JP6441040B2 - Metal material for electronic parts and method for producing the same - Google Patents

Metal material for electronic parts and method for producing the same Download PDF

Info

Publication number
JP6441040B2
JP6441040B2 JP2014234894A JP2014234894A JP6441040B2 JP 6441040 B2 JP6441040 B2 JP 6441040B2 JP 2014234894 A JP2014234894 A JP 2014234894A JP 2014234894 A JP2014234894 A JP 2014234894A JP 6441040 B2 JP6441040 B2 JP 6441040B2
Authority
JP
Japan
Prior art keywords
film
thickness
less
plating
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014234894A
Other languages
Japanese (ja)
Other versions
JP2016098390A (en
Inventor
澁谷 義孝
義孝 澁谷
篤志 児玉
篤志 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2014234894A priority Critical patent/JP6441040B2/en
Publication of JP2016098390A publication Critical patent/JP2016098390A/en
Application granted granted Critical
Publication of JP6441040B2 publication Critical patent/JP6441040B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電子部品用金属材料及びその製造方法に関する。   The present invention relates to a metal material for electronic parts and a method for producing the same.

近年、PCカード、コンパクト・フラッシュメモリカード、SDメモリカード、メモリースティック等のコンパクトで大きな容量で持ち運びの容易なカード状の情報記憶媒体が広く用いられている。カード状の情報記憶媒体は、カードコネクタによりパソコン等の電子機器に実装される。このカードコネクタのうち、金属製のガイドカバーが設けられているものがある。これは表面に帯電した電荷を放電するために導電体で、なおかつ基板のグランドと電気的接合する必要がある。このため、金属板をプレス加工で打ち抜きおよび曲げ加工を行い、ガイドカバーの形状にした後に、基板にはんだ付けで固定している。   2. Description of the Related Art In recent years, card-like information storage media such as PC cards, compact flash memory cards, SD memory cards, and memory sticks that are compact and have a large capacity and are easy to carry are widely used. The card-shaped information storage medium is mounted on an electronic device such as a personal computer by a card connector. Some of these card connectors are provided with a metal guide cover. This is a conductor for discharging the charges charged on the surface, and it is necessary to be electrically connected to the ground of the substrate. For this reason, the metal plate is punched and bent by press working to form a guide cover, and then fixed to the substrate by soldering.

また、これらのカードコネクタが用いられる電気製品のパソコン、PDA、デジタルカメラ等ではそのMPUが発生する熱により高温になるため、放熱特性が要求されるようになっている。現在は、MPUに導電性の高い銅合金のヒートシンクを設けたり、ファンで強制冷却をしたり、ヒートパイプで熱を伝達したりして放熱している。しかしながら、機器の小型化・高密度化もあいまって、充分な放熱を行うことが難しくなってきており、本来高熱になっては望ましくないキーボードや筐体が高温になることもある。このため、筐体の開口部となるカードカバー部の放熱機能はこれまでより重要になっている。   In addition, since the PCU, PDA, digital camera, etc., which are electrical products using these card connectors, are heated by the heat generated by the MPU, heat dissipation characteristics are required. At present, heat is dissipated by providing a highly conductive copper alloy heat sink in the MPU, forcibly cooling with a fan, or transferring heat with a heat pipe. However, along with downsizing and increasing the density of devices, it has become difficult to sufficiently dissipate heat, and keyboards and housings that are not desirable when heated to high temperatures may become hot. For this reason, the heat radiation function of the card cover part used as the opening part of a housing | casing has become more important than before.

ところが、カードコネクタには、現在は安価で強度の高いステンレス鋼が使用されている(例えば、特許文献1参照。)。ステンレス鋼は金属のなかでも導電率が低いため、熱伝導も悪く、放熱機能としては充分ではない。さらにステンレス鋼でははんだ付け性が悪いため、電気接合のための基板へのはんだ付けが実施しにくい欠点がある。これを回避するために、はんだ付け部に部分的に錫もしくは錫合金めっきを施す必要があった。   However, at present, inexpensive and high-strength stainless steel is used for the card connector (see, for example, Patent Document 1). Since stainless steel has a low electrical conductivity among metals, heat conduction is also poor, and the heat dissipation function is not sufficient. Furthermore, since stainless steel has poor solderability, it has a drawback that it is difficult to perform soldering on a substrate for electrical joining. In order to avoid this, it was necessary to partially apply tin or tin alloy plating to the soldered portion.

特開2003−109694号公報JP 2003-109694 A

しかしながら、はんだ付け部に錫もしくは錫合金めっきを施した場合、電子部品用金属材料を長期保管するとはんだ濡れ性が劣化する場合があった。そしてこの劣化を避けるためには、化学的に安定なAuめっきが錫もしくは錫合金めっきの代わりとして用いられて電子部品用金属材料を提供しているが、高価なAuを使うためコストが高いという問題があった。   However, when tin or tin alloy plating is applied to the soldered portion, the solder wettability may deteriorate when the metal material for electronic parts is stored for a long time. In order to avoid this deterioration, chemically stable Au plating is used as a substitute for tin or tin alloy plating to provide metal materials for electronic parts, but the cost is high because expensive Au is used. There was a problem.

本発明者は、鋭意検討の結果、ステンレス鋼基材上に所定の金属を用いて、上下二層の合金層をそれぞれ所定の厚みで形成することで、高耐久はんだ濡れ性が得られる比較的安価な電子部品用金属材料が得られることを見出した。   As a result of intensive studies, the inventor of the present invention uses a predetermined metal on a stainless steel substrate and forms two upper and lower alloy layers with a predetermined thickness, respectively, so that high durability solder wettability can be obtained. It has been found that an inexpensive metal material for electronic parts can be obtained.

以上の知見を基礎として完成した本発明は一側面において、ステンレス鋼基材上に形成されたNiとSnとで構成された下層と、前記下層上に設けられたAgとSnとで構成された上層とを備え、前記下層の厚みが0.08μm以上0.20μm未満であり、前記上層の厚みが0.36μm以上であり、前記下層中のNi原子濃度が80at%未満であり、前記上層の算術平均粗さRaが0.3μm未満である電子部品用金属材料である。 The present invention completed on the basis of the above knowledge is composed of, in one aspect, a lower layer made of Ni and Sn formed on a stainless steel substrate and Ag and Sn provided on the lower layer. and a top layer, the lower layer of the thickness is less than 0.08 [mu] m or more 0.20 [mu] m, the is a layer having a thickness of 0.36 [mu] m or more, Ri Ni atom concentration der less than 80at% in the lower layer, the upper layer of the arithmetic average roughness Ra of a metallic material for Ru der less than 0.3μm electronic components.

本発明の電子部品用金属材料は別の一実施形態において、最表面から深さ方向に厚み5nmまでの領域を除いた前記上層において、Ag原子濃度(at%)>Sn原子濃度(at%)を満たす。   In another embodiment of the metal material for electronic parts of the present invention, Ag atom concentration (at%)> Sn atom concentration (at%) in the upper layer excluding a region from the outermost surface to a thickness of 5 nm in the depth direction. Meet.

本発明の電子部品用金属材料は更に別の一実施形態において、最表面から深さ方向に厚み5nmまでの領域を除いた前記上層において、9×Sn原子濃度(at%)>Ag原子濃度(at%)>Sn原子濃度(at%)を満たす。   In another embodiment of the metal material for electronic parts of the present invention, in the upper layer excluding a region from the outermost surface to a thickness of 5 nm in the depth direction, 9 × Sn atom concentration (at%)> Ag atom concentration ( at%)> Sn atomic concentration (at%).

本発明は別の一側面において、ステンレス鋼基材上に厚み0.005μm以上0.100μm未満のNiを成膜してNi皮膜を形成する工程と、前記Ni皮膜上に厚み0.03μm以上0.30μm未満のAgを成膜してAg皮膜を形成する工程と、前記Ag皮膜上に厚み0.02μm以上0.30μm未満のSnを成膜してSn皮膜を形成する工程と、前記Sn皮膜を形成した後、熱処理を行うことで、前記ステンレス鋼基材上にNiとSnとで構成され且つNi原子濃度が80at%未満である下層と、前記下層上に設けられたAgとSnとで構成された上層とを形成する工程とを含む本発明の電子部品用金属材料の製造方法である。   In another aspect of the present invention, a step of forming a Ni film by forming a Ni film having a thickness of 0.005 μm or more and less than 0.100 μm on a stainless steel substrate, and a thickness of 0.03 μm or more and 0 on the Ni film. A step of forming an Ag film by forming an Ag film having a thickness of less than 30 μm, a process of forming an Sn film by forming an Sn film having a thickness of 0.02 μm or more and less than 0.30 μm on the Ag film, and the Sn film. And forming a lower layer composed of Ni and Sn on the stainless steel substrate and having a Ni atom concentration of less than 80 at%, and Ag and Sn provided on the lower layer. It is a manufacturing method of the metal material for electronic components of this invention including the process of forming the comprised upper layer.

本発明は更に別の一側面において、ステンレス鋼基材上に厚み0.005μm以上0.100μm未満のNiを成膜してNi皮膜を形成する工程と、前記Ni皮膜上に厚み0.02μm以上0.30μm未満のSnを成膜してSn皮膜を形成する工程と、前記Sn皮膜上に厚み0.03μm以上0.30μm未満のAgを成膜してAg皮膜を形成する工程と、前記Ag皮膜を形成した後、熱処理を行うことで、前記ステンレス鋼基材上にNiとSnとで構成され且つNi原子濃度が80at%未満である下層と、前記下層上に設けられたAgとSnとで構成された上層とを形成する工程とを含む本発明の電子部品用金属材料の製造方法である。   In yet another aspect of the present invention, a step of forming a Ni film by forming a Ni film having a thickness of 0.005 μm or more and less than 0.100 μm on a stainless steel substrate, and a thickness of 0.02 μm or more on the Ni film Forming a Sn film by depositing Sn less than 0.30 μm; forming an Ag film by depositing Ag having a thickness of 0.03 μm or more and less than 0.30 μm on the Sn film; and After forming the film, by performing a heat treatment, a lower layer composed of Ni and Sn on the stainless steel substrate and having a Ni atom concentration of less than 80 at%, Ag and Sn provided on the lower layer, A method for producing a metal material for electronic parts according to the present invention.

本発明によれば、高耐久はんだ濡れ性が得られる比較的安価な電子部品用金属材料を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the metal material for electronic components which can obtain highly durable solder wettability can be provided.

本発明の実施形態に係る電子部品用金属材料の構成を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structure of the metal material for electronic components which concerns on embodiment of this invention. 参考例12に係るXPS分析結果である。It is an XPS analysis result concerning the reference example 12.

以下、本発明の実施形態に係る電子部品用金属材料について説明する。図1に示すように、実施形態に係る電子部品用金属材料10は、ステンレス鋼基材11上に下層12が形成され、下層12上に上層13が形成されている。   Hereinafter, the metal material for electronic components according to the embodiment of the present invention will be described. As shown in FIG. 1, a metal material 10 for an electronic component according to the embodiment has a lower layer 12 formed on a stainless steel substrate 11 and an upper layer 13 formed on the lower layer 12.

<電子部品用金属材料の構成>
(ステンレス鋼基材)
ステンレス鋼基材11としては特に限定されないが、例えば、現在一般的に使われているガイドカバー用材料、具体的にはSUS304等を用いることができる。
<Configuration of metal materials for electronic parts>
(Stainless steel base)
Although it does not specifically limit as the stainless steel base material 11, For example, the material for guide covers currently used generally, specifically, SUS304 etc. can be used.

(上層)
上層13はAgとSnとで構成される。上層13は耐熱性、耐硫化性及び高耐久はんだ濡れ性に優れた皮膜である。上層13の厚みは0.04μm以上である。上層13の厚みが0.04μm未満であるとはんだ濡れ性が悪い。後述するようにAgとSnの各めっき厚みの条件を制御すると上層13の条件厚みは0.50μm程度となる。上層13の厚みは、好ましくは0.10μm以上であり、より好ましくは0.20μm以上である。
上層13へは、はんだ濡れ性の向上を目的とし、Pを5at%以下まで添加することも可能である。
本発明では、「上層」は、「最表面からAg濃度が最大を示した後深さ方向に50at%となるまでの領域の範囲」である。
(Upper layer)
The upper layer 13 is made of Ag and Sn. The upper layer 13 is a film excellent in heat resistance, sulfidation resistance and high durability solder wettability. The thickness of the upper layer 13 is 0.04 μm or more. When the thickness of the upper layer 13 is less than 0.04 μm, the solder wettability is poor. As will be described later, when the conditions of the plating thicknesses of Ag and Sn are controlled, the condition thickness of the upper layer 13 is about 0.50 μm. The thickness of the upper layer 13 is preferably 0.10 μm or more, more preferably 0.20 μm or more.
To the upper layer 13, it is possible to add P up to 5 at% or less for the purpose of improving solder wettability.
In the present invention, the “upper layer” is “the range of the region from the outermost surface to 50 at% in the depth direction after the Ag concentration shows the maximum”.

(下層)
下層12はNiとSnとで構成される。下層12はめっき後に熱処理を施すことで上層13とステンレス鋼基材との間に形成される。NiはSnと合金層を形成することでNi濃度が低くなり、ニッケルアレルギー問題の懸念が低減する。下層12の厚みは、0.01μm以上0.20μm未満である。下層12の厚みが0.01μm未満であると、密着性が悪くなるという問題が生じる。また、下層12の厚みが0.20μmを超えると、ニッケルアレルギーの問題が生じる。下層12の厚みは、好ましくは0.05μm以上0.15μm未満である。
下層12へはニッケルアレルギーの問題を避けるために、Cr、Mn、Fe、Co、Cu、B、P、Sn、Znを合計30at%まで添加することも可能である。
本発明では、下層は、「Ag濃度が最大を示した後深さ方向に50at%となるところから深さ方向にFeの原子濃度が50at%となるまでの領域の範囲」である。なお、当該Feはステンレス鋼基材に由来するものである。
(Underlayer)
The lower layer 12 is composed of Ni and Sn. The lower layer 12 is formed between the upper layer 13 and the stainless steel substrate by performing a heat treatment after plating. When Ni forms an alloy layer with Sn, the Ni concentration is lowered, and the concern about the nickel allergy problem is reduced. The thickness of the lower layer 12 is 0.01 μm or more and less than 0.20 μm. When the thickness of the lower layer 12 is less than 0.01 μm, there arises a problem that the adhesion is deteriorated. Moreover, when the thickness of the lower layer 12 exceeds 0.20 μm, a problem of nickel allergy occurs. The thickness of the lower layer 12 is preferably 0.05 μm or more and less than 0.15 μm.
In order to avoid the problem of nickel allergy, Cr, Mn, Fe, Co, Cu, B, P, Sn, and Zn can be added to the lower layer 12 up to a total of 30 at%.
In the present invention, the lower layer is “a range of a region from the point where the Ag concentration reaches 50 at% in the depth direction after the maximum Ag concentration to the atomic concentration of Fe in the depth direction reaches 50 at%”. Note that the Fe is derived from a stainless steel substrate.

(皮膜中の原子濃度)
また、最表面から深さ方向に厚み5nmまでの領域を除いた上層において、Ag原子濃度(at%)>Sn原子濃度(at%)を満たすのが好ましい。このような構成により、はんだ濡れ性が良好となる。また、最表面から深さ方向に厚み5nmまでの領域を除いた上層において、9×Sn原子濃度(at%)>Ag原子濃度(at%)>Sn原子濃度(at%)を満たすのがより好ましい。このような構成により、更にAgの硫化を抑制することができる。なお、最表面から深さ方向に厚み5nmまでの領域は、Snめっき後、表面に酸化錫が直ちに形成し、熱処理してもこの酸化錫の形態は変化しないため、Sn濃度>Ag濃度となる領域が存在する。また、下層中のNiの原子濃度が80at%未満であることが好ましく、60at%未満であるのがより好ましく、40at%未満であるのが更により好ましい。下層中のNiの原子濃度が80at%以上であるとニッケルアレルギーの問題が懸念される場合がある。
(Atomic concentration in the film)
Moreover, it is preferable that Ag atom concentration (at%)> Sn atom concentration (at%) is satisfied in the upper layer excluding the region from the outermost surface to a thickness of 5 nm in the depth direction. With such a configuration, solder wettability is improved. Further, in the upper layer excluding the region from the outermost surface to the thickness of 5 nm in the depth direction, it is more preferable to satisfy 9 × Sn atom concentration (at%)> Ag atom concentration (at%)> Sn atom concentration (at%). preferable. With such a configuration, the sulfurization of Ag can be further suppressed. In the region from the outermost surface to a depth of 5 nm, tin oxide is immediately formed on the surface after Sn plating, and the form of this tin oxide does not change even after heat treatment. Therefore, the Sn concentration> Ag concentration. An area exists. Further, the atomic concentration of Ni in the lower layer is preferably less than 80 at%, more preferably less than 60 at%, and even more preferably less than 40 at%. If the atomic concentration of Ni in the lower layer is 80 at% or more, there may be a concern about the problem of nickel allergy.

<電子部品用金属材料の製造方法>
次に、実施形態に係る電子部品用金属材料の製造方法について説明する。
まず、ステンレス鋼基材11上に厚み0.005μm以上0.100μm未満のNiを成膜してNi皮膜を形成する。Niはステンレス鋼基材11上に密着性のよいAg及びSnめっきをするためとステンレス鋼基材11の構成金属がめっき皮膜に拡散してくるのを防止するために用いられる。Niめっきの厚みが0.005μm未満であると、密着性の良いAg及びSnめっき皮膜が得られない。なおステンレス鋼基材の構成金属は、銅系基材の構成金属と比較して拡散速度が遅く拡散が遅い。よってステンレス鋼基材の拡散を防止するためは銅系基材よりもNiめっき厚みが薄くても良い。一方Niめっきの厚みが0.100μmより厚くなると、めっき後に熱処理をしてもめっき皮膜にNi濃度が高い部分が存在し、この濃度が高い電子部品用金属材料を使用することでニッケルアレルギーの問題が生じる懸念がある。
<Method for producing metal material for electronic parts>
Next, the manufacturing method of the metal material for electronic components which concerns on embodiment is demonstrated.
First, Ni having a thickness of 0.005 μm or more and less than 0.100 μm is formed on the stainless steel substrate 11 to form a Ni film. Ni is used to perform Ag and Sn plating with good adhesion on the stainless steel substrate 11 and to prevent the constituent metals of the stainless steel substrate 11 from diffusing into the plating film. When the thickness of the Ni plating is less than 0.005 μm, an Ag and Sn plating film with good adhesion cannot be obtained. The constituent metal of the stainless steel base material has a slow diffusion rate and a low diffusion speed as compared with the constituent metal of the copper base material. Therefore, in order to prevent the diffusion of the stainless steel substrate, the Ni plating thickness may be thinner than the copper-based substrate. On the other hand, when the Ni plating thickness is greater than 0.100 μm, even if heat treatment is performed after plating, there is a portion with a high Ni concentration in the plating film. There is a concern that will occur.

次に、Ni皮膜上に厚み0.03μm以上0.30μm未満のAgを成膜してAg皮膜を形成する。Agを含む貴金属は、金属の中では比較的耐熱性を有するという特徴がある。またこれら金属は、後述するSnと化合物を形成してSnの酸化膜形成を抑制し、はんだ濡れ性を向上させる。なおAgは他の貴金属と比較すると安価であり、導電率が高いという特徴がある。Agの厚みが0.03μm未満であると耐熱性が悪くはんだ濡れ性が劣化する。一方Agの厚みが0.30μmよりも厚いと、めっき後に熱処理してもAgが全てAgとSnの合金層を形成せず、Ag濃度が比較的高い部分が存在し、耐硫化試験をするとAgが変色する場合がある。   Next, an Ag film is formed by forming an Ag film having a thickness of 0.03 μm or more and less than 0.30 μm on the Ni film. A precious metal containing Ag is characterized by having relatively heat resistance among metals. Further, these metals form a compound with Sn described later to suppress the formation of an oxide film of Sn and improve solder wettability. Note that Ag is cheaper than other noble metals and has a feature of high conductivity. When the thickness of Ag is less than 0.03 μm, the heat resistance is poor and the solder wettability is deteriorated. On the other hand, if the thickness of Ag is greater than 0.30 μm, even if the heat treatment is performed after plating, the Ag layer does not form an alloy layer of Ag and Sn, and there is a portion with a relatively high Ag concentration. May change color.

次に、Ag皮膜上に厚み0.02μm以上0.30μm未満のSnを成膜してSn皮膜を形成する。Snは塩素ガス、亜硫酸ガス、硫化水素ガス等のガスに対する耐ガス腐食性に優れ、Agの硫化を防ぐ働きがある。Snの厚みが0.02μm未満であるとAgの硫化を抑制する効果が弱く、Agが硫化する場合がある。Snの厚みが0.30μmを超えると、めっき後に熱処理してもSnが全てAgとSnの合金層を形成せず、Sn濃度が比較的高い部分が存在してウィスカが発生する場合がある。   Next, Sn having a thickness of 0.02 μm or more and less than 0.30 μm is formed on the Ag film to form a Sn film. Sn is excellent in gas corrosion resistance against gases such as chlorine gas, sulfurous acid gas, and hydrogen sulfide gas, and has a function of preventing sulfidation of Ag. When the thickness of Sn is less than 0.02 μm, the effect of suppressing the sulfidation of Ag is weak, and Ag may be sulfidized. When the thickness of Sn exceeds 0.30 μm, even if a heat treatment is performed after plating, an alloy layer of all Sn and Ag and Sn may not be formed, and a portion having a relatively high Sn concentration may exist and whiskers may be generated.

次に、Sn皮膜を形成した後、熱処理を行うことで、前記ステンレス鋼基材上にNiとSnとで構成され且つNi原子濃度が80at%未満である下層と、下層上に設けられたAgとSnとで構成された上層とを形成する。AgとSnの合金層を設けるためには、このように、めっき後の熱処理を施すことが必要である。なお、この熱処理については、処理条件(温度×時間)は適宜選択できる。なお熱処理を施す場合にはSnの融点以上の温度で行った方がAgとSnの合金層を形成しやすい。   Next, after forming the Sn film, by performing heat treatment, a lower layer composed of Ni and Sn and having a Ni atom concentration of less than 80 at% on the stainless steel substrate, and Ag provided on the lower layer And an upper layer composed of Sn. In order to provide an alloy layer of Ag and Sn, it is necessary to perform heat treatment after plating as described above. In addition, about this heat processing, process conditions (temperature x time) can be selected suitably. When heat treatment is performed, it is easier to form an alloy layer of Ag and Sn if the heat treatment is performed at a temperature equal to or higher than the melting point of Sn.

上記熱処理を施した後に、耐ガス腐食性及びはんだ濡れ性を向上させる目的で後処理を施しても良い。後処理によって上層の酸化が抑制されて、耐ガス腐食性及びはんだ濡れ性等の耐久性が向上する。具体的な後処理としてはインヒビターを用いた、リン酸塩処理、潤滑処理、シランカップリング処理等がある。なおこの後処理の有無及び処理条件については限定されない。   After the heat treatment, a post-treatment may be performed for the purpose of improving gas corrosion resistance and solder wettability. The post-treatment suppresses oxidation of the upper layer and improves durability such as gas corrosion resistance and solder wettability. Specific post-treatment includes phosphate treatment, lubrication treatment, silane coupling treatment, etc. using an inhibitor. The presence or absence of post-processing and processing conditions are not limited.

なお、めっきの順番は、上記実施形態では、ステンレス鋼基材11上にNiめっきを施し、その後Agめっき、Snめっきの順に形成したが、これに限られず、ステンレス鋼基材11上にNiめっきを施し、その後Snめっき、Agめっきの順に形成してもよい。AgめっきとSnめっきとは、どちらの順に施しても熱処理をすれば同じ本発明の皮膜構造が得られる。   In addition, in the said embodiment, although the plating order performed Ni plating on the stainless steel base material 11 and formed it in order of Ag plating and Sn plating after that, it is not restricted to this, Ni plating on the stainless steel base material 11 After that, Sn plating and Ag plating may be formed in this order. Regardless of the order of Ag plating and Sn plating, the same coating structure of the present invention can be obtained by heat treatment.

<電子部品用金属材料の特性>
(上層の表面粗さ)
上層13の算術平均粗さRaが0.3μm未満であることが好ましい。上層の算術平均粗さが0.3μm以上であると、密着性が悪い場合がある。上層13の算術平均粗さRaは、より好ましくは0.20μm未満であり、更により好ましくは0.10μm未満であり、典型的には0.08〜0.18μmである。
<Characteristics of metal materials for electronic parts>
(Surface roughness of upper layer)
The arithmetic average roughness Ra of the upper layer 13 is preferably less than 0.3 μm. When the arithmetic average roughness of the upper layer is 0.3 μm or more, the adhesion may be poor. The arithmetic average roughness Ra of the upper layer 13 is more preferably less than 0.20 μm, still more preferably less than 0.10 μm, and typically 0.08 to 0.18 μm.

<電子部品用金属材料の用途>
本発明の電子部品用金属材料の用途は特に限定しないが、例えば電子部品用金属材料を接点部分に用いたカードコネクタ等の電子部品などが挙げられる。
<Applications of metal materials for electronic parts>
The use of the metal material for electronic parts of the present invention is not particularly limited, and examples thereof include electronic parts such as a card connector using the metal material for electronic parts as a contact portion.

以下、本発明の実施例、参考例及び比較例を共に示すが、これらは本発明をより良く理解するために提供するものであり、本発明が限定されることを意図するものではない。 Hereinafter, examples , reference examples, and comparative examples of the present invention will be shown together, but these are provided for better understanding of the present invention and are not intended to limit the present invention.

実施例、参考例及び比較例として、表1に示す種類及び算術平均粗さRaのステンレス鋼基材を準備し、当該Raを有する表面側に電解脱脂、酸洗を行った後、Niめっき、Agめっき、Snめっきをそれぞれ表1に示す順(第1めっき〜第3めっき)で形成した後、熱処理及び後処理を行った。当該ステンレス鋼基材の構成及び電解脱脂、酸洗、Niめっき、Agめっき、Snめっき、熱処理、後処理の詳細は以下の通りである。 As an example , a reference example, and a comparative example, after preparing a stainless steel base material of the type and arithmetic average roughness Ra shown in Table 1, performing electrolytic degreasing and pickling on the surface side having the Ra, Ni plating, After forming Ag plating and Sn plating in the order shown in Table 1 (first plating to third plating), heat treatment and post-treatment were performed. Details of the stainless steel base material and electrolytic degreasing, pickling, Ni plating, Ag plating, Sn plating, heat treatment, and post-treatment are as follows.

(ステンレス鋼基材)
ステンレス鋼基材:SUS304(Fe−18質量%Cr−8質量%Ni)、厚み0.30mm
(Stainless steel base)
Stainless steel substrate: SUS304 (Fe-18 mass% Cr-8 mass% Ni), thickness 0.30 mm

(電解脱脂)
めっき液:アルカリ脱脂浴
液温:60℃
電流密度:3A/dm2(材料を陽極にしての電解)
(Electrolytic degreasing)
Plating solution: Alkaline degreasing bath Liquid temperature: 60 ° C
Current density: 3 A / dm 2 (electrolysis with material as anode)

(酸洗)
めっき液:硫酸浴
液温:常温
電流密度:10A/dm2(材料を陰極にしての電解)
(Pickling)
Plating solution: Sulfuric acid bath Liquid temperature: Room temperature Current density: 10 A / dm 2 (Electrolysis using material as cathode)

(第1めっき:Niめっき)
めっき液:ウッド浴(塩酸+塩化ニッケル浴)
液温:常温
電流密度:4A/dm2
(First plating: Ni plating)
Plating solution: Wood bath (hydrochloric acid + nickel chloride bath)
Liquid temperature: normal temperature Current density: 4 A / dm 2

(第2、3めっき:Agめっき)
めっき液:ストライク浴(+厚付け浴)※シアン浴
めっき温度:常温
電流密度:0.2〜0.5A/dm2
(Second and third plating: Ag plating)
Plating solution: Strike bath (+ thickening bath) * Cyan bath Plating temperature: Room temperature Current density: 0.2 to 0.5 A / dm 2

(第2、3めっき:Snめっき)
めっき液:メタンスルホン酸浴
めっき温度:40℃
電流密度:4A/dm2
(Second and third plating: Sn plating)
Plating solution: Methanesulfonic acid bath Plating temperature: 40 ° C
Current density: 4 A / dm 2

(熱処理)
熱処理はホットプレートにサンプルを置き、ホットプレートの表面が所定の温度になったことを確認して実施した。
(Heat treatment)
The heat treatment was performed by placing a sample on a hot plate and confirming that the surface of the hot plate reached a predetermined temperature.

(後処理)
めっき液:リン酸エステル系液
めっき温度:60℃
〔陽極電解(2V、定電圧電解)〕
(Post-processing)
Plating solution: Phosphate ester solution Plating temperature: 60 ° C
[Anode electrolysis (2V, constant voltage electrolysis)]

上述のようにして形成したサンプルについて、以下の各測定を行った。
(Ni、Ag及びSnめっきの厚み)
Ni、Ag及びSnめっきの厚みは、蛍光X線膜厚計(日立ハイテクサイエンス製 SFT9550X)で測定した。測定は任意の5点について評価し平均化した。
The following measurements were performed on the sample formed as described above.
(Ni, Ag and Sn thickness)
The thickness of Ni, Ag, and Sn plating was measured with a fluorescent X-ray film thickness meter (SFT 9550X manufactured by Hitachi High-Tech Science). The measurement was evaluated and averaged for five arbitrary points.

(上層及び下層の構造[組成]の決定及び厚み)
上層及び下層の構造の決定及び厚み測定は、XPS(X線光電子分光)分析によるDepth分析で行った。分析した元素は、Ag、Sn、Fe及びNiである。これら元素を指定元素とする。また、指定元素の合計を100%として、各元素の濃度(at%)を分析した。厚みは、SiO2換算の距離に対応する。XPS装置は、アルバック・ファイ株式会社製5600MC(検出面積800μmΦ)を用いた。
測定は、任意の3点について評価を行って平均化した。
なお上層は、最表面からAg濃度が最大を示した後深さ方向に50at%となるまでの領域の範囲とした。一方下層はAg濃度が最大を示した後深さ方向に50at%となるところから深さ方向にFeの原子濃度が50at%となるまでの領域の範囲とした。
(Determination and thickness of upper layer and lower layer structure [composition])
The determination of the structure of the upper layer and the lower layer and the thickness measurement were performed by depth analysis by XPS (X-ray photoelectron spectroscopy) analysis. The analyzed elements are Ag, Sn, Fe and Ni. These elements are designated elements. Further, the concentration (at%) of each element was analyzed with the total of the designated elements as 100%. The thickness corresponds to the distance in terms of SiO 2. As the XPS apparatus, 5600MC (detection area 800 μmΦ) manufactured by ULVAC-PHI Co., Ltd. was used.
The measurement was averaged by evaluating three arbitrary points.
The upper layer was defined as the range of the region from the outermost surface to the 50 at% in the depth direction after the Ag concentration showed the maximum. On the other hand, in the lower layer, the region ranged from the point where the Ag concentration reached 50 at% in the depth direction after the maximum Ag concentration until the atomic concentration of Fe became 50 at% in the depth direction.

(上層の算術平均粗さRa)
上層の算術平均粗さRaは、触針式表面形状測定装置DektakXT−Sを用いて測定した。なお、測定条件は次の通りとした。
触針半径:12.5μm
触針圧:3mg
測定距離:1000μm
測定時間:20s
(Arithmetic mean roughness Ra of the upper layer)
The arithmetic average roughness Ra of the upper layer was measured using a stylus type surface shape measuring device DektakXT-S. The measurement conditions were as follows.
Stylus radius: 12.5μm
Stylus pressure: 3mg
Measuring distance: 1000μm
Measurement time: 20s

また、上記サンプルについて、以下の各評価を行った。
(密着性)
密着性は、得られた各試験片の金めっき表面に1mm間隔で碁盤の目を罫書き、テープ剥離試験を実施した。また、各試験片を任意に180°曲げて元の状態に戻し、曲げ部のテープ剥離試験を行った。剥離が全くない場合を○とし、一部でもある場合には×とした。
Moreover, each following evaluation was performed about the said sample.
(Adhesion)
For adhesion, a tape peeling test was performed by scoring grid marks at 1 mm intervals on the gold-plated surface of each test piece obtained. Further, each test piece was arbitrarily bent by 180 ° to return to the original state, and a tape peeling test of the bent portion was performed. When there was no peeling at all, it was marked with ◯, and when it was partly, it was marked with ×.

(ニッケルアレルギー)
ニッケルアレルギーは、欧州規格EN1811によるニッケルの溶出量検査で評価した。50mm×50mmサイズのサンプルを人工汗に浸し、30℃の恒温槽で1週間浸漬した時の溶出量をICP発光分析法で確認した。この試験でニッケルの溶出量が0.5μg/cm2/week以下であった場合は、ニッケルアレルギーの懸念がないとし評価を○とした。溶出量が0.5μg/cm2/weekよりも多い場合は、ニッケルアレルギーの懸念があるとし評価を×とした。
〔人工汗:乳酸50g、塩化ナトリウム100gを900mLの水に溶かしこみ、更に水を加え1Lにする。〕
(Nickel allergy)
Nickel allergy was evaluated by a nickel elution test according to European standard EN1811. A 50 mm × 50 mm sample was immersed in artificial sweat, and the amount of elution when immersed in a thermostatic bath at 30 ° C. for 1 week was confirmed by ICP emission spectrometry. In this test, when the elution amount of nickel was 0.5 μg / cm 2 / weak or less, there was no concern about nickel allergy, and the evaluation was evaluated as “good”. When the elution amount was larger than 0.5 μg / cm 2 / weak, there was a concern about nickel allergy, and the evaluation was x.
[Artificial sweat: 50 g of lactic acid and 100 g of sodium chloride are dissolved in 900 mL of water, and water is added to make 1 L. ]

(はんだ濡れ性)
はんだ濡れ性はめっき後とPCT(105℃×不飽和100%RH×8h)後のサンプルをそれぞれ評価した。ソルダーチェッカ(レスカ社製SAT−5000)を使用し、フラックスとして市販の25%ロジンメタノールフラックスを用い、メニスコグラフ法にてはんだ濡れ時間を測定した。はんだはSn−3Ag−0.5Cu(250℃)を用いた。サンプル数は5個とし、各サンプルの最小値から最大値の範囲を採用した。目標とする特性は、ゼロクロスタイム1秒(s)以下である。ゼロクロスタイムが目標に達した場合を○、目標に達さなかった場合は×とした。
(Solder wettability)
The solder wettability was evaluated for samples after plating and after PCT (105 ° C. × unsaturated 100% RH × 8 h). Solder checker (SAT-5000 manufactured by Reska Co., Ltd.) was used, and a commercially available 25% rosin methanol flux was used as the flux, and the solder wetting time was measured by the meniscograph method. The solder used was Sn-3Ag-0.5Cu (250 ° C.). The number of samples was 5, and the range from the minimum value to the maximum value of each sample was adopted. The target characteristic is a zero cross time of 1 second (s) or less. The case where the zero cross time reached the target was marked as ◯, and the case where the zero cross time was not reached was marked as x.

(耐硫化試験)
耐硫化試験は、下記の試験環境で評価した。耐硫化試験の評価は、環境試験を終えた試験後のサンプルの外観である。なお、目標とする特性は、外観が変色していないことである。評価は外観が変化しなかった場合を○、変化した場合は×とした。
硫化水素ガス腐食試験
硫化水素濃度:10ppm
温度:40℃
湿度:80%RH
曝露時間:96h
サンプル数:5個
(Sulfurization resistance test)
The sulfidation resistance test was evaluated in the following test environment. The evaluation of the sulfidation resistance test is the appearance of the sample after the test after the environmental test. The target characteristic is that the appearance is not discolored. In the evaluation, a case where the appearance did not change was evaluated as ◯, and a case where the appearance was changed was evaluated as ×.
Hydrogen sulfide gas corrosion test Hydrogen sulfide concentration: 10ppm
Temperature: 40 ° C
Humidity: 80% RH
Exposure time: 96h
Number of samples: 5

(ウィスカ)
ウィスカは、JEITA RC−5241の荷重試験(球圧子法)にて評価した。すなわち、各サンプルに対して荷重試験を行い、荷重試験を終えたサンプルをSEM(JEOL社製、型式JSM−5410)にて100〜10000倍の倍率で観察して、ウィスカの発生状況を観察した。荷重試験条件を以下に示す。
球圧子の直径:Φ1mm±0.1mm
試験荷重:2N±0.2N
試験時間:120時間
サンプル数:10個
評価はウィスカが1本も発生しなかった場合は○、ウィスカが発生した場合は×とした。
(Whisker)
The whisker was evaluated by a load test (ball indenter method) of JEITA RC-5241. That is, a load test was performed on each sample, and the sample after the load test was observed at a magnification of 100 to 10,000 times with a SEM (manufactured by JEOL, model JSM-5410) to observe the occurrence of whiskers. . The load test conditions are shown below.
Diameter of ball indenter: Φ1mm ± 0.1mm
Test load: 2N ± 0.2N
Test time: 120 hours Number of samples: 10 Evaluation was evaluated as “◯” when no whisker was generated, and “X” when whisker was generated.

Figure 0006441040
Figure 0006441040

(評価結果)
参考例1、3〜8、11、12、実施例2、9、10は高耐久はんだ濡れ性を有する電子部品用金属材料であった。
比較例1は、Niめっき及び下層の厚みが目標よりも薄かったので、密着性が悪かった。
比較例2は、Niめっき及び下層の厚みが目標よりも厚かったので、ニッケルアレルギーの評価が×であった。
比較例3は、Agめっきが目標よりも薄かったので、はんだ濡れ性が悪かった。
比較例4は、Agめっきが目標よりも薄かったので、PCT後のはんだ濡れ性が悪かった。
比較例5は、Snめっきが目標よりも薄かったので、耐硫化性が悪かった。
比較例6は、Snめっきが目標よりも厚かったので、ウィスカが発生した。
比較例7は、上層が目標よりも薄かったので、耐硫化性が悪かった。
また、図2に参考例12に係るXPS分析結果を示す。図2より、Niの最大濃度は55at%、最表面から深さ方向に厚み5nmまでの領域を除いた前記上層がAg濃度>Sn濃度、更に好ましくは9×Sn濃度>Ag濃度>Sn濃度であることが分かる。

(Evaluation results)
Reference Examples 1, 3 to 8, 11, 12, and Examples 2, 9, and 10 were metal materials for electronic parts having high durability solder wettability.
In Comparative Example 1, since the Ni plating and the thickness of the lower layer were thinner than the target, the adhesion was poor.
In Comparative Example 2, since the Ni plating and the thickness of the lower layer were thicker than the target, the evaluation of nickel allergy was x.
In Comparative Example 3, since the Ag plating was thinner than the target, the solder wettability was poor.
In Comparative Example 4, since the Ag plating was thinner than the target, the solder wettability after PCT was poor.
In Comparative Example 5, since the Sn plating was thinner than the target, the resistance to sulfidation was poor.
In Comparative Example 6, since the Sn plating was thicker than the target, whiskers were generated.
In Comparative Example 7, since the upper layer was thinner than the target, the sulfidation resistance was poor.
FIG. 2 shows the XPS analysis result according to Reference Example 12. From FIG. 2, the maximum concentration of Ni is 55 at%, and the upper layer excluding the region from the outermost surface to a thickness of 5 nm has an Ag concentration> Sn concentration, more preferably 9 × Sn concentration> Ag concentration> Sn concentration. I understand that there is.

10 電子部品用金属材料
11 基材
12 下層
13 上層
10 Metal Material for Electronic Components 11 Base Material 12 Lower Layer 13 Upper Layer

Claims (5)

ステンレス鋼基材上に形成されたNiとSnとで構成された下層と、前記下層上に設けられたAgとSnとで構成された上層とを備え、
前記下層の厚みが0.08μm以上0.20μm未満であり、
前記上層の厚みが0.36μm以上であり、
前記下層中のNi原子濃度が80at%未満であり、
前記上層の算術平均粗さRaが0.3μm未満である電子部品用金属材料。
A lower layer composed of Ni and Sn formed on a stainless steel substrate, and an upper layer composed of Ag and Sn provided on the lower layer,
The thickness of the lower layer is 0.08 μm or more and less than 0.20 μm,
The upper layer has a thickness of 0.36 μm or more;
Ri Ni atom concentration der less than 80at% in the lower layer,
The metal material for electronic component arithmetic average roughness Ra of the upper layer is Ru der less than 0.3 [mu] m.
最表面から深さ方向に厚み5nmまでの領域を除いた前記上層において、Ag原子濃度(at%)>Sn原子濃度(at%)を満たす請求項1に記載の電子部品用金属材料。 2. The metal material for electronic parts according to claim 1, wherein Ag atom concentration (at%)> Sn atom concentration (at%) is satisfied in the upper layer excluding a region having a thickness of 5 nm in the depth direction from the outermost surface. 最表面から深さ方向に厚み5nmまでの領域を除いた前記上層において、9×Sn原子濃度(at%)>Ag原子濃度(at%)>Sn原子濃度(at%)を満たす請求項に記載の電子部品用金属材料。 In the upper layer excluding the region up to a thickness 5nm in the depth direction from the outermost surface, 9 × Sn atom concentration (at%)> Ag atom concentration (at%)> Sn atom concentration (at%) in claim 2 satisfying The metal material for electronic components as described. ステンレス鋼基材上に厚み0.005μm以上0.100μm未満のNiを成膜してNi皮膜を形成する工程と、
前記Ni皮膜上に厚み0.03μm以上0.30μm未満のAgを成膜してAg皮膜を形成する工程と、
前記Ag皮膜上に厚み0.02μm以上0.30μm未満のSnを成膜してSn皮膜を形成する工程と、
前記Sn皮膜を形成した後、熱処理を行うことで、前記ステンレス鋼基材上にNiとSnとで構成され且つNi原子濃度が80at%未満である下層と、前記下層上に設けられたAgとSnとで構成された上層とを形成する工程と、
を含む請求項1〜のいずれか一項に記載の電子部品用金属材料の製造方法。
Forming a Ni film by forming a Ni film having a thickness of 0.005 μm or more and less than 0.100 μm on a stainless steel substrate;
Forming an Ag film by depositing an Ag film having a thickness of 0.03 μm or more and less than 0.30 μm on the Ni film;
Forming a Sn film by depositing Sn having a thickness of 0.02 μm or more and less than 0.30 μm on the Ag film;
After forming the Sn film, by performing a heat treatment, a lower layer composed of Ni and Sn on the stainless steel substrate and having a Ni atom concentration of less than 80 at%, Ag provided on the lower layer, and Forming an upper layer composed of Sn;
The manufacturing method of the metal material for electronic components as described in any one of Claims 1-3 containing.
ステンレス鋼基材上に厚み0.005μm以上0.100μm未満のNiを成膜してNi皮膜を形成する工程と、
前記Ni皮膜上に厚み0.02μm以上0.30μm未満のSnを成膜してSn皮膜を形成する工程と、
前記Sn皮膜上に厚み0.03μm以上0.30μm未満のAgを成膜してAg皮膜を形成する工程と、
前記Ag皮膜を形成した後、熱処理を行うことで、前記ステンレス鋼基材上にNiとSnとで構成され且つNi原子濃度が80at%未満である下層と、前記下層上に設けられたAgとSnとで構成された上層とを形成する工程と、
を含む請求項1〜のいずれか一項に記載の電子部品用金属材料の製造方法。
Forming a Ni film by forming a Ni film having a thickness of 0.005 μm or more and less than 0.100 μm on a stainless steel substrate;
Forming a Sn film by depositing Sn having a thickness of 0.02 μm or more and less than 0.30 μm on the Ni film;
Forming an Ag film by depositing an Ag film having a thickness of 0.03 μm or more and less than 0.30 μm on the Sn film;
After forming the Ag film, by performing a heat treatment, a lower layer composed of Ni and Sn on the stainless steel substrate and having a Ni atom concentration of less than 80 at%, and Ag provided on the lower layer, Forming an upper layer composed of Sn;
The manufacturing method of the metal material for electronic components as described in any one of Claims 1-3 containing.
JP2014234894A 2014-11-19 2014-11-19 Metal material for electronic parts and method for producing the same Active JP6441040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014234894A JP6441040B2 (en) 2014-11-19 2014-11-19 Metal material for electronic parts and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014234894A JP6441040B2 (en) 2014-11-19 2014-11-19 Metal material for electronic parts and method for producing the same

Publications (2)

Publication Number Publication Date
JP2016098390A JP2016098390A (en) 2016-05-30
JP6441040B2 true JP6441040B2 (en) 2018-12-19

Family

ID=56077155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014234894A Active JP6441040B2 (en) 2014-11-19 2014-11-19 Metal material for electronic parts and method for producing the same

Country Status (1)

Country Link
JP (1) JP6441040B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4834023B2 (en) * 2007-03-27 2011-12-07 古河電気工業株式会社 Silver coating material for movable contact parts and manufacturing method thereof
JP5086485B1 (en) * 2011-09-20 2012-11-28 Jx日鉱日石金属株式会社 Metal material for electronic parts and method for producing the same
JP5138827B1 (en) * 2012-03-23 2013-02-06 Jx日鉱日石金属株式会社 Metal materials for electronic parts, connector terminals, connectors and electronic parts using the same
JP5275504B1 (en) * 2012-06-15 2013-08-28 Jx日鉱日石金属株式会社 METAL MATERIAL FOR ELECTRONIC COMPONENT AND ITS MANUFACTURING METHOD, CONNECTOR TERMINAL USING THE SAME, CONNECTOR AND ELECTRONIC COMPONENT
WO2014017238A1 (en) * 2012-07-25 2014-01-30 Jx日鉱日石金属株式会社 Metal material for electronic components, method for producing same, connector terminal using same, connector and electronic component
JP2015045051A (en) * 2013-08-27 2015-03-12 Jx日鉱日石金属株式会社 Metallic material for electronic component, method for producing the same, and connector terminal, connector and electronic component using the same
JP2015045054A (en) * 2013-08-27 2015-03-12 Jx日鉱日石金属株式会社 Metallic material for electronic component and manufacturing method of the same, and connector terminal, connector, and electronic component using the same
JP2015045042A (en) * 2013-08-27 2015-03-12 Jx日鉱日石金属株式会社 Metallic material for electronic component and manufacturing method of the same, and connector terminal, connector, and electronic component using the same
JP2015045050A (en) * 2013-08-27 2015-03-12 Jx日鉱日石金属株式会社 Metallic material for electronic component and manufacturing method of the same, and connector terminal, connector, and electronic component using the same

Also Published As

Publication number Publication date
JP2016098390A (en) 2016-05-30

Similar Documents

Publication Publication Date Title
JP5086485B1 (en) Metal material for electronic parts and method for producing the same
JP5968668B2 (en) Metal materials for electronic parts
JP5284526B1 (en) Metal material for electronic parts and method for producing the same
JP4402132B2 (en) Reflow Sn plating material and electronic component using the same
WO2015108004A1 (en) Electrical contact material for connectors and method for producing same
TW201812108A (en) Tinned copper terminal material, terminal, and electrical wire end part structure
JP4632380B2 (en) Plating film connection terminal member, connection terminal using the same, plating film material and multilayer plating material used therefor, and method for producing plating film connection terminal member
JP4522970B2 (en) Cu-Zn alloy heat resistant Sn plating strip with reduced whisker
TW201005124A (en) Composite material for electrical/electronic component and electrical/electronic component using the same
WO2014054190A1 (en) Metal material for use in electronic component, and method for producing same
JP4368931B2 (en) Male terminal and manufacturing method thereof
JP2012007242A (en) Cu-Ni-Si ALLOY-TINNED STRIP
JP2015045058A (en) Metallic material for electronic component and manufacturing method of the same, and connector terminal, connector, and electronic component using the same
JP2015045056A (en) Metallic material for electronic component, method for producing the same, and connector terminal, connector and electronic component using the same
JP5298233B2 (en) Metal material for electronic parts and method for producing the same
JP6441040B2 (en) Metal material for electronic parts and method for producing the same
JP7335679B2 (en) conductive material
JP2015045045A (en) Electronic-component metallic material and method for producing the same, and connector terminal, connector and electronic component using the same
JP6553333B2 (en) Metal material for electronic parts, connector terminal using the same, connector and electronic parts
JP5226032B2 (en) Cu-Zn alloy heat resistant Sn plating strip with reduced whisker
JP7040544B2 (en) Terminal material for connectors
JP2015045050A (en) Metallic material for electronic component and manufacturing method of the same, and connector terminal, connector, and electronic component using the same
JP4570948B2 (en) Sn-plated strip of Cu-Zn alloy with reduced whisker generation and method for producing the same
JP7080942B2 (en) Plating materials for electronic components and electronic components
JP2015045054A (en) Metallic material for electronic component and manufacturing method of the same, and connector terminal, connector, and electronic component using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180710

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181121

R150 Certificate of patent or registration of utility model

Ref document number: 6441040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250