JP6443424B2 - Method for producing Ni-containing steel - Google Patents

Method for producing Ni-containing steel Download PDF

Info

Publication number
JP6443424B2
JP6443424B2 JP2016203192A JP2016203192A JP6443424B2 JP 6443424 B2 JP6443424 B2 JP 6443424B2 JP 2016203192 A JP2016203192 A JP 2016203192A JP 2016203192 A JP2016203192 A JP 2016203192A JP 6443424 B2 JP6443424 B2 JP 6443424B2
Authority
JP
Japan
Prior art keywords
less
toughness
steel
rolling
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016203192A
Other languages
Japanese (ja)
Other versions
JP2017155328A (en
Inventor
佐藤 祐也
祐也 佐藤
謙次 林
謙次 林
章夫 大森
章夫 大森
羽鳥 聡
聡 羽鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2017155328A publication Critical patent/JP2017155328A/en
Application granted granted Critical
Publication of JP6443424B2 publication Critical patent/JP6443424B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、Niを1.0〜10.0%含有するNi含有鋼の製造方法に関し、圧延表面疵を防止することができるNi含有鋼の製造方法に関する。   The present invention relates to a method for producing a Ni-containing steel containing 1.0 to 10.0% of Ni, and relates to a method for producing a Ni-containing steel capable of preventing rolling surface flaws.

従来から、Ni含有鋼は低温靭性に優れるため、液化天然ガス等の圧力容器用の溶接構造用鋼として広く利用されている。一方で、Ni含有鋼は鋳片表面割れや、加熱、圧延時のスケール押し込み疵等が発生しやすく、これが圧延後の鋼板表面疵となることがよく知られている。圧力容器では厳格な安全性が要求されるため、圧延後の厳格な鋼板表面検査や表面手入れといった鋼板表面手入れ工程が必要である。しかしながら、このような工程は生産障害となり、検査や手入れの増大は歩留まり低下の要因ともなる。   Conventionally, Ni-containing steels are widely used as welded structural steels for pressure vessels such as liquefied natural gas because they are excellent in low temperature toughness. On the other hand, it is well known that Ni-containing steel is prone to slab surface cracking, scale indentation flaws during heating and rolling, and the like, which becomes a steel plate surface flaw after rolling. Since the pressure vessel requires strict safety, a steel plate surface care process such as strict steel plate surface inspection and surface care after rolling is necessary. However, such a process becomes a production hindrance, and an increase in inspection and care causes a decrease in yield.

特許文献1には、圧延前の鋳片あるいは分塊圧延した鋼片の表面を機械的に研削して表面の粒界酸化部および割れ部を除去した後、研削後の表面の凹部に酸化防止剤を所定量塗布し加熱、圧延することにより、表面疵を防止する方法が開示されている。   In Patent Document 1, the surface of a cast slab or rolled steel slab before rolling is mechanically ground to remove grain boundary oxidation parts and cracks on the surface, and then prevent oxidation in the concave parts on the surface after grinding. A method for preventing surface flaws by applying a predetermined amount of an agent, heating and rolling is disclosed.

特許文献2には、分塊圧延後の鋼片における表層下20mmまでの旧γ粒径を500μm以下に制御することにより、圧延時の割れ発生を防止する方法が開示されている。   Patent Document 2 discloses a method of preventing cracking during rolling by controlling the old γ grain size up to 20 mm below the surface layer in a steel piece after partial rolling to 500 μm or less.

特開2006−212671号公報JP 2006-212671 A 特開2009−74123号公報JP 2009-74123 A

しかしながら、特許文献1の方法では、圧延条件を厳密に管理する必要がある。また、特許文献2の方法は、分塊圧延工程を前提としているため生産効率が劣る。   However, in the method of Patent Document 1, it is necessary to strictly manage the rolling conditions. Moreover, since the method of patent document 2 presupposes a block rolling process, production efficiency is inferior.

本発明は上記実情に鑑み、生産障害として製造現場で問題となる鋼板表面手入れ工程の負荷を軽減し、圧延条件の厳密な管理や分塊圧延をすることなく、鋼板の表面疵を防止することができるNi含有鋼の製造方法を提供することを目的とする。   In view of the above circumstances, the present invention reduces the load on the steel sheet surface care process, which is a problem at the manufacturing site as a production obstacle, and prevents surface flaws on the steel sheet without strict management of rolling conditions or partial rolling. It aims at providing the manufacturing method of Ni containing steel which can do.

本発明者らは、溶接構造用鋼として広く利用されているNiを1.0〜10.0%含有するNi含有鋼について、表面疵の原因を調査し、表面疵の防止方法について種々の検討を行った。その結果、表面疵の原因となる圧延時の割れは、凝固時に連続鋳造スラブ表面に生成する巨大で直線的な柱状γ粒の粒界が起点となり、表面から内部に向かって伸びた柱状γ粒の粒界に沿って伝播すると考えられる。Ni含有量が5.5mass%以上の高Ni含有鋼では、γ相を初晶として鋳片の厚さ方向に直線的に柱状γ粒界が成長し、このγ粒界で粒界酸化が生じやすいため、γ粒界に沿って鋳片割れが進展しやすくなる。またこの鋳片割れに熱延スケールが押し込まれ易くなる。その結果、Ni含有鋼は表面疵ができやすいと考えられる。したがって、鋼板の表面疵の発生を防止するには、柱状γ粒を無くすことが重要だとわかった。そして、その柱状γ粒を無くす手段として、圧延前の連続鋳造スラブを1100〜1250℃で1〜24h加熱した後、連続鋳造スラブ表面を600℃以下まで冷却することが最も効果的であることを新たに知見し、本発明を完成した。   The present inventors investigated the cause of surface flaws and investigated various methods for preventing surface flaws in Ni-containing steels containing 1.0 to 10.0% of Ni widely used as welded structural steels. Went. As a result, cracks during rolling, which cause surface defects, start from the grain boundaries of huge, linear columnar γ grains that form on the continuous cast slab surface during solidification, and columnar γ grains that extend from the surface toward the inside. It is thought that it propagates along the grain boundary. In a high Ni-containing steel with a Ni content of 5.5 mass% or more, columnar γ grain boundaries grow linearly in the thickness direction of the slab with the γ phase as the primary crystal, and grain boundary oxidation occurs at these γ grain boundaries. Since it is easy, slab cracking easily progresses along the γ grain boundary. Further, the hot rolled scale is easily pushed into the slab crack. As a result, it is considered that Ni-containing steel is likely to have surface flaws. Therefore, it was found that it is important to eliminate columnar γ grains in order to prevent the occurrence of surface flaws on the steel sheet. And as a means to eliminate the columnar γ grains, it is most effective to cool the continuous cast slab surface to 600 ° C. or lower after heating the continuous cast slab before rolling at 1100 to 1250 ° C. for 1 to 24 hours. A new finding was made and the present invention was completed.

本発明の要旨は次の通りである。
[1]質量%でNiを1.0〜10.0%含有する鋼の連続鋳造スラブを1100〜1250℃で1〜24h加熱し、次いで前記連続鋳造スラブの表面を600℃以下まで冷却後、前記連続鋳造スラブの表面を0.5〜10mm除去した後、熱間圧延することを特徴とするNi含有鋼の製造方法。
[2]前記鋼の成分組成は、質量%で、C:0.01〜0.20%、Si:0.01〜0.50%、Mn:0.30〜2.0%、P:0.020%以下、S:0.0060%以下、Ni:1.0〜10.0%、Al:0.001〜0.080%、N:0.0060%以下、O:0.0040%以下を含有し、残部はFeおよび不可避的不純物からなることを特徴とする[1]に記載のNi含有鋼の製造方法。
[3]前記成分組成は、さらに、質量%で、Cu:0.01〜1.50%、Cr:0.01〜1.00%、Mo:0.01〜1.00%、Nb:0.001〜0.100%、V:0.001〜0.100%、Ti:0.005〜0.020%、B:0.0003〜0.0020%、Ca:0.0003〜0.0050%、Mg:0.0003〜0.0050%、REM:0.0003〜0.0050%の1種または2種以上を含有することを特徴とする[2]に記載のNi含有鋼の製造方法。
The gist of the present invention is as follows.
[1] A steel continuously cast slab containing 1.0 to 10.0% of Ni by mass% is heated at 1100 to 1250 ° C. for 1 to 24 hours, and then the surface of the continuous cast slab is cooled to 600 ° C. or lower, A method for producing a Ni-containing steel, wherein the surface of the continuous cast slab is removed by 0.5 to 10 mm and then hot rolled.
[2] The component composition of the steel is mass%, C: 0.01 to 0.20%, Si: 0.01 to 0.50%, Mn: 0.30 to 2.0%, P: 0 0.020% or less, S: 0.0060% or less, Ni: 1.0-10.0%, Al: 0.001-0.080%, N: 0.0060% or less, O: 0.0040% or less The method for producing a Ni-containing steel according to [1], wherein the balance is made of Fe and inevitable impurities.
[3] The component composition further includes, in mass%, Cu: 0.01 to 1.50%, Cr: 0.01 to 1.00%, Mo: 0.01 to 1.00%, Nb: 0. 0.001 to 0.100%, V: 0.001 to 0.100%, Ti: 0.005 to 0.020%, B: 0.0003 to 0.0020%, Ca: 0.0003 to 0.0050 %, Mg: 0.0003 to 0.0050%, REM: 0.0003 to 0.0050%, or one or more of them are contained, The method for producing a Ni-containing steel according to [2] .

本発明のNi含有鋼の製造方法によれば、鋼板の表面疵を防止することができるので、生産性向上と製造コスト低減が可能となる。したがって、本発明は工業上極めて効果が大きい。   According to the method for producing Ni-containing steel of the present invention, surface flaws of the steel sheet can be prevented, so that productivity can be improved and production cost can be reduced. Therefore, the present invention is extremely effective industrially.

まず、本発明の製造方法の限定理由について述べる。   First, the reasons for limiting the production method of the present invention will be described.

本発明では、質量%でNiを1.0〜10.0%含有する鋼の連続鋳造スラブを1100〜1250℃で1〜24h加熱し、次いで前記連続鋳造スラブの表面を600℃以下まで冷却後、前記連続鋳造スラブの表面を0.5〜10mm除去した後、熱間圧延することを特徴とする。   In the present invention, a steel continuous cast slab containing 1.0 to 10.0% of Ni by mass is heated at 1100 to 1250 ° C. for 1 to 24 hours, and then the surface of the continuous cast slab is cooled to 600 ° C. or less. The surface of the continuous cast slab is removed by 0.5 to 10 mm, and then hot rolled.

本発明は、質量%でNiを1.0〜10.0%含有する鋼を連続鋳造する。Niは低温靭性の確保に必須の元素であり、1.0%未満ではこれらの効果が得られないので下限値を1.0%とする。Niは高価な元素であり、10.0%を超えて含有すると経済性を損なうため上限値を10.0%とする。   The present invention continuously casts steel containing 1.0 to 10.0% Ni by mass. Ni is an essential element for ensuring low temperature toughness, and if it is less than 1.0%, these effects cannot be obtained, so the lower limit is made 1.0%. Ni is an expensive element, and if the content exceeds 10.0%, the economic efficiency is impaired, so the upper limit is made 10.0%.

連続鋳造は、特に限定はなく、垂直曲げ型連鋳機が好適に適用できる。   The continuous casting is not particularly limited, and a vertical bending type continuous casting machine can be suitably applied.

次いで、連続鋳造により得られた、質量%でNiを1.0〜10.0%含有する鋼の連続鋳造スラブを1100〜1250℃で1〜24h加熱し、次いで前記連続鋳造スラブの表面を600℃以下まで冷却する。圧延前に連続鋳造スラブを1100〜1250℃で1〜24h加熱する熱処理(以下、単に予備熱処理と称することもある。)の目的は、mm単位以上の巨大で直線的な柱状γ粒の粒界を消失させることである。巨大で直線的な柱状γ粒の粒界は酸化しやすく、圧延時に粒界の酸化部が開口して割れの原因となる。巨大で直線的な柱状γ粒を消失させるためには1100℃以上、1h以上の加熱が必要である。加熱温度が1100℃未満や1h未満では、巨大で直線的な柱状γ粒が残存する恐れがある。一方、1250℃以上や24h以上加熱しても、効果が飽和するだけでなく生産の効率を落とす。より好適な範囲は、1100〜1250℃、3〜12hである。   Next, a continuous casting slab of steel containing 1.0 to 10.0% by mass of Ni obtained by continuous casting is heated at 1100 to 1250 ° C. for 1 to 24 hours, and then the surface of the continuous casting slab is 600. Cool to below ℃. The purpose of the heat treatment (hereinafter sometimes simply referred to as pre-heat treatment) for heating the continuously cast slab at 1100 to 1250 ° C. for 1 to 24 hours before rolling is the grain boundary of large and linear columnar γ grains having a unit of mm or more. Is to disappear. The grain boundaries of huge and linear columnar γ grains are easily oxidized, and the oxidized part of the grain boundaries opens during rolling, causing cracks. In order to eliminate the huge and linear columnar γ grains, heating at 1100 ° C. or more and 1 h or more is necessary. If the heating temperature is less than 1100 ° C. or less than 1 h, huge and linear columnar γ grains may remain. On the other hand, heating at 1250 ° C. or higher or 24 hours or longer not only saturates the effect but also reduces production efficiency. A more preferable range is 1100 to 1250 ° C. and 3 to 12 hours.

連続鋳造スラブを予備熱処理後、600℃以下まで冷却する。ここで、冷却停止温度は、連続鋳造スラブの表面温度である。冷却停止温度が600℃より高温であると、γ→α変態が完了せず、そのまま再加熱を実施すると未変態のγ粒が粗大化し、母材特性に悪影響を及ぼす可能性がある。なお、冷却速度については、γ→α変態が完了する温度まで冷却できればよいので、特に限定する必要はない。   The continuous cast slab is cooled to 600 ° C. or lower after preliminary heat treatment. Here, the cooling stop temperature is the surface temperature of the continuously cast slab. If the cooling stop temperature is higher than 600 ° C., the γ → α transformation is not completed, and if reheating is performed as it is, the untransformed γ grains become coarse, which may adversely affect the properties of the base material. The cooling rate is not particularly limited as long as it can be cooled to a temperature at which the γ → α transformation is completed.

600℃以下に冷却した後、連続鋳造スラブの表面(スラブ表裏面の全面)を除去する。スラブ表面の除去は、例えば、市販のスラブグラインダーや切削機で機械的に研削すればよい。この除去処理により、連続鋳造スラブ表面に存在するスケールや、予備熱処理時に酸化された粒界を除去することができる。除去する深さは、片面あたり少なくとも0.5mm以上である。上限値は、コストの観点から片面あたり10mm以下である。   After cooling to 600 ° C. or lower, the surface of the continuously cast slab (the entire front and back surfaces of the slab) is removed. The removal of the slab surface may be mechanically ground with, for example, a commercially available slab grinder or cutting machine. By this removal treatment, scales present on the surface of the continuously cast slab and grain boundaries oxidized during the preliminary heat treatment can be removed. The depth to be removed is at least 0.5 mm per side. The upper limit is 10 mm or less per side from the viewpoint of cost.

なお、表面疵をさらに抑制することを目的として、除去処理後の熱間圧延前の連続鋳造スラブに酸化防止剤を塗布することもできる。   For the purpose of further suppressing surface flaws, an antioxidant can be applied to the continuous cast slab after the removal treatment and before hot rolling.

次いで熱間圧延を行う。熱間圧延条件としては、鋼素材を平均温度で900〜1200℃の範囲の温度に加熱し、圧延終了温度を表面温度で950℃以下Ar変態点以上とする圧延を行うことが好ましい。 Next, hot rolling is performed. As the hot rolling conditions, it is preferable to perform rolling by heating the steel material to a temperature in the range of 900 to 1200 ° C. at an average temperature and setting the rolling end temperature to a surface temperature of 950 ° C. or lower and an Ar 3 transformation point or higher.

加熱温度:平均温度で900〜1200℃
鋼素材の加熱温度は平均温度で900〜1200℃の範囲にすることにより、凝固時に析出した粗大な炭化物等の析出物を完全に溶解することができ、高強度も確保できる。また、組織の粗大化を防ぎ、母材靱性も確保できる。このようなことから、鋼素材の加熱温度は平均温度で900〜1200℃の範囲の温度が好ましい。さらに好ましくは、1000〜1100℃である。なお、ここでいう「平均温度」とは、測定される表面温度から伝熱計算により算出した鋼素材の温度分布から求めた肉厚方向断面での平均値をいう。
Heating temperature: 900-1200 ° C at average temperature
By setting the heating temperature of the steel material to an average temperature in the range of 900 to 1200 ° C., precipitates such as coarse carbides precipitated during solidification can be completely dissolved, and high strength can be secured. Further, the coarsening of the structure can be prevented and the base material toughness can be secured. For this reason, the heating temperature of the steel material is preferably an average temperature in the range of 900 to 1200 ° C. More preferably, it is 1000-1100 degreeC. Here, the “average temperature” refers to an average value in the cross section in the thickness direction obtained from the temperature distribution of the steel material calculated by heat transfer calculation from the measured surface temperature.

圧延終了温度:表面温度で950℃以下Ar変態点以上
圧延終了温度を表面温度で950℃以下Ar変態点以上とすることにより、組織の粗大化を防ぎ、母材靱性および高強度も確保できる。
Rolling end temperature: 950 ° C. or less at the surface temperature and above the Ar 3 transformation point By making the rolling end temperature at the surface temperature 950 ° C. and below the Ar 3 transformation point, the coarsening of the structure is prevented and the toughness and high strength of the base metal are secured it can.

なお、Ar変態点は、以下の(1)式から求めることができる。
Ar=868−396C+25Si−68Mn−21Cu−36Ni−25Cr−30Mo・・・(1)
ただし、C、Si、Mn、Cu、Ni、Cr、Moは、各合金元素の含有量(質量%)であり、含有しない場合は0とする。
The Ar 3 transformation point can be obtained from the following equation (1).
Ar 3 = 868-396C + 25Si-68Mn-21Cu-36Ni-25Cr-30Mo (1)
However, C, Si, Mn, Cu, Ni, Cr, and Mo are contents (mass%) of each alloy element, and set to 0 when not contained.

熱間圧延後の製造プロセスは特に制限されない。なお、鋼の強靭化を図るため、熱間圧延後、Ar変態点以上950℃以下の温度から直接焼入れ−焼戻処理を行う、または、熱間圧延後、Ac変態点以上950℃以下に再加熱して焼入れ−焼戻処理を行うことが好ましい。さらにまた、前記の焼入れ−焼戻処理の間に、2相域熱処理−焼入れ処理(2相域焼入れ)工程をはさんだ、直接焼入れ-2相域焼入れ-焼戻処理、または焼入れ-2相域焼入れ-焼戻処理を行ってもよい。上記いずれかのプロセスを用いて製造することが望ましい。 The manufacturing process after hot rolling is not particularly limited. In order to toughen the steel, after hot rolling, a direct quenching and tempering treatment is performed from a temperature of Ar 3 transformation point to 950 ° C., or after hot rolling, Ac 3 transformation point to 950 ° C. It is preferable to reheat to quenching and tempering. Furthermore, a direct quenching-two-phase quenching-tempering treatment or a quenching-two-phase zone sandwiching a two-phase zone heat treatment-quenching process (two-phase zone quenching) process between the quenching-tempering treatments described above. Quenching-tempering treatment may be performed. It is desirable to manufacture using any of the above processes.

さらに、母材強度と靭性を確保するために、焼入れ温度はAc変態点以上950℃以下で、冷却速度は2℃/sec以上が望ましい。極低温でも安定なγ組織が形成され、また、靭性も確保するために、2相域焼入れ温度はAc変態点以上Ac変態点未満で、冷却速度は2℃/sec以上が望ましい。さらに、靭性および強度を確保するために、焼戻温度は400℃以上(Ac変態点+50℃)以下が望ましい。 Further, in order to ensure the strength and toughness of the base material, it is desirable that the quenching temperature is not less than Ac 3 transformation point and not more than 950 ° C., and the cooling rate is not less than 2 ° C./sec. In order to form a stable γ structure even at an extremely low temperature and to secure toughness, it is desirable that the two-phase region quenching temperature is not less than the Ac 1 transformation point and less than the Ac 3 transformation point, and the cooling rate is not less than 2 ° C./sec. Furthermore, in order to ensure toughness and strength, the tempering temperature is preferably 400 ° C. or higher (Ac 1 transformation point + 50 ° C.) or lower.

ここで、Ac変態点およびAc変態点は、それぞれ以下の(2)式および(3)式から求めることができる。
Ac=751−27C+18Si−12Mn−23Cu−23Ni+24Cr+23Mo−40V−6Ti+233Nb−169Al−895B・・・(2)
Ac=937.2−436.5C+56Si−19.7Mn−16.3Cu−26.6Ni−4.9Cr+38.1Mo+124.8V+136.3Ti−19.1Nb+198.4Al+3315B・・・(3)
ただし、C、Si、Mn、Cu、Ni、Cr、Mo、V、Ti、Nb、Al、Bは、各合金元素の含有量(質量%)であり、含有しない場合は0とする
次に、本発明の好ましい化学成分の限定理由について述べる。なお、組成における質量%は、とくに断らない限り、単に%で記す。
Here, the Ac 1 transformation point and the Ac 3 transformation point can be obtained from the following formulas (2) and (3), respectively.
Ac 1 = 751-27C + 18Si-12Mn-23Cu-23Ni + 24Cr + 23Mo-40V-6Ti + 233Nb-169Al-895B (2)
Ac 3 = 937.2-436.5C + 56Si-19.7Mn -16.3Cu-26.6Ni-4.9Cr + 38.1Mo + 124.8V + 136.3Ti-19.1Nb + 198.4Al + 3315B ··· (3)
However, C, Si, Mn, Cu, Ni, Cr, Mo, V, Ti, Nb, Al, and B are the contents (mass%) of each alloy element, and set to 0 when not contained. The reason for limiting the preferred chemical components of the present invention will be described. The mass% in the composition is simply expressed as% unless otherwise specified.

C:0.01〜0.20%
Cは母材の強度確保に必須の元素である。0.01%未満では母材強度が確保できないので0.01%を下限とすることが好ましい。逆に、Cが0.20%を超えると、脆性破壊の起点となるセメンタイトや島状マルテンサイトを増加し靭性が低下する。従って、上限を0.20%とすることが好ましい。
C: 0.01 to 0.20%
C is an element essential for securing the strength of the base material. If the content is less than 0.01%, the strength of the base material cannot be secured, so 0.01% is preferable as the lower limit. On the other hand, when C exceeds 0.20%, cementite and island martensite, which are the starting points of brittle fracture, increase and toughness decreases. Therefore, the upper limit is preferably 0.20%.

Si:0.01〜0.50%
Siは母材強度上昇に有効な元素である。0.01%未満ではこの効果が得られないので下限値を0.01%とすることが好ましい。0.50%を超えると、溶接熱影響部(HAZ)の組織中に島状マルテンサイトが生成し、好適なHAZ靭性が得られない。従って、上限を0.50%とすることが好ましい。
Si: 0.01 to 0.50%
Si is an element effective for increasing the strength of the base material. If less than 0.01%, this effect cannot be obtained, so the lower limit is preferably made 0.01%. If it exceeds 0.50%, island martensite is generated in the structure of the weld heat affected zone (HAZ), and suitable HAZ toughness cannot be obtained. Therefore, the upper limit is preferably 0.50%.

Mn:0.30〜2.0%
Mnは母材強度上昇に有効な元素である。0.30%未満ではこの効果が得られないので下限値を0.30%とすることが好ましい。2.0%超えると、焼戻し脆化を促進するため好適な母材およびHAZ靭性が得られない。従って、上限を2.0%とすることが好ましい。
Mn: 0.30 to 2.0%
Mn is an effective element for increasing the strength of the base material. If less than 0.30%, this effect cannot be obtained, so the lower limit is preferably set to 0.30%. If it exceeds 2.0%, temper embrittlement is promoted, so that a suitable base material and HAZ toughness cannot be obtained. Therefore, the upper limit is preferably set to 2.0%.

P:0.020%以下
Pは粒界脆化をもたらし、靭性に有害な元素であり、低いほうが望ましい。0.020%を超えて含有すると靭性低下が顕著となるので、0.020%を上限とすることが好ましい。
P: 0.020% or less P is an element that causes grain boundary embrittlement and is harmful to toughness. If the content exceeds 0.020%, a decrease in toughness becomes remarkable, so 0.020% is preferable as the upper limit.

S:0.0060%以下
SはMnS等の介在物として靭性に有害な元素であり、低いほうが望ましい。0.0060%を超えて含有すると靭性低下が顕著となるので、0.0060%を上限とすることが好ましい。
S: 0.0060% or less S is an element harmful to toughness as inclusions such as MnS, and is preferably as low as possible. When the content exceeds 0.0060%, the toughness is remarkably lowered. Therefore, the upper limit is preferably 0.0060%.

Al:0.001〜0.080%
Alは鋼の脱酸に必要な元素であり、0.001%未満の含有量ではこれらの効果が得られないので下限値を0.001%とすることが好ましい。逆に、0.080%を超えて含有すると粗大なAlNやアルミナクラスター等により好適な母材およびHAZの靭性が得られない。従って、上限値を0.080%とすることが好ましい。
Al: 0.001 to 0.080%
Al is an element necessary for deoxidation of steel, and if the content is less than 0.001%, these effects cannot be obtained, so the lower limit is preferably made 0.001%. On the other hand, when the content exceeds 0.080%, suitable base material and HAZ toughness cannot be obtained due to coarse AlN, alumina clusters, and the like. Therefore, the upper limit value is preferably 0.080%.

N:0.0060%以下
Nは0.0060%を超えて含有すると粗大なAlNなどにより好適な母材およびHAZの靭性が得られない。従って、上限値を0.0060%とすることが好ましい。
N: 0.0060% or less If N exceeds 0.0060%, suitable base material and HAZ toughness cannot be obtained due to coarse AlN or the like. Therefore, the upper limit value is preferably set to 0.0060%.

O:0.0040%以下
Oは介在物として靭性に有害な元素であり、低いほうが望ましい。0.0040%を超えて含有すると靭性低下が顕著となるので0.0040%を上限とすることが好ましい。
O: 0.0040% or less O is an element harmful to toughness as an inclusion, and is preferably as low as possible. If the content exceeds 0.0040%, the toughness is remarkably lowered, so 0.0040% is preferable as the upper limit.

上記した成分以外の残部は、Feおよび不可避的不純物からなる。   The balance other than the components described above consists of Fe and inevitable impurities.

本発明では、上記の組成に加えてさらに、母材や継手の強度、靭性向上に有効な選択元素として、Cu、Cr、Mo、Nb、V、Ti、B、Ca、Mg、REMの1種または2種以上を必要に応じて含有できる。   In the present invention, in addition to the above-described composition, Cu, Cr, Mo, Nb, V, Ti, B, Ca, Mg, and REM are selected as effective selective elements for improving the strength and toughness of the base material and joint. Or 2 or more types can be contained as needed.

Cu:0.01〜1.50%
Cuは母材強度上昇に効果を有する。0.01%未満ではこの効果が得られないので、含有する場合は下限値を0.01%とする。逆に、1.50%を超えて含有するとHAZを硬化させて好適なHAZ靭性が得られない。従って、含有する場合は上限値を1.50%とする。
Cu: 0.01 to 1.50%
Cu is effective in increasing the strength of the base material. If less than 0.01%, this effect cannot be obtained. Therefore, when it is contained, the lower limit is set to 0.01%. On the other hand, if the content exceeds 1.50%, the HAZ is cured and a suitable HAZ toughness cannot be obtained. Therefore, when it contains, let an upper limit be 1.50%.

Cr:0.01〜1.00%
Crは母材強度上昇に効果を有する。0.01%未満ではこの効果が得られないので、含有する場合は下限値を0.01%とする。逆に、1.00%を超えて含有するとHAZに硬化組織を生成し、好適なHAZ靭性が得られない。従って、含有する場合は上限値を1.00%とする。
Cr: 0.01-1.00%
Cr is effective in increasing the strength of the base material. If less than 0.01%, this effect cannot be obtained. Therefore, when it is contained, the lower limit is set to 0.01%. On the other hand, if the content exceeds 1.00%, a hardened structure is generated in the HAZ, and suitable HAZ toughness cannot be obtained. Therefore, when it contains, let an upper limit be 1.00%.

Mo:0.01〜1.00%
Moは母材強度上昇に効果を有する。0.01%未満ではこの効果が得られないので、含有する場合は下限値を0.01%とする。逆に、1.00%を超えて含有するとHAZに硬化組織を生成し、好適なHAZ靭性が得られない。従って、含有する場合は上限値を1.00%とする。
Mo: 0.01 to 1.00%
Mo is effective in increasing the strength of the base material. If less than 0.01%, this effect cannot be obtained. Therefore, when it is contained, the lower limit is set to 0.01%. On the other hand, if the content exceeds 1.00%, a hardened structure is generated in the HAZ, and suitable HAZ toughness cannot be obtained. Therefore, when it contains, let an upper limit be 1.00%.

Nb:0.001〜0.100%
Nbは母材の強度上昇および細粒化に有効な元素である。0.001%未満ではこれらの効果が得られないので、含有する場合は下限値を0.001%とする。逆に、0.100%を超えて含有するとHAZにおけるNb炭窒化物の析出が顕著となり、好適なHAZ靭性が得られない。従って、含有する場合は上限値を0.100%とする。
Nb: 0.001 to 0.100%
Nb is an element effective for increasing the strength and refining of the base material. If less than 0.001%, these effects cannot be obtained. Therefore, if contained, the lower limit is set to 0.001%. On the other hand, if the content exceeds 0.100%, precipitation of Nb carbonitrides in the HAZ becomes remarkable, and suitable HAZ toughness cannot be obtained. Therefore, when it contains, an upper limit shall be 0.100%.

V:0.001〜0.100%
Vは母材の強度上昇および細粒化に有効な元素である。0.001%未満ではこれらの効果が得られないので、含有する場合は下限値を0.001%とする。逆に、0.100%を超えて含有するとHAZにおける炭窒化物の析出が顕著となり、好適なHAZ靭性が得られない。従って、含有する場合は上限値を0.100%とする。
V: 0.001 to 0.100%
V is an element effective for increasing the strength and refining of the base material. If less than 0.001%, these effects cannot be obtained. Therefore, if contained, the lower limit is set to 0.001%. On the other hand, when the content exceeds 0.100%, precipitation of carbonitrides in the HAZ becomes remarkable, and suitable HAZ toughness cannot be obtained. Therefore, when it contains, an upper limit shall be 0.100%.

Ti:0.005〜0.020%
Tiは母材の強度上昇および細粒化に有効な元素である。0.005%未満ではこれらの効果が得られないので、含有する場合は下限値を0.005%とする。逆に、0.020%を超えて含有すると粗大なTiNを生成しこれが破壊の発生起点となるため、好適なHAZ靭性が得られない。従って、含有する場合は上限値を0.020%とする。
Ti: 0.005-0.020%
Ti is an element effective for increasing the strength and refining of the base material. If less than 0.005%, these effects cannot be obtained. Therefore, if contained, the lower limit is set to 0.005%. On the other hand, if the content exceeds 0.020%, coarse TiN is generated and this becomes a starting point of fracture, so that suitable HAZ toughness cannot be obtained. Therefore, when it contains, an upper limit shall be 0.020%.

B:0.0003〜0.0020%
Bは制御冷却および焼入れ熱処理を施す場合に特に顕著な強度上昇の効果を発揮する。0.0003%未満の含有量では強度上昇効果が得られないので、含有する場合は下限値を0.0003%とする。逆に、0.0020%を超えて含有すると粗大なB窒化物や炭硼化物を析出してこれが破壊の起点となるために、好適なHAZ靭性が得られない。従って、含有する場合は上限値を0.0020%とする。
B: 0.0003 to 0.0020%
B exhibits a remarkable increase in strength particularly when controlled cooling and quenching heat treatment are performed. If the content is less than 0.0003%, the effect of increasing the strength cannot be obtained. Therefore, when it is contained, the lower limit is made 0.0003%. On the other hand, if the content exceeds 0.0020%, coarse B nitride or carboboride precipitates and serves as a starting point of fracture, so that suitable HAZ toughness cannot be obtained. Therefore, when it contains, an upper limit shall be 0.0020%.

Ca:0.0003〜0.0050%
CaはAlやMnS等の介在物の形態制御により靭性向上に有効な元素である。0.0003%未満の含有量では靭性向上効果が得られないので、含有する場合は下限値を0.0003%とする。逆に、0.0050%を超えて含有すると粗大なCa含有介在物が生成してこれが破壊の起点となるために、好適な母材およびHAZの靭性が得られない。従って、含有する場合は上限値を0.0050%とする。
Ca: 0.0003 to 0.0050%
Ca is an element effective in improving toughness by controlling the form of inclusions such as Al 2 O 3 and MnS. If the content is less than 0.0003%, the effect of improving toughness cannot be obtained, so when it is contained, the lower limit is made 0.0003%. On the other hand, if the content exceeds 0.0050%, coarse Ca-containing inclusions are generated and this becomes the starting point of fracture, so that a suitable base material and HAZ toughness cannot be obtained. Therefore, when it contains, an upper limit shall be 0.0050%.

Mg:0.0003〜0.0050%
MgはAlやMnS等の介在物の形態制御により靭性向上に有効な元素である。0.0003%未満の含有量では靭性向上効果が得られないので、含有する場合は下限値を0.0003%とする。逆に、0.0050%を超えて含有すると粗大なMg含有介在物が生成してこれが破壊の起点となるために、好適な母材およびHAZの靭性が得られない。従って、含有する場合は上限値を0.0050%とする。
Mg: 0.0003 to 0.0050%
Mg is an element effective for improving toughness by controlling the form of inclusions such as Al 2 O 3 and MnS. If the content is less than 0.0003%, the effect of improving toughness cannot be obtained, so when it is contained, the lower limit is made 0.0003%. On the other hand, if the content exceeds 0.0050%, coarse Mg-containing inclusions are generated and this becomes the starting point of fracture, so that a suitable base material and HAZ toughness cannot be obtained. Therefore, when it contains, an upper limit shall be 0.0050%.

REM:0.0003〜0.0050%
REMはAlやMnS等の介在物の形態制御により靭性向上に有効な元素である。0.0003%未満の含有量では靭性向上効果が得られないので、含有する場合は下限値を0.0003%とする。逆に、0.0050%を超えて含有すると粗大なREM含有介在物が生成してこれが破壊の起点となるために、好適な母材およびHAZの靭性が得られない。従って、含有する場合は上限値を0.0050%とする。
REM: 0.0003 to 0.0050%
REM is an element effective for improving toughness by controlling the form of inclusions such as Al 2 O 3 and MnS. If the content is less than 0.0003%, the effect of improving toughness cannot be obtained, so when it is contained, the lower limit is made 0.0003%. On the other hand, when the content exceeds 0.0050%, coarse REM-containing inclusions are generated and this becomes a starting point of fracture, so that a suitable base material and HAZ toughness cannot be obtained. Therefore, when it contains, an upper limit shall be 0.0050%.

以上より、本発明によれば、表面疵のないNi含有鋼を得ることができる。   As described above, according to the present invention, Ni-containing steel having no surface defects can be obtained.

以下に、本発明の実施例を示す。   Examples of the present invention are shown below.

表1に示す各成分組成の溶鋼を、転炉で溶製し、連続鋳造機により厚さ250mmの連続鋳造スラブを製造した。次いで、予備熱処理、除去処理、熱間圧延および焼入れ−焼戻処理を行い、表2に示す供試鋼とした。表2に各製造条件を示す。   Molten steel of each component composition shown in Table 1 was melted in a converter, and a continuous cast slab having a thickness of 250 mm was manufactured by a continuous casting machine. Next, preliminary heat treatment, removal treatment, hot rolling and quenching-tempering treatment were performed to obtain test steels shown in Table 2. Table 2 shows the production conditions.

得られた鋼板について、鋼板表面疵の有無を磁粉探傷検査で確認した。鋼板表裏面に疵が検出されないものを合格とした。   About the obtained steel plate, the presence or absence of surface flaws on the steel plate was confirmed by magnetic particle inspection. Those in which no wrinkles were detected on the front and back surfaces of the steel sheet were regarded as acceptable.

Figure 0006443424
Figure 0006443424

Figure 0006443424
Figure 0006443424

表2の結果から、本発明の製造方法によれば、表面疵が発生していないことがわかる。また、本発明の製造方法を用いることにより、分塊圧延をすることなくスラブ単重増加により歩留まりが向上し、製造コストが低減した。   From the results in Table 2, it can be seen that surface flaws are not generated according to the production method of the present invention. In addition, by using the production method of the present invention, the yield was improved by increasing the slab unit weight without performing ingot rolling, and the production cost was reduced.

Claims (2)

質量%で、C:0.01〜0.20%、Si:0.01〜0.50%、Mn:0.30〜2.0%、P:0.020%以下、S:0.0060%以下、Ni:1.0〜10.0%、Al:0.001〜0.080%、N:0.0060%以下、O:0.0040%以下を含有し、残部はFeおよび不可避的不純物からなる鋼の連続鋳造スラブを1100〜1250℃で1〜24h加熱し、次いで前記連続鋳造スラブの表面を600℃以下まで冷却後、前記連続鋳造スラブの表面を0.5〜10mm除去した後、熱間圧延することを特徴とするNi含有鋼の製造方法。 In mass% , C: 0.01 to 0.20%, Si: 0.01 to 0.50%, Mn: 0.30 to 2.0%, P: 0.020% or less, S: 0.0060 %: Ni: 1.0-10.0%, Al: 0.001-0.080%, N: 0.0060% or less, O: 0.0040% or less, the balance being Fe and inevitable After heating a continuous casting slab of steel made of impurities at 1100 to 1250 ° C. for 1 to 24 hours, and then cooling the surface of the continuous casting slab to 600 ° C. or less and then removing the surface of the continuous casting slab by 0.5 to 10 mm A method for producing Ni-containing steel, characterized by hot rolling. 前記成分組成は、さらに、質量%で、Cu:0.01〜1.50%、Cr:0.01〜1.00%、Mo:0.01〜1.00%、Nb:0.001〜0.100%、V:0.001〜0.100%、Ti:0.005〜0.020%、B:0.0003〜0.0020%、Ca:0.0003〜0.0050%、Mg:0.0003〜0.0050%、REM:0.0003〜0.0050%の1種または2種以上を含有することを特徴とする請求項に記載のNi含有鋼の製造方法。 The component composition is further in terms of% by mass: Cu: 0.01 to 1.50%, Cr: 0.01 to 1.00%, Mo: 0.01 to 1.00%, Nb: 0.001 to 0.100%, V: 0.001 to 0.100%, Ti: 0.005 to 0.020%, B: 0.0003 to 0.0020%, Ca: 0.0003 to 0.0050%, Mg The method for producing a Ni-containing steel according to claim 1 , comprising: one or more of 0.0003 to 0.0050% and REM of 0.0003 to 0.0050%.
JP2016203192A 2016-02-29 2016-10-17 Method for producing Ni-containing steel Active JP6443424B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016036535 2016-02-29
JP2016036535 2016-02-29

Publications (2)

Publication Number Publication Date
JP2017155328A JP2017155328A (en) 2017-09-07
JP6443424B2 true JP6443424B2 (en) 2018-12-26

Family

ID=59808254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016203192A Active JP6443424B2 (en) 2016-02-29 2016-10-17 Method for producing Ni-containing steel

Country Status (1)

Country Link
JP (1) JP6443424B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005271000A (en) * 2004-03-23 2005-10-06 Jfe Steel Kk Method for producing high nickel alloy steel plate
JP2006206949A (en) * 2005-01-27 2006-08-10 Jfe Steel Kk METHOD FOR MANUFACTURING Ni ALLOY
JP4514137B2 (en) * 2005-02-04 2010-07-28 新日本製鐵株式会社 Method for preventing rolling surface flaw of Ni-containing steel
JP5157598B2 (en) * 2008-04-02 2013-03-06 Jfeスチール株式会社 Ni-containing steel slab and method for continuously casting Ni-containing steel

Also Published As

Publication number Publication date
JP2017155328A (en) 2017-09-07

Similar Documents

Publication Publication Date Title
KR101988144B1 (en) High toughness and high tensile strength thick steel plate with excellent material homogeneity and production method for same
JP5229823B2 (en) High-strength, high-toughness cast steel and method for producing the same
KR101838424B1 (en) High toughness and high tensile strength thick steel plate and production method therefor
JP5928654B2 (en) Thick and high toughness high strength steel sheet and method for producing the same
JP6048626B1 (en) Thick, high toughness, high strength steel plate and method for producing the same
JP5303856B2 (en) Manufacturing method of high-tensile steel with excellent low-temperature toughness and small strength anisotropy
JP6700400B2 (en) Steel plate for low temperature pressure vessel having excellent PWHT resistance and method for producing the same
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
JP2019502018A (en) High-strength steel material excellent in brittle crack propagation resistance and brittle crack initiation resistance of welds and method for producing the same
JP6135697B2 (en) Abrasion-resistant steel sheet having excellent low-temperature toughness and low-temperature tempering embrittlement cracking properties and method for producing the same
JP2015004081A (en) High-yield-ratio high-strength hot-rolled steel sheet which is reduced in variation of strength in coil width direction and is excellent in toughness and production method thereof
JP2019527773A (en) Ultra-thick steel material excellent in brittle crack propagation resistance and manufacturing method thereof
JP6131833B2 (en) Method for continuous casting of Ti deoxidized steel
JP2009074123A (en) METHOD FOR MANUFACTURING Ni-CONTAINING STEEL HAVING EXCELLENT SURFACE QUALITY
JP6142837B2 (en) Stainless steel with a structure consisting of two phases: ferrite phase and martensite phase
JP5630321B2 (en) High-tensile steel plate with excellent toughness and manufacturing method thereof
KR20150101734A (en) Steel for pressure vessel and method of manufacturing the steel
JP6443424B2 (en) Method for producing Ni-containing steel
JP4660363B2 (en) Manufacturing method of thick steel plate with excellent toughness
JP6024401B2 (en) Manufacturing method of thick steel plate with excellent surface quality
JP5248222B2 (en) Cold tool steel manufacturing method
JP2022514019A (en) Extra-thick structural steel with excellent brittle crack initiation resistance and its manufacturing method
JP5037203B2 (en) Method for producing high-strength steel material having yield stress of 470 MPa or more and tensile strength of 570 MPa or more excellent in toughness of weld heat-affected zone
JP4770293B2 (en) Manufacturing method of high-tensile steel sheet
JP6534240B2 (en) Continuous cast slab of B-containing steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170922

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181112

R150 Certificate of patent or registration of utility model

Ref document number: 6443424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250