absorption pipe Porous stone 10 Wire rope 11 Hydrostatic pressure chamber 12 Environmental water pressure chamber 13 Windlas 14 Porous stone 15 Spring piece 16 Environmental water pressure passage 17 Counterweight 18 Fastener 19 Power windlass A
20 Power Windlass B
21 Seabed 22 Multistage connecting rod

以下、具体的な実施形態及び図面に従って本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail according to specific embodiments and drawings.

図1、図2に示すように、差圧測定に基づく深海底層流変化観測装置は、差圧センシングチャンバ3、ベース8、コントローラ5、浮体4、解放装置2を含む。差圧センシングチャンバ3とベース8の間には接続部により接続され、コントローラ5は接続部の内部に設置され、浮体4は差圧センシングチャンバ3に位置し、解放装置2により回収と放出を行う。解放装置2は浮体4と差圧センシングチャンバ3の間に設置される。差圧センシングチャンバ3は、静水圧チャンバ11及び環境水圧チャンバ12を含み、環境水圧チャンバ12の頂部は静水圧チャンバと連通し、連通箇所はスプリングピース15により隔てられる。スプリングピース15に光ファイバセンサーが内蔵される。静水圧チャンバ11の頂部は静水圧通路1を通じて海とつながり、静水圧通路1の吸水口は浮体4に位置し、静水圧通路1は伸縮可能な通路であり、浮体4の回収と放出により伸縮する。環境水圧チャンバ12の底部は環境水圧通路16を通じて海底堆積層内をつなぎ、環境水圧通路16の入口に第1のポーラスストーン14が設けられる。解放装置2は電動ウィンドラスを備え、ウィンドラスにワイヤーロープが巻きつけられ、ワイヤーロープの末端は浮体4に接続され、電動ウィンドラスに音響信号発生器が設置される。ベース8に土圧センサー7及びカウンターウエイト17が設置される。光ファイバセンサー、音響信号発生器、土圧センサー7は全部コントローラ5に接続される。コントローラは土圧センサーの信号フィードバックにより、音響信号発生器による信号の送信を制御し、電動ウィンドラスの回転でワイヤーロープを巻き取り、巻き出して浮体4を回収、放出すると同時に、静水圧通路1は浮体4の回収や放出に伴い伸縮し、静水圧通路の吸水口は常に海水中に保持される。装置全体は安定化した後、コントローラ5は光ファイバセンサーの信号により該位置の差圧を測定することができる。 As shown in FIGS. 1 and 2, the deep sea bottom layer flow change observation device based on differential pressure measurement includes a differential pressure sensing chamber 3, a base 8, a controller 5, a floating body 4, and a release device 2. The differential pressure sensing chamber 3 and the base 8 are connected by a connecting portion, the controller 5 is installed inside the connecting portion, the floating body 4 is located in the differential pressure sensing chamber 3, and is collected and released by the release device 2. . The release device 2 is installed between the floating body 4 and the differential pressure sensing chamber 3. The differential pressure sensing chamber 3 includes a hydrostatic pressure chamber 11 and an environmental hydraulic pressure chamber 12, the top of the environmental hydraulic pressure chamber 12 communicates with the hydrostatic pressure chamber, and the communication location is separated by a spring piece 15. An optical fiber sensor is built in the spring piece 15. The top portion of the hydrostatic pressure chamber 11 is connected to the sea through the hydrostatic pressure passage 1, the water inlet of the hydrostatic pressure passage 1 is located in the floating body 4, and the hydrostatic pressure passage 1 is a stretchable passage, and is expanded and contracted by collecting and releasing the floating body 4. To do. The bottom of the environmental water pressure chamber 12 is connected to the inside of the seabed sediment through the environmental water pressure passage 16, and a first porous stone 14 is provided at the entrance of the environmental water pressure passage 16. The release device 2 includes an electric windlass, a wire rope is wound around the windlass, an end of the wire rope is connected to the floating body 4, and an acoustic signal generator is installed in the electric windlass. An earth pressure sensor 7 and a counterweight 17 are installed on the base 8. The optical fiber sensor, acoustic signal generator, and earth pressure sensor 7 are all connected to the controller 5. The controller controls the transmission of the signal by the acoustic signal generator by the signal feedback of the earth pressure sensor, winds the wire rope by the rotation of the electric windlass, unwinds and collects and discharges the floating body 4, and at the same time the hydrostatic pressure passage 1 Expands and contracts as the floating body 4 is collected and released, and the water inlet of the hydrostatic pressure passage is always held in seawater. After the whole apparatus is stabilized, the controller 5 can measure the differential pressure at the position by the signal of the optical fiber sensor.

本装置の主要な設定目的は、静水圧通路1と環境水圧通路16が2種類の環境に存在することを実現することである。そのうち、静水圧通路1は、海水が流入して静水圧をセンシングするもので、環境水圧通路16はポーラスストーン14を介して堆積環境の間隙水圧をセンシングするものである。2つの圧力チャンバ内の圧力は共同でスプリングピース(スプリング部材)15に作用し、スプリングピース15は変形して光ファイバセンサーに作用し、コントローラ5の計算により該位置の差圧値が得られる。該数値は該位置にある堆積層の過剰間隙水圧を反映し、この状態下の堆積層状態を逆算し、堆積層の堆積状態変化後の比較に対し基準値を確定し、それに海洋底層流による堆積状態の変化に対し分析を準備する。 The main setting purpose of this apparatus is to realize that the hydrostatic pressure passage 1 and the environmental water pressure passage 16 exist in two kinds of environments. Among them, the hydrostatic pressure passage 1 senses the hydrostatic pressure when seawater flows in, and the environmental water pressure passage 16 senses the pore water pressure in the sedimentary environment via the porous stone 14. The pressure in the two pressure chambers jointly acts on the spring piece (spring member) 15, the spring piece 15 is deformed and acts on the optical fiber sensor, and the differential pressure value at this position is obtained by the calculation of the controller 5. The numerical value reflects the excess pore water pressure of the sedimentary layer at the position, and the sedimentary layer state under this condition is calculated back to establish a reference value for comparison of the sedimentary layer after the change of the sedimentary state. Prepare the analysis for changes in deposition conditions.

図3〜図6に示すように、本装置使用時は、自由落下で海底に放置する。事前に製造した適切なカウンターウエイトにより、装置は海底面に到着すると、重力作用で堆積層の内部に没入する。装置のベース8は完全に堆積層に入ると、土圧センサー7は圧力をセンシングし、コントローラ5は解放装置2に音響信号を発送し、パワーウィンドラスをオンにして、ワイヤーロープ10がピンと引っ張る状態になるまで、又は土圧センサー7の圧力値が上昇しないまで、コントローラ5は解放装置2に音響信号の発送を停止する。この時、装置はポーラスストーン14が完全に堆積物に没入する状態である。パワーウィンドラスの数量が限定されないが、通常、対称的に設置すれば、回収過程の中に安定と迅速を確保することができる。本発明の浮体4の具体的な構造が限定されないが、静水圧通路1が上昇すればよい。本発明の静水圧通路1の具体的な構造が限定されないが、伸縮して海水が流入するように設計を行う。本発明の土圧センサー7の設置数量がここに限定されないが、通常偶数で、ベースの軸方向に沿って等間隔で設置する。複数の土圧センサー7の最大値を参照値に、全体装置を調節する。本発明では、4つの土圧センサー7を採用し、周方向に沿って等間隔でベースに設置する。 As shown in FIG. 3 to FIG. 6, when this apparatus is used, it is left on the seabed by free fall. With a suitable pre-fabricated counterweight, when the device arrives at the bottom of the sea, it will dip into the sedimentary layer by gravity. When the base 8 of the device has completely entered the deposition layer, the earth pressure sensor 7 senses the pressure, the controller 5 sends an acoustic signal to the release device 2, turns on the power windlass and the wire rope 10 pulls. The controller 5 stops sending the acoustic signal to the release device 2 until the state is reached or until the pressure value of the earth pressure sensor 7 does not increase. At this time, the apparatus is in a state where the porous stone 14 is completely immersed in the deposit. The number of power windlass is not limited, but usually, if installed symmetrically, stability and speed can be ensured during the recovery process. Although the specific structure of the floating body 4 of the present invention is not limited, it is sufficient that the hydrostatic pressure passage 1 rises. Although the specific structure of the hydrostatic pressure path 1 of this invention is not limited, it designs so that seawater may flow in and out. The installation quantity of the earth pressure sensor 7 of the present invention is not limited to this, but is usually an even number and is installed at equal intervals along the axial direction of the base. The entire apparatus is adjusted using the maximum values of the plurality of earth pressure sensors 7 as reference values. In the present invention, four earth pressure sensors 7 are employed and installed on the base at equal intervals along the circumferential direction.

装置は安定状態になった後、測定、観測を行う。連通式容器の原理により、静水圧チャンバ11内の圧力は該箇所の静水圧P1であり、環境水圧チャンバ12内の圧力は該箇所の堆積層環境間隙水圧P2であり、2つの圧力値は共同でスプリングピース15に作用し、コントローラ5の差圧センサーを介して2つの圧力値を処理し、該箇所の過剰間隙水圧値P3(堆積層環境の間隙水圧P2と静水圧P1の差)が得られる。過剰間隙水圧値P3は該位置の堆積状態を逆算することができる。 After the device reaches a stable state, measurement and observation are performed. According to the principle of the communication container, the pressure in the hydrostatic pressure chamber 11 is the hydrostatic pressure P1 at the location, the pressure in the environmental hydraulic pressure chamber 12 is the sedimentary layer environmental pore water pressure P2 at the location, and the two pressure values are the same. Acts on the spring piece 15 and processes two pressure values via the differential pressure sensor of the controller 5 to obtain an excess pore water pressure value P3 (difference between the pore water pressure P2 and the hydrostatic pressure P1 in the sedimentary layer environment) at the location. It is done. The excess pore water pressure value P3 can be calculated backward from the accumulation state at the position.

深海底層流の搬送作用で海底面を局所的に上昇させ、土圧センサー7の圧力値が1.5倍PE以上まで上昇する。この時にパワーウィンドラスが起動し、浮体4が上に浮かび、静水圧通路1が静水環境中に保つことを確保する。土圧センサー7の圧力値が上昇せず、コントローラ5が解放装置2に音響信号の送信を停止するまで、パワーウィンドラスはロック状態である。静水圧通路1が海水開放を保持し、静水圧チャンバ11内のセンシング圧力は該箇所の静水圧P1である。装置は深海底層流による海底改造後の過剰間隙水圧値P3を取得する。 The bottom of the sea is raised locally by the transport action of the deep sea bed flow, and the pressure value of the earth pressure sensor 7 rises to 1.5 times PE or more. At this time, the power windlaser is activated, and the floating body 4 floats upward to ensure that the hydrostatic pressure passage 1 is maintained in a hydrostatic environment. The power windlaser is in a locked state until the pressure value of the earth pressure sensor 7 does not increase and the controller 5 stops transmitting the acoustic signal to the release device 2. The hydrostatic pressure passage 1 keeps the seawater open, and the sensing pressure in the hydrostatic pressure chamber 11 is the hydrostatic pressure P1 at that location. The apparatus acquires the excess pore water pressure value P3 after the seabed modification by the deep seabed laminar flow.

深海底層流の流す作用で海底面を局所的に下降させ、土圧センサー7の圧力値が減少し続ける。この時にワイヤーロープ10の巻出長さが差圧センシングチャンバ3の高さより高ければ、コントローラ5は巻出巻取装置2に音響信号を発信し、パワーウィンドラスはワイヤーロープの回収動作を実行し、土圧センサー7の圧力値がPE0.5倍以下まで正常まで復元し、パワーウィンドラスが動作を停止する。装置は安定後、深海底層流による海底改造後の過剰間隙水圧値P3を取得する。 The bottom of the sea is lowered locally by the action of the deep sea bottom layer flow, and the pressure value of the earth pressure sensor 7 continues to decrease. At this time, if the unwinding length of the wire rope 10 is higher than the height of the differential pressure sensing chamber 3, the controller 5 sends an acoustic signal to the unwinding / winding device 2, and the power windlass performs the wire rope recovery operation. The pressure value of the earth pressure sensor 7 is restored to normal until the PE value is 0.5 times or less, and the operation of the power windlaser is stopped. After stabilization, the apparatus acquires an excess pore water pressure value P3 after the seabed remodeling by the deep seabed laminar flow.

海底の相対高さが異なる時の過剰間隙水圧値P3を総合的に分析すれば、海底の堆積層状態を取得し、深海底層流の変化情報を解析することができる。解放装置2は同時にワイヤーロープの巻出動的変化過程を記録し、底層流の変化情報を修正する。 By comprehensively analyzing the excess pore water pressure value P3 when the relative heights of the seabeds are different, it is possible to acquire the sedimentary layer state of the seabed and analyze the change information of the deep seabed current. The release device 2 simultaneously records the unwinding dynamic change process of the wire rope and corrects the change information of the bottom layer flow.

この実施形態において、静水圧通路1は伸縮性ホース或いは波型管である。 In this embodiment, the hydrostatic pressure passage 1 is a stretchable hose or a corrugated tube.

伸縮の変化にうまく応えるよう、幅広い伸びを実現することができる。静水圧通路1の伸縮性により、浮体4と差圧センシングチャンバ3の間に大きな調節距離を実現し、すなわち吸水口は必要に応じて差圧センシングチャンバ3を離れる。 A wide range of stretch can be achieved to respond well to changes in stretch. Due to the stretchability of the hydrostatic pressure passage 1, a large adjustment distance is realized between the floating body 4 and the differential pressure sensing chamber 3, that is, the water suction port leaves the differential pressure sensing chamber 3 as necessary.

静水圧通路1の頂部に第2のポーラスストーン9が設けられる。過剰間隙水圧の差圧測定を実現すると同時に、泥と砂などの不純物が差圧センシングチャンバ3に侵入することも防ぐことができる。 A second porous stone 9 is provided at the top of the hydrostatic pressure passage 1. While realizing the differential pressure measurement of the excess pore water pressure, it is possible to prevent impurities such as mud and sand from entering the differential pressure sensing chamber 3.

深海底層流の搬送作用で海底面を局所的に上昇させることを防ぐため、差圧センシングチャンバ3は堆積物に完全に没入する。ベース8と差圧センシングチャンバ3の間の接続部は多段式連接棒22であり、止め金具18により締め付けられ、止め金具18はコントローラ5に接続される。止め金具18は従来の共通技術である普通の締付式ロック構造(例えば、伸縮棒の上下連接棒に極方向相対の電磁石を設置し、信号を用いて電源スイッチを制御し、伸縮棒の伸縮又はその他の同様、類似構造を実現する。ここでそれ以上記述しない)だけで要求を満足でき、コントローラにより制御される。 The differential pressure sensing chamber 3 is completely immersed in the sediment in order to prevent the sea floor from being raised locally by the transport action of the deep sea bed flow. A connecting portion between the base 8 and the differential pressure sensing chamber 3 is a multistage connecting rod 22, which is tightened by a stopper 18, and the stopper 18 is connected to the controller 5. The fastener 18 is a conventional common lock-type lock structure (for example, a pole-relative electromagnet is installed on the upper and lower connecting rods of the telescopic rod, the power switch is controlled using a signal, and the telescopic rod expands and contracts. (Or other similar implementation of a similar structure, not described further here) can satisfy the requirements and is controlled by the controller.

深海底層流の搬送作用で海底面を局所的に上昇させるにあたり、土圧センサー7の圧力値が警告値PE(同時に1.5倍のPEより小さい)を超えた場合、止め金具18は開放する。この時、差圧センシングチャンバ3とベース8は多段式連接棒22により接続され、多段式連接棒22は伸縮棒構造であり、浮体4はワイヤーロープ10を介して差圧センシングチャンバ3とコントローラ5を多段式連接棒22の伸びる可能な距離まで引っ張る。同時に、ベース8とコントローラ5の間の最大相対変位は差圧センシングチャンバ3チャンバの長さの4分の3よりも小さい。すなわち、浮体4は引っ張る時に透水石14を堆積層から引き抜けてはならない。 If the pressure value of the earth pressure sensor 7 exceeds the warning value PE (at the same time, less than 1.5 times PE) in raising the sea bottom locally by the deep sea bottom flow transport action, the fastener 18 is opened. . At this time, the differential pressure sensing chamber 3 and the base 8 are connected by a multistage connecting rod 22, the multistage connecting rod 22 has a telescopic rod structure, and the floating body 4 is connected to the differential pressure sensing chamber 3 and the controller 5 via the wire rope 10. Is pulled to the possible distance that the multistage connecting rod 22 can extend. At the same time, the maximum relative displacement between the base 8 and the controller 5 is less than three quarters of the length of the differential pressure sensing chamber 3 chamber. That is, when the floating body 4 is pulled, the permeable stone 14 must not be pulled out of the deposited layer.

深海底層流の流す作用で海底面を局所的に下降させるにあたり、接続部の多段式連接棒22は重力落下で復元し、重力落下の実現方式として、パワーウィンドラスをオンにし、ワイヤーロープ10を緩め、差圧センシングチャンバ3のコントローラ5の重力により自由落下をすることを採用することができる。 When the bottom of the sea is lowered locally by the action of the deep sea bottom layer flow, the multi-stage connecting rod 22 of the connecting portion is restored by gravity drop. As a method for realizing gravity drop, the power windlass are turned on and the wire rope 10 is It is possible to employ loosening and free fall due to the gravity of the controller 5 of the differential pressure sensing chamber 3.

他の落下方式も採用できるが、ここに限定しない。ただし、重力の自由落下構造が最も簡単、直接である。 Other dropping methods can also be adopted, but are not limited thereto. However, the free fall structure of gravity is the simplest and direct.

この実施形態において、浮体の具体的な構造を提供する。この実施形態において、浮体はドア型フレームであり、差圧センシングチャンバ3の外部にかけられ、差圧センシングチャンバ3の間に隙間がある。 In this embodiment, a specific structure of the floating body is provided. In this embodiment, the floating body is a door-type frame, is placed outside the differential pressure sensing chamber 3, and there is a gap between the differential pressure sensing chambers 3.

浮体4は密度が水より低い材料で製造され、静水圧通路1とともに移動する。すなわち、浮体4は吸水管ポーラスストーン9の一部が常に海水中に保持することを確保する。海洋底層流の海底面へ侵食・堆積による海底面の上昇に対応し、測定結果の正確性を確保する。 The floating body 4 is made of a material having a density lower than that of water and moves together with the hydrostatic pressure passage 1. That is, the floating body 4 ensures that a part of the water absorption pipe porous stone 9 is always held in seawater. Corresponding to the rise of the sea bottom due to erosion / deposition on the sea bottom of the ocean bottom layer flow, ensure the accuracy of the measurement results.

この実施形態において、具体的なパワーウィンドラス設置構造を提供する。パワーウィンドラスには対称的に2つのパワーウィンドラスA19とパワーウィンドラスB20を設置する。浮体を回収する時に、効果的且つ安定に回収することができる。 In this embodiment, a specific power windlass installation structure is provided. Two power windlass A19 and B20 are installed symmetrically in the power windlass. When the floating body is recovered, it can be recovered effectively and stably.

解放装置2とコントローラ5内にはゴムリングや他の密封装置で防水密封を行い、ここで限定しない。水隔離密封設置は効果的に設備の破損と経年劣化を防止することができる。 The release device 2 and the controller 5 are waterproofed and sealed with a rubber ring or other sealing device, and are not limited here. Water isolation sealing installation can effectively prevent equipment breakage and aging.

この実施形態において、カウンターウエイト17はベース8に均一に分布される。 In this embodiment, the counterweights 17 are uniformly distributed on the base 8.

カウンターウエイトは主に第1のポーラスストーン14が完全に堆積物に没入し、差圧測定の実現を確保することができる。カウンターウエイトの具体的な構造と重量は測定対象海域の実際状況に応じて設定し、ここに限定しない。例えば、測定対象海域の海底土質が柔らかい場合、カウンターウエイトを重くならないように設定しなければならない。さもなければ、海底深くまで没入することがある。 The counterweight mainly ensures that the first porous stone 14 is completely immersed in the deposit and realizes the differential pressure measurement. The specific structure and weight of the counterweight is set according to the actual situation of the sea area to be measured, and is not limited here. For example, when the seabed soil quality of the measurement target sea area is soft, the counterweight must be set not to be heavy. Otherwise, it may immerse deep into the sea floor.

さらに、ベース8上に透水孔6が設置され、透水孔6は上下貫通する貫通孔であり、均一にベース8に設置される。透水孔の数量と直径は限定しない。 Further, a water permeable hole 6 is provided on the base 8, and the water permeable hole 6 is a through-hole penetrating vertically and is uniformly installed in the base 8. The number and diameter of the water permeable holes are not limited.

装置全体が海底まで落下、設置するにあたり、海水は透水孔6から流れ、装置の各箇所が均一な力を受け、より安定に落下することができる。また、回収の必要があれば、速やかに回収する可能である。 When the entire apparatus falls to the seabed and is installed, the seawater flows from the water permeable holes 6 and each part of the apparatus receives a uniform force and can fall more stably. In addition, if there is a need for collection, it can be collected quickly.

以上記載される内容は、本発明の好ましい実施形態に過ぎず、本発明を他の形態で限定するものではない。当業者であれば、上述した技術的内容を利用して、他の分野に適用する同等の実施形態を変更または修正してもよいが、本発明の技術的内容から逸脱しない限り、本発明の技術的実質によって上記の実施形態に対して行われた簡単な変更、等価変化及び変形は、本発明の技術的解決手段の保護範囲内である。
What has been described above is only a preferred embodiment of the present invention, and the present invention is not limited to other embodiments. A person skilled in the art may use the technical contents described above to change or modify equivalent embodiments applied to other fields. However, unless departing from the technical contents of the present invention, Simple changes, equivalent changes and modifications made to the above embodiments by technical substance are within the protection scope of the technical solution of the present invention.

Claims (10)

差圧測定に基づく深海底層流変化観測装置であって、差圧センシングチャンバ(3)、ベース(8)、コントローラ(5)、浮体(4)、解放装置(2)を含み、差圧センシングチャンバ(3)とベース(8)の間は接続部により接続され、前記コントローラ(5)は接続部の内部に設置され、浮体(4)は差圧センシングチャンバ(3)に位置し、解放装置(2)により回収と放出を行い、解放装置(2)は浮体(4)と差圧センシングチャンバ(3)の間に設置され、
前記差圧センシングチャンバ(3)は静水圧チャンバ(11)と環境水圧チャンバ(12)を含み、前記環境水圧チャンバ(12)の頂部は静水圧チャンバと連通し、連通箇所はスプリングピース(15)により隔てられ、前記スプリングピース(15)に光ファイバセンサーが内蔵され、前記静水圧チャンバ(11)の頂部は静水圧通路(1)を通じて海をつなぎ、静水圧通路(1)の吸水口は浮体(4)に位置し、前記静水圧通路(1)は伸縮可能な通路であり、浮体(4)の回収と放出により伸縮し、前記環境水圧チャンバ(12)の底部は環境水圧通路(16)を通じて海底堆積層内をつなぎ、前記環境水圧通路(16)の入口に第1のポーラスストーン(14)が設けられ、
前記解放装置(2)は電動ウィンドラスを備え、前記電動ウィンドラスにワイヤーロープが巻きつけられ、ワイヤーロープの末端は浮体(4)に接続され、前記電動ウィンドラスに音響信号発生器が設置され、前記ベース(8)に土圧センサー(7)及びカウンターウエイト(17)が設置され、光ファイバセンサー、音響信号発生器、土圧センサー(7)は全部コントローラ(5)に接続され、
コントローラは土圧センサーの信号フィードバックにより、音響信号発生器による信号の送信を制御し、電動ウィンドラスの回転でワイヤーロープを巻き取り、巻き出して浮体(4)を回収、放出すると同時に、静水圧通路(1)は浮体(4)の回収や放出に伴い伸縮し、静水圧通路の吸水口は常に海水中に保持され、装置全体が安定化した後、コントローラ(5)は光ファイバセンサーの信号により該位置の差圧を測定することができることを特徴とする差圧測定に基づく深海底層流変化観測装置。
An apparatus for observing changes in deep sea floor current based on differential pressure measurement, including a differential pressure sensing chamber (3), a base (8), a controller (5), a floating body (4), and a release device (2), and a differential pressure sensing chamber (3) and the base (8) are connected by a connecting portion, the controller (5) is installed inside the connecting portion, the floating body (4) is located in the differential pressure sensing chamber (3), and a release device ( 2) to collect and release, the release device (2) is installed between the floating body (4) and the differential pressure sensing chamber (3),
The differential pressure sensing chamber (3) includes a hydrostatic pressure chamber (11) and an environmental water pressure chamber (12), the top of the environmental water pressure chamber (12) communicates with the hydrostatic pressure chamber, and the communication point is a spring piece (15). The spring piece (15) includes an optical fiber sensor, the top of the hydrostatic pressure chamber (11) connects the sea through the hydrostatic pressure passage (1), and the water inlet of the hydrostatic pressure passage (1) is a floating body. (4), the hydrostatic pressure passage (1) is an extendable and contractible passage, and expands and contracts by the collection and discharge of the floating body (4), and the bottom of the environmental water pressure chamber (12) is the environmental water pressure passage (16). A first porous stone (14) is provided at the entrance of the environmental water pressure passage (16) .
The release device (2) includes an electric windlass, a wire rope is wound around the electric windlass, an end of the wire rope is connected to a floating body (4), and an acoustic signal generator is installed in the electric windlass. The earth pressure sensor (7) and the counterweight (17) are installed on the base (8), and the optical fiber sensor, acoustic signal generator, earth pressure sensor (7) are all connected to the controller (5),
The controller controls the transmission of the signal by the acoustic signal generator using the signal feedback of the earth pressure sensor, winds the wire rope with the rotation of the electric windlass, unwinds it, collects and releases the floating body (4), and at the same time hydrostatic pressure The passage (1) expands and contracts with the recovery and release of the floating body (4), and the water inlet of the hydrostatic pressure passage is always held in seawater. After the entire apparatus is stabilized, the controller (5) It is possible to measure the differential pressure at the position by the deep sea bottom layer flow change observation device based on the differential pressure measurement.
前記静水圧通路(1)は伸縮性ホース或いは波型管であることを特徴とする、請求項1に記載の差圧測定に基づく深海底層流変化観測装置。 The deep sea bottom laminar flow change observation device according to claim 1, wherein the hydrostatic pressure passage (1) is a stretchable hose or a corrugated tube. 静水圧通路(1)の頂部に第2のポーラスストーン(9)が設けられることを特徴とする、請求項2に記載の差圧測定に基づく深海底層流変化観測装置。 The deep sea bottom laminar flow change observation device according to claim 2, wherein a second porous stone (9) is provided at the top of the hydrostatic pressure passage (1). 前記ベース(8)と差圧センシングチャンバ(3)の間の接続部は多段式連接棒(22)であり、止め金具(18)により締め付けられ、止め金具(18)はコントローラ(5)に接続されることを特徴とする、請求項3に記載の差圧測定に基づく深海底層流変化観測装置。 The connecting portion between the base (8) and the differential pressure sensing chamber (3) is a multistage connecting rod (22), which is tightened by a fastener (18), and the fastener (18) is connected to the controller (5). The deep sea bottom layer flow change observation device based on the differential pressure measurement according to claim 3, wherein ベース(8)とコントローラ(5)の間の最大相対変位は差圧センシングチャンバ(3)のチャンバの長さの4分の3よりも小さいことを特徴とする、請求項4に記載の差圧測定に基づく深海底層流変化観測装置。 Differential pressure according to claim 4, characterized in that the maximum relative displacement between the base (8) and the controller (5) is less than three quarters of the chamber length of the differential pressure sensing chamber (3). Deep sea bottom layer flow change observation equipment based on measurements. 前記浮体はドア型フレームであり、差圧センシングチャンバ(3)の外部にかけられ、差圧センシングチャンバ(3)の間に隙間があることを特徴とする、請求項5に記載の差圧測定に基づく深海底層流変化観測装置。 6. The differential pressure measurement according to claim 5, wherein the floating body is a door-type frame, is placed outside the differential pressure sensing chamber (3), and there is a gap between the differential pressure sensing chambers (3). Based on deep sea bottom flow change observation device. 前記電動ウィンドラスは対称的に設置されることを特徴とする、請求項6に記載の差圧測定に基づく深海底層流変化観測装置。 The deep sea bottom laminar flow change observation apparatus according to claim 6, wherein the electric windlass are installed symmetrically. 前記解放装置(2)とコントローラ(5)は防水密封を行うことを特徴とする、請求項7に記載の差圧測定に基づく深海底層流変化観測装置。 The deep sea bottom laminar flow change observation device according to claim 7, wherein the release device (2) and the controller (5) are waterproof and sealed. 前記カウンターウエイト(17)はベース(8)に均一に分布されることを特徴とする、請求項8に記載の差圧測定に基づく深海底層流変化観測装置。 9. The deep sea bottom laminar flow observation device according to claim 8, wherein the counterweight (17) is uniformly distributed in the base (8). 前記ベース(8)上に透水孔(6)が設置され、前記透水孔(6)は上下貫通する貫通孔であり、均一にベース(8)に設置されることを特徴とする、請求項9に記載の差圧測定に基づく深海底層流変化観測装置。
The water-permeable hole (6) is installed on the base (8), and the water-permeable hole (6) is a through-hole penetrating vertically, and is uniformly installed in the base (8). Deep sea bottom flow change observation device based on differential pressure measurement described in 1.
JP2018171170A 2017-09-29 2018-09-13 Deep seafloor flow change observation equipment based on differential pressure measurement Expired - Fee Related JP6454442B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710909472.2A CN107807406B (en) 2017-09-29 2017-09-29 Abyssal floor rheology observation device based on differential pressure measurement
CN201710909472.2 2017-09-29

Publications (2)

Publication Number Publication Date
JP6454442B1 true JP6454442B1 (en) 2019-01-16
JP2019066467A JP2019066467A (en) 2019-04-25

Family

ID=61583390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018171170A Expired - Fee Related JP6454442B1 (en) 2017-09-29 2018-09-13 Deep seafloor flow change observation equipment based on differential pressure measurement

Country Status (2)

Country Link
JP (1) JP6454442B1 (en)
CN (1) CN107807406B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111024914A (en) * 2020-01-13 2020-04-17 防灾科技学院 Device and method for calibrating or calibrating geochemical comprehensive sensing system under high voltage
CN111520579A (en) * 2020-04-28 2020-08-11 自然资源部第二海洋研究所 Ocean scientific investigation is with preventing under water fixed detection device of support type
CN112665537A (en) * 2020-12-16 2021-04-16 武汉航空仪表有限责任公司 Differential pressure type angle measurement system and method
US11214699B2 (en) 2017-10-20 2022-01-04 Lg Chem, Ltd. Ink composition
CN116902181A (en) * 2023-07-14 2023-10-20 广州海洋地质调查局 Safety bottom-sitting device and method suitable for deep sea submersible vehicle

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109338374B (en) * 2018-12-17 2024-01-26 青岛双瑞海洋环境工程股份有限公司 Cathode protection device
CN109708619B (en) * 2019-03-01 2024-02-06 浙江星天海洋科学技术股份有限公司 Floating measurement platform of water-in self-release probe and measuring instrument using same
CN109959366B (en) * 2019-04-12 2020-08-21 清华大学 Differential water depth measuring method
CN110332923B (en) * 2019-07-12 2021-07-23 中国海洋大学 Sea bed surface settlement observation device and measurement method
JP7282306B2 (en) 2019-08-20 2023-05-29 日本電気株式会社 Seismic Observation Device, Seismic Observation Method and Seismic Observation Program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4150578A (en) * 1978-06-28 1979-04-24 Swartz Robert B Apparatus for measuring excess pore water pressure
JPH05187939A (en) * 1992-01-10 1993-07-27 Kyowa Electron Instr Co Ltd Electric pressure transducer
JP2003042864A (en) * 2001-07-31 2003-02-13 Univ Nihon Pressure transducer
JP2012242328A (en) * 2011-05-23 2012-12-10 Shimizu Corp Water pressure measuring device, depth measuring device, and penetration probe

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1975328A (en) * 2006-12-08 2007-06-06 国家***第二海洋研究所 Multifrequency submarine acoustic in-situ testing system and method
US20160266335A1 (en) * 2010-05-17 2016-09-15 Advanced Fiber Products, LLC Pressure Resistant Media Converter Apparatus
CN104792452B (en) * 2015-04-22 2016-03-30 中国海洋大学 A kind of automatic lifting without cable formula deep-sea floor pore water pressure long-term observation device
CN105092146B (en) * 2015-05-06 2017-07-04 中国海洋大学 Sea bed pore pressure dynamic response sensing equipment over-pressure safety device
CN106241633B (en) * 2016-08-23 2018-08-14 三峡大学 A kind of towing winch hydraulic control system peculiar to vessel and transmission device and control method
CN106741658B (en) * 2016-11-09 2018-03-13 哈尔滨工程大学 A kind of acoustic marker automatic distributing and discharging structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4150578A (en) * 1978-06-28 1979-04-24 Swartz Robert B Apparatus for measuring excess pore water pressure
JPH05187939A (en) * 1992-01-10 1993-07-27 Kyowa Electron Instr Co Ltd Electric pressure transducer
JP2003042864A (en) * 2001-07-31 2003-02-13 Univ Nihon Pressure transducer
JP2012242328A (en) * 2011-05-23 2012-12-10 Shimizu Corp Water pressure measuring device, depth measuring device, and penetration probe

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11214699B2 (en) 2017-10-20 2022-01-04 Lg Chem, Ltd. Ink composition
CN111024914A (en) * 2020-01-13 2020-04-17 防灾科技学院 Device and method for calibrating or calibrating geochemical comprehensive sensing system under high voltage
CN111024914B (en) * 2020-01-13 2024-04-26 防灾科技学院 Device and method for calibrating or calibrating ground integrated sensing system under high pressure
CN111520579A (en) * 2020-04-28 2020-08-11 自然资源部第二海洋研究所 Ocean scientific investigation is with preventing under water fixed detection device of support type
CN112665537A (en) * 2020-12-16 2021-04-16 武汉航空仪表有限责任公司 Differential pressure type angle measurement system and method
CN112665537B (en) * 2020-12-16 2022-07-08 武汉航空仪表有限责任公司 Differential pressure type angle measurement system and method
CN116902181A (en) * 2023-07-14 2023-10-20 广州海洋地质调查局 Safety bottom-sitting device and method suitable for deep sea submersible vehicle
CN116902181B (en) * 2023-07-14 2024-01-23 广州海洋地质调查局 Safety bottom-sitting device and method suitable for deep sea submersible vehicle

Also Published As

Publication number Publication date
JP2019066467A (en) 2019-04-25
CN107807406B (en) 2018-08-17
CN107807406A (en) 2018-03-16

Similar Documents

Publication Publication Date Title
JP6454442B1 (en) Deep seafloor flow change observation equipment based on differential pressure measurement
CN104831762B (en) Deep basal pit artesian water precipitation dynamic monitoring system and monitoring method
CN104677803B (en) Often, varying head is combined pervasion test device
CN105786032B (en) A kind of trial zone level of ground water accuracy-control system and method
KR102009916B1 (en) Apparatus for continuous monitoring change in depth-specific aquatic environment
CN105974088B (en) Surface subsidence experimental rig and test method caused by a kind of water level Circularly liftable
US10302471B1 (en) Device for observing abyssal flow change based on differential pressure measurement
NO310797B1 (en) Procedure for monitoring subsidence subsidence and gravity change
CN112254864A (en) Device for in-situ real-time monitoring pore pressure of sediment and seabed deformation and distribution method
CN212335970U (en) Monitoring device for layered settlement of soil body
CN110173007A (en) Three layers of casing suction bucket experimental rig
CN103233453B (en) A kind of original position soil body surveying method
CN104266929B (en) Automatic minitype lysimeter suitable for sandy soil
CN215053303U (en) Guide-enhanced barrel-type foundation penetration test model device
CN112538874A (en) Guide-enhanced barrel-type foundation penetration test model device and method
CN109682347B (en) Method for measuring expansion amount at different depths in water meeting process of expansive soil
CN212674701U (en) In-situ test and micro-disturbance sampling device for measuring volume weights of silt returning substances at different depths in seabed foundation trench
CN206876387U (en) A kind of simulation test device for measuring basal disc and falling with soil interaction
CN112051187B (en) In-situ test and perturbation sampling method for volume weight of back sludge at different depths in submarine foundation trench
JP2008020279A (en) Thickness measuring apparatus for water-bottom earth and sand and drift sand observation system
CN205581667U (en) Accurate controlling means of trial zone ground water level
CN209799954U (en) Simple underground water level monitoring well device
CN105696600B (en) A kind of foundation pit supporting method of automatic controlled underground diaphragm wall horizontal displacement
CN110360985B (en) Marine breakwater foundation layered settlement monitoring device and burying method thereof
CN209342276U (en) A kind of experiment casing equipped with pressure sensor

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181214

R150 Certificate of patent or registration of utility model

Ref document number: 6454442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees