JP6439629B2 - Measurement method for welded parts - Google Patents

Measurement method for welded parts Download PDF

Info

Publication number
JP6439629B2
JP6439629B2 JP2015169456A JP2015169456A JP6439629B2 JP 6439629 B2 JP6439629 B2 JP 6439629B2 JP 2015169456 A JP2015169456 A JP 2015169456A JP 2015169456 A JP2015169456 A JP 2015169456A JP 6439629 B2 JP6439629 B2 JP 6439629B2
Authority
JP
Japan
Prior art keywords
welded
welding
members
measuring
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015169456A
Other languages
Japanese (ja)
Other versions
JP2017044660A (en
Inventor
泰山 小形
泰山 小形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015169456A priority Critical patent/JP6439629B2/en
Publication of JP2017044660A publication Critical patent/JP2017044660A/en
Application granted granted Critical
Publication of JP6439629B2 publication Critical patent/JP6439629B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

本発明は、被溶接部材の測定方法に関する。   The present invention relates to a method for measuring a member to be welded.

複数の被溶接部材同士を複数個所で溶接することによって、溶接品を形成する溶接品の製造方法がある。例えば、特許文献1では、被溶接部材としての複数のプレス成形品を溶接して、井桁状の溶接品を形成する製造方法が開示されている。   There is a manufacturing method of a welded product that forms a welded product by welding a plurality of members to be welded at a plurality of locations. For example, Patent Document 1 discloses a manufacturing method in which a plurality of press-formed products as members to be welded are welded to form a cross-shaped welded product.

特開2013−226585号公報JP2013-226585A

ところで、このような溶接品の製造方法において、溶接が各被溶接部材に熱歪み変形を与え、この溶接熱歪変形が溶接品の全体形状に影響を与えることがある。そのため、溶接熱歪変形に基づいて、被溶接部材としてのプレス品同士の溶接治具へのセット位置を変更し、その結果として板隙が変化する。また、適正な板隙の範囲は、例えば、0〜1mmであるため、板隙0.5mmを目標として、上記プレス品の継手位置を変更させることで、溶接品の全体形状を安定させることがある。なお、板隙の範囲が適正であると、溶接品質のロバスト性を確保することができる。また、量産において上記プレス品の継手部の精度を補正するため、被溶接材としてのプレス品の形状を修正し、量産において使用するプレス型を補正する。また、溶接品が複数の溶接部を有している場合、プレス品の継手位置の隙間の変更だけでなく、各被溶接部材の形状を変更させることで、結果として溶接品の全体形状を許容誤差範囲内に収めたまま、溶接品質を安定させることがある。   By the way, in such a manufacturing method of a welded product, welding gives thermal strain deformation to each member to be welded, and this weld thermal strain deformation may affect the overall shape of the welded product. Therefore, based on welding heat distortion deformation, the setting position to the welding jig of the press products as to-be-welded members is changed, As a result, a board gap changes. In addition, since the appropriate range of the plate gap is, for example, 0 to 1 mm, the overall shape of the welded product can be stabilized by changing the joint position of the press product with a plate gap of 0.5 mm as a target. is there. In addition, if the range of the plate gap is appropriate, the robustness of the welding quality can be ensured. Further, in order to correct the accuracy of the joint part of the press product in mass production, the shape of the press product as the welded material is corrected, and the press die used in mass production is corrected. In addition, when the welded product has multiple welds, the overall shape of the welded product is allowed as a result by changing the shape of each welded member as well as changing the gap at the joint position of the pressed product. The welding quality may be stabilized while staying within the error range.

本出願の発明者等は、上記したような溶接品の製造方法の一具体例を想起した。図11を参照して、この具体例について説明する。   The inventors of the present application have recalled a specific example of a method for manufacturing a welded article as described above. This specific example will be described with reference to FIG.

まず、各被溶接部材の溶接前後の形状を計測し、基準溶接熱歪量を測定する(基準溶接熱歪量測定ステップS91)。   First, the shape before and after welding of each member to be welded is measured, and the reference welding thermal strain amount is measured (reference welding thermal strain amount measuring step S91).

続いて、基準溶接熱歪量に基づいて、溶接治具見込み量を算出する(溶接治具見込み量算出ステップS92)。ここで、溶接治具見込み量は、被溶接部材が後の溶接ステップS95において良好に溶接されるように、溶接治具によって被溶接部材が固定される固定位置の補正量である。   Subsequently, a welding jig estimated amount is calculated based on the reference welding thermal strain amount (welding jig estimated amount calculating step S92). Here, the welding jig estimated amount is a correction amount of a fixed position where the member to be welded is fixed by the welding jig so that the member to be welded is favorably welded in the subsequent welding step S95.

続いて、溶接治具見込み量に基づいて、溶接治具における被溶接部材の固定位置を調整する(溶接治具調整ステップS93)。   Subsequently, the fixing position of the member to be welded in the welding jig is adjusted based on the estimated welding jig amount (welding jig adjusting step S93).

続いて、溶接治具を用いて被溶接部材を固定した後で、すきまゲージを用いて被溶接部材同士の隙間を測定する(被溶接部材間の隙間実測定ステップS94)。   Then, after fixing a member to be welded using a welding jig, a gap between members to be welded is measured using a clearance gauge (gap actual measurement step S94 between members to be welded).

続いて、溶接治具を用いて各被溶接部材を固定した状態で、各被溶接部材を溶接し、溶接品を形成する(溶接ステップS95)。形成した溶接品の管理穴位置精度が公差中央(例えば、1/2公差円)に収まることを確認する。   Subsequently, in a state where each member to be welded is fixed using a welding jig, each member to be welded is welded to form a welded product (welding step S95). Check that the accuracy of the control hole position of the welded product is within the tolerance center (for example, 1/2 tolerance circle).

最後に、各被溶接部材の形状変更に基づいて、プレス成形型の継手部精度を変更する(プレス型見込み量算出ステップS96)。なお、各被溶接部材の精度変更は、溶接継手部の板隙を、例えば、0〜1mmm、目標値として0.5mmとなる様に、行われる。   Finally, based on the shape change of each member to be welded, the accuracy of the joint part of the press mold is changed (press die expected amount calculation step S96). In addition, the precision change of each to-be-welded member is performed so that the clearance gap of a welded joint part may be set to 0.5 mm as a target value, for example, 0-1 mm.

しかしながら、被溶接部材同士の板隙の測定精度が低いことがあった。これによって、溶接ステップS95において、形成した溶接品が、希望する精度の許容誤差範囲に収まらないために、溶接治具調整ステップS93〜溶接ステップS95を繰り返すことがあった。   However, the accuracy of measuring the gap between the members to be welded may be low. As a result, in the welding step S95, the formed welded product does not fall within the tolerance range of the desired accuracy, so the welding jig adjustment step S93 to the welding step S95 may be repeated.

本発明は、被溶接部材同士の隙間を高い精度で求めることができる被溶接部材の測定方法を提供する。   The present invention provides a method for measuring a member to be welded, which can obtain a gap between the members to be welded with high accuracy.

本発明にかかる被溶接部材の測定方法によれば、
非接触三次元測定機を用いて複数の被溶接部材毎の継手形状を測定し、溶接前形状情報を取得するステップと、
前記複数の前記被溶接部材を溶接することで一体化させた溶接品の形状を測定し、前記複数の前記被溶接部材毎の溶接前後の管理穴位置の変化量を取得するステップと、
前記被溶接部材毎の前記溶接前形状情報と、前記複数の前記被溶接部材毎の溶接前後の形状の変化情報とに基づいて、前記複数の前記被溶接部材同士の隙間を算出するステップと、を含む。
According to the method for measuring a member to be welded according to the present invention,
Measuring a joint shape for each of a plurality of members to be welded using a non-contact three-dimensional measuring machine, and obtaining shape information before welding;
Measuring a shape of a welded product integrated by welding the plurality of members to be welded, and obtaining a change amount of a management hole position before and after welding for each of the plurality of members to be welded;
Calculating gaps between the plurality of members to be welded based on the shape information before welding for each of the members to be welded and change information of the shape before and after welding for each of the plurality of members to be welded; including.

このような構成によれば、すきまゲージを用いることなく非接触計測器を用いて計測した形状情報と、溶接による穴位置の変化情報とに基づいて、被溶接部材同士の隙間を算出する。したがって、被溶接部材同士の隙間を高い精度で求めることができる。   According to such a structure, the clearance gap between to-be-welded members is calculated based on the shape information measured using the non-contact measuring instrument, without using a clearance gauge, and the change information of the hole position by welding. Therefore, the gap between the members to be welded can be obtained with high accuracy.

本発明は、1度の溶接ステップで被溶接部材同士の隙間を高い精度で求めることができる。   According to the present invention, a gap between members to be welded can be obtained with high accuracy in one welding step.

実施の形態1に係る被溶接部材の測定方法を示すフローチャートである。3 is a flowchart showing a method for measuring a member to be welded according to the first embodiment. 実施の形態1に係る被溶接部材の一例を示す模式図である。3 is a schematic diagram illustrating an example of a member to be welded according to Embodiment 1. FIG. 溶接変形を示す模式図である。It is a schematic diagram which shows welding deformation. 溶接治具精度の調整による溶接見込を示す模式図である。It is a schematic diagram which shows the welding expectation by adjustment of a welding jig | tool precision. 実施の形態1に係る被溶接部材の測定方法の一工程を示す模式図である。FIG. 3 is a schematic diagram illustrating one step of a method for measuring a member to be welded according to Embodiment 1. 実施の形態1に係る被溶接部材の測定方法の一工程を示す模式図である。FIG. 3 is a schematic diagram illustrating one step of a method for measuring a member to be welded according to Embodiment 1. 実施の形態1に係る被溶接部材の測定方法の一工程を示す模式図である。FIG. 3 is a schematic diagram illustrating one step of a method for measuring a member to be welded according to Embodiment 1. 実施の形態1に係る被溶接部材の測定方法の一工程を示す模式図である。FIG. 3 is a schematic diagram illustrating one step of a method for measuring a member to be welded according to Embodiment 1. 実施の形態1に係る被溶接部材の測定方法の一工程を示す模式図である。FIG. 3 is a schematic diagram illustrating one step of a method for measuring a member to be welded according to Embodiment 1. 実施の形態1に係る被溶接部材の測定方法の一工程を示す模式図である。FIG. 3 is a schematic diagram illustrating one step of a method for measuring a member to be welded according to Embodiment 1. 関連する測定方法を示すフローチャートである。It is a flowchart which shows the related measuring method.

実施の形態1
図1〜図10を用いて、実施の形態1に係る被溶接部材の測定方法について説明する。図1は、実施の形態1に係る被溶接部材の測定方法を示すフローチャートである。図2は、実施の形態1に係る被溶接部材の一例を示す模式図である。図3は、溶接変形を示す模式図である。図4は、溶接治具精度の調整による溶接見込を示す模式図である。図5〜図10は、実施の形態1に係る被溶接部材の測定方法の一工程を示す模式図である。
Embodiment 1
A method for measuring a member to be welded according to Embodiment 1 will be described with reference to FIGS. FIG. 1 is a flowchart showing a method for measuring a member to be welded according to the first embodiment. FIG. 2 is a schematic diagram illustrating an example of a member to be welded according to the first embodiment. FIG. 3 is a schematic diagram showing welding deformation. FIG. 4 is a schematic diagram showing a welding expectation by adjusting the welding jig accuracy. 5 to 10 are schematic views showing one process of the method for measuring a member to be welded according to the first embodiment.

なお、ここで被測定対象物として用いた溶接品は、四輪車のシャシー足回り部品の一つであるフレーム10(図2参照)である。フレーム10は、井桁形状リアサスペンションメンバーと称してもよい。フレーム10は、サイドレール1、2と、フロントクロスメンバ3と、リアクロスメンバ4とを含み、これらを溶接することによって形成される。サイドレール1、2と、フロントクロスメンバ3と、リアクロスメンバ4は、例えば、プレス成形や溶接を用いて、製造することができる。フレーム10は、例えば、四輪などの移動体に搭載される。   Note that the welded product used as the object to be measured here is a frame 10 (see FIG. 2) which is one of chassis suspension parts of a four-wheel vehicle. The frame 10 may be referred to as a cross beam-shaped rear suspension member. The frame 10 includes side rails 1 and 2, a front cross member 3, and a rear cross member 4, and is formed by welding them. The side rails 1 and 2, the front cross member 3, and the rear cross member 4 can be manufactured using, for example, press molding or welding. The frame 10 is mounted on a moving body such as a four-wheel vehicle, for example.

まず、複数の被溶接部材毎の3次元形状を、非接触測定器を用いて、測定する(被溶接部材非接触測定ステップS1)。   First, a three-dimensional shape for each of a plurality of members to be welded is measured using a non-contact measuring device (a member to be welded non-contact measuring step S1).

具体的には、非接触計測器(図示略)を用いて、サイドレール1、2とフロントクロスメンバ3と、リアクロスメンバ4との形状を計測する。非接触計測器は、例えば、レーザーを被測定物に照射して、被測定物の三次元形状を測定することができる非接触三次元計測器を用いてもよい。具体的には、特に、サイドレール1、2と、フロントクロスメンバ3と、リアクロスメンバ4とが互いに溶接される予定の部分及びその近傍、すなわち、合せ部、又は、継手の形状を計測する。測定した形状情報は、PC(パーソナルコンピュータ)などの情報端末の記憶装置に格納される。測定した形状情報は、溶接前形状情報と称してもよい。なお、必要に応じて、溶接治具9(図4参照)の形状を測定してもよい。   Specifically, the shapes of the side rails 1, 2, the front cross member 3, and the rear cross member 4 are measured using a non-contact measuring instrument (not shown). As the non-contact measuring instrument, for example, a non-contact three-dimensional measuring instrument capable of measuring the three-dimensional shape of the measurement object by irradiating the measurement object with a laser may be used. Specifically, in particular, a portion where the side rails 1 and 2, the front cross member 3, and the rear cross member 4 are to be welded to each other and the vicinity thereof, that is, the shape of the joint or joint is measured. . The measured shape information is stored in a storage device of an information terminal such as a PC (personal computer). The measured shape information may be referred to as pre-weld shape information. In addition, you may measure the shape of the welding jig | tool 9 (refer FIG. 4) as needed.

次に、基準溶接熱歪量測定ステップS12及び溶接治具見込み量算出ステップS13と、溶接治具精度補正ステップS22と同時並行して行う。   Next, a reference welding thermal strain measurement step S12, a welding jig estimated amount calculation step S13, and a welding jig accuracy correction step S22 are performed in parallel.

続いて、複数の被溶接部材を溶接して一体化させることによって、溶接品を形成した後で、溶接前後で管理穴位置の変化量を測定し、基準溶接熱歪量を測定する(基準溶接熱歪量測定ステップS12)。   Subsequently, a welded product is formed by welding and integrating a plurality of members to be welded, and then the amount of change in the control hole position is measured before and after welding, and the reference welding thermal strain amount is measured (reference welding). Thermal strain measurement step S12).

具体例として、図2に示すサイドレール1、2と、フロントクロスメンバ3と、リアクロスメンバ4とを用いて説明する。これらを溶接し、複数の被溶接部材毎の溶接前後の形状を計測し、複数の被溶接部材毎の溶接前後の精度変化情報を取得する。その変化情報に基づいて、各被溶接部材の基準溶接熱歪量を算出する。   A specific example will be described using the side rails 1 and 2, the front cross member 3, and the rear cross member 4 shown in FIG. 2. These are welded, the shape before and after welding for each of the plurality of members to be welded is measured, and accuracy change information before and after welding for each of the plurality of members to be welded is acquired. Based on the change information, a reference welding thermal strain amount of each member to be welded is calculated.

具体的には、溶接前において、サイドレール1、2と、フロントクロスメンバ3と、リアクロスメンバ4との全幅(ここでは、X方向における長さ)はW1である。ここで、サイドレール1は、フロントホール1fと、バックホール1rとを含み、サイドレール2は、フロントホール2fと、バックホール2rとを含む。全幅は、フロントホール1f、2fの互いの中心間の距離、又は、バックホール1r、2rの互いの中心間の距離である。全幅は溶接前後の形状情報の一具体例である。なお、図2では、3次元xyz座標を規定したが、y軸方向が、フレーム10が搭載される車両の前後方向であり、z軸方向がその車両の高さ方向であり、x軸方向がその車両の幅方向である。基準溶接熱歪量は、3次元xyz座標において、xyz軸方向だけでなく、様々な方向における歪量である。   Specifically, before welding, the total width (here, the length in the X direction) of the side rails 1 and 2, the front cross member 3, and the rear cross member 4 is W1. Here, the side rail 1 includes a front hole 1f and a back hole 1r, and the side rail 2 includes a front hole 2f and a back hole 2r. The full width is the distance between the centers of the front holes 1f and 2f or the distance between the centers of the back holes 1r and 2r. The full width is a specific example of shape information before and after welding. In FIG. 2, three-dimensional xyz coordinates are defined, but the y-axis direction is the front-rear direction of the vehicle on which the frame 10 is mounted, the z-axis direction is the height direction of the vehicle, and the x-axis direction is It is the width direction of the vehicle. The reference welding thermal strain amount is a strain amount not only in the xyz axis direction but also in various directions in the three-dimensional xyz coordinates.

サイドレール1、2と、フロントクロスメンバ3と、リアクロスメンバ4とを、所定の隙間を空けた状態で固定して、溶接する。すると、図3に示すように、溶接後において、サイドレール1、2と、フロントクロスメンバ3と、リアクロスメンバ4との全幅は、W1からW2に変化する。基準溶接熱歪量の一具体例として全幅変化ΔWは、数式1によって、表現することができる。
ΔW=W2−W1 …(数式1)
The side rails 1 and 2, the front cross member 3, and the rear cross member 4 are fixed and welded with a predetermined gap therebetween. Then, as shown in FIG. 3, after welding, the full widths of the side rails 1 and 2, the front cross member 3, and the rear cross member 4 change from W1 to W2. As a specific example of the reference welding thermal strain amount, the full width change ΔW can be expressed by Equation 1.
ΔW = W2−W1 (Formula 1)

続いて、測定された基準溶接熱歪量に基づいて、溶接治具見込み量を算出する(溶接治具見込み量算出ステップS13)。ここで、溶接治具見込み量とは、基準溶接熱歪量に基づいて、溶接品の管理穴位置が公差内に入るとなるように、溶接治具によって被溶接部材を固定する位置の修正量である。   Subsequently, a welding jig estimated amount is calculated based on the measured reference welding thermal strain amount (welding jig estimated amount calculation step S13). Here, the expected welding jig amount is the correction amount of the position where the welding member is fixed by the welding jig so that the control hole position of the welded product falls within the tolerance based on the reference welding thermal strain amount. It is.

図4を用いて具体例について説明する。図4に示すように、溶接治具9は、サイドレール1、2と、フロントクロスメンバ3と、リアクロスメンバ4とを所定の位置に固定する治具である。溶接治具9を用いて、サイドレール1、2と、フロントクロスメンバ3と、リアクロスメンバ4とをそれぞれ計算した溶接治具見込み量に基づき、セットする。溶接治具見込み量は、例えば、基準溶接熱歪量の一具体例として全幅変化ΔW等に基づいて、フレーム10が溶接後に希望形状の許容誤差範囲となるように、例えば、溶接後に管理穴位置が公差内に入るように、設定される。この設定された溶接治具見込み量に基づいて、サイドレール1、2と、フロントクロスメンバ3と、リアクロスメンバ4との全幅W3が決定される。   A specific example will be described with reference to FIG. As shown in FIG. 4, the welding jig 9 is a jig that fixes the side rails 1 and 2, the front cross member 3, and the rear cross member 4 at predetermined positions. Using the welding jig 9, the side rails 1, 2, the front cross member 3, and the rear cross member 4 are set based on the calculated welding jig estimated amounts. The expected welding jig amount is, for example, the position of the control hole after welding so that the frame 10 falls within the allowable error range of the desired shape after welding based on the full width change ΔW as a specific example of the reference welding thermal strain amount. Is set to be within tolerance. Based on the set welding jig estimated amount, the full width W3 of the side rails 1 and 2, the front cross member 3, and the rear cross member 4 is determined.

図4に示すように、溶接治具9を用いて、サイドレール1、2と、フロントクロスメンバ3と、リアクロスメンバ4とを所定の位置に固定する。これらの全幅はW3である。サイドレール1、2と、フロントクロスメンバ3と、リアクロスメンバ4と固定した状態で溶接すると、一体化されて、フレーム10を形成する。図5に示すように、フレーム10の全幅はW4となる。全幅W4などのフレーム10の管理穴位置が、溶接品の形状の公差範囲内に収まる。   As shown in FIG. 4, the side rails 1, 2, the front cross member 3, and the rear cross member 4 are fixed at predetermined positions using a welding jig 9. Their full width is W3. When the side rails 1 and 2, the front cross member 3, and the rear cross member 4 are welded in a fixed state, they are integrated to form the frame 10. As shown in FIG. 5, the full width of the frame 10 is W4. The management hole position of the frame 10 such as the full width W4 falls within the tolerance range of the shape of the welded product.

上記したように、基準溶接熱歪量測定ステップS12と溶接治具見込み量算出ステップS13と同時並行して、情報端末を用いて、プレス成形品としての被溶接部材の形状情報に基づいて、溶接治具9の被溶接部材を固定する位置の精度を補正する(溶接治具精度補正ステップS22)。   As described above, in parallel with the reference welding thermal strain amount measuring step S12 and the welding jig estimated amount calculating step S13, welding is performed based on the shape information of the member to be welded as a press-formed product using an information terminal. The accuracy of the position for fixing the member to be welded of the jig 9 is corrected (welding jig accuracy correcting step S22).

具体的には、プレス成形品としての被溶接部材の形状情報は、例えば、CADデータである。被溶接部材の形状情報及び溶接治具9の形状情報は、情報端末等を用いて計算される仮想空間で扱う。そのため、この仮想空間における溶接治具9により固定される被溶接部材の位置の誤差は、溶接治具調整ステップS93における溶接治具9により固定される被溶接部材の位置の誤差と比較して、その誤差は小さい。したがって、溶接治具9の被溶接部材を固定する位置の精度が補正される。   Specifically, the shape information of the member to be welded as the press-formed product is, for example, CAD data. The shape information of the member to be welded and the shape information of the welding jig 9 are handled in a virtual space calculated using an information terminal or the like. Therefore, the error of the position of the member to be welded fixed by the welding jig 9 in this virtual space is compared with the error of the position of the member to be welded fixed by the welding jig 9 in the welding jig adjustment step S93. The error is small. Therefore, the accuracy of the position for fixing the member to be welded of the welding jig 9 is corrected.

より具体的には、情報端末等による仮想空間においてサイドレール2を示すサイドレールモデル22と、溶接治具モデル29とを用いて説明する。サイドレールモデル22は、サイドレール2のCADデータに基づくモデルである。溶接治具モデル29は、溶接治具9のCADデータに基づくモデルである。   More specifically, description will be made using a side rail model 22 showing the side rail 2 and a welding jig model 29 in a virtual space such as an information terminal. The side rail model 22 is a model based on CAD data of the side rail 2. The welding jig model 29 is a model based on CAD data of the welding jig 9.

図6に示すように、情報端末等による仮想空間において、サイドレールモデル22は、フロントホール22fと、バックホール22rとを含む。フロントホール22fのCAD中心Y2fと、バックホール22rのCAD中心Y2rとを結ぶ軸線Y2が所定の位置にある。
ところで、溶接治具9を用いてサイドレール2を固定したとき、フロントホール2fの実測中心Y1fは、許容誤差範囲内に位置するものの、CAD中心Y2fから離れている。バックホール2rの実測中心Y1rは、許容誤差範囲内に位置するものの、CAD中心Y2rから離れている。フロントホール2fの実測中心Y1fと、バックホール2rの実測中心Y1rとを結ぶ軸線Y1は、軸線Y2と交差している、又は、平行であり、同一線上に配置されていない。図7に示すように、計算機上の仮想空間において、軸線Y1が軸線Y2と同一線上に配置し、溶接治具9の被溶接部材を固定する位置の精度を補正する。
As shown in FIG. 6, in a virtual space such as an information terminal, the side rail model 22 includes a front hole 22f and a backhaul 22r. An axis Y2 connecting the CAD center Y2f of the front hole 22f and the CAD center Y2r of the backhaul 22r is at a predetermined position.
By the way, when the side rail 2 is fixed using the welding jig 9, the measured center Y1f of the front hole 2f is located within the allowable error range, but is separated from the CAD center Y2f. The actual measurement center Y1r of the backhaul 2r is located within the allowable error range, but is away from the CAD center Y2r. An axis Y1 connecting the measured center Y1f of the front hole 2f and the measured center Y1r of the backhaul 2r intersects or is parallel to the axis Y2, and is not arranged on the same line. As shown in FIG. 7, in the virtual space on the computer, the axis line Y1 is arranged on the same line as the axis line Y2, and the accuracy of the position where the welded member of the welding jig 9 is fixed is corrected.

続いて、溶接治具見込み量算出ステップS13で算出された溶接治具見込み量を、被溶接部材の固定位置に織り込む(見込み量織り込み解析ステップS3)。言い換えると、溶接治具見込み量に基づいて、被溶接部材の固定位置を移動させる。   Subsequently, the welding jig estimated amount calculated in the welding jig estimated amount calculation step S13 is woven into the fixing position of the member to be welded (expected amount weaving analysis step S3). In other words, the fixing position of the member to be welded is moved based on the expected welding jig amount.

具体的には、図8及び図9に示すように、情報端末等による仮想空間において、溶接治具見込み量に基づいて、サイドレールモデル22を移動させる。つまり、サイドレールモデル22のフロントホール2fの実測中心Y1fを、溶接治具見込み量に基づいて移動させた後の位置Y3fに動かし、バックホール2rの実測中心Y1rを、溶接治具見込み量に基づいて移動させた後の位置Y3rに動かす。このようにして、溶接治具見込み量に基づいて、サイドレールモデル22を移動させる。   Specifically, as shown in FIGS. 8 and 9, the side rail model 22 is moved based on the expected welding jig amount in a virtual space such as an information terminal. That is, the measured center Y1f of the front hole 2f of the side rail model 22 is moved to the position Y3f after being moved based on the estimated welding jig amount, and the measured center Y1r of the backhaul 2r is moved based on the estimated welding jig amount. To the position Y3r after the movement. In this way, the side rail model 22 is moved based on the estimated welding jig amount.

続いて、情報端末を用いて、複数の被溶接部材の合せ部の断面形状を解析し、被溶接部材同士の隙間を計算する(被溶接部材間の隙間解析ステップS4)。   Subsequently, using the information terminal, the cross-sectional shape of the joining portion of the plurality of members to be welded is analyzed, and the gap between the members to be welded is calculated (gap analysis step S4 between the members to be welded).

具体的には、サイドレール1とフロントクロスメンバ3との合せ部13(図2参照)の断面形状を解析し、図10に示す解析画像を生成する。図10に示すように、サイドレール1のCADデータに基づくサイドレール21と、フロントクロスメンバ3のCADデータに基づくフロントクロスメンバ23との間には、隙間G1、G2があり、隙間G1、G2の大きさを算出する。このようにして、被溶接部材同士の隙間を算出することができる。   Specifically, the cross-sectional shape of the joining portion 13 (see FIG. 2) of the side rail 1 and the front cross member 3 is analyzed, and an analysis image shown in FIG. 10 is generated. As shown in FIG. 10, there are gaps G1, G2 between the side rail 21 based on the CAD data of the side rail 1 and the front cross member 23 based on the CAD data of the front cross member 3, and the gaps G1, G2 The size of is calculated. In this way, the gap between the members to be welded can be calculated.

最後に、被溶接部材同士の隙間に基づいて、各被溶接部材の形状を変更する(プレス型見込み量算出ステップS5)。なお、各被溶接部材の形状変更は、被溶接部材同士の隙間が溶接を良好に行える範囲に収まるように、例えば、フロントクロスメンバ3における合せ部13近傍の部位を延ばしたり、短くしたりする。   Finally, the shape of each member to be welded is changed based on the gap between the members to be welded (press die expected amount calculation step S5). The shape change of each member to be welded is, for example, extending or shortening the portion in the vicinity of the mating portion 13 in the front cross member 3 so that the gap between the members to be welded is within a range where welding can be performed satisfactorily. .

以上、実施の形態1に係る被溶接部材の測定方法によれば、すきまゲージを用いることなく非接触計測器を用いて計測した被溶接部材毎の溶接前形状情報と、複数の被溶接部材毎の溶接による形状の変化情報とに基づいて、被溶接部材同士の隙間を算出する。非接触計測器の測定精度は、すきまゲージの測定精度と比較して、一般的に良好である。したがって、被溶接部材同士の隙間を高い精度で求めることができる。それ故、プレス型を精度良く製造することができる。   As described above, according to the method for measuring a member to be welded according to the first embodiment, the shape information before welding for each member to be welded measured using a non-contact measuring instrument without using a gap gauge, and each of the plurality of members to be welded. The gap between the members to be welded is calculated based on the shape change information due to welding. The measurement accuracy of non-contact measuring instruments is generally better than that of clearance gauges. Therefore, the gap between the members to be welded can be obtained with high accuracy. Therefore, the press die can be manufactured with high accuracy.

また、実施の形態1に係る被溶接部材の測定方法によれば、溶接治具のシム調整による位置精度の誤差の影響をほとんど受けない。そのため、高い精度で被溶接部材同士の隙間を求めることができる。   Further, according to the method for measuring a member to be welded according to the first embodiment, there is almost no influence of an error in position accuracy due to shim adjustment of the welding jig. Therefore, the gap between the members to be welded can be obtained with high accuracy.

ところで、移動体への搭載を目的として、移動体におけるフレーム10の周囲の環境に適合させるために、フレーム10の形状を変更させることがある。このような場合、上記した被溶接部材の測定方法を用いると、すでに取得した被溶接部材の形状情報を利用することで、被溶接部材の形状測定をすることなく、被溶接部材同士の隙間を求めることができる。したがって、被溶接部材同士の隙間を容易に求めることができる。   By the way, for the purpose of mounting on a moving body, the shape of the frame 10 may be changed in order to adapt to the environment around the frame 10 in the moving body. In such a case, when the above-described measurement method for the welded member is used, the gap between the welded members can be obtained without measuring the shape of the welded member by using the already acquired shape information of the welded member. Can be sought. Therefore, the clearance gap between to-be-welded members can be calculated | required easily.

なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。   Note that the present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention.

S1 被溶接部材非接触測定ステップ S12 基準溶接熱歪量測定ステップ
S4 被溶接部材間の隙間解析ステップ
S1 Non-contact measurement step for welded member S12 Reference welding thermal strain measurement step S4 Gap analysis step between welded members

Claims (1)

非接触三次元測定機を用いて複数の被溶接部材毎の継手形状を測定し、溶接前形状情報を取得するステップと、
前記複数の前記被溶接部材を溶接することで一体化させた溶接品の形状を測定し、前記複数の前記被溶接部材毎の溶接前後の管理穴位置の変化量を取得するステップと、
前記複数の前記被溶接部材毎の溶接前後の前記管理穴位置の前記変化量に基づいて、前記複数の前記被溶接部材を溶接治具によって固定する固定位置を取得するステップと、
前記被溶接部材毎の前記溶接前形状情報と、前記被溶接部材の前記固定位置とに基づいて、前記複数の前記被溶接部材同士の隙間を算出するステップと、
を含む被溶接部材の測定方法。
Measuring a joint shape for each of a plurality of members to be welded using a non-contact three-dimensional measuring machine, and obtaining shape information before welding;
Measuring a shape of a welded product integrated by welding the plurality of members to be welded, and obtaining a change amount of a management hole position before and after welding for each of the plurality of members to be welded;
Obtaining a fixed position for fixing the plurality of members to be welded by a welding jig based on the change amount of the management hole position before and after welding for each of the plurality of members to be welded;
Calculating gaps between the plurality of members to be welded based on the shape information before welding for each member to be welded and the fixing position of the members to be welded;
A method for measuring a member to be welded including:
JP2015169456A 2015-08-28 2015-08-28 Measurement method for welded parts Active JP6439629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015169456A JP6439629B2 (en) 2015-08-28 2015-08-28 Measurement method for welded parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015169456A JP6439629B2 (en) 2015-08-28 2015-08-28 Measurement method for welded parts

Publications (2)

Publication Number Publication Date
JP2017044660A JP2017044660A (en) 2017-03-02
JP6439629B2 true JP6439629B2 (en) 2018-12-19

Family

ID=58211233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015169456A Active JP6439629B2 (en) 2015-08-28 2015-08-28 Measurement method for welded parts

Country Status (1)

Country Link
JP (1) JP6439629B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003041902A1 (en) * 2001-11-15 2003-05-22 Elpatronic Ag Method and device for evaluation of jointing regions on workpieces
JP2005014026A (en) * 2003-06-24 2005-01-20 Enshu Ltd Weld zone inspection method, and welding support system

Also Published As

Publication number Publication date
JP2017044660A (en) 2017-03-02

Similar Documents

Publication Publication Date Title
US11046007B2 (en) Apparatus and method for calibrating optimum size of 3D printing
JP5449174B2 (en) Method for correcting the measurement value of a coordinate measuring machine and coordinate measuring machine
CN107590322B (en) Drive shaft jumping checking method
CN109579733B (en) Method for rapidly measuring and calculating laser 3D printing forming dimensional precision
JP2009524011A (en) Apparatus and method for acquiring deviation of contour of flexible part by acquiring weight of part
JP6018370B2 (en) Method and apparatus for estimating weightless shape
US20030163928A1 (en) Method for adjusting assembly jig
JP6439629B2 (en) Measurement method for welded parts
CN113798511B (en) Double-laser lap joint calibration method based on SLM additive manufacturing technology
Douellou et al. Assessment of geometrical defects caused by thermal distortions in laser-beam-melting additive manufacturing: a simulation approach
JP4305645B2 (en) Simulation method for sheet forming
JP7169168B2 (en) Structure manufacturing method
JP2005138120A (en) Method for simulating deflection distribution of die in press forming
JP5969886B2 (en) Corresponding point calculation system and program, mold shape generation system and program
Supardjo et al. Finite element analysis of truck frame by using CATIA V5
JP6452086B2 (en) Shape calculating apparatus and method, measuring apparatus, article manufacturing method, and program
JP2007080417A (en) Stationary posture angle correcting method and device of thin film magnetic head
Riegel et al. Analysis of the stress state in QFN package during four bending experiment utilizing piezoresistive stress sensor
CN107826267B (en) Processing and detecting method of titanium alloy rotorcraft cockpit support frame
JP5389841B2 (en) Springback analysis method, springback analysis device, program, and storage medium
JP5899827B2 (en) Plate gap correction method and plate gap correction device
JP2020086887A (en) Components processing equipment
JP2022121024A (en) Press molding simulation method
Joshi Quantifying Deformations in Flexible Assemblies Using Least Square Fit and Capture Zone Techniques
CN107944200B (en) Optimization method of skeleton structure of laser processing machine tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181105

R151 Written notification of patent or utility model registration

Ref document number: 6439629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151