JP6453710B2 - Quality control method for artificial dialysis water - Google Patents

Quality control method for artificial dialysis water Download PDF

Info

Publication number
JP6453710B2
JP6453710B2 JP2015111166A JP2015111166A JP6453710B2 JP 6453710 B2 JP6453710 B2 JP 6453710B2 JP 2015111166 A JP2015111166 A JP 2015111166A JP 2015111166 A JP2015111166 A JP 2015111166A JP 6453710 B2 JP6453710 B2 JP 6453710B2
Authority
JP
Japan
Prior art keywords
water
artificial dialysis
quality control
control method
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015111166A
Other languages
Japanese (ja)
Other versions
JP2016223932A (en
Inventor
智暢 阿瀬
智暢 阿瀬
智一 綿部
智一 綿部
壮慶 新井
壮慶 新井
了一 中澤
了一 中澤
洋一 清水
洋一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicen Membrane Systems Ltd
Original Assignee
Daicen Membrane Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicen Membrane Systems Ltd filed Critical Daicen Membrane Systems Ltd
Priority to JP2015111166A priority Critical patent/JP6453710B2/en
Publication of JP2016223932A publication Critical patent/JP2016223932A/en
Application granted granted Critical
Publication of JP6453710B2 publication Critical patent/JP6453710B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、人工透析用水の品質管理方法に関する。   The present invention relates to a quality control method for artificial dialysis water.

人工透析液は、精製水(人工透析用水)と透析液原液を混合して製造されており、前記人工透析用水の製造装置および製造方法の発明が多数提案されている(特許文献1〜9)。   Artificial dialysate is manufactured by mixing purified water (artificial dialysate water) and dialysate stock solution, and many inventions of the above-mentioned artificial dialyzer manufacturing apparatus and manufacturing method have been proposed (Patent Documents 1 to 9). .

特許第5449667号公報Japanese Patent No. 5449667 特許第5480534号公報Japanese Patent No. 5480534 特許第4440989号公報Japanese Patent No. 4440899 特許第5658908号公報Japanese Patent No. 5658908 特許第5357836号公報Japanese Patent No. 5357836 特開2013−166139号公報JP 2013-166139 A 特開2014−91068号公報JP 2014-91068 A 特開2014−113512号公報JP 2014-113512 A 特許第5584321号公報Japanese Patent No. 5854321

本発明は、人工透析液に使用する人工透析用水の品質管理方法を提供することを課題とする。   This invention makes it a subject to provide the quality control method of the water for artificial dialysis used for an artificial dialysis solution.

本発明は、逆浸透膜装置を含む装置(ただし、電気再生式脱イオン装置は含まない)を使用して製造した人工透析用水中のオリゴDNAを、オリグリーン試薬を用いた蛍光法により測定する、人工透析用水の品質管理方法を提供する。   In the present invention, oligo DNA in water for artificial dialysis produced using a device including a reverse osmosis membrane device (but not including an electric regeneration type deionization device) is measured by a fluorescence method using an oligreen reagent. Provide quality control method for artificial dialysis water.

また本発明は、逆浸透膜装置と電気再生式脱イオン装置を含む装置を使用して製造した人工透析用水中のオリゴDNAを、オリグリーン試薬を用いた蛍光法により測定する、人工透析用水の品質管理方法を提供する。   The present invention also provides artificial dialysis water for measuring oligo DNA in artificial dialysis water produced using a device including a reverse osmosis membrane device and an electroregenerative deionization device by a fluorescence method using an oligreen reagent. Provide quality control methods.

本発明の品質管理方法によれば、人工透析液に使用する人工透析用水中のオリゴDNA濃度を測定することで、安定して高品質の人工透析用水を提供できるようになる。   According to the quality control method of the present invention, high-quality artificial dialysis water can be stably provided by measuring the oligo DNA concentration in the artificial dialysis water used for the artificial dialysis solution.

本発明の品質管理方法を適用できる人工透析用水の製造フローを示した図。The figure which showed the manufacture flow of the water for artificial dialysis which can apply the quality control method of this invention. オリグリーン試薬を用いた蛍光法による、オリゴDAN濃度と蛍光強度との相関を示す検量線。Calibration curve showing correlation between oligo DAN concentration and fluorescence intensity by fluorescence method using oligreen reagent.

本発明の人工透析用水の品質管理方法は、オリグリーン試薬を用いた蛍光法により人工透析用水中のオリゴDNAを測定することで、前記人工透析用水の品質管理をする方法である。   The quality control method for artificial dialysis water of the present invention is a method for quality control of the artificial dialysis water by measuring oligo DNA in the artificial dialysis water by a fluorescence method using an oligreen reagent.

本発明の品質管理方法を適用する人工透析用水は、
(I)逆浸透膜装置(RO装置)を含む装置(ただし、電気再生式脱イオン装置は含まない)を使用して製造した人工透析用水、または
(II)逆浸透膜装置と電気再生式脱イオン装置(EDI装置)を含む装置を使用して製造した人工透析用水である。
The water for artificial dialysis to which the quality control method of the present invention is applied,
(I) Artificial dialysis water manufactured using a device including a reverse osmosis membrane device (RO device) (but not including an electric regeneration deionization device), or (II) a reverse osmosis membrane device and an electric regeneration deionization It is the water for artificial dialysis manufactured using the apparatus containing an ion apparatus (EDI apparatus).

前記(I)および(II)の人工透析用水は、例えば、特許文献1〜9に記載された発明を実施して製造することができるが、前記公報に記載の発明以外の公知の製造装置および製造方法で製造された人工透析用水でもよい。
特許文献9(特許第5584321号公報)には、(I)と(II)の両方の装置を使用した人工透析用水の製造方法が記載されている。
また、前記特許文献1〜9に記載された発明にも記載されているとおり、RO装置とEDI装置のほかにも、MF膜装置、NF膜装置、UF膜装置などの公知の膜分離装置、活性炭などの各種吸着剤を備えた装置、軟水化装置などを組み合わせることができる。
The water for artificial dialysis of (I) and (II) can be produced, for example, by implementing the inventions described in Patent Documents 1 to 9, but known production apparatuses other than the invention described in the above publication and Artificial dialysis water produced by the production method may be used.
Patent Document 9 (Japanese Patent No. 5854321) describes a method for producing water for artificial dialysis using both the devices (I) and (II).
Further, as described in the inventions described in Patent Documents 1 to 9, in addition to the RO device and the EDI device, known membrane separation devices such as an MF membrane device, an NF membrane device, and a UF membrane device, A device equipped with various adsorbents such as activated carbon and a water softening device can be combined.

人工透析用水中のオリゴDNA(1本鎖DNA;分子量1200〜5000)は、オリグリーン試薬キット(Quant-iT(Invitrogen社)を用いた蛍光法によって、実施例に記載の手順で測定する。   Oligo DNA (single-stranded DNA; molecular weight 1200 to 5000) in water for artificial dialysis is measured by the procedure described in the Examples by a fluorescence method using an oligreen reagent kit (Quant-iT (Invitrogen)).

本発明の人工透析用水の品質管理方法では、さらにエンドトキシン(ET)濃度と生菌数も測定することができる。
ET濃度と生菌数は、例えば、特許文献2(特許第5480534号公報)の実施例に記載されているET濃度測定装置(手動式)20:トキシノメータミニ(和光純薬(株)製)と生菌数測定装置:Panasonic バイオプローラ BP−2(パナソニック(株)製)を使用して測定することができる。
In the quality control method for artificial dialysis water of the present invention, the endotoxin (ET) concentration and the number of viable bacteria can also be measured.
The ET concentration and the viable cell count are, for example, the ET concentration measuring device (manual type) 20 described in the example of Patent Document 2 (Japanese Patent No. 5480534): Toxinometer Mini (manufactured by Wako Pure Chemical Industries, Ltd.) ) And viable count device: Panasonic Biooproller BP-2 (manufactured by Panasonic Corporation).

実施例1
特開2014−91068号公報の実施例2と同様にして、図1に示す装置を使用して、医療用精製水(人工透析用水)の製造運転を実施した。
各装置の仕様は次の通りである。
Example 1
In the same manner as in Example 2 of Japanese Patent Application Laid-Open No. 2014-91068, using the apparatus shown in FIG. 1, a production operation of medical purified water (water for artificial dialysis) was performed.
The specifications of each device are as follows.

活性炭装置3:ダイセン・メンブレン・システムズ(株)製ジュラコールMAC750SH
RO装置5:RO膜モジュール;ダイセン・メンブレン・システムズ(株)製SV08−GP−DRA耐熱型
EDI装置9:ダイセン・メンブレン・システムズ(株)製XL−500−S耐熱型
RO水タンク6:SUS316、250L
EDI水タンク10:SUS316、250L
UF装置7:UF膜モジュール;ダイセン・メンブレン・システムズ(株)製FS10FC−FUST653
RO水タンク電気ヒーター6a:20kw
ラインヒーター4:10kw
熱交換器8:70000kcal
RO水製造水量:1000L/hr
Activated carbon device 3: Duracoal MAC750SH manufactured by Daisen Membrane Systems Co., Ltd.
RO device 5: RO membrane module; SV08-GP-DRA heat resistant type manufactured by Daisen Membrane Systems Co., Ltd. EDI device 9: XL-500-S heat resistant type manufactured by Daisen Membrane Systems Co., Ltd. RO water tank 6: SUS316 250L
EDI water tank 10: SUS316, 250L
UF device 7: UF membrane module; FS10FC-FUST653 manufactured by Daisen Membrane Systems Co., Ltd.
RO water tank electric heater 6a: 20kw
Line heater 4: 10 kW
Heat exchanger 8: 70000 kcal
RO water production volume: 1000L / hr

図1の装置を用いて医療用精製水の製造運転を実施した後で停止し、殺菌および冷却運転を行った。
RO水タンクヒーター6aの加熱とラインヒーター4の加熱を開始するとともに、第1循環ラインと第3循環ラインの二つの循環ラインによる循環運転を並行して実施した。
ヒーター6aとラインヒーター4による加温は、第3循環ラインのROモジュール出口の昇温速度が0.5〜2.5℃/分となるように制御しながら、20〜30℃のRO水タンク10内の水が80℃〜85℃の熱水になるまで約60分間かけて加温した。
その後、80〜85℃の熱水温度を保持しながら循環運転を30分間継続して、熱殺菌運転を実施した。
The apparatus of FIG. 1 was used to stop the production of purified water for medical use, and then the sterilization and cooling operations were performed.
The heating of the RO water tank heater 6a and the heating of the line heater 4 were started, and the circulation operation by the two circulation lines of the first circulation line and the third circulation line was performed in parallel.
Heating by the heater 6a and the line heater 4 is controlled so that the temperature rising rate at the RO module outlet of the third circulation line is 0.5 to 2.5 ° C./minute, and the RO water tank of 20 to 30 ° C. It heated for about 60 minutes until the water in 10 became hot water of 80 to 85 degreeC.
Thereafter, the circulation operation was continued for 30 minutes while maintaining the hot water temperature of 80 to 85 ° C., and the heat sterilization operation was performed.

熱水殺菌運転の終了後に、引き続き冷却運転を実施した。
冷却運転を行うため、RO水タンクヒーター6aの加熱及びラインヒーター4の加熱を停止し、次いで開閉弁73を開けて、ライン24を通して熱交換器8に冷却媒体として原水を供給した。
第1循環ラインと第3循環ラインの二つの循環ラインは、殺菌運転の場合と同様に並行して循環運転を継続した。
熱交換器8による冷却は、第2循環ラインのROモジュール出口の降温速度が1.0〜3.0℃/分となるように制御しながら、80〜85℃の熱水が20℃〜30℃になるまで約30分間かけて冷却した。
After completion of the hot water sterilization operation, the cooling operation was continued.
In order to perform the cooling operation, the heating of the RO water tank heater 6 a and the heating of the line heater 4 were stopped, then the on-off valve 73 was opened, and raw water was supplied as a cooling medium to the heat exchanger 8 through the line 24.
The two circulation lines of the first circulation line and the third circulation line continued the circulation operation in parallel as in the case of the sterilization operation.
Cooling by the heat exchanger 8 is controlled so that the temperature drop rate at the RO module outlet of the second circulation line is 1.0 to 3.0 ° C./min, while 80 to 85 ° C. hot water is 20 ° C. to 30 ° C. It cooled over about 30 minutes until it became ° C.

上記の殺菌運転及び冷却運転を週に1回の頻度で実施しながら、精製水の製造運転を行った。
熱水殺菌を一度実施した後に精製水の製造運転を継続し、次の熱水殺菌を実施する前に原水(水道水)、RO膜モジュールの透過水およびEDI処理脱塩水をサンプリングして、それらのDNA濃度を測定した。
The purified water production operation was performed while the above-described sterilization operation and cooling operation were performed once a week.
After the hot water sterilization is performed once, the production operation of the purified water is continued. Before the next hot water sterilization, the raw water (tap water), the RO membrane module permeated water and the EDI-treated desalted water are sampled. The DNA concentration of was measured.

<オリゴDNAの測定方法>
(試薬)
下記の試薬1〜4を備えたオリグリーン試薬キット(Quant-iT(Invitrogen社)を使用した。
試薬1:Quant iT OliGreen ssDNA Reagent (Component A) solution in DMSO
試薬2:20X TE (Component B)
試薬3:Oligonucleotide standard (Component C)
試薬4:DEPC-Treated Double-Distilled Water (Maxim Biotech)
<Measurement method of oligo DNA>
(reagent)
An oligreen reagent kit (Quant-iT (Invitrogen)) equipped with the following reagents 1 to 4 was used.
Reagent 1: Quant iT OliGreen ssDNA Reagent (Component A) solution in DMSO
Reagent 2: 20X TE (Component B)
Reagent 3: Oligonucleotide standard (Component C)
Reagent 4: DEPC-Treated Double-Distilled Water (Maxim Biotech)

(検量線の作成)
(1)試薬2と試薬4からTEバッファーを調製した。
(2)試薬4とTEバッファーを用いて,200 ng/mL オリゴDNA溶液を調製した。
(3)200 ng/mL オリゴDNA溶液とTEバッファーを用いて,検量線用の各種濃度のオリゴDNA溶液を調製した。
(4)試薬1とTEバッファーを用いて,Quant-iT OliGreen ssDNA(蛍光発色液)溶液を調製した。
(5)蛍光分析装置のマイクロプレートの各スロットに検量線用の各種濃度のオリゴDNAを各100μL投入した。
蛍光分析装置は、蛍光マイクロプレートリーダーSPECTRA MAX GEMINI XPS(モレキュラーデバイスジャパン(株)製)を使用した。
(6)マイクロプレートの各スロットにQuant-iT OliGreen ssDNA(蛍光発色液)溶液を100μL投入した。
(7)各スロットの最終的な検量線用オリゴDNA溶液は、表1に示した濃度になった。
(8)マイクロプレートを3分間遮光静置した。
(9)マイクロプレートを蛍光分析装置に導入し、Excitation:520nm,Emission:520nmの条件で各スロットの蛍光分析を行った。
(10)分析結果から作成された検量線を図2に示した。
(Create a calibration curve)
(1) A TE buffer was prepared from Reagent 2 and Reagent 4.
(2) A 200 ng / mL oligo DNA solution was prepared using Reagent 4 and TE buffer.
(3) Various concentrations of oligo DNA solutions for calibration curves were prepared using 200 ng / mL oligo DNA solution and TE buffer.
(4) A Quant-iT OliGreen ssDNA (fluorescent coloring solution) solution was prepared using Reagent 1 and TE buffer.
(5) 100 μL of each concentration of oligo DNA for calibration curve was put into each slot of the microplate of the fluorescence analyzer.
As a fluorescence analyzer, a fluorescence microplate reader SPECTRA MAX GEMINI XPS (manufactured by Molecular Device Japan Co., Ltd.) was used.
(6) 100 μL of Quant-iT OliGreen ssDNA (fluorescent coloring solution) solution was put into each slot of the microplate.
(7) The final calibration curve oligo DNA solution in each slot had the concentrations shown in Table 1.
(8) The microplate was allowed to stand for 3 minutes in the dark.
(9) The microplate was introduced into a fluorescence analyzer, and fluorescence analysis of each slot was performed under conditions of Excitation: 520 nm and Emission: 520 nm.
(10) The calibration curve created from the analysis results is shown in FIG.

Figure 0006453710
Figure 0006453710

図2の横軸はオリゴDNA濃度(ng/ml)を示し、縦軸の蛍光強度は、蛍光分析装置蛍光マイクロプレートリーダーを使用して測定した値である(測定誤差は±0.2%)。
複数の検量線作成用試料液のオリゴDNA濃度と蛍光強度は、直線を示しており、検量線として信頼できるものである。
定量測定可能範囲は、1.25ng/ml<オリゴDNA濃度<100ng/mlの範囲である。
The horizontal axis in FIG. 2 indicates the oligo DNA concentration (ng / ml), and the fluorescence intensity on the vertical axis is a value measured using a fluorescence analyzer fluorescence microplate reader (measurement error is ± 0.2%). .
The oligo DNA concentrations and fluorescence intensities of a plurality of calibration curve preparation sample solutions show a straight line and are reliable as calibration curves.
The quantitative measurement range is 1.25 ng / ml <oligo DNA concentration <100 ng / ml.

(サンプル水のオリゴDAN濃度測定)
(1)各サンプル水1gを微量遠心濃縮機(PV-1200 和研薬(株)製)にセットし,2000rpmにて3時間減圧濃縮した。
各サンプル水の濃縮倍率は、次のとおりであった。
原水(水道水):12.2倍
RO膜モジュールの透過水:12.1倍
EDI処理脱塩水:8.9倍
(2)検量線用の各種濃度のオリゴDNA溶液の代わりに濃縮したサンプル水を使用する以外は、検量線の作成と同じ方法(同じ測定タイミング)で、蛍光分析を行った。
(3)分析結果と濃縮倍率から,各サンプル水中のオリゴDNA濃度を算出した。
結果を表2に示す。
なお、サンプル水の約10倍の濃縮操作をすることで、定量測定の下限界値は、0.125ng/mlと判断できる。
(Measurement of oligo DAN concentration in sample water)
(1) 1 g of each sample water was set in a microcentrifugal concentrator (PV-1200, manufactured by Wakken Pharmaceutical Co., Ltd.) and concentrated under reduced pressure at 2000 rpm for 3 hours.
The concentration rate of each sample water was as follows.
Raw water (tap water): 12.2 times RO membrane module permeated water: 12.1 times EDI-treated desalted water: 8.9 times (2) Concentrated sample water instead of various concentrations of oligo DNA solution for calibration curve Fluorescence analysis was performed by the same method (same measurement timing) as that for preparing the calibration curve, except that.
(3) The oligo DNA concentration in each sample water was calculated from the analysis result and the concentration factor.
The results are shown in Table 2.
It should be noted that the lower limit value of the quantitative measurement can be determined to be 0.125 ng / ml by concentrating the sample water about 10 times.

Figure 0006453710
Figure 0006453710

表2から明らかなとおり、EDI装置の出口(人工透析用水となるEDI処理水を採取できる)のサンプル水はオリゴDNA濃度が低く、人工透析用水を人工透析液の製造用として供給するという判断をすることができる。
また、オリゴDNA濃度が高い場合には、人工透析用水の製造を中断して、EDI水タンク内のEDI処理水を再処理したり、製造フロー内を殺菌処理したりするという判断ができるようになる。
As is clear from Table 2, the sample water at the outlet of the EDI device (which can collect EDI-treated water to be used as artificial dialysis water) has a low oligo DNA concentration, and it is judged that artificial dialysis water is supplied for the production of artificial dialysis fluid. can do.
Moreover, when the oligo DNA concentration is high, it can be judged that the production of artificial dialysis water is interrupted and the EDI-treated water in the EDI water tank is retreated or the production flow is sterilized. Become.

本発明の人工透析用水の品質管理方法を適用することで、病院などの人工透析をする医療施設において安全性の高い人工透析液を安定して使用できるようになる。   By applying the quality control method for artificial dialysis water of the present invention, a highly safe artificial dialysis solution can be stably used in a medical facility such as a hospital where artificial dialysis is performed.

1 プレフィルター
2 軟水化装置
3 吸着装置(活性炭装置)
4 ラインヒーター
5 逆浸透膜処理装置(RO装置)
6 RO水タンク
6a ヒーター6a
7 限外濾過膜装置(UF装置)
8 熱交換器
9 EDI装置
10 EDI水タンク
11 第1原水ライン
12 第2原水ライン
13 第3原水ライン
14 前処理水ライン
16a、16b 濃縮水ライン
17 第1RO水ライン
18 第1取水ライン
19 第2取水ライン
20 第3取水ライン
21 入水ライン21
22 出水ライン
23,24 ライン
25 原水の排水ライン
31 第2RO水ライン
32 EDI水ライン
33 濃縮水ライン
34 開閉弁を備えた連通管
50 人工透析液の調製装置
61 原水ポンプ
62 RO装置ポンプ
63 取水ポンプ(UF装置ポンプ)
64 濃縮水循環ポンプ
65 送液ポンプ(EDI供給ポンプ)
71〜77 開閉弁
1 Prefilter 2 Water softening device 3 Adsorber (activated carbon device)
4 Line heater 5 Reverse osmosis membrane treatment equipment (RO equipment)
6 RO water tank 6a Heater 6a
7 Ultrafiltration membrane device (UF device)
8 Heat Exchanger 9 EDI Device 10 EDI Water Tank 11 First Raw Water Line 12 Second Raw Water Line 13 Third Raw Water Line 14 Pretreatment Water Line 16a, 16b Concentrated Water Line 17 First RO Water Line 18 First Intake Line 19 Second Intake line 20 Third intake line 21 Intake line 21
22 Drainage Lines 23, 24 Line 25 Raw Water Drain Line 31 Second RO Water Line 32 EDI Water Line 33 Concentrated Water Line 34 Communication Pipe with Open / Close Valve 50 Artificial Dialysate Preparation Device 61 Raw Water Pump 62 RO Device Pump 63 Intake Pump (UF device pump)
64 Concentrated water circulation pump 65 Liquid feed pump (EDI supply pump)
71-77 On-off valve

Claims (2)

逆浸透膜装置を含む装置(ただし、電気再生式脱イオン装置は含まない)を使用して製造した人工透析用水中のオリゴDNAを、前記オリゴDNAの染料であるオリグリーン(登録商標)を含む試薬を用いた蛍光法により測定する、人工透析用水の品質管理方法。 Oligo DNA in artificial dialysis water produced using a device including a reverse osmosis membrane device (but not including an electric regenerative deionization device) contains oligreen (registered trademark), which is a dye of the oligo DNA. A quality control method for artificial dialysis water, which is measured by a fluorescence method using a reagent. 逆浸透膜装置と電気再生式脱イオン装置を含む装置を使用して製造した人工透析用水中のオリゴDNAを、前記オリゴDNAの染料であるオリグリーン(登録商標)を含む試薬を用いた蛍光法により測定する、人工透析用水の品質管理方法。 Fluorescence method using oligo-DNA in water for artificial dialysis manufactured using a device including a reverse osmosis membrane device and an electroregenerative deionization device, using a reagent containing oligreen (registered trademark), which is a dye of the oligo DNA Quality control method for artificial dialysis water measured by
JP2015111166A 2015-06-01 2015-06-01 Quality control method for artificial dialysis water Active JP6453710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015111166A JP6453710B2 (en) 2015-06-01 2015-06-01 Quality control method for artificial dialysis water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015111166A JP6453710B2 (en) 2015-06-01 2015-06-01 Quality control method for artificial dialysis water

Publications (2)

Publication Number Publication Date
JP2016223932A JP2016223932A (en) 2016-12-28
JP6453710B2 true JP6453710B2 (en) 2019-01-16

Family

ID=57747986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015111166A Active JP6453710B2 (en) 2015-06-01 2015-06-01 Quality control method for artificial dialysis water

Country Status (1)

Country Link
JP (1) JP6453710B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019009295A1 (en) * 2017-07-04 2019-01-10 ダイセン・メンブレン・システムズ株式会社 Quality control method for water for artificial dialysis
JP2019013740A (en) * 2017-07-04 2019-01-31 ダイセン・メンブレン・システムズ株式会社 Method of controlling quality of water for artificial dialysis
JP2019213741A (en) * 2018-06-13 2019-12-19 ダイセン・メンブレン・システムズ株式会社 Quality management method for water for artificial dialysis

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6323337B1 (en) * 2000-05-12 2001-11-27 Molecular Probes, Inc. Quenching oligonucleotides
US20050064465A1 (en) * 2003-07-02 2005-03-24 Caliper Life Sciences, Inc. Continuous and non-continuous flow bioreactor
JP2007300840A (en) * 2006-05-10 2007-11-22 Matsushita Electric Ind Co Ltd Method for sanitary control
JP5320915B2 (en) * 2008-09-08 2013-10-23 株式会社Ihi Microbial contamination detection kit, microbial contamination detection method, and contamination source discrimination method
JP4440989B1 (en) * 2009-06-03 2010-03-24 ダイセン・メンブレン・システムズ株式会社 Method for producing purified water
JP2010279461A (en) * 2009-06-03 2010-12-16 Daicen Membrane Systems Ltd Method of purifying dialysis fluid or water for dialysis
FR2976936B1 (en) * 2011-06-24 2013-08-02 Millipore Corp SYSTEM AND METHOD FOR PURIFYING AND DISPENSING WATER WITH SEPARATION BARRIER REMOVING BACTERIAL CONTAMINATION
JP5931493B2 (en) * 2012-02-17 2016-06-08 ダイセン・メンブレン・システムズ株式会社 Method for producing medical purified water
JP5923027B2 (en) * 2012-11-01 2016-05-24 ダイセン・メンブレン・システムズ株式会社 Apparatus for producing purified water for medical use and operation method thereof
JP5923030B2 (en) * 2012-12-06 2016-05-24 ダイセン・メンブレン・システムズ株式会社 Apparatus for producing purified water for medical use and operation method thereof
JP5584321B1 (en) * 2013-03-08 2014-09-03 ダイセン・メンブレン・システムズ株式会社 Operation method of medical purified water production equipment

Also Published As

Publication number Publication date
JP2016223932A (en) 2016-12-28

Similar Documents

Publication Publication Date Title
Criscuoli et al. Treatment of dye solutions by vacuum membrane distillation
JP5923027B2 (en) Apparatus for producing purified water for medical use and operation method thereof
JP6453710B2 (en) Quality control method for artificial dialysis water
US20180104652A1 (en) Reverse osmosis membrane cleaning method and reverse osmosis membrane cleaning apparatus
JP2020518391A5 (en)
JP5584321B1 (en) Operation method of medical purified water production equipment
JP5953726B2 (en) Ultrapure water production method and apparatus
JP5923030B2 (en) Apparatus for producing purified water for medical use and operation method thereof
JP2020062620A (en) Water treatment system and water treatment method
CN205188052U (en) Former pretreatment of water and demineralizer
JP5336926B2 (en) Purified water production method and purified water production apparatus
EP2723693A1 (en) System and method for purification and distribution of water with separation barrier taking away the biological contamination
JP2019103978A (en) Pure water production apparatus and method of operating the same
CN211255379U (en) Double-box inverted electrodialysis water purification system and table top type water purifier thereof
JP2019213741A (en) Quality management method for water for artificial dialysis
JP2019013740A (en) Method of controlling quality of water for artificial dialysis
WO2019009295A1 (en) Quality control method for water for artificial dialysis
JP5184401B2 (en) Pure water production method and pure water production apparatus
JP3228053B2 (en) Pure water production equipment
JP4552483B2 (en) Hot water flow treatment method for water treatment unit and assembly method for pure water production apparatus
JP4475568B2 (en) Bacteria generation suppression method in electric demineralized water production equipment
JP7213717B2 (en) Water for injection manufacturing device and manufacturing method
JP2014061488A (en) Water treatment system and water treatment method
JP2020203231A (en) Membrane penetration water production apparatus and injection service water production system
Vasishta et al. Membrane separation: an advanced tool for the development of a wastewater treatment process

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20180309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181213

R150 Certificate of patent or registration of utility model

Ref document number: 6453710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150