JP6442555B2 - Manufacturing method of electrolyte membrane / electrode structure with resin frame - Google Patents

Manufacturing method of electrolyte membrane / electrode structure with resin frame Download PDF

Info

Publication number
JP6442555B2
JP6442555B2 JP2017090129A JP2017090129A JP6442555B2 JP 6442555 B2 JP6442555 B2 JP 6442555B2 JP 2017090129 A JP2017090129 A JP 2017090129A JP 2017090129 A JP2017090129 A JP 2017090129A JP 6442555 B2 JP6442555 B2 JP 6442555B2
Authority
JP
Japan
Prior art keywords
resin frame
electrolyte membrane
electrode
sheet
frame member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017090129A
Other languages
Japanese (ja)
Other versions
JP2018190536A (en
Inventor
浩平 吉田
浩平 吉田
健介 難波
健介 難波
真巳 栗本
真巳 栗本
陽介 今野
陽介 今野
優介 和田
優介 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2017090129A priority Critical patent/JP6442555B2/en
Priority to US15/960,623 priority patent/US11043685B2/en
Publication of JP2018190536A publication Critical patent/JP2018190536A/en
Application granted granted Critical
Publication of JP6442555B2 publication Critical patent/JP6442555B2/en
Priority to US17/338,749 priority patent/US11962050B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、電解質膜・電極構造体の外周部に樹脂枠部材が設けられてなる樹脂枠付き電解質膜・電極構造体の製造方法に関する。   The present invention relates to a method for producing an electrolyte membrane / electrode structure with a resin frame in which a resin frame member is provided on the outer periphery of the electrolyte membrane / electrode structure.

一般的に、固体高分子型燃料電池は、高分子イオン交換膜からなる固体高分子電解質膜を採用している。燃料電池は、固体高分子電解質膜の一方の面にアノード電極が、前記固体高分子電解質膜の他方の面にカソード電極が、それぞれ配設された電解質膜・電極構造体(MEA)を備える。   In general, a polymer electrolyte fuel cell employs a polymer electrolyte membrane made of a polymer ion exchange membrane. The fuel cell includes an electrolyte membrane / electrode structure (MEA) in which an anode electrode is disposed on one surface of a solid polymer electrolyte membrane and a cathode electrode is disposed on the other surface of the solid polymer electrolyte membrane.

電解質膜・電極構造体は、セパレータ(バイポーラ板)によって挟持されることにより、発電セル(単位燃料電池)が構成されている。発電セルは、所定の数だけ積層されることにより、例えば、車載用燃料電池スタックとして使用されている。   The electrolyte membrane / electrode structure is sandwiched between separators (bipolar plates) to form a power generation cell (unit fuel cell). The power generation cells are used as, for example, an in-vehicle fuel cell stack by stacking a predetermined number of power generation cells.

近年、比較的高価な固体高分子電解質膜の使用量を削減するとともに、薄膜状で強度が低い固体高分子電解質膜を保護するために、外周に樹脂枠部材を組み込んだ樹脂枠付きMEAが採用されている(例えば、特許文献1を参照)。   In recent years, in order to reduce the amount of relatively expensive solid polymer electrolyte membranes used and to protect thin polymer electrolyte membranes with low strength, MEA with a resin frame incorporating a resin frame member on the outer periphery has been adopted. (For example, refer to Patent Document 1).

特開2008−71542号公報JP 2008-71542 A

ところで、樹脂枠付きMEAの製造工程では、電解質膜・電極構造体と樹脂枠部材とはホットプレスにより一体化される。   By the way, in the manufacturing process of the MEA with a resin frame, the electrolyte membrane / electrode structure and the resin frame member are integrated by hot pressing.

本発明は上述した従来技術に関連してなされたものであり、樹脂枠付き電解質膜・電極構造体を効率良く製造することが可能な樹脂枠付き電解質膜・電極構造体の製造方法を提供することを目的とする。   The present invention has been made in connection with the above-described prior art, and provides a method for producing an electrolyte membrane / electrode structure with a resin frame capable of efficiently producing an electrolyte membrane / electrode structure with a resin frame. For the purpose.

上記の目的を達成するため、本発明の樹脂枠付き電解質膜・電極構造体の製造方法は、第1電極と該第1電極が一方面に設けられた電解質膜とを有するシート状部材と、開口部が設けられるとともに一方面に接着層が設けられた樹脂枠部材とを、前記シート状部材の外周部と、前記樹脂枠部材の前記一方面における内周部とを接合するように熱圧着する第1接合工程と、第2電極と前記樹脂枠部材とを、前記第2電極の外周部と、前記樹脂枠部材の他方面における内周部とを接合するように熱圧着する第2接合工程と、を含む。   In order to achieve the above object, a method for producing an electrolyte membrane / electrode structure with a resin frame according to the present invention includes a sheet-like member having a first electrode and an electrolyte membrane provided with the first electrode on one surface; Thermocompression-bonding a resin frame member provided with an opening and an adhesive layer on one side so as to join the outer peripheral part of the sheet-like member and the inner peripheral part on the one side of the resin frame member A first joining step, and a second joining in which the second electrode and the resin frame member are thermocompression-bonded so as to join the outer peripheral portion of the second electrode and the inner peripheral portion of the other surface of the resin frame member. And a process.

前記第2接合工程での熱圧着温度は、前記第1接合工程での熱圧着温度よりも高いことが好ましい。   The thermocompression bonding temperature in the second joining step is preferably higher than the thermocompression bonding temperature in the first joining step.

前記第2接合工程では、前記開口部において前記電解質膜を介して前記第1電極と前記第2電極とを熱圧着することが好ましい。   In the second bonding step, it is preferable that the first electrode and the second electrode are thermocompression bonded through the electrolyte membrane in the opening.

前記第1接合工程では、前記第1電極の前記外周部の形状に沿った枠形状の金型を用い、前記電解質膜の前記外周部と前記樹脂枠部材の前記内周部とが重なり合う箇所を上下から挟み込んで熱圧着することが好ましい。   In the first bonding step, a frame-shaped mold that follows the shape of the outer peripheral portion of the first electrode is used, and the outer peripheral portion of the electrolyte membrane and the inner peripheral portion of the resin frame member overlap each other. It is preferable to perform thermocompression bonding by sandwiching from above and below.

前記第1接合工程では、複数個分の前記樹脂枠部材を構成する枠部材素材シートに、前記電解質膜を熱圧着することが好ましい。   In the first joining step, it is preferable that the electrolyte membrane is thermocompression bonded to a plurality of frame member material sheets constituting the resin frame members.

前記第2接合工程では、前記第2電極の上に、前記シート状部材と接合された前記樹脂枠部材を重ねた状態で、熱圧着することが好ましい。   In the second joining step, it is preferable to perform thermocompression bonding in a state where the resin frame member joined to the sheet-like member is stacked on the second electrode.

本発明の樹脂枠付き電解質膜・電極構造体の製造方法によれば、電解質膜、第1電極、第2電極及び樹脂枠部材を1回の熱圧着で一体化するのではなく、電解質膜と第1電極とを有するシート状部材と、樹脂枠部材とを熱圧着する第1接合工程と、樹脂枠部材と第2電極とを熱圧着する第2接合工程とを行う。このため、電解質膜の両側に第1電極及び第2電極が配置されてなる電解質膜・電極構造体と、当該電解質膜・電極構造体の外周部に接合された樹脂枠部材とを備えた樹脂枠付き電解質膜・電極構造体を、効率良く製造することが可能となる。   According to the method for manufacturing an electrolyte membrane / electrode structure with a resin frame of the present invention, the electrolyte membrane, the first electrode, the second electrode, and the resin frame member are not integrated by one thermocompression bonding, A first joining step for thermocompression bonding the sheet-like member having the first electrode and the resin frame member, and a second joining step for thermocompression bonding the resin frame member and the second electrode are performed. Therefore, a resin comprising an electrolyte membrane / electrode structure in which the first electrode and the second electrode are arranged on both sides of the electrolyte membrane, and a resin frame member joined to the outer periphery of the electrolyte membrane / electrode structure. The framed electrolyte membrane / electrode structure can be efficiently manufactured.

燃料電池スタックを構成する発電セルの分解斜視図である。It is a disassembled perspective view of the electric power generation cell which comprises a fuel cell stack. 図1におけるII−II線断面図である。It is the II-II sectional view taken on the line in FIG. 図3Aは、ロール体から巻き出される枠部材素材シートの側面図である。図3Bは、ロール体から巻き出される枠部材素材シートの平面図である。FIG. 3A is a side view of the frame member material sheet unwound from the roll body. FIG. 3B is a plan view of the frame member material sheet unwound from the roll body. 本発明の実施形態に係る樹脂枠付き電解質膜・電極構造体の製造方法の第1接合工程の説明図である。It is explanatory drawing of the 1st joining process of the manufacturing method of the electrolyte membrane-electrode structure with a resin frame which concerns on embodiment of this invention. 本発明の実施形態に係る樹脂枠付き電解質膜・電極構造体の製造方法の第2接合工程の説明図である。It is explanatory drawing of the 2nd joining process of the manufacturing method of the electrolyte membrane and electrode structure with a resin frame which concerns on embodiment of this invention.

以下、本発明に係る樹脂枠付き電解質膜・電極構造体の製造方法について好適な実施形態を挙げ、添付の図面を参照しながら説明する。   Hereinafter, preferred embodiments of the method for producing an electrolyte membrane / electrode structure with a resin frame according to the present invention will be described with reference to the accompanying drawings.

図1及び図2に示すように、発電セル(燃料電池)12は、樹脂枠付き電解質膜・電極構造体10(以下、「樹脂枠付きMEA10」という)と、樹脂枠付きMEA10の両側に配置された第1セパレータ14及び第2セパレータ16とを備える。発電セル12は、例えば、横長(又は縦長)の長方形状の固体高分子型燃料電池である。複数の発電セル12は、例えば、矢印A方向(水平方向)又は矢印C方向(重力方向)に積層されて燃料電池スタック11が構成される。燃料電池スタック11は、例えば、車載用燃料電池スタックとして燃料電池電気自動車(図示せず)に搭載される。   As shown in FIGS. 1 and 2, the power generation cell (fuel cell) 12 is disposed on both sides of an electrolyte membrane / electrode structure 10 with a resin frame (hereinafter referred to as “MEA 10 with a resin frame”) and an MEA 10 with a resin frame. The first separator 14 and the second separator 16 are provided. The power generation cell 12 is, for example, a horizontally long (or vertically long) rectangular polymer electrolyte fuel cell. The plurality of power generation cells 12 are stacked in, for example, an arrow A direction (horizontal direction) or an arrow C direction (gravity direction) to form the fuel cell stack 11. The fuel cell stack 11 is mounted on, for example, a fuel cell electric vehicle (not shown) as an in-vehicle fuel cell stack.

発電セル12では、樹脂枠付きMEA10が第1セパレータ14及び第2セパレータ16により挟持される。第1セパレータ14及び第2セパレータ16は、横長(又は縦長)の長方形状を有する。第1セパレータ14及び第2セパレータ16は、例えば、鋼板、ステンレス鋼板、アルミニウム板、めっき処理鋼板、あるいはその金属表面に防食用の表面処理を施した金属板や、カーボン部材等で構成される。   In the power generation cell 12, the MEA 10 with a resin frame is sandwiched between the first separator 14 and the second separator 16. The first separator 14 and the second separator 16 have a horizontally long (or vertically long) rectangular shape. The first separator 14 and the second separator 16 are made of, for example, a steel plate, a stainless steel plate, an aluminum plate, a plating-treated steel plate, a metal plate whose surface is subjected to anticorrosion treatment, a carbon member, or the like.

樹脂枠付きMEA10は、電解質膜・電極構造体10a(以下、「MEA10a」という)と、MEA10aの外周部に接合されるとともに該外周部を周回する樹脂枠部材24とを備える。MEA10aは、電解質膜18と、電解質膜18の一方の面に設けられたアノード電極20と、電解質膜18の他方の面に設けられたカソード電極22とを有する。アノード電極20は、第1電極及び第2電極の一方を構成する。カソード電極22は、第1電極及び第2電極の他方を構成する。   The MEA 10 with a resin frame includes an electrolyte membrane / electrode structure 10a (hereinafter referred to as “MEA 10a”) and a resin frame member 24 that is joined to the outer periphery of the MEA 10a and circulates around the outer periphery. The MEA 10 a includes an electrolyte membrane 18, an anode electrode 20 provided on one surface of the electrolyte membrane 18, and a cathode electrode 22 provided on the other surface of the electrolyte membrane 18. The anode electrode 20 constitutes one of the first electrode and the second electrode. The cathode electrode 22 constitutes the other of the first electrode and the second electrode.

電解質膜18は、例えば、固体高分子電解質膜(陽イオン交換膜)である。固体高分子電解質膜は、例えば、水分を含んだパーフルオロスルホン酸の薄膜である。電解質膜18は、アノード電極20及びカソード電極22に挟持される。電解質膜18は、フッ素系電解質の他、HC(炭化水素)系電解質を使用することができる。   The electrolyte membrane 18 is, for example, a solid polymer electrolyte membrane (cation exchange membrane). The solid polymer electrolyte membrane is, for example, a thin film of perfluorosulfonic acid containing moisture. The electrolyte membrane 18 is sandwiched between the anode electrode 20 and the cathode electrode 22. The electrolyte membrane 18 can use an HC (hydrocarbon) based electrolyte in addition to a fluorine based electrolyte.

アノード電極20は、電解質膜18及びカソード電極22よりも大きな平面寸法(外形寸法)を有する。なお、上記の構成に代えて、アノード電極20は、電解質膜18及びカソード電極22よりも小さな平面寸法を有するように構成してもよい。   The anode electrode 20 has a larger planar dimension (outer dimension) than the electrolyte membrane 18 and the cathode electrode 22. Instead of the above configuration, the anode electrode 20 may be configured to have a smaller planar dimension than the electrolyte membrane 18 and the cathode electrode 22.

アノード電極20は、電解質膜18の一方の面18aに接合される第1電極触媒層20aと、第1電極触媒層20aに積層される第1ガス拡散層20bとを有する。第1電極触媒層20a及び第1ガス拡散層20bは、互いに同一の平面寸法を有するとともに、電解質膜18及びカソード電極22よりも大きな平面寸法に設定される。   The anode electrode 20 includes a first electrode catalyst layer 20a joined to one surface 18a of the electrolyte membrane 18, and a first gas diffusion layer 20b laminated on the first electrode catalyst layer 20a. The first electrode catalyst layer 20 a and the first gas diffusion layer 20 b have the same planar dimensions as each other, and are set to have a larger planar dimension than the electrolyte membrane 18 and the cathode electrode 22.

カソード電極22は、電解質膜18の面18bに接合される第2電極触媒層22aと、第2電極触媒層22aに積層される第2ガス拡散層22bとを有する。第2電極触媒層22a及び第2ガス拡散層22bは、互いに同一の平面寸法を有するとともに、電解質膜18と同一の平面寸法に設定される。従って、電解質膜18の面方向(図2で矢印C方向)において、カソード電極22の外周端22eは、電解質膜18の外周端18eと同じ位置にある。   The cathode electrode 22 has a second electrode catalyst layer 22a joined to the surface 18b of the electrolyte membrane 18, and a second gas diffusion layer 22b laminated on the second electrode catalyst layer 22a. The second electrode catalyst layer 22 a and the second gas diffusion layer 22 b have the same planar dimensions as each other and are set to the same planar dimensions as the electrolyte membrane 18. Therefore, the outer peripheral end 22e of the cathode electrode 22 is in the same position as the outer peripheral end 18e of the electrolyte membrane 18 in the surface direction of the electrolyte membrane 18 (the direction of arrow C in FIG. 2).

カソード電極22は、アノード電極20よりも小さい平面寸法に設定される。カソード電極22の外周端22e及び電解質膜18の外周端18eは、アノード電極20の外周端20eよりも内方に位置する。   The cathode electrode 22 is set to have a smaller planar dimension than the anode electrode 20. The outer peripheral end 22 e of the cathode electrode 22 and the outer peripheral end 18 e of the electrolyte membrane 18 are located inward of the outer peripheral end 20 e of the anode electrode 20.

なお、カソード電極22は、アノード電極20よりも大きな平面寸法に設定され、カソード電極22の外周端22eは、アノード電極20の外周端20eよりも外方に位置してもよい。あるいは、アノード電極20とカソード電極22は、同一の平面寸法に設定され、アノード電極20の外周端20eと、カソード電極22の外周端22eは、電解質膜18の面方向(図2で矢印C方向)において、同一位置にあってもよい。   The cathode electrode 22 may be set to have a larger planar dimension than the anode electrode 20, and the outer peripheral end 22 e of the cathode electrode 22 may be located outward from the outer peripheral end 20 e of the anode electrode 20. Alternatively, the anode electrode 20 and the cathode electrode 22 are set to have the same planar dimension, and the outer peripheral end 20e of the anode electrode 20 and the outer peripheral end 22e of the cathode electrode 22 are in the plane direction of the electrolyte membrane 18 (the direction of arrow C in FIG. 2). ) In the same position.

第1電極触媒層20aは、例えば、白金合金が表面に担持された多孔質カーボン粒子が、イオン導電性高分子バインダとともに第1ガス拡散層20bの表面に一様に塗布されて形成される。第2電極触媒層22aは、例えば、白金合金が表面に担持された多孔質カーボン粒子が、イオン導電性高分子バインダとともに第2ガス拡散層22bの表面に一様に塗布されて形成される。   The first electrode catalyst layer 20a is formed, for example, by uniformly applying porous carbon particles having a platinum alloy supported on the surface thereof to the surface of the first gas diffusion layer 20b together with an ion conductive polymer binder. The second electrode catalyst layer 22a is formed, for example, by applying porous carbon particles having a platinum alloy supported on the surface thereof to the surface of the second gas diffusion layer 22b together with an ion conductive polymer binder.

第1ガス拡散層20b及び第2ガス拡散層22bは、カーボンペーパ又はカーボンクロス等から形成される。第2ガス拡散層22bの平面寸法は、第1ガス拡散層20bの平面寸法よりも小さく設定される。第1電極触媒層20a及び第2電極触媒層22aは、電解質膜18の両面に形成される。   The first gas diffusion layer 20b and the second gas diffusion layer 22b are formed of carbon paper, carbon cloth, or the like. The planar dimension of the second gas diffusion layer 22b is set smaller than the planar dimension of the first gas diffusion layer 20b. The first electrode catalyst layer 20 a and the second electrode catalyst layer 22 a are formed on both surfaces of the electrolyte membrane 18.

樹脂枠部材24は、厚さの異なる2枚の枠状シートを有する。具体的には、樹脂枠部材24は、内周部24anがMEA10aの外周部に接合された第1枠状シート24aと、第1枠状シート24aに接合された第2枠状シート24bとを有する。第1枠状シート24aと第2枠状シート24bとは、接着剤24dからなる接着層24cにより、厚さ方向に互いに接合されている。第2枠状シート24bは、第1枠状シート24aの外周部に接合される。これにより、樹脂枠部材24の外周部は、樹脂枠部材24の内周部25よりも厚く構成される。第1枠状シート24aと第2枠状シート24bとは、同じ厚さを有していてもよい。   The resin frame member 24 has two frame-like sheets having different thicknesses. Specifically, the resin frame member 24 includes a first frame-shaped sheet 24a in which an inner peripheral portion 24an is bonded to the outer peripheral portion of the MEA 10a, and a second frame-shaped sheet 24b bonded to the first frame-shaped sheet 24a. Have. The first frame sheet 24a and the second frame sheet 24b are joined to each other in the thickness direction by an adhesive layer 24c made of an adhesive 24d. The second frame-like sheet 24b is joined to the outer periphery of the first frame-like sheet 24a. Accordingly, the outer peripheral portion of the resin frame member 24 is configured to be thicker than the inner peripheral portion 25 of the resin frame member 24. The first frame-like sheet 24a and the second frame-like sheet 24b may have the same thickness.

第1枠状シート24a及び第2枠状シート24bは樹脂材料により構成される。第1枠状シート24a及び第2枠状シート24bの構成材料としては、例えば、PPS(ポリフェニレンサルファイド)、PPA(ポリフタルアミド)、PEN(ポリエチレンナフタレート)、PES(ポリエーテルサルフォン)、LCP(リキッドクリスタルポリマー)、PVDF(ポリフッ化ビニリデン)、シリコーン樹脂、フッ素樹脂、m−PPE(変性ポリフェニレンエーテル樹脂)、PET(ポリエチレンテレフタレート)、PBT(ポリブチレンテレフタレート)又は変性ポリオレフィン等が挙げられる。   The first frame-like sheet 24a and the second frame-like sheet 24b are made of a resin material. As a constituent material of the first frame-like sheet 24a and the second frame-like sheet 24b, for example, PPS (polyphenylene sulfide), PPA (polyphthalamide), PEN (polyethylene naphthalate), PES (polyethersulfone), LCP (Liquid crystal polymer), PVDF (polyvinylidene fluoride), silicone resin, fluororesin, m-PPE (modified polyphenylene ether resin), PET (polyethylene terephthalate), PBT (polybutylene terephthalate), modified polyolefin, and the like.

樹脂枠部材24の内周部25(第1枠状シート24aの内周部24an)は、アノード電極20の外周部20cとカソード電極22の外周部22cとの間に配置される。具体的に、樹脂枠部材24の内周部25は、電解質膜18の外周部18cとアノード電極20の外周部20cとの間に挟持される。樹脂枠部材24の内周部25と電解質膜18の外周部18cとは、接着層24cを介して接合される。なお、樹脂枠部材24の内周部25は、電解質膜18とカソード電極22との間に挟持されてもよい。   The inner peripheral portion 25 of the resin frame member 24 (the inner peripheral portion 24an of the first frame-like sheet 24a) is disposed between the outer peripheral portion 20c of the anode electrode 20 and the outer peripheral portion 22c of the cathode electrode 22. Specifically, the inner peripheral portion 25 of the resin frame member 24 is sandwiched between the outer peripheral portion 18 c of the electrolyte membrane 18 and the outer peripheral portion 20 c of the anode electrode 20. The inner peripheral portion 25 of the resin frame member 24 and the outer peripheral portion 18c of the electrolyte membrane 18 are joined via an adhesive layer 24c. The inner peripheral portion 25 of the resin frame member 24 may be sandwiched between the electrolyte membrane 18 and the cathode electrode 22.

上述したアノード電極20には、第1枠状シート24aの内周端24aeに対応する位置に段差が設けられる。具体的に、アノード電極20は、第1枠状シート24aの内周部24anに重なる領域21aと電解質膜18に重なる領域21bとの間に、電解質膜18に対して傾斜した傾斜領域21cを有する。従って、傾斜領域21cでは、第1電極触媒層20a及び第1ガス拡散層20bは、電解質膜18に対して傾斜する。   The anode electrode 20 described above is provided with a step at a position corresponding to the inner peripheral edge 24ae of the first frame-like sheet 24a. Specifically, the anode electrode 20 has an inclined region 21 c that is inclined with respect to the electrolyte membrane 18 between a region 21 a that overlaps the inner peripheral portion 24 an of the first frame-shaped sheet 24 a and a region 21 b that overlaps the electrolyte membrane 18. . Therefore, the first electrode catalyst layer 20 a and the first gas diffusion layer 20 b are inclined with respect to the electrolyte membrane 18 in the inclined region 21 c.

アノード電極20において、第1枠状シート24aの内周部24anに重なる領域21aの第1セパレータ14側の面は、電解質膜18に重なる領域21bの第1セパレータ14側の面よりも、電解質膜18から離間した位置にある。   In the anode electrode 20, the surface on the first separator 14 side of the region 21 a that overlaps the inner peripheral portion 24 an of the first frame-like sheet 24 a is more than the surface on the first separator 14 side of the region 21 b that overlaps the electrolyte membrane 18. It is in a position away from 18.

一方、カソード電極22は、電解質膜18に重なる領域23bから第1枠状シート24aの内周部24anに重なる領域23aに亘って、平坦状に形成される。従って、電解質膜18に重なる領域23bから第1枠状シート24aの内周部24anに重なる領域23aに亘って、第2電極触媒層22a及び第2ガス拡散層22bは、電解質膜18と平行である。   On the other hand, the cathode electrode 22 is formed in a flat shape from the region 23b overlapping the electrolyte membrane 18 to the region 23a overlapping the inner peripheral portion 24an of the first frame-like sheet 24a. Therefore, the second electrode catalyst layer 22a and the second gas diffusion layer 22b are parallel to the electrolyte membrane 18 from the region 23b overlapping the electrolyte membrane 18 to the region 23a overlapping the inner peripheral portion 24an of the first frame-like sheet 24a. is there.

なお、上記構成と異なり、アノード電極20が、電解質膜18に重なる領域21bから第1枠状シート24aの内周部24anに重なる領域21aに亘って平坦状に形成され、カソード電極22が、電解質膜18に重なる領域23bと第1枠状シート24aの内周部24anに重なる領域23aとの間に、電解質膜18に対して傾斜する傾斜領域を有してもよい。   Unlike the above configuration, the anode electrode 20 is formed in a flat shape from the region 21b that overlaps the electrolyte membrane 18 to the region 21a that overlaps the inner peripheral portion 24an of the first frame-like sheet 24a, and the cathode electrode 22 is the electrolyte. An inclined region inclined with respect to the electrolyte membrane 18 may be provided between the region 23b overlapping the membrane 18 and the region 23a overlapping the inner peripheral portion 24an of the first frame-like sheet 24a.

第2枠状シート24bは、第1枠状シート24aの外周部に接着剤24dにより接合される。第2枠状シート24bの内周端24beは、第1枠状シート24aの内周端24aeよりも外方(MEA10aから離れる方向)に位置するとともに、アノード電極20の外周端20e及びカソード電極22の外周端22eよりも外方に位置する。   The second frame-like sheet 24b is joined to the outer periphery of the first frame-like sheet 24a by an adhesive 24d. The inner peripheral edge 24be of the second frame-shaped sheet 24b is located outward (in the direction away from the MEA 10a) from the inner peripheral edge 24ae of the first frame-shaped sheet 24a, and the outer peripheral edge 20e of the anode electrode 20 and the cathode electrode 22 are located. It is located outward from the outer peripheral end 22e.

接着層24cは、第1枠状シート24aの第2枠状シート24b側(カソード側)の面24asに、全面に亘って設けられる。従って、接着層24cは、内周部25にも設けられる。接着層24cを構成する接着剤24dとしては、例えば、液状シールやホットメルト剤が設けられる。なお、接着剤24dは、液体や固体、熱可塑性や熱硬化性等に制限されない。   The adhesive layer 24c is provided over the entire surface 24as of the first frame-like sheet 24a on the second frame-like sheet 24b side (cathode side). Therefore, the adhesive layer 24 c is also provided on the inner peripheral portion 25. As the adhesive 24d constituting the adhesive layer 24c, for example, a liquid seal or a hot melt agent is provided. Note that the adhesive 24d is not limited to liquid, solid, thermoplasticity, thermosetting, or the like.

なお、樹脂枠部材24は、第1枠状シート24aと第2枠状シート24bとが接着層24cを介して接合された構成に限らず、全体が一体成形された部材であってもよい。また、樹脂枠部材24は、相対的に薄肉の内周部と相対的に厚肉の外周部とを有する段付き形状に限らず、内周部から外周部に亘って段差の無い(略平坦状の)形状であってもよい。   The resin frame member 24 is not limited to a configuration in which the first frame-shaped sheet 24a and the second frame-shaped sheet 24b are bonded via the adhesive layer 24c, and may be a member integrally formed as a whole. Further, the resin frame member 24 is not limited to a stepped shape having a relatively thin inner peripheral portion and a relatively thick outer peripheral portion, and has no step from the inner peripheral portion to the outer peripheral portion (substantially flat). Shape).

図1に示すように、発電セル12の矢印B方向(水平方向)の一端縁部には、積層方向である矢印A方向に互いに連通して、酸化剤ガス入口連通孔30a、冷却媒体入口連通孔32a及び燃料ガス出口連通孔34bが設けられる。酸化剤ガス入口連通孔30aは、酸化剤ガス、例えば、酸素含有ガスを供給する一方、冷却媒体入口連通孔32aは、冷却媒体を供給する。燃料ガス出口連通孔34bは、燃料ガス、例えば、水素含有ガスを排出する。酸化剤ガス入口連通孔30a、冷却媒体入口連通孔32a及び燃料ガス出口連通孔34bは、矢印C方向(鉛直方向)に配列して設けられる。   As shown in FIG. 1, one end edge of the power generation cell 12 in the direction of arrow B (horizontal direction) communicates with each other in the direction of arrow A, which is the stacking direction. A hole 32a and a fuel gas outlet communication hole 34b are provided. The oxidant gas inlet communication hole 30a supplies an oxidant gas, for example, an oxygen-containing gas, while the cooling medium inlet communication hole 32a supplies a cooling medium. The fuel gas outlet communication hole 34b discharges fuel gas, for example, hydrogen-containing gas. The oxidant gas inlet communication hole 30a, the cooling medium inlet communication hole 32a, and the fuel gas outlet communication hole 34b are arranged in the direction of arrow C (vertical direction).

発電セル12の矢印B方向の他端縁部には、矢印A方向に互いに連通して、燃料ガスを供給する燃料ガス入口連通孔34a、冷却媒体を排出する冷却媒体出口連通孔32b、及び酸化剤ガスを排出する酸化剤ガス出口連通孔30bが設けられる。燃料ガス入口連通孔34a、冷却媒体出口連通孔32b及び酸化剤ガス出口連通孔30bは、矢印C方向に配列して設けられる。   The other end edge of the power generation cell 12 in the direction of arrow B communicates with each other in the direction of arrow A, the fuel gas inlet communication hole 34a for supplying fuel gas, the cooling medium outlet communication hole 32b for discharging the cooling medium, and the oxidation An oxidant gas outlet communication hole 30b for discharging the oxidant gas is provided. The fuel gas inlet communication hole 34a, the cooling medium outlet communication hole 32b, and the oxidant gas outlet communication hole 30b are arranged in the direction of arrow C.

第2セパレータ16の樹脂枠付きMEA10に向かう面16aには、酸化剤ガス入口連通孔30aと酸化剤ガス出口連通孔30bとに連通する酸化剤ガス流路36が設けられる。具体的に、酸化剤ガス流路36は、第2セパレータ16と樹脂枠付きMEA10との間に形成される。酸化剤ガス流路36は、矢印B方向に延在する複数本の直線状流路溝(又は波状流路溝)を有する。   An oxidant gas flow path 36 communicating with the oxidant gas inlet communication hole 30a and the oxidant gas outlet communication hole 30b is provided on the surface 16a of the second separator 16 facing the MEA 10 with a resin frame. Specifically, the oxidant gas flow path 36 is formed between the second separator 16 and the MEA 10 with a resin frame. The oxidant gas flow channel 36 has a plurality of linear flow channel grooves (or wavy flow channel grooves) extending in the arrow B direction.

第1セパレータ14の樹脂枠付きMEA10に向かう面14aには、燃料ガス入口連通孔34aと燃料ガス出口連通孔34bとに連通する燃料ガス流路38が設けられる。具体的に、燃料ガス流路38は、第1セパレータ14と樹脂枠付きMEA10との間に形成される。燃料ガス流路38は、矢印B方向に延在する複数本の直線状流路溝(又は波状流路溝)を有する。   A fuel gas passage 38 communicating with the fuel gas inlet communication hole 34a and the fuel gas outlet communication hole 34b is provided on the surface 14a of the first separator 14 facing the MEA 10 with the resin frame. Specifically, the fuel gas passage 38 is formed between the first separator 14 and the MEA 10 with a resin frame. The fuel gas flow path 38 has a plurality of straight flow path grooves (or wavy flow path grooves) extending in the direction of arrow B.

互いに隣接する第1セパレータ14の面14bと第2セパレータ16の面16bとの間には、冷却媒体入口連通孔32aと冷却媒体出口連通孔32bとに連通する冷却媒体流路40が、矢印B方向に延在して形成される。   Between the surface 14b of the first separator 14 and the surface 16b of the second separator 16 adjacent to each other, a cooling medium flow path 40 communicating with the cooling medium inlet communication hole 32a and the cooling medium outlet communication hole 32b is indicated by an arrow B. It is formed extending in the direction.

図2に示すように、第1セパレータ14の面14a(樹脂枠付きMEA10と対向する面)には、燃料ガス流路38を形成する凸部39が複数設けられる。凸部39は、アノード電極20側に向かって膨出するとともにアノード電極20に当接する。第2セパレータ16の面16a(樹脂枠付きMEA10と対向する面)には、酸化剤ガス流路36を形成する凸部37が複数設けられる。凸部37は、カソード電極22側に向かって膨出するとともにカソード電極22に当接する。凸部37、39間に、MEA10aが挟持される。   As shown in FIG. 2, the surface 14 a of the first separator 14 (surface facing the MEA 10 with a resin frame) is provided with a plurality of convex portions 39 that form the fuel gas flow path 38. The convex portion 39 bulges toward the anode electrode 20 and contacts the anode electrode 20. A plurality of convex portions 37 forming the oxidant gas flow path 36 are provided on the surface 16a of the second separator 16 (the surface facing the MEA 10 with a resin frame). The convex portion 37 bulges toward the cathode electrode 22 side and contacts the cathode electrode 22. The MEA 10 a is sandwiched between the convex portions 37 and 39.

第1セパレータ14の面14aには、この第1セパレータ14の外周部を周回する第1シールライン42(メタルビードシール)が設けられる。第1シールライン42は、樹脂枠部材24に向かって膨出するとともに、第1枠状シート24a(第2枠状シート24bと重なる領域)に気密及び液密に当接する。第1シールライン42は、外側ビード部42aと、外側ビード部42aよりも内側に設けられた内側ビード部42bとを有する。   The surface 14a of the first separator 14 is provided with a first seal line 42 (metal bead seal) that goes around the outer periphery of the first separator 14. The first seal line 42 bulges toward the resin frame member 24 and abuts on the first frame sheet 24a (a region overlapping with the second frame sheet 24b) in an airtight and liquid tight manner. The first seal line 42 has an outer bead portion 42a and an inner bead portion 42b provided inside the outer bead portion 42a.

内側ビード部42bは、燃料ガス流路38、燃料ガス入口連通孔34a及び燃料ガス出口連通孔34bを周回し且つこれらを連通させる。各ビード部42a、42bの断面形状は、先端側(樹脂枠部材24側)に向かって先細り形状である。各ビード部42a、42bの先端は、平坦形状(湾曲形状でもよい)を有する。   The inner bead portion 42b goes around the fuel gas flow path 38, the fuel gas inlet communication hole 34a, and the fuel gas outlet communication hole 34b and makes them communicate with each other. The cross-sectional shape of each bead part 42a, 42b is a taper shape toward the front end side (resin frame member 24 side). The tip of each bead part 42a, 42b has a flat shape (may be a curved shape).

第1シールライン42よりも内方(MEA10a側)で、第1セパレータ14と樹脂枠部材24との間に形成された流路38aは、燃料ガス流路38と連通する。従って、当該流路38aには、燃料ガスが供給される。   A flow path 38 a formed between the first separator 14 and the resin frame member 24 on the inner side (MEA 10 a side) than the first seal line 42 communicates with the fuel gas flow path 38. Accordingly, the fuel gas is supplied to the flow path 38a.

第2セパレータ16の面16aには、この第2セパレータ16の外周部を周回する第2シールライン44(メタルビードシール)が設けられる。第2シールライン44は、樹脂枠部材24に向かって膨出するとともに、第2枠状シート24bに気密及び液密に当接する。第1シールライン42と第2シールライン44は樹脂枠部材24を介して対向する。樹脂枠部材24は、第1シールライン42と第2シールライン44との間に挟持される。第2シールライン44は、外側ビード部44aと、外側ビード部44aよりも内側に設けられた内側ビード部44bとを有する。   The surface 16a of the second separator 16 is provided with a second seal line 44 (metal bead seal) that goes around the outer periphery of the second separator 16. The second seal line 44 bulges toward the resin frame member 24 and abuts against the second frame sheet 24b in an airtight and liquid tight manner. The first seal line 42 and the second seal line 44 oppose each other via the resin frame member 24. The resin frame member 24 is sandwiched between the first seal line 42 and the second seal line 44. The second seal line 44 includes an outer bead portion 44a and an inner bead portion 44b provided inside the outer bead portion 44a.

内側ビード部44bは、酸化剤ガス流路36、酸化剤ガス入口連通孔30a及び酸化剤ガス出口連通孔30bを周回し且つこれらを連通させる。各ビード部44a、44bの断面形状は、先端側(樹脂枠部材24側)に向かって先細り形状である。各ビード部44a、44bの先端は、平坦形状(湾曲形状でもよい)を有する。   The inner bead portion 44b circulates the oxidant gas flow path 36, the oxidant gas inlet communication hole 30a, and the oxidant gas outlet communication hole 30b and communicates them. The cross-sectional shape of each bead part 44a and 44b is a taper shape toward the front end side (resin frame member 24 side). The tip of each bead part 44a, 44b has a flat shape (may be a curved shape).

第2シールライン44よりも内方(MEA10a側)で、第2セパレータ16と樹脂枠部材24との間に形成された流路36aは、酸化剤ガス流路36と連通する。従って、当該流路36aには、酸化剤ガスが供給される。   A flow path 36 a formed between the second separator 16 and the resin frame member 24 on the inner side (MEA 10 a side) than the second seal line 44 communicates with the oxidant gas flow path 36. Therefore, the oxidizing gas is supplied to the flow path 36a.

このように構成される発電セル12を含む燃料電池スタック11の動作について、以下に説明する。   The operation of the fuel cell stack 11 including the power generation cell 12 configured as described above will be described below.

図1に示すように、酸化剤ガス入口連通孔30aには、酸素含有ガス等の酸化剤ガスが供給されるとともに、燃料ガス入口連通孔34aには、水素含有ガス等の燃料ガスが供給される。さらに、冷却媒体入口連通孔32aには、純水やエチレングリコール、オイル等の冷却媒体が供給される。   As shown in FIG. 1, an oxidant gas such as an oxygen-containing gas is supplied to the oxidant gas inlet communication hole 30a, and a fuel gas such as a hydrogen-containing gas is supplied to the fuel gas inlet communication hole 34a. The Further, a cooling medium such as pure water, ethylene glycol, or oil is supplied to the cooling medium inlet communication hole 32a.

このため、酸化剤ガスは、酸化剤ガス入口連通孔30aから第2セパレータ16の酸化剤ガス流路36に導入され、矢印B方向に移動してMEA10aのカソード電極22に供給される。一方、燃料ガスは、燃料ガス入口連通孔34aから第1セパレータ14の燃料ガス流路38に導入される。燃料ガスは、燃料ガス流路38に沿って矢印B方向に移動し、MEA10aのアノード電極20に供給される。   Therefore, the oxidant gas is introduced from the oxidant gas inlet communication hole 30a into the oxidant gas flow path 36 of the second separator 16, moves in the direction of arrow B, and is supplied to the cathode electrode 22 of the MEA 10a. On the other hand, the fuel gas is introduced into the fuel gas flow path 38 of the first separator 14 from the fuel gas inlet communication hole 34a. The fuel gas moves in the direction of arrow B along the fuel gas flow path 38 and is supplied to the anode electrode 20 of the MEA 10a.

従って、MEA10aでは、カソード電極22に供給される酸化剤ガスと、アノード電極20に供給される燃料ガスとが、第2電極触媒層22a及び第1電極触媒層20a内で電気化学反応により消費されて、発電が行われる。   Therefore, in the MEA 10a, the oxidant gas supplied to the cathode electrode 22 and the fuel gas supplied to the anode electrode 20 are consumed by an electrochemical reaction in the second electrode catalyst layer 22a and the first electrode catalyst layer 20a. Power generation.

次いで、図1において、カソード電極22に供給されて消費された酸化剤ガスは、酸化剤ガス出口連通孔30bに沿って矢印A方向に排出される。同様に、アノード電極20に供給されて消費された燃料ガスは、燃料ガス出口連通孔34bに沿って矢印A方向に排出される。   Next, in FIG. 1, the oxidant gas consumed by being supplied to the cathode electrode 22 is discharged in the direction of arrow A along the oxidant gas outlet communication hole 30b. Similarly, the fuel gas consumed by being supplied to the anode electrode 20 is discharged in the direction of arrow A along the fuel gas outlet communication hole 34b.

また、冷却媒体入口連通孔32aに供給された冷却媒体は、第1セパレータ14と第2セパレータ16との間の冷却媒体流路40に導入された後、矢印B方向に流通する。この冷却媒体は、MEA10aを冷却した後、冷却媒体出口連通孔32bから排出される。   The cooling medium supplied to the cooling medium inlet communication hole 32a is introduced into the cooling medium flow path 40 between the first separator 14 and the second separator 16, and then flows in the direction of arrow B. The cooling medium is discharged from the cooling medium outlet communication hole 32b after cooling the MEA 10a.

次いで、本実施形態に係る樹脂枠付きMEA10の製造方法について、以下に説明する。   Subsequently, the manufacturing method of MEA 10 with a resin frame which concerns on this embodiment is demonstrated below.

樹脂枠付きMEA10の製造方法は、樹脂枠付きMEA10の一方の電極である第1電極(本実施形態では、カソード電極22)及び電解質膜18を有する第1シート状部材56と樹脂枠部材24とを熱圧着により接合する第1接合工程と、樹脂枠付きMEA10の他方の電極である第2電極(本実施形態では、アノード電極20)と樹脂枠部材24とを熱圧着により接合する第2接合工程とを含む。   The manufacturing method of the MEA 10 with a resin frame includes the first sheet-like member 56 having the first electrode (the cathode electrode 22 in the present embodiment) and the electrolyte membrane 18 as one electrode of the MEA 10 with a resin frame, the resin frame member 24, A first joining step in which the second electrode (in this embodiment, the anode electrode 20), which is the other electrode of the resin frame-attached MEA 10, and the resin frame member 24 are joined by thermocompression bonding. Process.

第1接合工程では、例えば、図3A及び図3Bに示すように、複数個分の樹脂枠部材24を構成する枠部材素材シート50が用いられる。具体的に、枠部材素材シート50は、図3Bに示すように、複数の樹脂枠部材24が直列に配置された構成を有する帯状の部材である。樹脂枠部材24の内周端24aeを形成する複数の開口部24eが、枠部材素材シート50の長さ方向に間隔を置いて設けられている。   In the first joining step, for example, as shown in FIGS. 3A and 3B, a frame member material sheet 50 constituting a plurality of resin frame members 24 is used. Specifically, the frame member material sheet 50 is a band-shaped member having a configuration in which a plurality of resin frame members 24 are arranged in series, as shown in FIG. 3B. A plurality of openings 24 e forming the inner peripheral edge 24 ae of the resin frame member 24 are provided at intervals in the length direction of the frame member material sheet 50.

枠部材素材シート50は、ロール体52(第1ロール体)から巻き出されて、第1接合工程を行う設備(図4に示す第1接合装置54)に供給される。ロール体52では、枠部材素材シート50と図示しない層間フィルム(保護フィルム)とが重ねられた状態でロール状に巻かれている。ロール体52からの枠部材素材シート50の巻出しに伴い、層間フィルムも巻き出される。巻き出された層間フィルムは、図示しない巻取ロールによって巻き取られる。枠部材素材シート50は、接着層24c(図2)が設けられた面を上方に向けた状態で、図4の第1接合装置54に供給される。   The frame member material sheet 50 is unwound from the roll body 52 (first roll body) and supplied to equipment for performing the first joining step (first joining device 54 shown in FIG. 4). In the roll body 52, the frame member material sheet 50 and an unillustrated interlayer film (protective film) are wound in a roll shape in a state of being overlapped. As the frame member material sheet 50 is unwound from the roll body 52, the interlayer film is also unwound. The unrolled interlayer film is wound up by a winding roll (not shown). The frame member material sheet 50 is supplied to the first joining device 54 of FIG. 4 with the surface on which the adhesive layer 24c (FIG. 2) is provided facing upward.

図4に示すように、第1接合装置54には、カソード電極22と電解質膜18とを有する長方形状の第1シート状部材56が供給される。第1シート状部材56は、第1支持シート58と、第1支持シート58に支持されたカソード電極22と、一方面にカソード電極22が設けられた電解質膜18とを有する。第1支持シート58は、例えば、カーボンペーパにより構成される。   As shown in FIG. 4, the first joining device 54 is supplied with a rectangular first sheet-like member 56 having the cathode electrode 22 and the electrolyte membrane 18. The first sheet-like member 56 includes a first support sheet 58, a cathode electrode 22 supported by the first support sheet 58, and an electrolyte membrane 18 provided with the cathode electrode 22 on one surface. The first support sheet 58 is made of, for example, carbon paper.

例えば、第1支持シート58、カソード電極22及び電解質膜18からなる帯状の多層シートがロール状に巻かれたロール体(以下、「第2ロール体」という)が用いられる。第2ロール体から、多層シートが巻き出される。そして、巻き出された多層シートをカッタ(例えば、ローラカッタ)により所定間隔で切断することで、所定寸法に切り出された長方形状の第1シート状部材56が得られる。   For example, a roll body (hereinafter referred to as “second roll body”) in which a strip-shaped multilayer sheet composed of the first support sheet 58, the cathode electrode 22, and the electrolyte membrane 18 is wound in a roll shape is used. The multilayer sheet is unwound from the second roll body. Then, the unrolled multilayer sheet is cut at a predetermined interval by a cutter (for example, a roller cutter), whereby a rectangular first sheet-like member 56 cut out to a predetermined dimension is obtained.

第1シート状部材56は、電解質膜18を下方に向けた状態で第1接合装置54に供給され、樹脂枠部材24(枠部材素材シート50)上に載置される(第1シート状部材配置工程)。この場合、第1シート状部材56は、電解質膜18が樹脂枠部材24の開口部24eに対向するとともに、電解質膜18の外周部が樹脂枠部材24の内周部25に全周に亘って重なり合うように、樹脂枠部材24上に配置される。   The first sheet-like member 56 is supplied to the first joining device 54 with the electrolyte membrane 18 facing downward, and is placed on the resin frame member 24 (frame member material sheet 50) (first sheet-like member). Placement process). In this case, in the first sheet-like member 56, the electrolyte membrane 18 faces the opening 24 e of the resin frame member 24, and the outer peripheral portion of the electrolyte membrane 18 extends over the entire inner periphery 25 of the resin frame member 24. It arrange | positions on the resin frame member 24 so that it may overlap.

第1接合工程では、第1シート状部材56と樹脂枠部材24とを、電解質膜18の外周部と、樹脂枠部材24の第1面24s1(接着層24cが設けられた面)における内周部25とを全周に亘って接合するように熱圧着する。具体的に、第1接合工程では、カソード電極22の外周部の形状に沿った枠形状の金型(上金型54a及び下金型54b)を備えた第1接合装置54を用い、電解質膜18の外周部と樹脂枠部材24の内周部25とが重なり合う箇所を上下から挟み込んで熱圧着(加熱及び押圧)する。   In the first joining step, the first sheet-like member 56 and the resin frame member 24 are connected to the outer periphery of the electrolyte membrane 18 and the inner periphery of the first surface 24s1 (surface on which the adhesive layer 24c is provided) of the resin frame member 24. Thermocompression bonding is performed so that the portion 25 is joined to the entire circumference. Specifically, in the first bonding step, an electrolyte membrane is used by using a first bonding device 54 including a frame-shaped mold (upper mold 54a and lower mold 54b) along the shape of the outer peripheral portion of the cathode electrode 22. A portion where the outer peripheral portion 18 and the inner peripheral portion 25 of the resin frame member 24 overlap is sandwiched from above and below, and thermocompression bonding (heating and pressing) is performed.

第1接合工程における第1シート状部材56と樹脂枠部材24との熱圧着では、第1接合工程後、第2接合工程が開始する前までの間に、第1シート状部材56が樹脂枠部材24に対して動くことがない程度の接合力が得られればよい。すなわち、第1接合工程の熱圧着は、第1シート状部材56と樹脂枠部材24とを互いに比較的弱く接合する仮圧着(仮固定)である。第1接合工程の熱圧着温度は例えば、90〜110℃であり、押圧時間は数秒程度である。   In the thermocompression bonding of the first sheet-like member 56 and the resin frame member 24 in the first joining step, the first sheet-like member 56 is resin frame before the second joining step is started after the first joining step. It is only necessary to obtain a bonding force that does not move with respect to the member 24. That is, the thermocompression bonding in the first bonding step is temporary pressure bonding (temporary fixing) in which the first sheet-like member 56 and the resin frame member 24 are bonded relatively weakly. The thermocompression bonding temperature in the first joining step is, for example, 90 to 110 ° C., and the pressing time is about several seconds.

第1接合工程により互いに接合された第1シート状部材56及び樹脂枠部材24(以下、「中間接合体59」という)は、図5に示すように、第2接合工程を行う設備(第2接合装置60)に供給される。第2接合装置60は、ワーク保持用治具であるテーブル62と、中間接合体59とアノード電極20とを上下から挟んで加熱及び押圧する上金型64a及び下金型64bとを備える。   As shown in FIG. 5, the first sheet-like member 56 and the resin frame member 24 (hereinafter referred to as “intermediate joined body 59”) joined to each other in the first joining step are installed in the second joining step (second To the joining device 60). The second bonding apparatus 60 includes a table 62 that is a workpiece holding jig, and an upper mold 64a and a lower mold 64b that heat and press the intermediate bonded body 59 and the anode electrode 20 from above and below.

テーブル62には、支持面63a(段部)を有する長方形状のワーク保持溝63と、ワーク保持溝63に連通する長方形状の孔部66とが形成されている。支持面63aには、孔部66を覆うように、外形寸法が孔部66よりも大きい長方形状のクッションパッド68(支持部材)が載置されている。孔部66は、テーブル62の下面62bにて開口しており、下金型64bが挿入されるようになっている。   The table 62 is formed with a rectangular work holding groove 63 having a support surface 63 a (step part) and a rectangular hole 66 communicating with the work holding groove 63. A rectangular cushion pad 68 (support member) having an outer dimension larger than that of the hole 66 is placed on the support surface 63 a so as to cover the hole 66. The hole 66 is opened at the lower surface 62b of the table 62, and the lower mold 64b is inserted therein.

上金型64a及び下金型64bは、上下方向に互いに離間し、ワーク保持溝63を介して対向配置されており、上下方向に移動可能に構成されている。孔部66の開口寸法及び下金型64bの押圧面65bの外径寸法は、第1シート状部材56(カソード電極22及び電解質膜18)の外形寸法及び後述する第2シート状部材72の外形寸法よりも大きい。上金型64aの押圧面65aの外形寸法は、樹脂枠部材24の開口部24eよりも大きく、且つ第1シート状部材56の外形寸法よりも若干だけ小さい。   The upper mold 64a and the lower mold 64b are spaced apart from each other in the vertical direction, are disposed to face each other via the work holding groove 63, and are configured to be movable in the vertical direction. The opening dimension of the hole 66 and the outer diameter dimension of the pressing surface 65b of the lower mold 64b are the outer dimension of the first sheet-like member 56 (the cathode electrode 22 and the electrolyte membrane 18) and the outer dimension of the second sheet-like member 72 described later. Greater than dimensions. The outer dimension of the pressing surface 65 a of the upper mold 64 a is larger than the opening 24 e of the resin frame member 24 and slightly smaller than the outer dimension of the first sheet-like member 56.

例えば、第2支持シート70及びアノード電極20からなる帯状の多層シートがロール状に巻かれたロール体(以下、「第3ロール体」という)が用いられる。当該第3ロール体から、多層シートが巻き出される。そして、巻き出された当該多層シートをカッタ(例えば、ローラカッタ)により所定間隔で切断することで、所定寸法に切り出された長方形状の第2シート状部材72が得られる。第2シート状部材72では、第2支持シート70にアノード電極20が重ね合されている。第2支持シート70は、例えば、カーボンペーパにより構成される。   For example, a roll body (hereinafter referred to as “third roll body”) in which a strip-shaped multilayer sheet composed of the second support sheet 70 and the anode electrode 20 is wound in a roll shape is used. A multilayer sheet is unwound from the third roll body. Then, the unrolled multilayer sheet is cut at a predetermined interval by a cutter (for example, a roller cutter), whereby a rectangular second sheet-like member 72 cut out to a predetermined dimension is obtained. In the second sheet-like member 72, the anode electrode 20 is superimposed on the second support sheet 70. The second support sheet 70 is made of, for example, carbon paper.

第2シート状部材72は、アノード電極20を上方に向けた状態で第2接合装置60に供給され、クッションパッド68上に載置される(第2シート状部材配置工程)。この場合、第2シート状部材72は、平面視で孔部66の範囲内に配置される。クッションパッド68の上面には、第2シート状部材72を位置決めするための溝が設けられているとよい。なお、第2シート状部材72は、クッションパッド68により支持されるため、孔部66へと落下することはない。   The second sheet-like member 72 is supplied to the second bonding apparatus 60 with the anode electrode 20 facing upward, and is placed on the cushion pad 68 (second sheet-like member arranging step). In this case, the 2nd sheet-like member 72 is arrange | positioned in the range of the hole part 66 by planar view. A groove for positioning the second sheet-like member 72 is preferably provided on the upper surface of the cushion pad 68. Since the second sheet-like member 72 is supported by the cushion pad 68, it does not fall into the hole 66.

次に、第2シート状部材72の上に、第1接合工程により得られた中間接合体59(第1シート状部材56及び樹脂枠部材24)が載置される。この場合、中間接合体59は、アノード電極20が樹脂枠部材24の開口部24eに対向するとともに、アノード電極20の外周部が樹脂枠部材24の第2面24s2における内周部25に全周に亘って重なり合うように、第2シート状部材72の上に配置される。これにより、第1シート状部材56の外周部(電解質膜18の外周部)と、第2シート状部材72の外周部(アノード電極20の外周部)とが、樹脂枠部材24の内周部25を介して重なり合う状態となる。   Next, the intermediate joined body 59 (the first sheet-like member 56 and the resin frame member 24) obtained by the first joining step is placed on the second sheet-like member 72. In this case, in the intermediate joined body 59, the anode electrode 20 faces the opening 24 e of the resin frame member 24, and the outer peripheral portion of the anode electrode 20 is entirely surrounded by the inner peripheral portion 25 on the second surface 24 s 2 of the resin frame member 24. It arrange | positions on the 2nd sheet-like member 72 so that it may overlap. Thereby, the outer periphery of the first sheet-like member 56 (the outer periphery of the electrolyte membrane 18) and the outer periphery of the second sheet-like member 72 (the outer periphery of the anode electrode 20) are the inner periphery of the resin frame member 24. 25 to overlap each other.

そして、第2接合工程では、アノード電極20と樹脂枠部材24とを、アノード電極20の外周部と樹脂枠部材24の第2面24s2における内周部25とを全周に亘って接合するように熱圧着する。具体的に、第2接合工程では、第2接合装置60の上金型64a及び下金型64bにより、電解質膜18の外周部と、樹脂枠部材24の内周部25と、アノード電極20の外周部とが重なり合う箇所を上下から挟み込んで熱圧着(加熱及び押圧)する。また、この場合、第2接合工程では、樹脂枠部材24の開口部24eを介してカソード電極22とアノード電極20とを熱圧着する。   In the second bonding step, the anode electrode 20 and the resin frame member 24 are bonded to the outer peripheral portion of the anode electrode 20 and the inner peripheral portion 25 of the second surface 24s2 of the resin frame member 24 over the entire periphery. Thermocompression bonded to. Specifically, in the second bonding step, the outer peripheral portion of the electrolyte membrane 18, the inner peripheral portion 25 of the resin frame member 24, and the anode electrode 20 are formed by the upper mold 64 a and the lower mold 64 b of the second bonding apparatus 60. A portion where the outer peripheral portion overlaps is sandwiched from above and below and thermocompression-bonded (heating and pressing). In this case, in the second bonding step, the cathode electrode 22 and the anode electrode 20 are thermocompression bonded through the opening 24e of the resin frame member 24.

第2接合工程により、電解質膜18の両側にカソード電極22及びアノード電極20が配置されてなるMEA10a(図2)が得られるとともに、当該MEA10aの外周部に樹脂枠部材24(枠部材素材シート50)が接合によって一体化された状態が得られる。   The MEA 10a (FIG. 2) in which the cathode electrode 22 and the anode electrode 20 are disposed on both sides of the electrolyte membrane 18 is obtained by the second bonding step, and the resin frame member 24 (frame member material sheet 50 is formed on the outer periphery of the MEA 10a. ) Are integrated by joining.

第2接合工程の熱圧着は、MEA10aの外周部に樹脂枠部材24が一体化された状態を得るために、中間接合体59と第2シート状部材72とを強固に接合する本圧着である。従って、第2接合工程の熱圧着による接合強度は、第1接合工程の熱圧着による接合強度よりも高い。第2接合工程の熱圧着温度は、例えば、160〜180℃である。第2接合工程での押圧時間は、第1接合工程での押圧時間よりも長いことが好ましい。   The thermocompression bonding in the second bonding step is a main pressure bonding in which the intermediate bonded body 59 and the second sheet-like member 72 are firmly bonded to obtain a state in which the resin frame member 24 is integrated with the outer peripheral portion of the MEA 10a. . Therefore, the bonding strength by thermocompression bonding in the second bonding step is higher than the bonding strength by thermocompression bonding in the first bonding step. The thermocompression bonding temperature in the second joining step is, for example, 160 to 180 ° C. The pressing time in the second bonding step is preferably longer than the pressing time in the first bonding step.

第2接合工程の後、MEA10aと一体化された枠部材素材シート50が所定寸法の長方形状に切り出されることで、図1に示した樹脂枠付きMEA10が得られる。   After the second joining step, the frame member material sheet 50 integrated with the MEA 10a is cut into a rectangular shape having a predetermined size, whereby the MEA 10 with a resin frame shown in FIG. 1 is obtained.

この場合、本実施形態に係る樹脂枠付きMEA10の製造方法は、以下の効果を奏する。   In this case, the manufacturing method of MEA 10 with a resin frame according to the present embodiment has the following effects.

樹脂枠付きMEA10の製造方法は、カソード電極22と電解質膜18とを有する第1シート状部材56と、第1面24s1に接着層24cが設けられた樹脂枠部材24とを、第1シート状部材56の外周部と、樹脂枠部材24の第1面24s1における内周部25とを接合するように熱圧着する第1接合工程(図4)と、アノード電極20と樹脂枠部材24とを、アノード電極20の外周部と、樹脂枠部材24の第2面24s2における内周部25とを接合するように熱圧着する第2接合工程(図5)とを含む。   In the manufacturing method of the MEA 10 with a resin frame, the first sheet-like member 56 having the cathode electrode 22 and the electrolyte membrane 18 and the resin frame member 24 in which the adhesive layer 24c is provided on the first surface 24s1 are formed into the first sheet-like shape. A first joining step (FIG. 4) in which the outer peripheral portion of the member 56 and the inner peripheral portion 25 on the first surface 24 s 1 of the resin frame member 24 are joined, and the anode electrode 20 and the resin frame member 24. And a second joining step (FIG. 5) in which the outer peripheral portion of the anode electrode 20 and the inner peripheral portion 25 on the second surface 24s2 of the resin frame member 24 are joined by thermocompression bonding.

従って、樹脂枠付きMEA10の製造方法によれば、電解質膜18、カソード電極22、アノード電極20及び樹脂枠部材24を1回の熱圧着で一体化するのではなく、電解質膜18とカソード電極22とを有する第1シート状部材56と、樹脂枠部材24とを熱圧着する第1接合工程と、樹脂枠部材24とアノード電極20とを熱圧着する第2接合工程とを行う。このため、電解質膜18の両側にカソード電極22及びアノード電極20が配置されてなるMEA10aと、当該MEA10aの外周部に接合された樹脂枠部材24とを備えた樹脂枠付きMEA10を、効率良く製造することが可能となる。   Therefore, according to the manufacturing method of the MEA 10 with a resin frame, the electrolyte membrane 18, the cathode electrode 22, the anode electrode 20, and the resin frame member 24 are not integrated by one thermocompression bonding, but the electrolyte membrane 18 and the cathode electrode 22 are integrated. The 1st joining process which thermocompression-bonds the 1st sheet-like member 56 which has these, and the resin frame member 24, and the 2nd joining process of thermocompression-bonding the resin frame member 24 and the anode electrode 20 are performed. For this reason, the MEA 10 with a resin frame including the MEA 10a in which the cathode electrode 22 and the anode electrode 20 are disposed on both sides of the electrolyte membrane 18 and the resin frame member 24 joined to the outer peripheral portion of the MEA 10a is efficiently manufactured. It becomes possible to do.

第2接合工程での熱圧着温度は、第1接合工程での熱圧着温度よりも高い。これにより、第1接合工程では簡易な熱圧着で済むことから第1接合工程の所要時間を短くすることができるとともに、第2接合工程では十分な接合強度が得られる。   The thermocompression bonding temperature in the second joining process is higher than the thermocompression bonding temperature in the first joining process. As a result, since the first bonding process requires simple thermocompression bonding, the time required for the first bonding process can be shortened, and sufficient bonding strength can be obtained in the second bonding process.

第1接合工程では、複数個分の樹脂枠部材24を構成する枠部材素材シート50(図3A及び図3B)に、一方面にカソード電極22が設けられた電解質膜18(第1シート状部材56)を熱圧着する。これにより、第1シート状部材56を第2接合工程(第2接合装置60)へと連続的に搬送することができるため、樹脂枠付きMEA10を一層効率良く製造することが可能となる。   In the first joining step, the electrolyte membrane 18 (first sheet-like member) in which the cathode electrode 22 is provided on one side of the frame member material sheet 50 (FIGS. 3A and 3B) constituting the resin frame members 24 for a plurality of pieces. 56) is thermocompression bonded. Thereby, since the 1st sheet-like member 56 can be continuously conveyed to a 2nd joining process (2nd joining apparatus 60), it becomes possible to manufacture MEA10 with a resin frame still more efficiently.

第2接合工程では、アノード電極20の上に、第1シート状部材56と接合された樹脂枠部材24(中間接合体59)を重ねた状態で、上下から熱圧着する。これにより、テーブル62にアノード電極20を載せ、その上に、第1シート状部材56と接合された樹脂枠部材24を重ねることで、樹脂枠部材24とアノード電極20との位置を正確且つ容易に合わせた状態で、熱圧着することができる。   In the second bonding step, the resin frame member 24 (intermediate bonded body 59) bonded to the first sheet-like member 56 is superposed on the anode electrode 20 from above and below. As a result, the anode electrode 20 is placed on the table 62, and the resin frame member 24 joined to the first sheet-like member 56 is placed thereon, so that the positions of the resin frame member 24 and the anode electrode 20 can be accurately and easily set. Thermocompression bonding can be performed in a state matched to the above.

なお、第1シート状部材56は、カソード電極22に代えてアノード電極20が設けられ、第2シート状部材72は、アノード電極20に代えてカソード電極22が設けられてもよい。この場合、第1接合工程では、一方面にアノード電極20が設けられた電解質膜18の外周部が、樹脂枠部材24の第1面24s1における内周部25に熱圧着により接合される。第2接合工程では、カソード電極22の外周部が、樹脂枠部材24の第2面24s2における内周部25に熱圧着により接合される。   The first sheet-like member 56 may be provided with the anode electrode 20 instead of the cathode electrode 22, and the second sheet-like member 72 may be provided with the cathode electrode 22 instead of the anode electrode 20. In this case, in the first bonding step, the outer peripheral portion of the electrolyte membrane 18 provided with the anode electrode 20 on one surface is bonded to the inner peripheral portion 25 of the first surface 24s1 of the resin frame member 24 by thermocompression bonding. In the second bonding step, the outer peripheral portion of the cathode electrode 22 is bonded to the inner peripheral portion 25 of the second surface 24s2 of the resin frame member 24 by thermocompression bonding.

本実施形態では、2枚のセパレータで1枚のMEAを挟持するセルを積層するとともに、各セル間に冷却媒体を流通させる各セル冷却構造が採用されている。なお、複数のセル毎に冷却媒体を流通させる、所謂、間引き冷却構造が採用されてもよい。その際、セルは、3枚以上のセパレータと2枚以上のMEAを備えている。   In this embodiment, each cell cooling structure is used in which cells that sandwich one MEA with two separators are stacked and a cooling medium is circulated between the cells. A so-called thinning cooling structure in which a cooling medium is circulated for each of a plurality of cells may be employed. At that time, the cell includes three or more separators and two or more MEAs.

本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、種々の改変が可能である。   The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention.

10…樹脂枠付き電解質膜・電極構造体 10a…電解質膜・電極構造体
12…発電セル 20…アノード電極
22…カソード電極 24…樹脂枠部材
24c…接着層
DESCRIPTION OF SYMBOLS 10 ... Electrolyte membrane / electrode structure with resin frame 10a ... Electrolyte membrane / electrode structure 12 ... Power generation cell 20 ... Anode electrode 22 ... Cathode electrode 24 ... Resin frame member 24c ... Adhesive layer

Claims (6)

第1電極と該第1電極が一方面に設けられた電解質膜とを有するシート状部材と、開口部が設けられるとともに一方面に接着層が設けられた樹脂枠部材とを、前記シート状部材の外周部と、前記樹脂枠部材の前記一方面における内周部とを接合するように熱圧着する第1接合工程と、
第2電極と前記樹脂枠部材とを、前記第2電極の外周部と、前記樹脂枠部材の他方面における内周部とを接合するように熱圧着する第2接合工程と、を含む、
ことを特徴とする樹脂枠付き電解質膜・電極構造体の製造方法。
A sheet-like member having a first electrode and an electrolyte membrane having the first electrode provided on one surface, and a resin frame member having an opening and an adhesive layer provided on one surface, the sheet-like member. A first bonding step of thermocompression bonding so as to bond the outer peripheral portion of the resin frame member and the inner peripheral portion of the one surface of the resin frame member;
A second joining step of thermocompression bonding the second electrode and the resin frame member so as to join the outer peripheral portion of the second electrode and the inner peripheral portion of the other surface of the resin frame member;
A method for producing an electrolyte membrane / electrode structure with a resin frame, wherein:
請求項1記載の樹脂枠付き電解質膜・電極構造体の製造方法において、
前記第2接合工程での熱圧着温度は、前記第1接合工程での熱圧着温度よりも高い、
ことを特徴とする樹脂枠付き電解質膜・電極構造体の製造方法。
In the manufacturing method of the electrolyte membrane and electrode structure with a resin frame of Claim 1,
The thermocompression bonding temperature in the second joining step is higher than the thermocompression bonding temperature in the first joining step.
A method for producing an electrolyte membrane / electrode structure with a resin frame, wherein:
請求項1又は2記載の樹脂枠付き電解質膜・電極構造体の製造方法において、
前記第2接合工程では、前記開口部において前記電解質膜を介して前記第1電極と前記第2電極とを熱圧着する、
ことを特徴とする樹脂枠付き電解質膜・電極構造体の製造方法。
In the method for producing an electrolyte membrane / electrode structure with a resin frame according to claim 1 or 2,
In the second bonding step, the first electrode and the second electrode are thermocompression bonded through the electrolyte membrane in the opening.
A method for producing an electrolyte membrane / electrode structure with a resin frame, wherein:
請求項1〜3のいずれか1項に記載の樹脂枠付き電解質膜・電極構造体の製造方法において、
前記第1接合工程では、前記第1電極の前記外周部の形状に沿った枠形状の金型を用い、前記電解質膜の前記外周部と前記樹脂枠部材の前記内周部とが重なり合う箇所を上下から挟み込んで熱圧着する、
ことを特徴とする樹脂枠付き電解質膜・電極構造体の製造方法。
In the manufacturing method of the electrolyte membrane and electrode structure with a resin frame of any one of Claims 1-3,
In the first bonding step, a frame-shaped mold that follows the shape of the outer peripheral portion of the first electrode is used, and the outer peripheral portion of the electrolyte membrane and the inner peripheral portion of the resin frame member overlap each other. Sandwiched from above and below and thermocompression bonded,
A method for producing an electrolyte membrane / electrode structure with a resin frame, wherein:
請求項1〜4のいずれか1項に記載の樹脂枠付き電解質膜・電極構造体の製造方法において、
前記第1接合工程では、複数個分の前記樹脂枠部材を構成する枠部材素材シートに、前記電解質膜を熱圧着する、
ことを特徴とする樹脂枠付き電解質膜・電極構造体の製造方法。
In the manufacturing method of the electrolyte membrane and electrode structure with a resin frame of any one of Claims 1-4,
In the first joining step, the electrolyte membrane is thermocompression-bonded to a frame member material sheet constituting the resin frame member for a plurality of times.
A method for producing an electrolyte membrane / electrode structure with a resin frame, wherein:
請求項1〜5のいずれか1項に記載の樹脂枠付き電解質膜・電極構造体の製造方法において、
前記第2接合工程では、前記第2電極の上に、前記シート状部材と接合された前記樹脂枠部材を重ねた状態で、熱圧着する、
ことを特徴とする樹脂枠付き電解質膜・電極構造体の製造方法。
In the manufacturing method of the electrolyte membrane and electrode structure with a resin frame of any one of Claims 1-5,
In the second joining step, the resin frame member joined to the sheet-like member is thermocompression bonded on the second electrode.
A method for producing an electrolyte membrane / electrode structure with a resin frame, wherein:
JP2017090129A 2017-04-28 2017-04-28 Manufacturing method of electrolyte membrane / electrode structure with resin frame Expired - Fee Related JP6442555B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017090129A JP6442555B2 (en) 2017-04-28 2017-04-28 Manufacturing method of electrolyte membrane / electrode structure with resin frame
US15/960,623 US11043685B2 (en) 2017-04-28 2018-04-24 Method and apparatus for producing resin frame equipped membrane electrode assembly
US17/338,749 US11962050B2 (en) 2017-04-28 2021-06-04 Method for producing resin frame equipped membrane electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017090129A JP6442555B2 (en) 2017-04-28 2017-04-28 Manufacturing method of electrolyte membrane / electrode structure with resin frame

Publications (2)

Publication Number Publication Date
JP2018190536A JP2018190536A (en) 2018-11-29
JP6442555B2 true JP6442555B2 (en) 2018-12-19

Family

ID=64480016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017090129A Expired - Fee Related JP6442555B2 (en) 2017-04-28 2017-04-28 Manufacturing method of electrolyte membrane / electrode structure with resin frame

Country Status (1)

Country Link
JP (1) JP6442555B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200072197A (en) * 2018-12-12 2020-06-22 현대자동차주식회사 Elastomer cell frame for fuel cell and manufacturing method thereof and unit cell comprising thereof
CN115084569B (en) * 2022-06-30 2024-01-19 上海捷氢科技股份有限公司 Bipolar plate sealing structure and fuel cell

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5070817B2 (en) * 2006-11-22 2012-11-14 富士電機株式会社 Membrane / electrode assembly of solid polymer electrolyte fuel cell and production method thereof
JP2009176573A (en) * 2008-01-24 2009-08-06 Fuji Electric Holdings Co Ltd Method of manufacturing membrane-electrode assembly of fuel cell
JP5239733B2 (en) * 2008-10-21 2013-07-17 富士電機株式会社 Manufacturing method of membrane electrode assembly
JP2014179252A (en) * 2013-03-15 2014-09-25 Panasonic Corp Fuel cell and process of manufacturing the same
US20150236360A1 (en) * 2014-02-19 2015-08-20 Proton Energy Systems, Inc. Electrochemical cell with protector gasket arrangement
DE102015100740A1 (en) * 2015-01-20 2016-07-21 Elringklinger Ag Electrochemical unit for a fuel cell stack
JP6681537B2 (en) * 2015-06-02 2020-04-15 パナソニックIpマネジメント株式会社 Joined body, fuel cell using the joined body, and method for disassembling the same
CA2989526C (en) * 2015-06-15 2020-11-10 Nissan Motor Co., Ltd. Fuel cell electrode structure, metal separator, fuel cell single cell using the fuel cell electrode structure and the metal separator, and mold for producing the fuel cell electrode structure

Also Published As

Publication number Publication date
JP2018190536A (en) 2018-11-29

Similar Documents

Publication Publication Date Title
JP6722574B2 (en) Electrolyte membrane with resin frame/electrode structure and method for manufacturing the same
JP6158867B2 (en) Inspection method of electrolyte membrane / electrode structure with resin frame
CN110224154B (en) Frame-equipped membrane electrode assembly, method for producing same, and fuel cell
JP5778044B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP6032804B2 (en) Apparatus and method for automatically stacking and aligning fuel cell stacks
JP6100225B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP6442555B2 (en) Manufacturing method of electrolyte membrane / electrode structure with resin frame
JP6090791B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP2017068956A (en) Resin frame-attached electrolyte membrane-electrode structure for fuel cell
JP2017079170A (en) Electrolyte membrane-electrode structure with resin frame for fuel cell and method therefor
JP6602244B2 (en) Step MEA with resin frame for fuel cell and manufacturing method thereof
JP6442554B2 (en) Manufacturing method and apparatus for electrolyte membrane / electrode structure with resin frame
JP2018085334A (en) Fuel battery and operational method thereof
JP2013258097A (en) Electrolyte membrane/electrode structure and manufacturing method thereof
US11962050B2 (en) Method for producing resin frame equipped membrane electrode assembly
JP2017068908A (en) Manufacturing method for resin frame-attached electrolyte membrane-electrode structure
JP4784077B2 (en) Membrane electrode assembly joining apparatus and membrane electrode assembly joining method
JP2016091936A (en) Method for manufacturing resin frame-attached electrolyte membrane-electrode structure for fuel battery
JP7302544B2 (en) Fuel cell manufacturing method
US20220302474A1 (en) Method of selecting adhesive and power generation cell
JP2011222479A (en) Electrolyte film/electrode structure for fuel cell and manufacturing method thereof
JP2017010704A (en) Method for manufacturing electrolyte membrane/electrode structure with resin frame
JP6442393B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP6090799B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP6158764B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181126

R150 Certificate of patent or registration of utility model

Ref document number: 6442555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees