JP6443989B2 - Input device - Google Patents

Input device Download PDF

Info

Publication number
JP6443989B2
JP6443989B2 JP2015221253A JP2015221253A JP6443989B2 JP 6443989 B2 JP6443989 B2 JP 6443989B2 JP 2015221253 A JP2015221253 A JP 2015221253A JP 2015221253 A JP2015221253 A JP 2015221253A JP 6443989 B2 JP6443989 B2 JP 6443989B2
Authority
JP
Japan
Prior art keywords
substrate
input device
force
elastic member
conductive member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015221253A
Other languages
Japanese (ja)
Other versions
JP2017091254A (en
Inventor
重高 寛
寛 重高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2015221253A priority Critical patent/JP6443989B2/en
Priority to CN201610885553.9A priority patent/CN107015680A/en
Priority to CN202010678400.3A priority patent/CN111857425A/en
Publication of JP2017091254A publication Critical patent/JP2017091254A/en
Application granted granted Critical
Publication of JP6443989B2 publication Critical patent/JP6443989B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/965Switches controlled by moving an element forming part of the switch
    • H03K17/975Switches controlled by moving an element forming part of the switch using a capacitive movable element
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04105Pressure sensors for measuring the pressure or force exerted on the touch surface without providing the touch position

Description

基板に対する押圧等の入力操作を検出する入力装置に関する。   The present invention relates to an input device that detects an input operation such as pressing on a substrate.

特許文献1には、物体の近接を検出する近接センサと、外部から加えられる力を検出する力センサ(フォースセンサ)とを備えた入力装置が記載されている。この従来の入力装置において、近接センサと力センサは、何れも静電容量の変化に基づいてセンシングを行う。従来の入力装置は、第1基板と第2基板を有する。第1基板の表面に近接センサ用の電極が配設され、その裏面に力センサ用の電極が配設される。また第1基板の裏面には、スペーサ層を介して、第2基板が接着される。第2基板は、金属の板であり、打ち抜き加工によって形成されたばね機構と電極要素を有する。電極要素は、ばね機構によって弾性的に支持される。第2基板の電極要素と第1基板の電極とが、スペーサ層によって作られたギャップを隔てて対向し、可変容量のキャパシタを形成する。   Patent Document 1 describes an input device that includes a proximity sensor that detects the proximity of an object and a force sensor (force sensor) that detects a force applied from the outside. In this conventional input device, both the proximity sensor and the force sensor perform sensing based on a change in capacitance. A conventional input device has a first substrate and a second substrate. An electrode for a proximity sensor is disposed on the front surface of the first substrate, and an electrode for a force sensor is disposed on the back surface thereof. A second substrate is bonded to the back surface of the first substrate through a spacer layer. The second substrate is a metal plate and has a spring mechanism and electrode elements formed by punching. The electrode element is elastically supported by a spring mechanism. The electrode element of the second substrate and the electrode of the first substrate are opposed to each other with a gap created by the spacer layer to form a variable capacitance capacitor.

第1基板が押圧されると、第2基板の背面のケーシングに設けられた凸部(力伝達要素)によって第2基板の電極要素が押される。これにより、第1基板の電極と第2基板の電極要素との距離が変化し、電極間の静電容量が変化する。力センサは、この電極間の静電容量をセンシング結果として取得する。   When the first substrate is pressed, the electrode element of the second substrate is pressed by the convex portion (force transmission element) provided on the casing on the back surface of the second substrate. As a result, the distance between the electrode on the first substrate and the electrode element on the second substrate changes, and the capacitance between the electrodes changes. The force sensor acquires the capacitance between the electrodes as a sensing result.

米国特許出願公開第2013/0099802号明細書US Patent Application Publication No. 2013/0099802

上述した従来の入力装置は、電極間のギャップの変化による静電容量の変化に基づいて力を検出するため、電極間のギャップを形成するための部品(スペーサ層)が必要となる。また、第1基板及び第2基板を支持するための機構と、力の検出のために変位や弾性変形を生じる機構とが別に設けられているため、それぞれの機構の部品が必要となる。従って、部品点数が多く構成が複雑であるという不利益がある。   Since the conventional input device described above detects force based on a change in capacitance due to a change in gap between electrodes, a component (spacer layer) for forming a gap between electrodes is required. Further, since a mechanism for supporting the first substrate and the second substrate and a mechanism for generating displacement and elastic deformation for detecting the force are provided separately, components of the respective mechanisms are required. Therefore, there is a disadvantage that the number of parts is large and the configuration is complicated.

本発明はかかる事情に鑑みてなされたものであり、その目的は、入力操作に伴って基板に加えられる力を簡易な構成で検出することができる入力装置を提供することにある。   The present invention has been made in view of such circumstances, and an object thereof is to provide an input device capable of detecting a force applied to a substrate in accordance with an input operation with a simple configuration.

本発明の入力装置は、入力操作を受ける基板と、前記基板を弾性的に支持する支持部と、前記入力操作に伴って前記基板に加えられる力を検出する力センサ部とを備える。前記力センサ部は、弾性部材を含み、前記弾性部材の弾性変形に応じて抵抗値が変化する可変抵抗部と、前記可変抵抗部の抵抗値に応じた信号を生成する信号生成部とを有する。前記支持部は、前記弾性部材を収容する収容空間であって、前記入力操作に伴って前記基板に力が加えられると容積が弾性的に変化する収容空間を有する。   An input device according to the present invention includes a substrate that receives an input operation, a support unit that elastically supports the substrate, and a force sensor unit that detects a force applied to the substrate in accordance with the input operation. The force sensor unit includes an elastic member, and includes a variable resistance unit that changes a resistance value according to elastic deformation of the elastic member, and a signal generation unit that generates a signal corresponding to the resistance value of the variable resistance unit. . The support portion is a storage space for storing the elastic member, and has a storage space whose volume is elastically changed when a force is applied to the substrate in accordance with the input operation.

上記の構成によれば、前記入力操作に伴って前記基板に力が加えられると、前記収容空間の容積が弾性的に変化し、前記収容空間に収容された前記弾性部材に弾性変形が生じる。この前記弾性部材の弾性変形に応じて、前記可変抵抗部の抵抗値が変化し、前記信号生成部において生成される信号が変化する。従って、静電容量の変化に基づいて力を検出する従来の方式のように、電極間のギャップを形成するためのスペーサ等の機構部品が必要ない。また、前記基板を支持する前記支持部が、前記入力操作の力の検出に必要な弾性変形を生じることから、力の検出のために変位や弾性変形を生じる機構部品を前記支持部と別に設ける必要がない。   According to said structure, when force is applied to the said board | substrate with the said input operation, the volume of the said accommodation space will change elastically and the elastic member accommodated in the said accommodation space will produce elastic deformation. In accordance with the elastic deformation of the elastic member, the resistance value of the variable resistance unit changes, and the signal generated in the signal generation unit changes. Therefore, a mechanism component such as a spacer for forming a gap between the electrodes is not required unlike the conventional method of detecting a force based on a change in capacitance. In addition, since the support portion that supports the substrate generates elastic deformation necessary for detecting the force of the input operation, a mechanical component that generates displacement or elastic deformation is provided separately from the support portion for detecting the force. There is no need.

本発明の入力装置において、前記可変抵抗部は、前記収容空間において互いに接触可能に配置され、導電率が異なる2つの導電部材を含み、前記2つの導電部材のうち導電率が高い方の導電部材が、前記弾性部材であり、前記2つの導電部材のうち導電率が低い方の導電部材が、前記基板に形成された抵抗体のパターンであり、前記弾性部材が、前記抵抗体のパターンとの接触箇所に向かって張り出した凸面を持ち、前記収容空間の容積が変化すると、前記弾性部材と前記抵抗体のパターンとの接触圧が変化し、前記基板には、前記抵抗体のパターンとそれぞれ電気的に接続され、前記接触箇所を間に挟んで配置された2つの電極パターンが形成されており、前記信号生成部は、前記2つの電極パターン間における抵抗値に応じた信号を生成する。 In the input device of the present invention, the variable resistor portion is contactable to each other in the accommodating space, the two conductive members which conductivity is different look-containing, electrically conductive towards high conductivity of said two conductive members member, wherein Ri elastic member der, the conductive member of it is low conductivity of the two conductive members is a pattern of the formed resistor to the substrate, wherein the elastic member is a pattern of the resistor Chi lifting the convex surface protruding toward the contact portion between, the volume of the housing space is changed, the contact pressure between the pattern of the resistor and the elastic member is changed, the substrate, the pattern of the resistor When electrically connected, the contact portion therebetween two electrode patterns arranged in is formed between the, the signal generating unit, generates a signal corresponding to the resistance value between the two electrode patterns That.

上記の構成によれば、前記入力操作に伴って前記基板に力が加えられると、前記収容空間の容積が変化し、前記収容空間において互いに接触した前記弾性部材と前記抵抗体のパターンとの接触圧が変化する。前記弾性部材が、前記抵抗体のパターンとの接触箇所に向かって張り出した前記凸面を持っているため、前記接触圧が変化すると、前記弾性部材が前記接触箇所において変形し、前記弾性部材と前記抵抗体のパターンとの接触面積が変化する。この接触面積が変化すると、前記弾性部材と前記抵抗体のパターンとの接触箇所における抵抗値が変化するため、前記抵抗体のパターンとそれぞれ電気的に接続され、前記接触箇所を間に挟んで配置された2つの電極パターン間の抵抗値が変化する。すなわち、前記2つの電極パターン間の抵抗値は、前記接触面積が小さいほど大きくなり、前記接触面積が大きいほど小さくなる。前記2つの電極パターン間の抵抗値に応じて生成される前記信号生成部の信号は、前記弾性部材と前記抵抗体のパターンとの接触面積に応じて変化する。 According to said structure, when force is applied to the said board | substrate with the said input operation, the volume of the said accommodation space will change, and the contact of the said elastic member and said resistor pattern which mutually contacted in the said accommodation space The pressure changes. The elastic member is because it has the convex surface protruding toward the region of contact between the pattern of the resistor, when the contact pressure is changed, the elastic member is deformed in the contact portion, and the elastic member The contact area with the resistor pattern changes. When this contact area changes, the resistance value at the contact point between the elastic member and the resistor pattern changes, so that it is electrically connected to the resistor pattern, and is arranged with the contact point in between. The resistance value between the two electrode patterns thus formed changes. That is, the resistance value between the two electrode patterns increases as the contact area decreases, and decreases as the contact area increases. The signal of the signal generator generated according to the resistance value between the two electrode patterns changes according to the contact area between the elastic member and the resistor pattern .

好適に、前記基板は、平行に対向する第1の面と第2の面を持ち、前記第1の面において前記入力操作を受けてよい。前記支持部は、前記第2の面から前記基板を支持してよい。前記弾性部材と前記抵抗体のパターンとは、前記収容空間において前記第1の面及び前記第2の面と垂直な縦方向に並んで配置されてよい。前記収容空間は、前記入力操作によって前記基板に加えられる前記縦方向の力が増すと、前記縦方向の長さが縮小してよい。 Preferably, the substrate may have a first surface and a second surface facing in parallel, and may receive the input operation on the first surface. The support portion may support the substrate from the second surface. The elastic member and the resistor pattern may be arranged side by side in a vertical direction perpendicular to the first surface and the second surface in the accommodation space. The storage space may be reduced in length in the vertical direction when the vertical force applied to the substrate by the input operation is increased.

上記の構成によれば、前記入力操作によって前記基板に加えられる前記縦方向の力が増すと、前記収容空間の前記縦方向の長さが縮小するため、前記縦方向に並んで配置された前記弾性部材と前記抵抗体のパターンとが互いに近づき、前記弾性部材と前記抵抗体のパターンとの接触圧が増して、前記弾性部材と前記抵抗体のパターンとの接触面積が大きくなる。逆に、前記縦方向の力が減ると、前記収容空間の前記縦方向の長さが弾性によって伸長するため、前記縦方向に並んで配置された前記弾性部材と前記抵抗体のパターンとが互いに離れ、前記弾性部材と前記抵抗体のパターンとの接触圧が減少して、前記弾性部材と前記抵抗体のパターンとの接触面積が小さくなる。前記基板を介して前記支持部に加えられる前記縦方向の力は、前記収容空間の前記縦方向における長さの変化へ効率的に変換され易い。また、前記弾性部材と前記抵抗体のパターンとが並んで配置される方向が前記縦方向であるため、前記収容空間の前記縦方向における長さの変化は、前記弾性部材と前記抵抗体のパターンとの接触面積の変化へ効率的に変換され易い。従って、前記信号生成部において得られる信号の感度が向上する。 According to the above structure, when the longitudinal force applied to the substrate by the input operation increases, the length of the longitudinal direction of the accommodating space to shrink, which is arranged in the longitudinal direction the The elastic member and the resistor pattern approach each other, the contact pressure between the elastic member and the resistor pattern increases, and the contact area between the elastic member and the resistor pattern increases. On the contrary, when the force in the vertical direction is reduced, the length of the storage space in the vertical direction is elastically extended, so that the elastic member arranged in the vertical direction and the pattern of the resistor are mutually connected. The contact pressure between the elastic member and the resistor pattern decreases, and the contact area between the elastic member and the resistor pattern decreases. The vertical force applied to the support via the substrate is easily converted efficiently into a change in length of the accommodation space in the vertical direction. In addition, since the direction in which the elastic member and the resistor pattern are arranged side by side is the vertical direction, the change in the length of the accommodating space in the vertical direction is the pattern of the elastic member and the resistor. liable to be efficiently converted into a change in the contact area between. Therefore, the sensitivity of the signal obtained in the signal generator is improved.

好適に、上記入力装置は、物体の近接状態に応じて静電容量が変化する複数の容量性センサ素子を含んだ静電センサ部を備えてよく、前記複数の容量性センサ素子が前記基板の前記第1の面若しくは前記第1の面と前記第2の面との間の中間層に配置されてよい。
これにより、前記基板において物体の近接状態の検出と力の検出の両方を行うことが可能となる。また、前記複数の容量性センサ素子が配置される前記第1の面若しくは前記中間層と異なる前記第2の面において前記支持部が前記基板を支持することから、前記複数の容量性センサ素子の配置領域を広く確保することが可能となる。
Preferably, the input device may include an electrostatic sensor unit including a plurality of capacitive sensor elements whose capacitances change according to the proximity state of the object, and the plurality of capacitive sensor elements of the substrate. You may arrange | position in the intermediate | middle layer between the said 1st surface or the said 1st surface and the said 2nd surface.
This makes it possible to detect both the proximity state of the object and the force on the substrate. Further, since the support section supports the substrate on the first surface where the plurality of capacitive sensor elements are arranged or on the second surface different from the intermediate layer, the plurality of capacitive sensor elements A wide arrangement area can be secured.

好適に、前記抵抗体のパターンがカーボンの薄膜として前記第2の面に形成されてよく、前記信号生成部が前記基板に配置されてよい。
これにより、前記抵抗体のパターンと前記信号生成部との接続を前記基板の導電パターンによって行うことが可能となるため、コネクタ等の配線が不要となり、構成がより簡易になる。
Preferably, well pattern of the resistor is formed on the second surface as a thin film of carbon, the signal generator may be arranged on the substrate.
As a result, the resistor pattern and the signal generation unit can be connected by the conductive pattern of the substrate, so that wiring such as a connector is not necessary, and the configuration becomes simpler.

好適に、前記支持部は、前記収容空間の開口部を囲み、前記基板の前記第2の面に固定される端面を有してよい。前記収容空間の前記開口部は、前記基板の前記第2の面において前記抵抗体のパターンと重なる領域に位置してよい。
これにより、前記支持部の端面を前記第2の面に両面テープ等で固定するだけで、前記収容空間の開口部において前記弾性部材である導電部材と前記抵抗体のパターンとの接触が確保されるため、構成がより簡易になり、組み立てが容易になる。
Suitably, the said support part may have the end surface which surrounds the opening part of the said accommodation space, and is fixed to the said 2nd surface of the said board | substrate. The opening of the housing space may be located in a region overlapping the resistor pattern on the second surface of the substrate.
Thereby, the contact between the conductive member, which is the elastic member, and the pattern of the resistor is ensured at the opening of the accommodation space only by fixing the end surface of the support portion to the second surface with a double-sided tape or the like. Therefore, the configuration becomes simpler and the assembly becomes easier.

好適に、前記支持部は、前記縦方向に対して中心軸が平行な円柱体であってよい。前記収容空間は、前記円柱体と中心軸が共通し、前記円柱体より径が小さい円柱状の空間であってよい。
これにより、前記基板へ前記縦方向の力が加えられた場合に、前記支持部の円柱状の前記収容空間が径方向へ均等に変形し易くなり、前記収容空間の前記縦方向の長さも均等に変形し易くなるため、前記縦方向の力に応じて前記接触面積が安定に変化し、力の検出の精度が向上する。
Preferably, the support part may be a cylindrical body having a central axis parallel to the longitudinal direction. The accommodating space may be a cylindrical space having a common central axis with the cylindrical body and having a smaller diameter than the cylindrical body.
As a result, when the vertical force is applied to the substrate, the cylindrical storage space of the support portion is easily deformed uniformly in the radial direction, and the vertical length of the storage space is also equal. Therefore, the contact area changes stably according to the longitudinal force, and the accuracy of detecting the force is improved.

好適に、前記収容空間の前記縦方向の長さは、前記基板に前記縦方向の力が加えられていない場合でも前記弾性部材と前記抵抗体のパターンとが互いに接触する長さに設定されてよい。
これにより、前記基板への前記縦方向の力がゼロに近い範囲においても、前記可変抵抗部の抵抗値の変化が検出され易くなる。
Preferably, the length of the accommodating space in the vertical direction is set such that the elastic member and the resistor pattern are in contact with each other even when the vertical force is not applied to the substrate. Good.
Thereby, even in a range where the vertical force on the substrate is close to zero, a change in the resistance value of the variable resistance portion is easily detected.

好適に、前記第2の面と平行であり、互いに垂直に交わる2本の仮想直線のそれぞれに対して線対称な前記第2の面の複数の位置に、複数の前記支持部が固定されてよい。
これにより、前記基板が安定に支持され易くなる。また、前記2本の仮想直線のそれぞれに対して線対称な複数の位置で力の検出が行われるため、前記基板上における力の作用位置を算出し易くなる。
Preferably, a plurality of the support portions are fixed to a plurality of positions on the second surface that are parallel to the second surface and symmetrical with respect to each of two virtual straight lines that intersect perpendicularly to each other. Good.
Thereby, the substrate is easily supported stably. In addition, since force detection is performed at a plurality of positions that are line-symmetric with respect to each of the two virtual straight lines, it is easy to calculate the force application position on the substrate.

好適に、上記入力装置は、前記基板の前記第2の面に固定され、前記力センサ部の前記信号生成部において生成される信号に応じて振動する振動発生部を有してよい。
これにより、前記振動発生部が発生した振動に応じて前記支持部が弾性変形し、振動の力が前記支持部より先に伝わり難くなるため、振動の力が前記基板に接触する指等へ伝わり易くなる。また、前記振動発生部が前記第2の面に固定されるため、前記縦方向のサイズを小型化し易くなる。
Preferably, the input device may include a vibration generation unit that is fixed to the second surface of the substrate and vibrates according to a signal generated in the signal generation unit of the force sensor unit.
As a result, the support portion is elastically deformed according to the vibration generated by the vibration generating portion, and the vibration force is difficult to be transmitted before the support portion. Therefore, the vibration force is transmitted to a finger or the like that contacts the substrate. It becomes easy. In addition, since the vibration generating unit is fixed to the second surface, it is easy to reduce the size in the vertical direction.

好適に、前記第2の面の複数の位置に、複数の前記支持部が固定されてよい。前記振動発生部が、前記複数の支持部の固定位置を頂点とする多角形の領域の内側に固定されてよい。
これにより、前記基板が安定に支持され易くなる。また、前記2本の仮想直線のそれぞれに対して線対称な複数の位置で力の検出が行われるため、前記基板上における力の作用位置を算出し易くなる。更に、前記振動発生部で発生した振動が前記基板に接触する物体(指など)へ効率的に伝わる。
Preferably, a plurality of the support portions may be fixed to a plurality of positions on the second surface. The vibration generating unit may be fixed inside a polygonal region having apexes at fixed positions of the plurality of support units.
Thereby, the substrate is easily supported stably. In addition, since force detection is performed at a plurality of positions that are line-symmetric with respect to each of the two virtual straight lines, it is easy to calculate the force application position on the substrate. Furthermore, the vibration generated by the vibration generating unit is efficiently transmitted to an object (such as a finger) that contacts the substrate.

好適に、前記振動発生部が前記多角形の領域の重心位置に固定されてよい。
これにより、前記振動発生部で発生した振動が前記基板に接触する物体へより効率的に伝わる。
Suitably, the said vibration generation part may be fixed to the gravity center position of the said polygonal area | region.
Thereby, the vibration generated in the vibration generating unit is more efficiently transmitted to the object in contact with the substrate.

本発明によれば、入力操作に伴って基板に加えられる力を簡易な構成で検出することができる。   According to the present invention, it is possible to detect a force applied to a substrate in accordance with an input operation with a simple configuration.

本発明の実施形態に係る入力装置の構造の一例を示す図である。It is a figure which shows an example of the structure of the input device which concerns on embodiment of this invention. 支持部の構造の一例を示す図である。It is a figure which shows an example of the structure of a support part. 本発明の実施形態に係る入力装置の要部の構造を例示する図である。It is a figure which illustrates the structure of the principal part of the input device which concerns on embodiment of this invention. 本発明の実施形態に係る入力装置の全体的な構成の一例を示す図である。It is a figure which shows an example of the whole structure of the input device which concerns on embodiment of this invention. 本発明の実施形態の一変形例に係る入力装置の構造を示す図である。It is a figure which shows the structure of the input device which concerns on the modification of embodiment of this invention. 図5に示す入力装置の断面を示す図である。It is a figure which shows the cross section of the input device shown in FIG.

以下、本発明の実施形態に係る入力装置について図面を参照して説明する。
図1は、本実施形態に係る入力装置の構造の一例を示す図である。図1に示す入力装置は、入力操作を受ける基板10と、基板10を弾性的に支持する4つの支持部20を有しており、基板10に指やペンなどの物体を触れさせて行われる種々の入力操作に応じた情報を入力する。この入力装置は、入力操作に応じた情報を入力するための検出機能として、基板10に加えられる力を検出する機能と、基板10に近接する物体の位置を検出する機能を備える。
Hereinafter, an input device according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram illustrating an example of the structure of the input device according to the present embodiment. The input device shown in FIG. 1 includes a substrate 10 that receives an input operation, and four support portions 20 that elastically support the substrate 10, and is performed by touching the substrate 10 with an object such as a finger or a pen. Input information according to various input operations. This input device has a function of detecting a force applied to the substrate 10 and a function of detecting the position of an object close to the substrate 10 as a detection function for inputting information according to the input operation.

基板10は、図1の例において板状の部材であり、平行に対向する第1の面101と第2の面102を持つ。基板10は、第1の面101において入力操作を受ける。また図1の例において、基板10の平面形状は矩形であり、垂直に交わる2本の仮想直線L1及びL2のそれぞれに対して線対称となっている。なお、基板10の平面形状は矩形に限定されない。例えば、第1の面101及び第2の面102の形状は、垂直に交わる2本の仮想直線L1及びL2のそれぞれに対して線対称な他の形状(真円,楕円,正多角形など)でもよい。   The substrate 10 is a plate-like member in the example of FIG. 1 and has a first surface 101 and a second surface 102 that face each other in parallel. The substrate 10 receives an input operation on the first surface 101. In the example of FIG. 1, the planar shape of the substrate 10 is rectangular, and is symmetrical with respect to each of two virtual straight lines L1 and L2 that intersect perpendicularly. The planar shape of the substrate 10 is not limited to a rectangle. For example, the shapes of the first surface 101 and the second surface 102 are other shapes (a perfect circle, an ellipse, a regular polygon, etc.) that are line-symmetric with respect to the two virtual straight lines L1 and L2 that intersect perpendicularly. But you can.

支持部20は、入力操作を受ける第1の面101に対して反対側の第2の面102から基板10を支持する。図1の例において、支持部20の一方の端が基板10の第2の面102に固定され、支持部20の他方の端が基台5に固定される。後述するように、支持部20がそれぞれ有する弾性力を利用して、支持部20に作用する力が検出される。   The support unit 20 supports the substrate 10 from the second surface 102 opposite to the first surface 101 that receives the input operation. In the example of FIG. 1, one end of the support portion 20 is fixed to the second surface 102 of the substrate 10, and the other end of the support portion 20 is fixed to the base 5. As will be described later, the force acting on the support portion 20 is detected using the elastic force of each of the support portions 20.

図1の例において、4つの支持部20は、矩形形状の基板10の四隅と近い位置に固定される。基板10の縁と近い位置に4つの支持部20を固定することで、基板10が安定に支持され易くなる。また、第2の面102と平行な2本の直交した仮想直線L1及びL2のそれぞれに対して線対称な4つの位置に4つの支持部20を固定することで、基板10がより安定に支持される。更に、2本の仮想直線L1及びL2のそれぞれに対して線対称な4つの位置で支持部20に加わる力を検出することで、この4つの位置における力の関係から、第2の面102に力が作用した位置を算出し易くなる。なお、支持部20の数は4より多くてもよい。   In the example of FIG. 1, the four support portions 20 are fixed at positions close to the four corners of the rectangular substrate 10. By fixing the four support portions 20 at positions close to the edge of the substrate 10, the substrate 10 is easily supported stably. In addition, the substrate 10 is supported more stably by fixing the four support portions 20 at four positions that are axisymmetric with respect to each of two orthogonal virtual straight lines L1 and L2 parallel to the second surface 102. Is done. Further, by detecting the force applied to the support portion 20 at four positions that are axisymmetric with respect to each of the two virtual straight lines L1 and L2, from the relationship between the forces at these four positions, It becomes easy to calculate the position where the force is applied. In addition, the number of the support parts 20 may be more than four.

図2は、支持部20の構造の一例を示す図である。図2Aは斜視図を示し、図2Bは図2AのB−B線における断面図を示す。
図2の例において、支持部20は円柱体である。この円柱体の中心軸は、基板10が持つ2つの面(第1の面101,第2の面102)と垂直な方向(以下、「縦方向」と記す。)に対して平行である。支持部20の一方の端面201が基板10の第2の面102に固定され、支持部20の他方の端面202が基台5に固定される。
FIG. 2 is a diagram illustrating an example of the structure of the support portion 20. 2A is a perspective view, and FIG. 2B is a cross-sectional view taken along line BB in FIG. 2A.
In the example of FIG. 2, the support part 20 is a cylindrical body. The central axis of the cylindrical body is parallel to a direction (hereinafter, referred to as “longitudinal direction”) perpendicular to two surfaces (first surface 101 and second surface 102) of the substrate 10. One end surface 201 of the support portion 20 is fixed to the second surface 102 of the substrate 10, and the other end surface 202 of the support portion 20 is fixed to the base 5.

支持部20は、導電部材41を収容する収容空間25を有する。導電部材41は、例えば、導電ラバーなどの弾性部材である。図2の例において、収容空間25は、円柱体である支持部20と中心軸が共通する円柱状の空間であり、支持部20よりも径が小さい。支持部20は、基板10の第2の面102に固定される端面201において、収容空間25の開口部26を有する。端面201は、円形の開口部26を囲むリング状の形状を有する。端面201が基板10の第2の面102に固定されると、開口部26が第2の面102によって塞がれるため、収容空間25は密閉された空間となる。   The support part 20 has an accommodation space 25 for accommodating the conductive member 41. The conductive member 41 is an elastic member such as a conductive rubber, for example. In the example of FIG. 2, the accommodation space 25 is a cylindrical space having a central axis that is the same as that of the support portion 20 that is a cylindrical body, and has a smaller diameter than the support portion 20. The support portion 20 has an opening portion 26 of the accommodation space 25 on the end surface 201 fixed to the second surface 102 of the substrate 10. The end surface 201 has a ring shape surrounding the circular opening 26. When the end surface 201 is fixed to the second surface 102 of the substrate 10, the opening 26 is closed by the second surface 102, so that the accommodation space 25 becomes a sealed space.

この収容空間25は、入力操作に伴って基板10に力が加えられると、その容積が弾性的に変化する。すなわち、入力操作によって基板10に加えられる縦方向の力が増すと、支持部20が基板10と基台5の間に挟まれて圧縮されるため、収容空間25の縦方向の長さが縮小する。支持部20は、例えばポリウレタンフォームやエラストマなどの弾性を有した材料を用いて形成される。   When a force is applied to the accommodation space 25 in accordance with an input operation, the volume of the accommodation space 25 changes elastically. That is, when the vertical force applied to the substrate 10 by the input operation is increased, the support portion 20 is sandwiched between the substrate 10 and the base 5 and compressed, so that the vertical length of the accommodation space 25 is reduced. To do. The support portion 20 is formed using an elastic material such as polyurethane foam or elastomer.

図3は、本実施形態に係る入力装置の要部の構造を例示する図であり、図1におけるA−A線の断面の一部を示す。図3Aは基板10に力が加えられていない初期状態を示し、図3Bは縦方向の力が加えられた状態を示す。図3Aと図3Bにおいて示すように、収容空間25の縦方向の長さが変化すると、収容空間25に収容された弾性部材である導電部材41が弾性変形を生じる。   FIG. 3 is a diagram illustrating the structure of the main part of the input device according to this embodiment, and shows a part of the cross section taken along the line AA in FIG. 3A shows an initial state in which no force is applied to the substrate 10, and FIG. 3B shows a state in which a longitudinal force is applied. As shown in FIGS. 3A and 3B, when the longitudinal length of the accommodation space 25 changes, the conductive member 41, which is an elastic member accommodated in the accommodation space 25, is elastically deformed.

図3の例において、基板10は、互いに貼り合わされた板状のガラス板11とプリント基板12を有する。ガラス板11の一方の面が第1の面101であり、ユーザの入力操作を受ける。ガラス板11の他方の面にはプリント基板12が接着される。ガラス板11に接着されるプリント基板12の一方の面には、後述する容量性センサ素子Csの電極パターン(図4)が形成される。   In the example of FIG. 3, the substrate 10 includes a plate-shaped glass plate 11 and a printed circuit board 12 that are bonded to each other. One surface of the glass plate 11 is the first surface 101 and receives a user input operation. A printed circuit board 12 is bonded to the other surface of the glass plate 11. An electrode pattern (FIG. 4) of a capacitive sensor element Cs described later is formed on one surface of the printed board 12 bonded to the glass plate 11.

プリント基板12の他方の面(ガラス板11に対して反対側の面)が第2の面102であり、支持部20はこの面から基板10を支持する。支持部20の一方の端面201が両面テープ6Aで第2の面102に接着され、支持部20の他方の端面202が両面テープ6Bで基台5に接着される。   The other surface (surface opposite to the glass plate 11) of the printed circuit board 12 is the second surface 102, and the support unit 20 supports the substrate 10 from this surface. One end surface 201 of the support portion 20 is bonded to the second surface 102 with a double-sided tape 6A, and the other end surface 202 of the support portion 20 is bonded to the base 5 with a double-sided tape 6B.

プリント基板12の第2の面102には、収容空間25に収容された導電部材41と接触する導電部材42が配置される。図3の例において、導電部材42はカーボンなどの抵抗体のパターン(薄膜)であり、導電部材41に比べて導電率が低い(抵抗値が高い)。端面201に囲まれた収容空間25の開口部26は、第2の面102に形成された導電部材42の抵抗体のパターンと重なる領域に位置する。収容空間25に収容された弾性部材である導電部材41は、第2の面102に向かって弾性的に突出し、導電部材42と接触する。   On the second surface 102 of the printed circuit board 12, a conductive member 42 that contacts the conductive member 41 accommodated in the accommodation space 25 is disposed. In the example of FIG. 3, the conductive member 42 is a pattern (thin film) of a resistor such as carbon, and has a lower conductivity (a higher resistance value) than the conductive member 41. The opening 26 of the accommodation space 25 surrounded by the end surface 201 is located in a region overlapping with the resistor pattern of the conductive member 42 formed on the second surface 102. The conductive member 41 that is an elastic member housed in the housing space 25 protrudes elastically toward the second surface 102 and contacts the conductive member 42.

入力操作に伴う縦方向の力が基板10に加えられることで収容空間25の容積が変化すると、収容空間25において互いに接触して配置された2つの導電部材(41,42)の接触圧が変化する。すなわち、基板10に加えられる縦方向への力が増すと、収容空間25の縦方向の長さが縮小し、2つの導電部材(41,42)の接触圧が増す。図2において示すように、弾性部材である導電部材41は、導電部材42との接触箇所に向かって張り出した凸面を持つ。そのため、導電部材41と導電部材42との接触圧が増すと、導電部材41が接触箇所において変形し、導電部材41と導電部材42との接触面積が変化する。   When the volume of the accommodation space 25 is changed by applying a vertical force accompanying the input operation to the substrate 10, the contact pressure of the two conductive members (41, 42) arranged in contact with each other in the accommodation space 25 changes. To do. That is, when the vertical force applied to the substrate 10 is increased, the vertical length of the accommodation space 25 is reduced, and the contact pressure between the two conductive members (41, 42) is increased. As shown in FIG. 2, the conductive member 41 that is an elastic member has a convex surface that protrudes toward the contact point with the conductive member 42. Therefore, when the contact pressure between the conductive member 41 and the conductive member 42 increases, the conductive member 41 is deformed at the contact location, and the contact area between the conductive member 41 and the conductive member 42 changes.

導電部材41と導電部材42との接触面積が変化すると、この接触箇所の抵抗値が変化する。すなわち、導電部材41と導電部材42との接触箇所では、高抵抗の導電部材42に低抵抗の導電部材41が並列接続された状態となるため、抵抗値が低くなる。接触箇所の面積が大きくなるほど、この接触箇所を介した導電経路の抵抗値が低くなる。プリント基板12の第2の面102には、導電部材41と導電部材42との接触箇所を間に挟んで2つの電極パターン(31,32)が配置される。電極パターン31,32は、それぞれ抵抗体の導電部材42と電気的に接続される。従って、2つの電極パターン(31,32)の間における抵抗値は、導電部材41と導電部材42との接触面積に応じて変化する。2つの電極パターン(31,32)は、後述する信号生成部44に接続される。   When the contact area between the conductive member 41 and the conductive member 42 changes, the resistance value at this contact point changes. That is, since the low resistance conductive member 41 is connected in parallel to the high resistance conductive member 42 at the contact portion between the conductive member 41 and the conductive member 42, the resistance value is low. As the area of the contact location increases, the resistance value of the conductive path through the contact location decreases. On the second surface 102 of the printed circuit board 12, two electrode patterns (31, 32) are arranged with a contact portion between the conductive member 41 and the conductive member 42 interposed therebetween. The electrode patterns 31 and 32 are each electrically connected to a conductive member 42 of a resistor. Therefore, the resistance value between the two electrode patterns (31, 32) changes according to the contact area between the conductive member 41 and the conductive member. The two electrode patterns (31, 32) are connected to a signal generation unit 44 described later.

図2において示すように、収容空間25の縦方向の長さは、基板10の導電部材42に向かって張り出した導電部材41の凸面の頂部までの長さに比べて短い。そのため、収容空間25に収容された導電部材41は、基板10に縦方向の力が加えられていない場合でも、基板10の導電部材42と接触した状態になる。すなわち、収容空間25の前記縦方向の長さは、基板10に縦方向の力が加えられていない場合でも2つの導電部材(41,42)が互いに接触する長さに設定される。これにより、縦方向の力がゼロに近い微小な範囲であっても、2つの導電部材(41,42)の接触が確保されるため、縦方向の力に応じた接触面積の変化が生じ、2つの電極パターン(31,32)間における抵抗値の変化が生じる。   As shown in FIG. 2, the length of the accommodation space 25 in the vertical direction is shorter than the length to the top of the convex surface of the conductive member 41 protruding toward the conductive member 42 of the substrate 10. Therefore, the conductive member 41 accommodated in the accommodation space 25 is in contact with the conductive member 42 of the substrate 10 even when no vertical force is applied to the substrate 10. That is, the length of the accommodation space 25 in the vertical direction is set to a length in which the two conductive members (41, 42) are in contact with each other even when no vertical force is applied to the substrate 10. Thereby, even if the longitudinal force is in a minute range close to zero, since the contact between the two conductive members (41, 42) is ensured, a change in the contact area according to the longitudinal force occurs. The resistance value changes between the two electrode patterns (31, 32).

図4は、本実施形態に係る入力装置の全体的な構成の一例を示す図である。本実施形態に係る入力装置は、例えば図4において示すように、4つの支持部20に対応した4つの力センサ部40と、静電センサ部50と、処理部60を備える。   FIG. 4 is a diagram illustrating an example of the overall configuration of the input device according to the present embodiment. For example, as shown in FIG. 4, the input device according to the present embodiment includes four force sensor units 40 corresponding to the four support units 20, an electrostatic sensor unit 50, and a processing unit 60.

力センサ部40は、入力操作に伴って基板10に加えられる力を検出するセンサであり、可変抵抗部43と信号生成部44を有する。
可変抵抗部43は、導電部材41の弾性変形に応じて抵抗値が変化する回路であり、上述した導電部材41と導電部材42を含む。
The force sensor unit 40 is a sensor that detects a force applied to the substrate 10 in accordance with an input operation, and includes a variable resistance unit 43 and a signal generation unit 44.
The variable resistance portion 43 is a circuit whose resistance value changes according to the elastic deformation of the conductive member 41, and includes the conductive member 41 and the conductive member 42 described above.

信号生成部44は、可変抵抗部43の抵抗値、すなわち導電部材41と導電部材42との接触箇所を挟んで配置された2つの電極パターン(31,32)間における抵抗値に応じた信号を生成する。例えば信号生成部44は、可変抵抗部43の抵抗値に応じたアナログ信号を生成する回路と、このアナログ信号をデジタル信号に変換して処理部60に出力するAD変換器を有する。   The signal generation unit 44 outputs a signal corresponding to the resistance value of the variable resistance unit 43, that is, the resistance value between the two electrode patterns (31, 32) arranged across the contact portion between the conductive member 41 and the conductive member 42. Generate. For example, the signal generation unit 44 includes a circuit that generates an analog signal corresponding to the resistance value of the variable resistance unit 43, and an AD converter that converts the analog signal into a digital signal and outputs the digital signal to the processing unit 60.

静電センサ部50は、基板10の第1の面101に近接する物体の位置を静電容量の変化に基づいて検出するセンサであり、図4の例ではセンサマトリクス51と、駆動部52と、静電容量検出部53を有する。   The electrostatic sensor unit 50 is a sensor that detects the position of an object close to the first surface 101 of the substrate 10 based on a change in capacitance. In the example of FIG. 4, the sensor matrix 51, the drive unit 52, And a capacitance detecting unit 53.

センサマトリクス51は、プリント基板12においてガラス板11と接した面に形成された複数の駆動電極Exと複数の検出電極Eyを備える。複数の駆動電極Exと複数の検出電極Eyは、格子状に交差して配置され、互いに絶縁される。駆動電極Exと検出電極Eyとの交差点付近には、物体の近接状態に応じて静電容量が変化する容量性センサ素子Csが形成される。複数の容量性センサ素子Csは、基板10における第1の面101と第2の面102との間の中間層においてマトリクス状に分布する。   The sensor matrix 51 includes a plurality of drive electrodes Ex and a plurality of detection electrodes Ey formed on the surface of the printed circuit board 12 in contact with the glass plate 11. The plurality of drive electrodes Ex and the plurality of detection electrodes Ey are arranged so as to intersect with each other in a lattice shape and are insulated from each other. In the vicinity of the intersection of the drive electrode Ex and the detection electrode Ey, a capacitive sensor element Cs whose capacitance changes according to the proximity state of the object is formed. The plurality of capacitive sensor elements Cs are distributed in a matrix form in an intermediate layer between the first surface 101 and the second surface 102 of the substrate 10.

駆動部52は、センサマトリクス51の各容量性センサ素子Csに駆動電圧を印加する。例えば、駆動部52は、処理部60の制御に従って、複数の駆動電極Exから順番に一の駆動電極Exを選択し、当該選択した一の駆動電極Exの電位を周期的に変化させる。各容量性センサ素子Csの容量が物体の近接状態に応じて変化し、それに応じた電荷量の充電、放電が生じる。駆動電極Exに対する駆動と検出電極Eyでの検出を順次に行うことにより、センサマトリクス51の全体における物体の近接状況が分かる。   The drive unit 52 applies a drive voltage to each capacitive sensor element Cs of the sensor matrix 51. For example, the drive unit 52 selects one drive electrode Ex sequentially from the plurality of drive electrodes Ex according to the control of the processing unit 60, and periodically changes the potential of the selected one drive electrode Ex. The capacitance of each capacitive sensor element Cs changes in accordance with the proximity state of the object, and charging and discharging with an amount of charge corresponding to that change occurs. By sequentially driving the drive electrode Ex and detecting the detection electrode Ey, the proximity state of the object in the entire sensor matrix 51 can be determined.

静電容量検出部53は、駆動部52による駆動電圧の印加に伴って容量性センサ素子Csが充電又は放電される際に各検出電極Eyにおいて伝送される電荷を検出する。すなわち、静電容量検出部53は、駆動部52の駆動電圧の周期的な変化と同期したタイミングで、各検出電極Eyにおいて伝送される電荷を検出する。例えば静電容量検出部53は、容量性センサ素子Csの静電容量に応じた電圧を出力する静電容量−電圧変換回路(CV変換回路)と、CV変換回路の出力信号をデジタル信号に変換するAD変換器を有する。   The electrostatic capacitance detection unit 53 detects the charge transmitted through each detection electrode Ey when the capacitive sensor element Cs is charged or discharged in accordance with the application of the drive voltage by the drive unit 52. That is, the capacitance detection unit 53 detects the charge transmitted through each detection electrode Ey at a timing synchronized with a periodic change in the drive voltage of the drive unit 52. For example, the capacitance detection unit 53 converts a capacitance-voltage conversion circuit (CV conversion circuit) that outputs a voltage according to the capacitance of the capacitive sensor element Cs, and converts the output signal of the CV conversion circuit into a digital signal. An AD converter.

なお、上述の例において示したセンサ部10は、電極間(Ex,Ey)に生じる静電容量(相互容量)の変化によって物体の近接を検出するものであるが、この例に限らず、他の種々の方式によって物体の近接を検出してもよい。例えば、センサ部10は、物体の接近によって電極とグランドの間に生じる静電容量(自己容量)を検出する方式でもよい。自己容量を検出する方式の場合、検出電極に駆動電圧が印加される。   The sensor unit 10 shown in the above example detects the proximity of an object by a change in capacitance (mutual capacitance) generated between electrodes (Ex, Ey), but is not limited to this example. The proximity of the object may be detected by various methods. For example, the sensor unit 10 may be a system that detects a capacitance (self-capacitance) generated between the electrode and the ground due to the approach of an object. In the case of a method for detecting self-capacitance, a drive voltage is applied to the detection electrode.

処理部60は、入力装置の全体的な動作を制御する回路であり、例えば、不図示の記憶部に格納されるプログラムの命令コードに従って処理を行うコンピュータや、特定の機能を実現するロジック回路を含んで構成される。処理部60の処理は、その全てをコンピュータとプログラムにより実現してもよいし、その一部若しくは全部を専用のロジック回路で実現してもよい。   The processing unit 60 is a circuit that controls the overall operation of the input device. For example, a computer that performs processing according to an instruction code of a program stored in a storage unit (not shown) or a logic circuit that realizes a specific function. Consists of including. All of the processing of the processing unit 60 may be realized by a computer and a program, or part or all of the processing may be realized by a dedicated logic circuit.

処理部60は、4つの力センサ部40の信号生成部44において生成される信号を周期的に取得し、取得した信号に基づいて、基板10に加えられた力の大きさや力の作用位置を算出する。また処理部60は、静電センサ部50において周期的に検出される複数の容量性センサ素子Csの静電容量検出値に基づいて、基板10に近接する物体の位置の座標を算出する。   The processing unit 60 periodically acquires signals generated in the signal generation units 44 of the four force sensor units 40, and determines the magnitude of the force applied to the substrate 10 and the position where the force is applied based on the acquired signals. calculate. Further, the processing unit 60 calculates the coordinates of the position of the object close to the substrate 10 based on the capacitance detection values of the plurality of capacitive sensor elements Cs periodically detected by the electrostatic sensor unit 50.

図4に示す入力装置における信号生成部44や駆動部52,静電容量検出部53,処理部60などの電子回路は、1つ若しくは複数の半導体集積回路チップに集積可能である。図1の例では、これらの電子回路を集積した半導体集積回路チップU1が基板10の第2の面102に実装される。   Electronic circuits such as the signal generation unit 44, the drive unit 52, the capacitance detection unit 53, and the processing unit 60 in the input device shown in FIG. 4 can be integrated on one or a plurality of semiconductor integrated circuit chips. In the example of FIG. 1, a semiconductor integrated circuit chip U <b> 1 in which these electronic circuits are integrated is mounted on the second surface 102 of the substrate 10.

上述した構成を有する本実施形態に係る入力装置によれば、入力操作に伴って基板10に力が加えられると、収容空間25の容積が弾性的に変化し、収容空間25に収容された弾性部材である導電部材41に弾性変形が生じる。この導電部材41の弾性変形に応じて、可変抵抗部43の抵抗値が変化し、信号生成部44において生成される信号が変化する。そのため、静電容量の変化に基づいて力を検出する従来の方式のように、電極間のギャップを形成するためのスペーサ等の機構部品が必要ない。また、基板10を支持する支持部20が、入力操作の力の検出に必要な弾性変形を生じることから、力の検出のために変位や弾性変形を生じる機構部品を支持部20と別に設ける必要がない。従って、部品点数を削減し、構成を簡易化することができる。   According to the input device according to the present embodiment having the above-described configuration, when a force is applied to the substrate 10 in accordance with an input operation, the volume of the accommodation space 25 changes elastically, and the elasticity accommodated in the accommodation space 25 is obtained. Elastic deformation occurs in the conductive member 41 which is a member. In accordance with the elastic deformation of the conductive member 41, the resistance value of the variable resistor 43 changes, and the signal generated in the signal generator 44 changes. Therefore, there is no need for a mechanism component such as a spacer for forming a gap between the electrodes as in the conventional method of detecting force based on a change in capacitance. Further, since the support portion 20 that supports the substrate 10 generates elastic deformation necessary for detecting the force of the input operation, it is necessary to provide a mechanical component that generates displacement and elastic deformation separately from the support portion 20 for detecting the force. There is no. Therefore, the number of parts can be reduced and the configuration can be simplified.

また、本実施形態に係る入力装置によれば、力の検出のために必要な弾性力を発生する支持部20と同じ場所で、その弾性力の大きさが力センサ部40により直接検出される。そのため、弾性力を発生する場所から離れた場所で間接的に弾性力を検出する場合に比べて、基板10に作用する力を正確に検出できる。   Further, according to the input device according to the present embodiment, the magnitude of the elastic force is directly detected by the force sensor unit 40 at the same place as the support unit 20 that generates the elastic force necessary for detecting the force. . Therefore, the force acting on the substrate 10 can be detected more accurately than in the case where the elastic force is indirectly detected at a place away from the place where the elastic force is generated.

また、本実施形態に係る入力装置によれば、入力操作に伴って基板10に力が加えられると、収容空間25の容積が変化し、収容空間25において互いに接触した2つの導電部材(41,42)の接触圧が変化する。導電部材41が導電部材42との接触箇所に向かって張り出した凸面を持っているため、2つの導電部材(41,42)の接触圧が変化すると、弾性部材である導電部材41が接触箇所において変形し、2つの導電部材(41,42)の接触面積が変化する。この接触面積が変化すると、2つの導電部材(41,42)の接触箇所における抵抗値が変化する。そのため、導電率の低い(高抵抗の)導電部材42において導電部材41との接触箇所を間に挟んだ2つの電極パターン(31,32)間における導電経路の抵抗値は、2つの導電部材(41,42)の接触面積に応じて変化する。すなわち、2つの電極パターン(31,32)間の抵抗値は、2つの導電部材(41,42)の接触面積が小さいほど大きくなり、この接触面積が大きいほど小さくなる。2つの電極パターン(31,32)間の抵抗値に応じて生成される信号生成部44の信号は、2つの導電部材(41,42)の接触面積に応じて変化する。従って、基板10に加えられる力を、導電部材41及び42の接触面積の変化に伴う抵抗値の変化として検出することができる。   Further, according to the input device according to the present embodiment, when a force is applied to the substrate 10 in accordance with an input operation, the volume of the accommodation space 25 changes, and the two conductive members (41, 41, 41) that contact each other in the accommodation space 25 are changed. 42) The contact pressure changes. Since the conductive member 41 has a convex surface that protrudes toward the contact point with the conductive member 42, when the contact pressure between the two conductive members (41, 42) changes, the conductive member 41 that is an elastic member is Deformation changes the contact area of the two conductive members (41, 42). When the contact area changes, the resistance value at the contact point between the two conductive members (41, 42) changes. For this reason, the resistance value of the conductive path between the two electrode patterns (31, 32) sandwiching the contact portion with the conductive member 41 in the conductive member 42 having low conductivity (high resistance) has two conductive members ( 41, 42) depending on the contact area. That is, the resistance value between the two electrode patterns (31, 32) increases as the contact area between the two conductive members (41, 42) decreases, and decreases as the contact area increases. The signal of the signal generation unit 44 generated according to the resistance value between the two electrode patterns (31, 32) varies according to the contact area between the two conductive members (41, 42). Therefore, the force applied to the substrate 10 can be detected as a change in resistance value accompanying a change in the contact area between the conductive members 41 and 42.

また、本実施形態に係る入力装置によれば、入力操作によって基板10に加えられる縦方向の力が増すと、収容空間25の縦方向の長さが縮小するため、縦方向に並んで配置された2つの導電部材(41,42)が互いに近づき、2つの導電部材(41,42)の接触圧が増して、2つの導電部材(41,42)の接触面積が大きくなる。逆に、縦方向の力が減ると、収容空間25の縦方向の長さが弾性によって伸長するため、縦方向に並んで配置された2つの導電部材(41,42)が互いに離れ、2つの導電部材(41,42)の接触圧が減少して、2つの導電部材(41,42)の接触面積が小さくなる。基板10を介して支持部20に加えられる縦方向の力は、収容空間25の縦方向における長さの変化へ効率的に変換され易い。また、2つの導電部材(41,42)が並んで配置される方向が縦方向であるため、収容空間25の縦方向における長さの変化は、2つの導電部材(41,42)の接触面積の変化へ効率的に変換され易い。従って、基板10に加えられる縦方向の力が、信号生成部44の抵抗値の変化へ効率的に変換されるため、信号生成部において得られる信号の感度を高めることができる。   Further, according to the input device according to the present embodiment, when the vertical force applied to the substrate 10 by the input operation is increased, the vertical length of the accommodation space 25 is reduced. The two conductive members (41, 42) approach each other, the contact pressure between the two conductive members (41, 42) increases, and the contact area between the two conductive members (41, 42) increases. On the contrary, when the force in the vertical direction is reduced, the length in the vertical direction of the accommodation space 25 is elastically extended, so that the two conductive members (41, 42) arranged side by side in the vertical direction are separated from each other. The contact pressure between the conductive members (41, 42) decreases, and the contact area between the two conductive members (41, 42) decreases. The vertical force applied to the support portion 20 via the substrate 10 is easily converted efficiently into a change in the length of the accommodation space 25 in the vertical direction. Further, since the direction in which the two conductive members (41, 42) are arranged side by side is the vertical direction, the change in the length of the accommodation space 25 in the vertical direction is the contact area of the two conductive members (41, 42). It is easy to be efficiently converted into changes. Therefore, since the vertical force applied to the substrate 10 is efficiently converted into a change in the resistance value of the signal generation unit 44, the sensitivity of the signal obtained in the signal generation unit can be increased.

また、本実施形態に係る入力装置によれば、静電センサ部50の複数の容量性センサ素子Csが基板10における第1の面101と第2の面102との間の中間層に配置されるため、基板10において物体の近接状態の検出と力の検出の両方を行うことが可能となる。また、支持部20によって基板10を支持する面(第2の面102)と、複数の容量性センサ素子Csが配置される面(基板10の中間層)とが異なることから、複数の容量性センサ素子Csの配置領域を広く確保することが可能となり、広い領域で物体の近接を検出できる。   Further, according to the input device according to the present embodiment, the plurality of capacitive sensor elements Cs of the electrostatic sensor unit 50 are arranged in the intermediate layer between the first surface 101 and the second surface 102 in the substrate 10. Therefore, it is possible to perform both detection of the proximity state of the object and detection of force on the substrate 10. In addition, since the surface (second surface 102) that supports the substrate 10 by the support unit 20 and the surface (intermediate layer of the substrate 10) on which the plurality of capacitive sensor elements Cs are arranged are different, a plurality of capacitive elements. It is possible to secure a wide arrangement area of the sensor element Cs, and the proximity of the object can be detected in a wide area.

また、本実施形態に係る入力装置によれば、2つの導電部材(41,42)のうち導電率が低い方の導電部材42が、基板10の第2の面102に形成された抵抗体のパターンであり、信号生成部44が導電部材42と同じ基板10上に配置される。これにより、抵抗体のパターンである導電部材42と信号生成部44との電気的な接続を基板10の導電パターンによって行うことが可能となるため、コネクタ等の配線が不要となり、構成を更に簡易化することができる。   Further, according to the input device according to the present embodiment, the conductive member 42 having the lower conductivity among the two conductive members (41, 42) is formed of the resistor formed on the second surface 102 of the substrate 10. In this pattern, the signal generator 44 is disposed on the same substrate 10 as the conductive member 42. As a result, the conductive member 42, which is a resistor pattern, can be electrically connected to the signal generating unit 44 by the conductive pattern of the substrate 10, so that wiring such as a connector is not required, and the configuration is further simplified. Can be

また、本実施形態に係る入力装置によれば、収容空間25の開口部26を囲む支持部20の端面201が基板10の第2の面102に固定されており、収容空間25の開口部26が、基板10の第2の面102において導電部材42の抵抗体のパターンと重なる領域に位置している。これにより、支持部20の端面201を第2の面102に両面テープ等で固定するだけで、収容空間25の開口部26において弾性部材である導電部材41と抵抗体パターンである導電部材42との接触を確保できる。従って、構成がより簡易になり、組み立てが容易になる。   Further, according to the input device according to the present embodiment, the end surface 201 of the support portion 20 surrounding the opening portion 26 of the accommodation space 25 is fixed to the second surface 102 of the substrate 10, and the opening portion 26 of the accommodation space 25. Is located in a region overlapping the resistor pattern of the conductive member 42 on the second surface 102 of the substrate 10. As a result, the conductive member 41 that is an elastic member and the conductive member 42 that is a resistor pattern in the opening 26 of the accommodation space 25 can be obtained simply by fixing the end surface 201 of the support portion 20 to the second surface 102 with a double-sided tape or the like. Can be secured. Therefore, the configuration becomes simpler and the assembly becomes easier.

また、本実施形態に係る入力装置によれば、支持部20が縦方向に対して中心軸が平行な円柱体であり、収容空間25がこの円柱体と中心軸が共通な円柱状の空間であり、円柱体に比べて円柱状の空間の径が小さい。これにより、基板10へ縦方向の力が加えられた場合に、支持部20の円柱状の収容空間25が径方向へ均等に変形し易くなり、収容空間25の縦方向の長さも均等に変形し易くなる。そのため、2つの導電部材(41,42)の接触面積が縦方向の力に応じて安定に変化し易くなり、力の検出の精度を高めることができる。   Moreover, according to the input device which concerns on this embodiment, the support part 20 is a cylindrical body with a central axis parallel to the vertical direction, and the accommodating space 25 is a cylindrical space having a common central axis with this cylindrical body. Yes, the diameter of the cylindrical space is smaller than that of the cylindrical body. Thereby, when a vertical force is applied to the substrate 10, the cylindrical storage space 25 of the support portion 20 is easily deformed uniformly in the radial direction, and the length of the storage space 25 in the vertical direction is also uniformly deformed. It becomes easy to do. Therefore, the contact area between the two conductive members (41, 42) is likely to change stably according to the force in the vertical direction, and the accuracy of force detection can be increased.

また、本実施形態に係る入力装置によれば、支持部20の弾性率を弾性部材である導電部材41の弾性率に比べて高くすることにより、基板10への縦方向の力による収容空間25の弾性変形の大きさが、支持部20の弾性率によって制御され易くなる。そのため、弾性部材である導電部材41に必要な弾性率の自由度が高くなり、導電部材41に用いる材料や形状等の選択の幅が広がるため、可変抵抗部43の抵抗値の制御が容易になる。   Further, according to the input device according to the present embodiment, the accommodation space 25 due to the vertical force applied to the substrate 10 is increased by making the elastic modulus of the support portion 20 higher than the elastic modulus of the conductive member 41 that is an elastic member. The size of the elastic deformation of the support portion 20 is easily controlled by the elastic modulus of the support portion 20. Therefore, the degree of freedom of the elastic modulus necessary for the conductive member 41 that is an elastic member is increased, and the range of selection of materials, shapes, and the like used for the conductive member 41 is widened, so that the resistance value of the variable resistance portion 43 can be easily controlled. Become.

また、本実施形態に係る入力装置によれば、収容空間25の縦方向の長さが、基板10に縦方向の力が加えられていない場合でも2つの導電部材(41,42)が互いに接触する長さに設定される。これにより、基板10に加えられる縦方向の力がゼロに近い微小な範囲でも、2つの導電部材(41,42)の接触が確保されるため、可変抵抗部43の抵抗値の変化を適切に検出することができる。   Moreover, according to the input device according to the present embodiment, the two conductive members (41, 42) are in contact with each other even when the vertical length of the accommodation space 25 is not applied to the substrate 10 in the vertical direction. Set to the length to be. Accordingly, since the contact between the two conductive members (41, 42) is ensured even in a minute range in which the vertical force applied to the substrate 10 is close to zero, the change in the resistance value of the variable resistance portion 43 is appropriately adjusted. Can be detected.

次に、本実施形態の一変形例について、図5及び図6を参照して説明する。図5は、一変形例に係る入力装置の構造を示す図である。図6は、図5に示す入力装置におけるC−C線の断面図である。   Next, a modification of the present embodiment will be described with reference to FIGS. FIG. 5 is a diagram illustrating a structure of an input device according to a modification. FIG. 6 is a cross-sectional view taken along line CC in the input device shown in FIG.

この一変形例に係る入力装置は、既に説明した図1〜図4に示す入力装置と同様の構成に加えて、振動発生部U2を有する。振動発生部U2は、4つの力センサ部40の信号生成部44において生成される信号に応じて振動する装置であり、例えば圧電素子や動電型振動素子やコアレスモータなどのアクチュエータを含んで構成される。振動発生部U2は、例えば信号生成部44の信号を処理する処理部60からの制御信号に従って振動状態をオンオフする。処理部60は、例えば基板10への入力操作に対する触感を与えるように振動発生部U2を制御する。   The input device according to this modification has a vibration generating unit U2 in addition to the same configuration as the input device shown in FIGS. The vibration generating unit U2 is a device that vibrates in accordance with signals generated by the signal generating unit 44 of the four force sensor units 40, and includes, for example, an actuator such as a piezoelectric element, an electrodynamic vibration element, or a coreless motor. Is done. The vibration generation unit U2 turns on and off the vibration state according to a control signal from the processing unit 60 that processes the signal of the signal generation unit 44, for example. The processing unit 60 controls the vibration generating unit U2 so as to give a tactile sensation to an input operation on the substrate 10, for example.

図5,図6の例において、振動発生部U2は、基板10の第2の面102に固定される。基台5は、図6において示すように、振動発生部U2とのクリアランスを確保するための穴55を有する。また振動発生部U2は、図5に示すように、第2の面102において4つの支持部20の固定位置を頂点とする四角形の領域の内側に固定される。例えば、振動発生部U2は、四角形の領域の重心位置に固定される。   In the example of FIGS. 5 and 6, the vibration generating unit U <b> 2 is fixed to the second surface 102 of the substrate 10. As shown in FIG. 6, the base 5 has a hole 55 for securing a clearance with the vibration generating unit U2. Further, as shown in FIG. 5, the vibration generating unit U <b> 2 is fixed inside a quadrangular region whose apex is the fixing position of the four support units 20 on the second surface 102. For example, the vibration generating unit U2 is fixed at the center of gravity position of the quadrangular region.

上述した一変形例の入力装置によれば、振動発生部U2が発生した振動に応じて支持部20が弾性変形し、振動の力が支持部20より先(基台5)に逃げ難くなる。そのため、振動の力を基板10に接触するユーザの指等へ効率的に伝えることができる。また、振動発生部U2が基板10の第2の面102に固定されるため、縦方向のサイズを小型化できる。   According to the input device of one modification described above, the support portion 20 is elastically deformed according to the vibration generated by the vibration generating portion U2, and the force of vibration is difficult to escape beyond the support portion 20 (base 5). Therefore, the vibration force can be efficiently transmitted to the user's finger or the like that contacts the substrate 10. Further, since the vibration generating unit U2 is fixed to the second surface 102 of the substrate 10, the size in the vertical direction can be reduced.

加えて、一変形例の入力装置によれば、4つの支持部20の固定位置を頂点とする四角形の領域の内側に振動発生部U2が固定されるため、振動発生部U2で発生した振動を基板10に接触するユーザの指等へ効率的に伝えることができる。特に、四角形の領域の重心位置に振動発生部U2が固定されることにより、振動発生部U2で発生した振動をより効率的にユーザの指等へ伝えることができる。   In addition, according to the input device of one modified example, since the vibration generating unit U2 is fixed inside the quadrangular region whose apex is the fixing position of the four support units 20, the vibration generated in the vibration generating unit U2 is reduced. The information can be efficiently transmitted to the user's finger or the like that contacts the substrate 10. In particular, since the vibration generating unit U2 is fixed at the center of gravity of the quadrangular region, vibration generated by the vibration generating unit U2 can be transmitted to the user's finger or the like more efficiently.

本発明は、更に種々のバリエーションを含む。
例えば、上述した実施形態では、低抵抗の導電部材41と高抵抗の導電部材42との接触面積を変化させることにより可変抵抗部43の抵抗値を変化させているが、本発明はこの例に限定されない。本発明の他の実施形態では、例えばピエゾ抵抗効果によって抵抗値が変化する部材を弾性部材に適用し、これを収容空間において弾性変形させることにより、基板に加えられる力に応じた抵抗値の変化を生じさせてもよい。
The present invention further includes various variations.
For example, in the above-described embodiment, the resistance value of the variable resistance portion 43 is changed by changing the contact area between the low-resistance conductive member 41 and the high-resistance conductive member 42. However, the present invention is not limited to this example. It is not limited. In another embodiment of the present invention, for example, a member whose resistance value changes due to a piezoresistance effect is applied to the elastic member, and this is elastically deformed in the accommodation space, thereby changing the resistance value according to the force applied to the substrate. May be generated.

上述した実施形態では、2つの導電部材(41,42)の一方のみが弾性部材であるが、本発明の他の実施形態では、2つの導電部材が両方とも弾性部材であってもよい。   In the above-described embodiment, only one of the two conductive members (41, 42) is an elastic member. However, in another embodiment of the present invention, both of the two conductive members may be elastic members.

上述した実施形態では、基板10に形成された導電部材42(抵抗体のパターン)と支持部20の収容空間25に保持された導電部材41との接触面積の変化により力が検出されるが、本発明はこの例に限定されない。本発明の他の実施形態では、一方の導電部材を基台側に配置してもよいし、支持部の内部に設けた収容空間に2つの導電部材を収容してもよい。   In the embodiment described above, the force is detected by the change in the contact area between the conductive member 42 (resistor pattern) formed on the substrate 10 and the conductive member 41 held in the accommodation space 25 of the support portion 20. The present invention is not limited to this example. In another embodiment of the present invention, one conductive member may be arranged on the base side, or two conductive members may be accommodated in an accommodating space provided inside the support portion.

上述した実施形態では、支持部20の弾性率が導電部材41より大きい例を挙げているが、本発明はこの例に限定されない。支持部20において所望の弾性力が得られ、かつ、可変抵抗部43において所望の抵抗値の変化が得られる場合には、支持部20の弾性率を導電部材41と同じにしてもよいし、導電部材41が支持部20より大きい弾性率を有してもよい。   In the embodiment described above, an example in which the elastic modulus of the support portion 20 is larger than that of the conductive member 41 is given, but the present invention is not limited to this example. When a desired elastic force is obtained in the support part 20 and a desired resistance value change is obtained in the variable resistance part 43, the elastic modulus of the support part 20 may be the same as that of the conductive member 41, The conductive member 41 may have a larger elastic modulus than the support portion 20.

上述した実施形態では、弾性部材である導電部材41と支持部20が弾性率の異なる別の材料によって形成されているが、本発明の他の実施形態では、両者を同じ材料で形成してもよい。その場合、弾性部材である導電部材41と支持部20とを一体に形成してもよい。   In the embodiment described above, the conductive member 41 that is an elastic member and the support portion 20 are formed of different materials having different elastic moduli, but in other embodiments of the present invention, both may be formed of the same material. Good. In that case, you may integrally form the electrically-conductive member 41 and the support part 20 which are elastic members.

上述した実施形態では、基板10における第1の面101と第2の面102との間の中間層に複数の容量性センサ素子Csが配置されているが、本発明はこの例に限定されない。本発明の他の実施形態では、基板10の第1の面101に複数の容量性センサ素子Csを直接形成してもよい。   In the above-described embodiment, the plurality of capacitive sensor elements Cs are arranged in the intermediate layer between the first surface 101 and the second surface 102 of the substrate 10, but the present invention is not limited to this example. In other embodiments of the present invention, a plurality of capacitive sensor elements Cs may be formed directly on the first surface 101 of the substrate 10.

本発明は上述した実施形態に限定されない。すなわち、当業者は、本発明の技術的範囲またはその均等の範囲内において、上述した実施形態の構成要素に関し、様々な変更、コンビネーション、サブコンビネーション、並びに代替を行ってもよい。   The present invention is not limited to the embodiment described above. That is, those skilled in the art may make various modifications, combinations, subcombinations, and alternatives regarding the components of the above-described embodiments within the technical scope of the present invention or an equivalent scope thereof.

5…基台、6A,6B…両面テープ、10…基板、101…第1の面、102…第2の面、11…ガラス板、12…プリント基板、20…支持部、25…収容空間、26…開口部、201,202…端面、31,32…電極パターン、40…力センサ部、41,42…導電部材、43…可変抵抗部、44…信号生成部、50…静電センサ部、51…センサマトリクス、Ex…駆動電極、Ey…検出電極、Cs…容量性センサ素子、52…駆動部、53…静電容量検出部、60…処理部、U1…半導体集積回路チップ、U2…振動発生部、L1,L2…仮想直線 DESCRIPTION OF SYMBOLS 5 ... Base, 6A, 6B ... Double-sided tape, 10 ... Board | substrate, 101 ... 1st surface, 102 ... 2nd surface, 11 ... Glass plate, 12 ... Printed circuit board, 20 ... Support part, 25 ... Accommodating space, 26: opening, 201, 202 ... end face, 31, 32 ... electrode pattern, 40 ... force sensor part, 41, 42 ... conductive member, 43 ... variable resistance part, 44 ... signal generation part, 50 ... electrostatic sensor part, DESCRIPTION OF SYMBOLS 51 ... Sensor matrix, Ex ... Drive electrode, Ey ... Detection electrode, Cs ... Capacitive sensor element, 52 ... Drive part, 53 ... Capacitance detection part, 60 ... Processing part, U1 ... Semiconductor integrated circuit chip, U2 ... Vibration Generation part, L1, L2 ... virtual straight line

Claims (11)

入力操作を受ける基板と、
前記基板を弾性的に支持する支持部と、
前記入力操作に伴って前記基板に加えられる力を検出する力センサ部とを備え、
前記力センサ部は、
弾性部材を含み、前記弾性部材の弾性変形に応じて抵抗値が変化する可変抵抗部と、
前記可変抵抗部の抵抗値に応じた信号を生成する信号生成部と
を有し、
前記支持部は、前記弾性部材を収容する収容空間であって、前記入力操作に伴って前記基板に力が加えられると容積が弾性的に変化する収容空間を有し、
前記可変抵抗部は、前記収容空間において互いに接触可能に配置され、導電率が異なる2つの導電部材を含み、
前記2つの導電部材のうち導電率が高い方の導電部材が、前記弾性部材であり、
前記2つの導電部材のうち導電率が低い方の導電部材が、前記基板に形成された抵抗体のパターンであり、
前記弾性部材が、前記抵抗体のパターンとの接触箇所に向かって張り出した凸面を持ち、
前記収容空間の容積が変化すると、前記弾性部材と前記抵抗体のパターンとの接触圧が変化し、
前記基板には、前記抵抗体のパターンとそれぞれ電気的に接続され、前記接触箇所を間に挟んで配置された2つの電極パターンが形成されており、
前記信号生成部は、前記2つの電極パターン間における抵抗値に応じた信号を生成する、
入力装置。
A board that receives an input operation;
A support portion for elastically supporting the substrate;
A force sensor unit that detects a force applied to the substrate in accordance with the input operation,
The force sensor unit is
A variable resistance portion including an elastic member, the resistance value of which varies according to elastic deformation of the elastic member;
A signal generation unit that generates a signal according to the resistance value of the variable resistance unit,
The supporting part is a housing space for housing the elastic member, a force is applied to the substrate volume have a housing space which changes elastically with the input operation,
The variable resistance portion is disposed so as to be in contact with each other in the accommodation space, and includes two conductive members having different conductivities,
Of the two conductive members, the conductive member with the higher conductivity is the elastic member,
The conductive member having the lower conductivity of the two conductive members is a resistor pattern formed on the substrate,
The elastic member has a convex surface protruding toward the contact point with the resistor pattern,
When the volume of the accommodating space changes, the contact pressure between the elastic member and the resistor pattern changes,
The substrate is formed with two electrode patterns that are electrically connected to the resistor patterns, respectively, and are arranged with the contact portion in between.
The signal generation unit generates a signal corresponding to a resistance value between the two electrode patterns;
Input device.
前記基板は、平行に対向する第1の面と第2の面を持ち、前記第1の面において前記入力操作を受け、
前記支持部は、前記第2の面から前記基板を支持し、
前記弾性部材と前記抵抗体のパターンとは、前記収容空間において前記第1の面及び前記第2の面と垂直な縦方向に並んで配置され、
前記収容空間は、前記入力操作によって前記基板に加えられる前記縦方向の力が増すと、前記縦方向の長さが縮小する、
請求項に記載の入力装置。
The substrate has a first surface and a second surface facing in parallel, and receives the input operation on the first surface;
The support portion supports the substrate from the second surface,
The elastic member and the resistor pattern are arranged side by side in a vertical direction perpendicular to the first surface and the second surface in the accommodation space,
When the vertical force applied to the substrate by the input operation is increased, the storage space is reduced in length in the vertical direction.
The input device according to claim 1 .
物体の近接状態に応じて静電容量が変化する複数の容量性センサ素子を含んだ静電センサ部を備え、
前記複数の容量性センサ素子が前記基板の前記第1の面若しくは前記第1の面と前記第2の面との間の中間層に配置される、
請求項に記載の入力装置。
An electrostatic sensor unit including a plurality of capacitive sensor elements whose capacitance changes according to the proximity state of an object,
The plurality of capacitive sensor elements are disposed on the first surface of the substrate or in an intermediate layer between the first surface and the second surface;
The input device according to claim 2 .
前記抵抗体のパターンがカーボンの薄膜として前記第2の面に形成さ
前記信号生成部が前記基板に配置される、
請求項2又は3に記載の入力装置。
Pattern of the resistor is formed on the second surface as a thin film of carbon,
The signal generator is disposed on the substrate;
The input device according to claim 2 or 3 .
前記支持部は、前記収容空間の開口部を囲み、前記基板の前記第2の面に固定される端面を有し、
前記収容空間の前記開口部が、前記基板の前記第2の面において前記抵抗体のパターンと重なる領域に位置する、
請求項に記載の入力装置。
The support portion has an end surface that surrounds the opening of the accommodation space and is fixed to the second surface of the substrate.
The opening of the housing space is located in a region overlapping the resistor pattern on the second surface of the substrate;
The input device according to claim 4 .
前記支持部は、前記縦方向に対して中心軸が平行な円柱体であり、
前記収容空間は、前記円柱体と中心軸が共通し、前記円柱体より径が小さい円柱状の空間である、
請求項2乃至5の何れか一項に記載の入力装置。
The support portion is a cylindrical body whose central axis is parallel to the vertical direction,
The accommodating space is a cylindrical space having a common central axis with the cylindrical body and having a smaller diameter than the cylindrical body.
The input device according to any one of claims 2 to 5 .
前記収容空間の前記縦方向の長さは、前記基板に前記縦方向の力が加えられていない場合でも前記弾性部材と前記抵抗体のパターンとが互いに接触する長さに設定される、
請求項2乃至6の何れか一項に記載の入力装置。
The length in the vertical direction of the accommodating space is set to a length at which the elastic member and the resistor pattern are in contact with each other even when the vertical force is not applied to the substrate.
The input device according to any one of claims 2 to 6 .
前記第2の面と平行であり、互いに垂直に交わる2本の仮想直線のそれぞれに対して線対称な前記第2の面の複数の位置に、複数の前記支持部が固定される、
請求項2乃至7の何れか一項に記載の入力装置。
A plurality of the support portions are fixed to a plurality of positions on the second surface that are parallel to the second surface and are symmetrical with respect to each of two virtual lines that intersect perpendicularly to each other.
The input device according to any one of claims 2 to 7 .
前記基板の前記第2の面に固定され、前記力センサ部の前記信号生成部において生成される信号に応じて振動する振動発生部を有する、
請求項2乃至8の何れか一項に記載の入力装置。
A vibration generator fixed to the second surface of the substrate and vibrating in response to a signal generated in the signal generator of the force sensor;
The input device according to any one of claims 2 to 8 .
前記第2の面の複数の位置に複数の前記支持部が固定され、
前記振動発生部が、前記複数の支持部の固定位置を頂点とする多角形の領域の内側に固定される、
請求項に記載の入力装置。
A plurality of the support portions are fixed to a plurality of positions on the second surface;
The vibration generating unit is fixed inside a polygonal region having a vertex at a fixing position of the plurality of support units,
The input device according to claim 9 .
前記振動発生部が前記多角形の領域の重心位置に固定される、
請求項10に記載の入力装置。
The vibration generating unit is fixed at the center of gravity of the polygonal region;
The input device according to claim 10 .
JP2015221253A 2015-11-11 2015-11-11 Input device Active JP6443989B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015221253A JP6443989B2 (en) 2015-11-11 2015-11-11 Input device
CN201610885553.9A CN107015680A (en) 2015-11-11 2016-10-11 Input unit
CN202010678400.3A CN111857425A (en) 2015-11-11 2016-10-11 Input device and force sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015221253A JP6443989B2 (en) 2015-11-11 2015-11-11 Input device

Publications (2)

Publication Number Publication Date
JP2017091254A JP2017091254A (en) 2017-05-25
JP6443989B2 true JP6443989B2 (en) 2018-12-26

Family

ID=58770633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015221253A Active JP6443989B2 (en) 2015-11-11 2015-11-11 Input device

Country Status (2)

Country Link
JP (1) JP6443989B2 (en)
CN (2) CN111857425A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017127734A (en) * 2017-05-01 2017-07-27 株式会社三洋物産 Game machine

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005332063A (en) * 2004-05-18 2005-12-02 Sony Corp Input device with tactile function, information inputting method, and electronic device
JP2009134473A (en) * 2007-11-29 2009-06-18 Sony Corp Pressing detection sensor, input device and electronic equipment
CN101957656A (en) * 2009-07-17 2011-01-26 英华达(南京)科技有限公司 Method for controlling vernier and operating equipment thereof
JP2011053971A (en) * 2009-09-02 2011-03-17 Sony Corp Apparatus, method and program for processing information
CN201570010U (en) * 2009-09-23 2010-09-01 台均科技(深圳)有限公司 Hand input display device
JP2011209906A (en) * 2010-03-29 2011-10-20 Shin Etsu Polymer Co Ltd Input member and electronic equipment including the same
JP5429814B2 (en) * 2010-03-29 2014-02-26 株式会社ワコム Indicator detection device and detection sensor
JP2012137971A (en) * 2010-12-27 2012-07-19 Minebea Co Ltd Input device
JP6081324B2 (en) * 2013-09-05 2017-02-15 シャープ株式会社 Operation input device, portable information terminal, control method for operation input device, program, and recording medium
JP5519068B1 (en) * 2013-12-16 2014-06-11 株式会社トライフォース・マネジメント Tactile sensor
JP6200361B2 (en) * 2014-03-25 2017-09-20 株式会社フジクラ Pressure-sensitive sensor and input device

Also Published As

Publication number Publication date
JP2017091254A (en) 2017-05-25
CN107015680A (en) 2017-08-04
CN111857425A (en) 2020-10-30

Similar Documents

Publication Publication Date Title
US10242821B2 (en) Localized key-click feedback
US20190041991A1 (en) Feedback responsive input arrangements
JP5347913B2 (en) SENSOR DEVICE, ELECTRONIC DEVICE, AND METHOD FOR MANUFACTURING SENSOR DEVICE
JP3983638B2 (en) Sensor sheet
JP4996771B2 (en) Electronic devices
JP2018160243A (en) System for providing sensor functionality and actuation functionality for touch input device
JP5390029B2 (en) Electronics
US10572021B2 (en) Elastomer suspension with actuation functionality or sensing functionality
JP2006337070A (en) Capacitance type sensor
JP2014142193A (en) Load distribution detector
JPWO2006100725A1 (en) Capacitive sensor
KR20100067630A (en) Touch pad device and method for determining a position of an input object on the device using capacitive coupling
US8079272B2 (en) Tactile sensor
CN102132228A (en) Input device
JPWO2006100724A1 (en) Capacitive sensor
JP2001324397A (en) Force detection device and manipulated variable detection device
US11596979B2 (en) Piezo haptic feedback device with integrated support
JP2003083819A (en) Force detection device using variable resistance element
JP4756097B1 (en) Input device
JP2001311671A (en) Force-detecting element and force sensor using the same
JP6443989B2 (en) Input device
JPWO2019230510A1 (en) Input device
JP5797456B2 (en) Input device
CN109791457B (en) Sensing device and electronic equipment
CN113010007A (en) Apparatus for sensing and three-dimensional haptics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181126

R150 Certificate of patent or registration of utility model

Ref document number: 6443989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350