JP6436583B2 - Method for producing cyclic olefin-based resin expanded particles and method for producing expanded molded body - Google Patents

Method for producing cyclic olefin-based resin expanded particles and method for producing expanded molded body Download PDF

Info

Publication number
JP6436583B2
JP6436583B2 JP2016054035A JP2016054035A JP6436583B2 JP 6436583 B2 JP6436583 B2 JP 6436583B2 JP 2016054035 A JP2016054035 A JP 2016054035A JP 2016054035 A JP2016054035 A JP 2016054035A JP 6436583 B2 JP6436583 B2 JP 6436583B2
Authority
JP
Japan
Prior art keywords
particles
foamed
foaming
cyclic olefin
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016054035A
Other languages
Japanese (ja)
Other versions
JP2016180098A (en
Inventor
哲朗 田井
哲朗 田井
遥香 古永
遥香 古永
小林 弘典
弘典 小林
春彦 松浦
春彦 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Kasei Co Ltd filed Critical Sekisui Kasei Co Ltd
Publication of JP2016180098A publication Critical patent/JP2016180098A/en
Application granted granted Critical
Publication of JP6436583B2 publication Critical patent/JP6436583B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

本発明は、環状オレフィン系樹脂発泡粒子の製造方法及び発泡成形体の製造方法に関する。更に詳しくは、本発明は、良好な外観を有する発泡成形体を製造するための環状オレフィン系樹脂発泡粒子の製造方法、その方法により得られる環状オレフィン系樹脂発泡粒子を型内発泡成型して発泡成形体を得る発泡成形体の製造方法に関する。 The present invention relates to a process for producing a preparation and foamed molded cycloolefin resin foamed particles child. More particularly, the present invention provides foaming process for producing a molded article cycloolefin resin foamed particles for producing a cyclic olefin based resin foamed particles obtained by the method and mold expansion molding having a good appearance foaming The present invention relates to a method for producing a foamed molded product for obtaining a molded product .

環状オレフィン系樹脂は、従来の非環状オレフィン系樹脂に比べて熱的安定性、化学的安定性、弾性率等の物性が優れており、光学フィルム等の光学分野、包装材料分野、医療・検査機器分野、電子デバイス分野等に幅広く使用されている。発泡体の分野においても、環状オレフィンを基材樹脂とした種々の発泡体が提案されている。
ところで、環状オレフィン系樹脂を基材樹脂とする発泡体の製法としては、例えば特許文献1(特開2013−189484号公報)のような押出発泡法がよく知られている。しかしながら、この方法で得られる発泡体は、棒状もしくはボード状であるため、単純な形状の発泡体しか得ることができなかった。従って、押出発泡法では、複雑な形状をした発泡体を得ることは困難であった。
Cyclic olefin resins have better physical properties such as thermal stability, chemical stability, and elastic modulus than conventional non-cyclic olefin resins, and include optical fields such as optical films, packaging materials, and medical / inspection. Widely used in the field of equipment and electronic devices. Also in the field of foams, various foams using a cyclic olefin as a base resin have been proposed.
By the way, as a manufacturing method of the foam which uses cyclic olefin resin as base resin, the extrusion foaming method like patent document 1 (Unexamined-Japanese-Patent No. 2013-189484) is known well, for example. However, since the foam obtained by this method is rod-shaped or board-shaped, only a simple foam can be obtained. Therefore, it has been difficult to obtain a foam having a complicated shape by the extrusion foaming method.

複雑な形状の発泡体を得る方法としては、発泡粒子を金型内で発泡及び融着させる型内発泡成型法が知られている。この方法では、所望の形状に対応する空間を有する金型を用意し、その空間内に発泡粒子を充填し、加熱により発泡粒子を発泡及び融着させることで、複雑な形状を有する発泡成形体を得ることができる。この方法が、例えば、特許文献2(特開平8−333471号公報)及び特許文献3(特開2010−189582号公報)に提案されている。具体的には、特許文献2の実施例では、環状オレフィン系樹脂粒子に対し発泡剤としてイソブタンを含浸して発泡性粒子を作製し、発泡性粒子を加熱発泡させることで発泡粒子を作製し、その後発泡粒子を金型内で加熱発泡(二次発泡)させて成形して得られる発泡成形体が記載されている。また、特許文献3の実施例では、環状オレフィン系樹脂粒子に対し発泡剤としてブタン、ペンタンを含浸して発泡性粒子を作製し、発泡性粒子を加熱発泡させることで発泡粒子を作製し、その後発泡粒子を金型内で加熱発泡(二次発泡)させて成形して得られる発泡成形体が開示されている。   As a method for obtaining a foam having a complicated shape, an in-mold foam molding method in which foamed particles are foamed and fused in a mold is known. In this method, a mold having a space corresponding to a desired shape is prepared, the foamed particles are filled in the space, and the foamed particles are foamed and fused by heating, whereby a foamed molded product having a complicated shape. Can be obtained. This method is proposed, for example, in Patent Document 2 (Japanese Patent Laid-Open No. 8-333471) and Patent Document 3 (Japanese Patent Laid-Open No. 2010-189582). Specifically, in the example of Patent Document 2, the foamed particles are produced by impregnating cyclobutane resin particles with isobutane as a foaming agent to produce foamable particles, and the foamable particles are heated and foamed. A foam molded article obtained by molding foamed particles by heat foaming (secondary foaming) in a mold is described. Moreover, in the Example of patent document 3, a foaming particle is produced by impregnating a cyclic olefin resin particle with butane and pentane as a foaming agent to produce foaming particles, and then heating and foaming the foaming particles. A foamed molded article obtained by molding foamed particles by heat foaming (secondary foaming) in a mold is disclosed.

特開2013−189484号公報JP 2013-189484 A 特開平8−333471号公報JP-A-8-333471 特開2010−189582号公報JP 2010-189582 A

特許文献2及び3では、発泡成形体の作製に、ブタン、イソブタン、ペンタン等の有機系物理発泡剤が使用されている。しかし、有機系物理発泡剤は、樹脂への可塑効果が強く、かつ樹脂からの気散速度が遅いため、その樹脂本来の耐熱性を発揮するには十分にアニールする必要があった。そのため、生産性改善の観点から発泡剤を変更することが望まれている。加えて、近年、有機系物理発泡剤が環境に与える影響が懸念されており、この観点からも、発泡剤を変更することが望まれている。   In Patent Documents 2 and 3, organic physical foaming agents such as butane, isobutane, and pentane are used for producing foamed molded articles. However, since the organic physical foaming agent has a strong plasticizing effect on the resin and a low air diffusion rate from the resin, it has to be sufficiently annealed to exhibit the heat resistance inherent to the resin. Therefore, it is desired to change the foaming agent from the viewpoint of improving productivity. In addition, in recent years, there is a concern about the influence of organic physical foaming agents on the environment, and from this viewpoint, it is desired to change the foaming agent.

本発明の発明者等は、このような状況を鑑みて、無機系物理発泡剤を使用して発泡成形体を作製する検討を行った。その結果、環状オレフィン系樹脂粒子を無機系物理発泡剤で発泡させて発泡粒子を作製し、その発泡粒子を型内成形して発泡成形体を得るには特許文献2の段落0007及び0008でも指摘される以下の課題が発生することを見い出した。   In view of such a situation, the inventors of the present invention studied to produce a foamed molded article using an inorganic physical foaming agent. As a result, it is pointed out in paragraphs 0007 and 0008 of Patent Document 2 that foamed particles are produced by foaming cyclic olefin-based resin particles with an inorganic physical foaming agent, and the foamed particles are molded in-mold to obtain a foamed molded product. We found that the following problems occur.

即ち、一般に、発泡剤を用いて製造した直後の発泡粒子内には発泡剤が含有される。このような発泡剤が多量に含まれた発泡粒子を使用して型内成形を行なうと、最終的には発泡剤は空気と置換されることになる。しかし、成形中、発泡剤が気散する速度の方が、成形体中に空気が進入してくる速度よりも速いため、成形体が収縮する原因となる。これを防止するため、製造直後の発泡粒子に含まれる発泡剤を、型内成形に先立ち、一旦空気と置換させる方法が一般に採用されている。そして、必要に応じて加圧空気や加圧窒素等を使用して発泡粒子内の内圧を高めた後、型内成形が行なわれている。   That is, generally, the foaming agent is contained in the foamed particles immediately after the production using the foaming agent. When in-mold molding is performed using expanded particles containing a large amount of such a foaming agent, the foaming agent is eventually replaced with air. However, since the speed at which the foaming agent diffuses during molding is faster than the speed at which air enters the molded body, this causes the molded body to shrink. In order to prevent this, generally employed is a method in which the foaming agent contained in the foamed particles immediately after production is once replaced with air prior to in-mold molding. And after increasing the internal pressure in foamed particles using pressurized air, pressurized nitrogen, etc. as needed, in-mold fabrication is performed.

製造直後の発泡粒子内に存在する発泡剤を空気と置換するには、通常の鎖状オレフィン系樹脂(例えば、ポリエチレン)の発泡粒子の場合には、発泡粒子を網槽内にて大気圧下で適当な時間放置することで実施される。ところが、環状オレフィン系樹脂の発泡粒子の場合には、鎖状オレフィン系樹脂発泡粒子のように、発泡剤と空気とを完全に置換してしまうと、その後の型内成形に先立ち、加圧空気等を使用して発泡粒子内圧を高め、この発泡粒子を使用して型内成形しても、各発泡粒子の膨張が十分に行われず(いわゆる成形時の発泡不足が生じ)、良好な発泡成形体が得られないという課題がある。   In order to replace the foaming agent present in the foamed particles immediately after production with air, in the case of foamed particles of a normal chain olefin resin (for example, polyethylene), the foamed particles are placed under atmospheric pressure in a mesh tank. It is carried out by leaving it for a suitable time. However, in the case of foamed particles of cyclic olefin-based resin, if the blowing agent and air are completely replaced as in the case of chain-shaped olefin-based resin foamed particles, pressurized air is used prior to subsequent in-mold molding. Even if foamed particles are used to increase the internal pressure of the foamed particles, and the foamed particles are molded in the mold, the foamed particles are not sufficiently expanded (so-called foaming shortage occurs during molding), and good foamed molding There is a problem that the body cannot be obtained.

特許文献2では、発泡粒子に残存した発泡剤が気散する前に成形を行なうことで上記課題を解決している。しかし、一般に、無機系物理発泡剤は有機系物理発泡剤に比べて樹脂外への気散が速い。従って、無機系物理発泡剤を使用して環状オレフィン系樹脂の発泡粒子を作製し、型内成形し、発泡成形体を得る際に、特許文献2と同様の方法にて良好な発泡成形体を得ることは困難である。そのため、特許文献2に記載された方法以外で、発泡粒子の膨張を十分に行い(いわゆる成形時に十分発泡させ)、良好な発泡成形体を得る対策を考案する必要があった。   In patent document 2, the said subject is solved by performing shaping | molding before the foaming agent which remain | survived in the expanded particle disperses. However, in general, the inorganic physical foaming agent has a faster air diffusion out of the resin than the organic physical foaming agent. Therefore, when foamed particles of a cyclic olefin resin are prepared using an inorganic physical foaming agent and molded in-mold to obtain a foamed molded product, a good foamed molded product is obtained by the same method as in Patent Document 2. It is difficult to get. Therefore, in addition to the method described in Patent Document 2, it is necessary to devise a measure for sufficiently expanding the expanded particles (sufficiently foaming at the time of so-called molding) to obtain a good foamed molded product.

発明者等は、上記課題を解決すべく誠意研究を行なった結果、無機系物理発泡剤を使用して作製した環状オレフィン系樹脂発泡粒子が、特定の条件を満足する場合に型内成形に十分な発泡性を発揮し、それを用いることで外観の良好な発泡成形体を得ることができることを見出し、本発明を完成するに至った。
かくして本発明によれば、基材樹脂としての環状オレフィン系樹脂と、無機系物理発泡剤とを含む発泡性粒子を発泡させて型内成形用の発泡粒子を製造する方法であり、前記発泡は、2回以上のn回行われ、1回目の発泡で得られた発泡粒子が0.51〜0.051g/cm 3 の嵩密度T1を示し、n回目の発泡で得られた発泡粒子が0.051〜0.0068g/cm 3 の嵩密度T2を示し、前記嵩密度T2が、前記嵩密度T1の0.6倍以下である条件で行われることを特徴とする環状オレフィン系樹脂発泡粒子の製造方法が提供される。
The inventors have conducted sincere research to solve the above problems, and as a result, the foamed cyclic olefin resin particles produced using an inorganic physical foaming agent are sufficient for in-mold molding when specific conditions are satisfied. The present inventors have found that a foamed molded article exhibiting excellent foamability and having a good appearance can be obtained by using it, and the present invention has been completed.
Thus, according to the present invention, there is provided a method for producing foamed particles for in-mold molding by foaming foamable particles containing a cyclic olefin resin as a base resin and an inorganic physical foaming agent. The foamed particles obtained by the first foaming exhibited a bulk density T1 of 0.51 to 0.051 g / cm 3 , and the foamed particles obtained by the nth foaming were 0. A cyclic olefin-based resin expanded particle having a bulk density T2 of .051 to 0.0068 g / cm 3 , wherein the bulk density T2 is 0.6 times or less of the bulk density T1 . A manufacturing method is provided.

に、上記環状オレフィン系樹脂発泡粒子を得、前記環状オレフィン系樹脂発泡粒子を型内発泡成型して発泡成形体を得る発泡成形体の製造方法が提供される。 Further, the give the cyclic olefin-based resin foamed particles, method for producing a foamed molded to obtain a foamed molded product the cyclic olefin-based resin foamed particles were mold foam molding is provided.

本発明の製造方法によれば、外観の良好な発泡成形体を与え得る環状オレフィン系樹脂発泡粒子の製造方法を提供できる。
以下のいずれかの場合、外観のより良好な発泡成形体を与え得る環状オレフィン系樹脂発泡粒子の製造方法を提供できる。
(1)発泡が、2回以上のn回行われ、1回目の発泡で得られた発泡粒子が0.51〜0.051g/cmの嵩密度T1を示し、n回目の発泡で得られた発泡粒子が0.34〜0.0068g/cmの嵩密度T2を示す条件で行われる。
(2)嵩密度T2が、嵩密度T1の0.6倍以下である。
(3)無機系物理発泡剤が、二酸化炭素、窒素、酸素、空気及びアルゴンから選択される。
(4)環状オレフィン系樹脂が、鎖状オレフィン成分と環状オレフィン成分とから構成される共重合体から選択される。
(5)鎖状オレフィン成分が炭素数2〜6のエチレン系炭化水素に由来する成分であり、環状オレフィン成分が炭素数3〜10の単環又は多環の炭化水素に由来する成分である。
(6)環状オレフィン系樹脂発泡粒子が、40%以下の連続気泡率を有する。
According to the production method of the present invention, it is possible to provide a method for producing a cyclic olefin resin expanded particle capable of giving a foamed molded article having a good appearance.
In any of the following cases, it is possible to provide a method for producing foamed cyclic olefin resin particles that can give a foamed molded article with better appearance.
(1) Foaming is carried out n times at least twice, and the foamed particles obtained by the first foaming exhibit a bulk density T1 of 0.51 to 0.051 g / cm 3 and are obtained by the nth foaming. The expansion | swelling particle | grains carried out on the conditions which show the bulk density T2 of 0.34-0.0068g / cm < 3 >.
(2) The bulk density T2 is 0.6 times or less of the bulk density T1.
(3) The inorganic physical foaming agent is selected from carbon dioxide, nitrogen, oxygen, air and argon.
(4) The cyclic olefin resin is selected from a copolymer composed of a chain olefin component and a cyclic olefin component.
(5) The chain olefin component is a component derived from an ethylene hydrocarbon having 2 to 6 carbon atoms, and the cyclic olefin component is a component derived from a monocyclic or polycyclic hydrocarbon having 3 to 10 carbon atoms.
(6) The cyclic olefin-based resin expanded particles have an open cell ratio of 40% or less.

以下、本発明を詳細に説明する。
(環状オレフィン系樹脂発泡粒子の製造方法)
環状オレフィン系樹脂発泡粒子(以下、発泡粒子ともいう)は、基材樹脂としての環状オレフィン系樹脂と、無機系物理発泡剤とを含む発泡性粒子を発泡させることにより製造される。ここで、発泡は、1回以上行われ、1回目の発泡が0.51〜0.051g/cmの嵩密度の発泡粒子を得る条件で行われる。
Hereinafter, the present invention will be described in detail.
(Manufacturing method of cyclic olefin resin expanded particles)
Cyclic olefin resin expanded particles (hereinafter, also referred to as expanded particles) are produced by foaming expandable particles containing a cyclic olefin resin as a base resin and an inorganic physical foaming agent. Here, foaming is performed at least once, and the first foaming is performed under the condition of obtaining expanded particles having a bulk density of 0.51 to 0.051 g / cm 3 .

(1)基材樹脂
基材樹脂は環状オレフィン系樹脂を含む。
環状オレフィン系樹脂は、鎖状オレフィン成分と環状オレフィン成分とから構成される共重合体の使用が好ましい。
鎖状オレフィン成分としては、エチレン、プロピレン、1−ブテン、1−ペンテン、1−へキセン、3−メチル−1−ブテン、3−メチル−1−ペンテン、3−エチル−1−ペンテン、4−メチル−1−ペンテン、4−メチル−1−へキセン、4,4−ジメチル−1−ヘキセン、4,4−ジメチル−1−ペンテン、4−エチル−1−へキセン、3−エチル−1−ヘキセン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセン、1−エイコセン等の炭素数2〜20のエチレン系炭化水素に由来する成分が挙げられる。この内、エチレン、プロピレン、イソブチレン、1−ブテン、1−ペンテン、1−ヘキセン等の炭素数2〜6のエチレン系炭化水素に由来する成分が好ましく、鎖状オレフィン成分として最も一般的であるエチレンに由来する成分が更に好ましい。
(1) Base resin The base resin contains a cyclic olefin resin.
The cyclic olefin resin is preferably a copolymer composed of a chain olefin component and a cyclic olefin component.
Examples of the chain olefin component include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene, 4- Methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene, 3-ethyl-1- Examples include components derived from ethylene hydrocarbons having 2 to 20 carbon atoms such as hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene. Among these, components derived from ethylene hydrocarbons having 2 to 6 carbon atoms such as ethylene, propylene, isobutylene, 1-butene, 1-pentene and 1-hexene are preferable, and ethylene is the most common as a chain olefin component. A component derived from is more preferred.

環状オレフィン成分としては、炭素数3〜20の単環又は多環の炭化水素に由来する成分が挙げられる。単官能オレフィン成分の具体例としては、シクロブテン、シクロペンテン、シクロヘプテン、シクロオクテン、シクロペンタジエン、1,3−シクロヘキサジエン等の単環式オレフィン、
ビシクロ〔2,2,1〕ヘプト−2−エン、5−メチル−ビシクロ〔2,2,1〕ヘプタ−2−エン、5,5−ジメチル−ビシクロ〔2,2,1〕ヘプト−2−エン、5−エチル−ビシクロ〔2,2,1〕ヘプト−2−エン、5−ブチル−ビシクロ〔2,2,1〕ヘプト−2−エン、5−エチリデン−ビシクロ〔2,2,1〕ヘプト−2−エン、5−ヘキシル−ビシクロ〔2,2,1〕ヘプト−2−エン、5−オクチル−ビシクロ〔2,2,1〕ヘプト−2−エン、5−オクタデシル−ビシクロ〔2,2,1〕ヘプト−2−エン、5−メチリデン−ビシクロ〔2,2,1〕ヘプト−2−エン、5−ビニル−ビシクロ〔2,2,1〕ヘプト−2−エン、5−プロペニル−ビシクロ〔2,2,1〕ヘプト−2−エン、ノルボルネン等の二環式オレフィン、
トリシクロ〔4,3,0,12.5〕デカ−3,7−ジエン、トリシクロ〔4,3,0,12.5〕デカ−3−エン、トリシクロ〔4,3,0,12.5〕ウンデカ−3,7−ジエン又はトリシクロ〔4,3,0,12.5〕ウンデカ−3,8−ジエン又はこれらの部分水素添加物(又はシクロペンタジエンとシクロヘキセンの付加物) であるトリシクロ〔4,3,0,12.5〕ウンデカ−3−エン;5−シクロペンチル−ビシクロ〔2,2,1〕ヘプト−2−エン、5−シクロヘキシル−ビシクロ〔2,2,1〕ヘプト−2−エン、5−シクロヘキセニルビシクロ〔2,2,1〕ヘプト−2−エン、5−フェニル−ビシクロ〔2,2,1〕ヘプタ−2−エン等の三環式オレフィン、
Examples of the cyclic olefin component include components derived from monocyclic or polycyclic hydrocarbons having 3 to 20 carbon atoms. Specific examples of the monofunctional olefin component include monocyclic olefins such as cyclobutene, cyclopentene, cycloheptene, cyclooctene, cyclopentadiene, 1,3-cyclohexadiene,
Bicyclo [2,2,1] hept-2-ene, 5-methyl-bicyclo [2,2,1] hept-2-ene, 5,5-dimethyl-bicyclo [2,2,1] hept-2-ene Ene, 5-ethyl-bicyclo [2,2,1] hept-2-ene, 5-butyl-bicyclo [2,2,1] hept-2-ene, 5-ethylidene-bicyclo [2,2,1] Hept-2-ene, 5-hexyl-bicyclo [2,2,1] hept-2-ene, 5-octyl-bicyclo [2,2,1] hept-2-ene, 5-octadecyl-bicyclo [2, 2,1] hept-2-ene, 5-methylidene-bicyclo [2,2,1] hept-2-ene, 5-vinyl-bicyclo [2,2,1] hept-2-ene, 5-propenyl- Bicyclic [2,2,1] hept-2-ene, norbornene, etc. Fin,
Tricyclo [4,3,0,1 2.5] dec-3,7-diene, tricyclo [4,3,0,1 2.5] dec-3-ene, tricyclo [4,3,0,1 2 .5 ] undeca-3,7-diene or tricyclo [4,3,0,1 2.5 ] undeca-3,8-diene or a partial hydrogenated product thereof (or an adduct of cyclopentadiene and cyclohexene). Tricyclo [4,3,0,1 2.5 ] undec-3-ene; 5-cyclopentyl-bicyclo [2,2,1] hept-2-ene, 5-cyclohexyl-bicyclo [2,2,1] hept Tricyclic olefins such as 2-ene, 5-cyclohexenylbicyclo [2,2,1] hept-2-ene, and 5-phenyl-bicyclo [2,2,1] hept-2-ene;

テトラシクロ〔4,4,0,12.5,17.10〕ドデカ−3−エン、8−メチルテトラシクロ〔4,4,0,12.5,17.10〕ドデカ−3−エン、8−エチルテトラシクロ〔4,4,0,12.5,17.10〕ドデカ−3−エン、8−メチリデンテトラシクロ〔4,4,0,12.5,17.10〕ドデカ−3−エン、8−エチリデンテトラシクロ〔4,4,0,12.5,17.10〕ドデカ−3−エン、8−ビニルテトラシクロ〔4,4,0,12.5,17.10〕ドデカ−3−エン、8−プロペニル−テトラシクロ〔4,4,0,12.5,17.10〕ドデカ−3−エン等の四環式オレフィン、
8−シクロペンチル−テトラシクロ〔4,4,0,12.5,17.10〕ドデカ−3−エン、8−シクロヘキシル−テトラシクロ〔4,4,0,12.5,17.10〕ドデカ−3−エン、8−シクロヘキセニル−テトラシクロ〔4,4,0,12.5,17.10〕ドデカ−3−エン、8−フェニル−シクロペンチル−テトラシクロ〔4,4,0,12.5,17.10〕ドデカ−3−エン、テトラシクロ〔7,4,13.6,01.9,02.7〕テトラデカ−4,9,11,13−テトラエン、テトラシクロ〔8,4,14.7,01.10,03.8〕ペンタデカ−5,10,12,14−テトラエン、ペンタシクロ〔6,6,13.6,02.7,09.14〕−4−ヘキサデセン、ペンタシクロ〔6,5,1,13.6,02.7,09.13〕−4−ペンタデセン、ペンタシクロ〔7,4,0,02.7,13.6,110.13〕−4−ペンタデセン、ヘプタシクロ〔8,7,0,12.9,14.7,111.17,03.8,012.16〕−5−エイコセン、ヘプタシクロ〔8,7,0,12.9,03.8,14.7,012.17,113.16〕−14−エイコセン等の四量体等の多環式オレフィン等に由来する成分が挙げられる。これらの環状オレフィンは、それぞれ単独で、あるいは2種類以上組み合わせて用いることができる。環状オレフィン成分は、炭素数3〜10の単環又は多環の炭化水素に由来する成分がより好ましく、環状オレフィン成分として最も一般的であるノルボルネンに由来する成分であることが更に好ましい。
Tetracyclo [4,4,0,1 2.5 , 1 7.10 ] dodec-3-ene, 8-methyltetracyclo [4,4,0,1 2.5 , 1 7.10 ] dodec-3- ene, 8-ethyl-tetracyclododecene [4,4,0,1 2.5, 1 7.10] dodeca-3-ene, 8-methylidene-tetracyclo [4,4,0,1 2.5, 1 7 .10] dodeca-3-ene, 8-ethylidene tetracyclododecene [4,4,0,1 2.5, 1 7.10] dodeca-3-ene, 8-vinyl-tetracyclo [4,4,0,1 2.5, 1 7.10] dodeca-3-ene, 8-propenyl - tetracyclo [4,4,0,1 2.5, 1 7.10] dodeca-3 tetracyclic olefins such as ene,
8-cyclopentyl-- tetracyclo [4,4,0,1 2.5, 1 7.10] dodeca-3-ene, 8-cyclohexyl - tetracyclo [4,4,0,1 2.5, 1 7.10] dodeca-3-ene, 8-cyclohexenyl - tetracyclo [4,4,0,1 2.5, 1 7.10] dodeca-3-ene, 8-phenyl - cyclopentyl - tetracyclo [4,4,0,1 2.5, 1 7.10] dodeca-3-ene, tetracyclo [7,4,1 3.6, 0 1.9, 0 2.7] tetradeca -4,9,11,13- tetraene, tetracyclo [ 8,4,1 4.7, 0 1.10 0 3.8] pentadeca -5,10,12,14- tetraene, pentacyclo [6,6,1 3.6, 0 2.7, 0 9. 14 ] -4-hexadecene, pentacyclo [6, 5,1,1 3.6, 0 2.7, 0 9.13] -4-pentadecene, pentacyclo [7,4,0,0 2.7, 1 3.6, 1 10.13] -4- pentadecene, heptacyclo [8,7,0,1 2.9, 1 4.7, 1 11.17, 0 3.8, 0 12.16] -5-eicosene, heptacyclo [8,7,0,1 2 .9 , 0 3.8 , 1 4.7 , 0 12.17 , 1 13.16 ], components derived from polycyclic olefins such as tetramers such as 14- eicosene . These cyclic olefins can be used alone or in combination of two or more. The cyclic olefin component is preferably a component derived from a monocyclic or polycyclic hydrocarbon having 3 to 10 carbon atoms, and more preferably a component derived from norbornene, which is the most common cyclic olefin component.

環状オレフィン系樹脂は、50〜100質量%の環状オレフィン成分と50〜0質量%の鎖状オレフィン成分とを含むことが好ましく、60〜90質量%の環状オレフィン成分と40〜10質量%の鎖状オレフィン成分とを含むことがより好ましい。
環状オレフィン系樹脂は、例えば、環状オレフィンと鎖状オレフィンとの付加重合のような公知の方法で製造できる。
基材樹脂は、環状オレフィン系樹脂以外の他の樹脂を含んでいてもよい。他の樹脂としては、アクリル系樹脂、飽和ポリエステル系樹脂、ABS系樹脂、ポリスチレン系樹脂、ポリカーボネート系樹脂、及びポリフェニレンオキサイド系樹脂等が挙げられる。基材樹脂には、環状オレフィン系樹脂を50質量%以上含むことが好ましい。
The cyclic olefin-based resin preferably includes 50 to 100% by mass of the cyclic olefin component and 50 to 0% by mass of the chain olefin component, and is preferably 60 to 90% by mass of the cyclic olefin component and 40 to 10% by mass of the chain. It is more preferable that a olefin component is included.
The cyclic olefin resin can be produced by a known method such as addition polymerization of a cyclic olefin and a chain olefin.
The base resin may contain a resin other than the cyclic olefin resin. Examples of other resins include acrylic resins, saturated polyester resins, ABS resins, polystyrene resins, polycarbonate resins, and polyphenylene oxide resins. The base resin preferably contains 50% by mass or more of a cyclic olefin resin.

(2)無機系物理発泡剤
無機系物理発泡剤(以下、発泡剤ともいう)としては、例えば、二酸化炭素、窒素、酸素、空気及びアルゴンが挙げられる。これら発泡剤は2種以上併用してもよい。
発泡剤の含有量(含浸量)は、基材樹脂100質量部に対して、0.1〜15質量部であることが好ましい。発泡剤の含有量が0.1質量部未満であると、発泡力が低くなり、良好に発泡させ難いことがある。含有量が15質量部を超えると、可塑化効果が大きくなり、発泡時に収縮が起こりやすく、生産性が悪くなると共に、安定して所望の発泡倍数を得難くなることがある。より好ましい発泡剤の含有量は、1.0〜10質量部である。
(2) Inorganic physical foaming agent Examples of the inorganic physical foaming agent (hereinafter also referred to as foaming agent) include carbon dioxide, nitrogen, oxygen, air, and argon. Two or more of these foaming agents may be used in combination.
It is preferable that content (impregnation amount) of a foaming agent is 0.1-15 mass parts with respect to 100 mass parts of base resin. When the content of the foaming agent is less than 0.1 parts by mass, the foaming power is low, and it may be difficult to foam well. When the content exceeds 15 parts by mass, the plasticizing effect is increased, shrinkage occurs easily during foaming, the productivity is deteriorated, and it is difficult to stably obtain a desired expansion ratio. A more preferable foaming agent content is 1.0 to 10 parts by mass.

(3)発泡
発泡は、1回以上行われるが、1回目の発泡が0.51〜0.051g/cmの嵩密度の発泡粒子を得る条件で行われる。この嵩密度は、通常の発泡での嵩密度が0.34〜0.0102g/cm(特許文献2段落0033記載の嵩発泡倍率より算出。なお、基材樹脂の密度は1.02g/cmとした。)であることを考慮すると、高い値である。好ましい嵩密度は0.34〜0.057g/cmであり、より好ましい嵩密度は0.204〜0.068g/cmである。
発泡を2回以上行う場合、発泡の全回数をn回とすると、1回目の発泡で得られた発泡粒子が0.51〜0.051g/cmの嵩密度T1を示し、n回目の発泡で得られた発泡粒子が0.34〜0.0068g/cmの嵩密度T2を示す条件で行われることが好ましい。この条件では、外観良好な発泡成形体をより高倍で得ることが可能な発泡粒子を提供できる。n回目のより好ましい嵩密度は0.102〜0.0078g/cmであり、n回目の更に好ましい嵩密度は0.051〜0.0085g/cmである。また、嵩密度T2が、嵩密度T1の0.6倍以下であることが好ましく、0.05〜0.55倍であることがより好ましい。
(3) Foaming Foaming is performed at least once, but the first foaming is performed under the condition of obtaining foamed particles having a bulk density of 0.51 to 0.051 g / cm 3 . This bulk density is 0.34 to 0.0102 g / cm 3 (calculated from the bulk foaming ratio described in paragraph 0033 of Patent Document 2. The density of the base resin is 1.02 g / cm. 3 )), it is a high value. A preferred bulk density is 0.34 to 0.057 g / cm 3 , and a more preferred bulk density is 0.204 to 0.068 g / cm 3 .
When foaming is performed twice or more, if the total number of times of foaming is n, the foamed particles obtained by the first foaming exhibit a bulk density T1 of 0.51 to 0.051 g / cm 3 , and the nth foaming It is preferable that the foamed particles obtained in the above are carried out under the condition of showing a bulk density T2 of 0.34 to 0.0068 g / cm 3 . Under these conditions, it is possible to provide expanded particles capable of obtaining an expanded molded article having a good appearance at a higher magnification. More preferred bulk density of the n-th is 0.102~0.0078g / cm 3, more preferred bulk density of the n-th is 0.051~0.0085g / cm 3. Further, the bulk density T2 is preferably 0.6 times or less of the bulk density T1, and more preferably 0.05 to 0.55 times.

発泡性粒子を発泡させて発泡粒子を得る方法としては、発泡性粒子をスチーム(水蒸気)等により加熱して発泡させる方法が好適に使用される。
発泡時の発泡機には密閉耐圧の発泡容器を使用することが好ましい。また、スチームの圧力はゲージ圧にて0.1〜0.8MPaであることが好ましく、0.2〜0.6MPaであることがより好ましい。発泡時間は上記条件を満たすのに必要な時間であればよい。好ましい発泡時間は、5〜600秒である。
発泡を2回以上行う方法としては、発泡粒子内に発泡剤を含浸させることで発泡力(2次等のn次発泡力)を付与した発泡粒子(以下、発泡性発泡粒子と称する)をスチーム(水蒸気)等により加熱して発泡させる方法が好適に使用される。得られた発泡粒子をn次発泡粒子と称する。この際、発泡機には密閉耐圧の発泡容器を使用することが好ましい。また、スチームの圧力はゲージ圧にて0.1〜0.8MPaであることが好ましく、0.2〜0.6MPaであることがより好ましい。発泡時間は上記条件を満たすのに必要な時間であればよい。好ましい発泡時間は、5〜600秒である。
As a method for obtaining foamed particles by foaming the foamable particles, a method of foaming the foamable particles by heating with steam (water vapor) or the like is preferably used.
It is preferable to use a sealed pressure-resistant foaming container for the foaming machine at the time of foaming. Further, the steam pressure is preferably 0.1 to 0.8 MPa, more preferably 0.2 to 0.6 MPa in terms of gauge pressure. The foaming time may be a time required to satisfy the above conditions. The preferred foaming time is 5 to 600 seconds.
As a method of performing foaming twice or more, foamed particles (hereinafter referred to as expandable foamed particles) imparted with foaming power (secondary or other n-th foaming power) by impregnating the foamed particles with a foaming agent are steamed. A method of heating and foaming with (steam) or the like is preferably used. The obtained expanded particles are referred to as n-order expanded particles. At this time, it is preferable to use a closed pressure-resistant foaming container for the foaming machine. Further, the steam pressure is preferably 0.1 to 0.8 MPa, more preferably 0.2 to 0.6 MPa in terms of gauge pressure. The foaming time may be a time required to satisfy the above conditions. The preferred foaming time is 5 to 600 seconds.

(4)発泡性粒子
発泡性粒子は、例えば、環状オレフィン系の樹脂粒子に発泡剤を含浸させることにより得ることができる。
含浸方法としては、粒子を水系に分散させ撹拌させながら発泡剤を圧入することで含浸させる湿式含浸法や、密閉可能な容器に樹脂粒子を投入し、発泡剤を圧入して含浸させる実質的に水を使用しない乾式含浸法(気相含浸法)等が挙げられる。特に水を使用せずに含浸できる乾式含浸法が好ましい。樹脂粒子に発泡剤を含浸させる際の含浸圧、含浸時間及び含浸温度は特に限定されない。
含浸を効率的に行い、より一層良好な外観の発泡粒子及び発泡成形体を得る観点からは、含浸圧はゲージ圧にて0.1〜10MPaであることが好ましい。
含浸時間は、0.5〜200時間以下であることが好ましい。0.5時間未満の場合、発泡剤の樹脂粒子への含浸量が低下するため、十分な発泡力が得られ難いことがある。200時間より長い場合、生産性が低下することがある。より好ましい含浸時間は、1〜100時間である。
(4) Expandable particles Expandable particles can be obtained, for example, by impregnating cyclic olefin resin particles with a foaming agent.
Examples of the impregnation method include a wet impregnation method in which particles are dispersed in an aqueous system and a foaming agent is press-fitted while stirring, or a resin particle is introduced into a sealable container, and the foaming agent is injected and impregnated substantially. Examples thereof include a dry impregnation method (gas phase impregnation method) that does not use water. In particular, a dry impregnation method capable of impregnation without using water is preferable. The impregnation pressure, impregnation time and impregnation temperature when impregnating the resin particles with the foaming agent are not particularly limited.
From the viewpoint of efficiently performing impregnation and obtaining foamed particles and a foamed molded article having a better appearance, the impregnation pressure is preferably 0.1 to 10 MPa in terms of gauge pressure.
The impregnation time is preferably 0.5 to 200 hours or less. When the time is less than 0.5 hours, the amount of the foaming agent impregnated into the resin particles is reduced, so that sufficient foaming power may not be obtained. When it is longer than 200 hours, productivity may be reduced. A more preferable impregnation time is 1 to 100 hours.

含浸温度は、0〜60℃であることが好ましい。0℃未満の場合、所望の時間内に十分な含浸量を確保できないため十分な発泡力が得られ難いことがある。60℃より高い場合、生産性が悪くなることがある。より好ましい含浸温度は、5〜50℃である。
樹脂粒子は、公知の方法により得ることができる。例えば、環状オレフィン系樹脂を、必要に応じて他の添加剤と共に、押出機中で溶融混練して押出すことでストランドを得、得られたストランドを、空気中でカット、水中でカット、加熱しつつカットすることで、造粒する方法が挙げられる。樹脂粒子は、市販の樹脂粒子を使用してもよい。樹脂粒子には、必要に応じて、樹脂以外に他の添加剤が含まれていてもよい。他の添加剤としては、可塑剤、難燃剤、難燃助剤、帯電防止剤、展着剤、気泡調整剤、充填剤、着色剤、耐候剤、老化防止剤、滑剤、防曇剤、香料等が挙げられる。
The impregnation temperature is preferably 0 to 60 ° C. When the temperature is lower than 0 ° C., a sufficient foaming power may not be obtained because a sufficient impregnation amount cannot be secured within a desired time. When it is higher than 60 ° C., productivity may be deteriorated. A more preferable impregnation temperature is 5 to 50 ° C.
The resin particles can be obtained by a known method. For example, a cyclic olefin-based resin is melt-kneaded in an extruder together with other additives as necessary to obtain a strand, and the resulting strand is cut in air, cut in water, and heated. However, the method of granulating by cutting is mentioned. Commercially available resin particles may be used as the resin particles. The resin particles may contain other additives in addition to the resin, if necessary. Other additives include plasticizers, flame retardants, flame retardant aids, antistatic agents, spreading agents, foam control agents, fillers, colorants, weathering agents, anti-aging agents, lubricants, antifogging agents, and fragrances. Etc.

(環状オレフィン系樹脂発泡粒子)
発泡粒子の形状は特に限定されない。例えば、球状、円柱状等が挙げられる。この内、できるだけ球状に近いことが好ましい。即ち、発泡粒子の短径と長径との比ができるだけ1に近いことが好ましい。
発泡粒子は、1〜20mmの平均粒子径を有していることが好ましい。
発泡粒子は、外観のより良好な発泡成形体を得る観点から、40%以下の連続気泡率を有することが好ましい。連続気泡率は20%以下であることがより好ましく、10%以下であることが更に好ましい。
(Cyclic olefin resin foam particles)
The shape of the expanded particles is not particularly limited. For example, spherical shape, cylindrical shape, etc. are mentioned. Of these, it is preferable that the shape be as spherical as possible. That is, it is preferable that the ratio of the minor axis to the major axis of the expanded particles is as close to 1 as possible.
The expanded particles preferably have an average particle diameter of 1 to 20 mm.
The foamed particles preferably have an open cell ratio of 40% or less from the viewpoint of obtaining a foamed molded article having a better appearance. The open cell ratio is more preferably 20% or less, and still more preferably 10% or less.

(発泡性発泡粒子)
発泡性発泡粒子は、例えば、環状オレフィン系の発泡粒子に発泡剤を含浸させ、発泡粒子気泡内の圧力を大気圧よりも高めることにより得ることができる。
発泡剤を含浸し、発泡粒子の気泡内の圧力を大気圧よりも高める方法としては、密閉可能な容器に発泡粒子を投入し、発泡剤を圧入して含浸させる乾式含浸法(気相含浸法)の使用が好ましい。発泡粒子に発泡剤を含浸させる際の含浸圧、含浸時間及び含浸温度は特に限定されない。ここで使用する発泡剤には、発泡粒子製造時の発泡剤:二酸化炭素、窒素、酸素、空気及びアルゴンを使用できる。内圧を付与するための圧力は、発泡粒子がつぶれてしまわない程度の圧力でかつ発泡力を付与できる範囲であることが望ましい。そのような圧力は、ゲージ圧にて0.01〜10MPaであることが好ましく、0.1〜5MPaであることがより好ましい。含浸時間は、0.5〜200時間以下であることが好ましい。0.5時間未満の場合、発泡剤の発泡粒子への含浸量が低下するため、十分な発泡力が得られ難いことがある。200時間より長い場合、生産性が低下することがある。より好ましい含浸時間は、1〜100時間である。含浸温度は、0〜60℃であることが好ましい。0℃未満の場合、所望の時間内に十分な含浸量を確保できないため十分な発泡力が得られ難いことがある。60℃より高い場合、生産性が悪くなることがある。より好ましい含浸温度は、5〜50℃である。
(Foaming foam particles)
The expandable foamed particles can be obtained, for example, by impregnating a cyclic olefin-based foamed particle with a foaming agent and increasing the pressure in the foamed particle bubbles above atmospheric pressure.
As a method of impregnating a foaming agent and increasing the pressure inside the foamed bubbles above the atmospheric pressure, a dry impregnation method (gas phase impregnation method) in which foam particles are introduced into a sealable container and the foaming agent is injected and impregnated. ) Is preferred. The impregnation pressure, impregnation time, and impregnation temperature when impregnating the foaming agent with the foamed particles are not particularly limited. As the foaming agent used here, a foaming agent at the time of producing foamed particles: carbon dioxide, nitrogen, oxygen, air and argon can be used. The pressure for applying the internal pressure is desirably a pressure that does not cause the foamed particles to be crushed and within a range in which the foaming force can be applied. Such pressure is preferably 0.01 to 10 MPa, more preferably 0.1 to 5 MPa in terms of gauge pressure. The impregnation time is preferably 0.5 to 200 hours or less. When the time is less than 0.5 hour, the amount of the foaming agent impregnated into the foamed particles is reduced, so that sufficient foaming power may not be obtained. When it is longer than 200 hours, productivity may be reduced. A more preferable impregnation time is 1 to 100 hours. The impregnation temperature is preferably 0 to 60 ° C. When the temperature is lower than 0 ° C., a sufficient foaming power may not be obtained because a sufficient impregnation amount cannot be secured within a desired time. When it is higher than 60 ° C., productivity may be deteriorated. A more preferable impregnation temperature is 5 to 50 ° C.

(発泡成形体)
発泡成形体は、上記発泡粒子又はn次発泡粒子を型内発泡成型して得られる。具体的には、発泡成形体は、例えば、発泡粒子又はn次発泡粒子に内圧を付与し、次いで発泡粒子又はn次発泡粒子を成形工程に付すことで得ることができる。
ここでの発泡粒子及びn次発泡粒子には、上記発泡性発泡粒子の欄に記載した方法と同様に、発泡力を付与しておくことが好ましい。
(Foamed molded product)
The foam molded body is obtained by in-mold foam molding of the foamed particles or n-order foamed particles. Specifically, the foamed molded product can be obtained, for example, by applying an internal pressure to the foamed particles or n-th order foamed particles, and then subjecting the foamed particles or n-th order foamed particles to a molding step.
It is preferable to give foaming power to the foamed particles and n-order foamed particles in the same manner as the method described in the column of expandable foamed particles.

内圧付与した発泡粒子を、発泡成形機の成形金型内に形成された成形空間に供給した後、加熱媒体を導入することで、所望の発泡成形体に型内成形できる。発泡成形機としては、ポリスチレン系樹脂製の発泡粒子から発泡成形体を製造する際に用いられるEPS成形機やポリプロピレン系樹脂製の発泡粒子から発泡成形体を製造する際に用いられる高圧仕様の成形機等を用いることができる。加熱媒体は、加熱時間が長くなると発泡粒子に収縮や融着不良が生じることがあるため、短時間に高エネルギーを与えうる加熱媒体が望まれるから、そのような加熱媒体としては水蒸気が好適である。
水蒸気の圧力は、ゲージ圧にて0.1〜0.8MPaであることが好ましい。また、加熱時間は、5〜600秒であることが好ましい。
発泡成形体は、種々の密度をとり得る。例えば、0.51〜0.0068g/cmの密度をとり得る。
発泡成形体は、特に限定されず、用途に応じて種々の形状をとり得る。例えば、発泡成形体は、建材(土木関係、住宅関係等)、自動車構造部材、風車等の構造部材、梱包材、複合部材としてのFRPの芯材等の用途に応じて種々の形状をとり得る。
After supplying the expanded particles to which the internal pressure is applied to the molding space formed in the molding die of the foam molding machine, a desired foamed molded product can be molded in-mold by introducing a heating medium. As the foam molding machine, an EPS molding machine used when producing a foam molded body from polystyrene resin foam particles or a high-pressure molding used when producing a foam molded body from polypropylene resin foam particles. A machine or the like can be used. Since the heating medium may cause shrinkage or poor fusion of the foamed particles as the heating time becomes long, a heating medium that can give high energy in a short time is desired. Therefore, water vapor is suitable as such a heating medium. is there.
The water vapor pressure is preferably 0.1 to 0.8 MPa in terms of gauge pressure. The heating time is preferably 5 to 600 seconds.
The foamed molded product can have various densities. For example, a density of 0.51 to 0.0068 g / cm 3 can be taken.
The foamed molded product is not particularly limited, and can take various shapes depending on applications. For example, the foamed molded body can take various shapes depending on applications such as building materials (civil engineering-related, housing-related, etc.), structural members such as automobile structural members, windmills, packaging materials, and FRP core materials as composite members. .

次に実施例を挙げて本発明を更に詳しく説明するが、本発明はこれらに限定されるものではない。
<発泡粒子の嵩密度>
発泡粒子約1000cmを、メスシリンダー内に1000cmの目盛りまで充填する。なお、メスシリンダーを水平方向から目視し、発泡粒子が1つでも1000cmの目盛りに達していれば、その時点で発泡粒子のメスシリンダー内への充填を終了する。次に、メスシリンダー内に充填した発泡粒子の質量を小数点以下2位の有効数字で秤量し、その質量をWgとする。そして、下記式により発泡粒子の嵩密度は求められる。
嵩密度(g/cm)=W/1000
また、嵩倍数は下記式により求められる。
嵩倍数=基材樹脂の密度(g/cm)/嵩密度(g/cm
ここで、基材樹脂の密度(g/cm)はISO1183に準じた方法で測定する。
EXAMPLES Next, although an Example is given and this invention is demonstrated in more detail, this invention is not limited to these.
<Bulk density of expanded particles>
Fill the graduated cylinder with approximately 1000 cm 3 of expanded particles to a scale of 1000 cm 3 . When the graduated cylinder is visually observed from the horizontal direction and at least one expanded particle reaches the scale of 1000 cm 3 , the filling of the expanded particle into the graduated cylinder is terminated at that point. Next, the mass of the expanded particles filled in the graduated cylinder is weighed with two significant figures after the decimal point, and the mass is defined as Wg. And the bulk density of foamed particle is calculated | required by a following formula.
Bulk density (g / cm 3 ) = W / 1000
The bulk multiple is obtained by the following formula.
Bulk multiple = density of base resin (g / cm 3 ) / bulk density (g / cm 3 )
Here, the density (g / cm 3 ) of the base resin is measured by a method according to ISO 1183.

<平均粒子径>
粒子約25gをロータップ型篩振とう機(飯田製作所社製)を用いて、篩目開き26.5mm、22.4mm、19.0mm、16.0mm、13.2mm、11.20mm、9.50mm、8.80mm、6.70mm、5.66mm、4.76mm、4.00mm、3.35mm、2.80mm、2.36mm、2.00mm、1.70mm、1.40mm、1.18mm、1.00mm、0.85mm、0.71mm、0.60mm、0.50mm、0.425mm、0.355mm、0.300mm、0.250mm、0.212mm、0.180mmのJIS標準篩(JIS Z8801)で10分間分級する。篩網上の試料質量を測定し、その結果から得られた累積質量分布曲線を元にして累積質量が50%となる粒子径(メディアン径)を平均粒子径とする。
<Average particle size>
About 25 g of the particles were sieved using a low-tap type sieve shaker (manufactured by Iida Seisakusho Co., Ltd.) 26.5 mm, 22.4 mm, 19.0 mm, 16.0 mm, 13.2 mm, 11.20 mm, 9.50 mm. 8.80 mm, 6.70 mm, 5.66 mm, 4.76 mm, 4.00 mm, 3.35 mm, 2.80 mm, 2.36 mm, 2.00 mm, 1.70 mm, 1.40 mm, 1.18 mm, 1 .00mm, 0.85mm, 0.71mm, 0.60mm, 0.50mm, 0.425mm, 0.355mm, 0.300mm, 0.250mm, 0.212mm, 0.180mm JIS standard sieve (JIS Z8801) Classify for 10 minutes. The sample mass on the sieve mesh is measured, and based on the cumulative mass distribution curve obtained from the result, the particle diameter (median diameter) at which the cumulative mass is 50% is defined as the average particle diameter.

<連続気泡率>
体積測定空気比較式比重計の試料カップを準備し、この試料カップの80%程度を満たす量の発泡粒子の全質量A(g)を測定する。発泡粒子全体の体積B(cm)を、空気比較式比重計を用いて1−1/2−1気圧法により測定する。空気比較式比重計は、標準球(大28.9cc 小8.5cc)にて補正を行う。なお、体積測定空気比較式比重計は、例えば、東京サイエンス社から商品名「空気比較式比重計1000型」にて市販されている。続いて、金網製の容器を準備する。この金網製の容器を水中に浸漬し、水中に浸漬した状態における金網製の容器の質量C(g)を測定する。次に、この金網製の容器内に前記発泡粒子を全量入れた上で、この金網製の容器を水中に浸漬し、容器を数回振って、容器と発泡粒子に付着した気泡を除去後、水中に浸漬した状態における金網製の容器とこの金網製容器に入れた発泡粒子の全量とを併せた質量D(g)を測定する。なお、水中の質量測定に用いる電子天びんは、例えば、大和製衡社から商品名「電子天びんHB3000」にて市販されている。そして、下記式により発泡粒子の見掛け体積E(cm)を算出する。この見掛け体積Eと前記発泡粒子全体の体積B(cm)に基づいて下記式により発泡粒子の連続気泡率を算出する。なお、水1gの体積を1cmとする。また、測定に用いる発泡粒子はすべてカッターにて二等分としたものとし、試験数は3とする。試料は、JIS K7100−1999 記号23/50、2級の環境下で16時間態調節した後、JIS K7100−1999 記号23/50、2級の環境下で測定を行う。
E=A+(C−D)
連続気泡率(%)=100×(E−B)/E
<Open cell ratio>
A sample cup of a volumetric air comparison hydrometer is prepared, and the total mass A (g) of the expanded particles in an amount satisfying about 80% of the sample cup is measured. The volume B (cm 3 ) of the entire expanded particles is measured by the 1-1 / 2-1 atmospheric pressure method using an air comparison type hydrometer. The air-comparing hydrometer is corrected with a standard sphere (large 28.9 cc, small 8.5 cc). In addition, the volumetric air comparison type hydrometer is commercially available, for example, from Tokyo Science Co., Ltd. under the trade name “Air Comparison Type Hydrometer 1000”. Subsequently, a wire mesh container is prepared. This metal mesh container is immersed in water, and the mass C (g) of the metal mesh container in the state immersed in water is measured. Next, after all the foamed particles are put in the wire mesh container, the wire mesh container is immersed in water, and the container is shaken several times to remove bubbles adhering to the container and the foam particles. The mass D (g) of the wire mesh container in the state immersed in water and the total amount of the expanded particles put in the wire mesh container is measured. An electronic balance used for mass measurement in water is commercially available, for example, under the trade name “Electronic Balance HB3000” from Daiwa Seisakusha. Then, the apparent volume E (cm 3 ) of the expanded particles is calculated by the following formula. Based on the apparent volume E and the volume B (cm 3 ) of the whole expanded particle, the open cell ratio of the expanded particle is calculated by the following formula. The volume of 1 g of water is 1 cm 3 . In addition, all the foamed particles used for the measurement are bisected by a cutter, and the number of tests is three. The sample is conditioned in a JIS K7100-1999 symbol 23/50, second grade environment for 16 hours, and then measured in a JIS K7100-1999 symbol 23/50, second grade environment.
E = A + (CD)
Open cell ratio (%) = 100 × (EB) / E

<発泡成形体の密度>
発泡成形体(成形後、40℃で20時間以上乾燥させたもの)から切り出した試験片(例75×300×30mm)の質量(a)と体積(b)をそれぞれ有効数字3桁以上になるように測定し、式(a)/(b)により発泡成形体の密度(g/cm)を求める。
また、倍数は下記式により求められる。
倍数=基材樹脂の密度(g/cm)/発泡成形体の密度(g/cm
ここで、基材樹脂の密度(g/cm)はISO1183に準じた方法で測定する。
<Density of foam molding>
The mass (a) and volume (b) of a test piece (example 75 × 300 × 30 mm) cut out from a foamed molded product (after being molded and dried at 40 ° C. for 20 hours or more) each have three or more significant figures. And the density (g / cm 3 ) of the foamed molded product is obtained from the formula (a) / (b).
The multiple is obtained by the following formula.
Multiple = density of base resin (g / cm 3 ) / density of foamed molded product (g / cm 3 )
Here, the density (g / cm 3 ) of the base resin is measured by a method according to ISO 1183.

<発泡粒子の製造例1>
ポリプラスチックス社製の環状ポリオレフィンの樹脂粒子(TOPAS 6013F−04:エチレン−ノルボルネン共重合体、平均粒子径3.0mm、密度1.02g/cm)をオートクレーブ内にいれ、炭酸ガスボンベからオートクレーブ内に炭酸ガスを導入し、ゲージ圧4.0MPaにて室温(約25℃)下で72時間保持した。オートクレーブの圧力を開放し、得られた発泡性粒子を取り出した後、高圧発泡槽に導入し、ゲージ圧0.55MPaの蒸気(水蒸気)にて20秒加熱することで発泡を行った。得られた一次発泡粒子(1回目の発泡で得られた発泡粒子)の嵩倍数は12倍(嵩密度0.085g/cm)であった。
<Production Example 1 of Expanded Particle>
Cyclic polyolefin resin particles (TOPAS 6013F-04: ethylene-norbornene copolymer, average particle size 3.0 mm, density 1.02 g / cm 3 ) manufactured by Polyplastics Co., Ltd. are placed in an autoclave, and the carbon dioxide gas cylinder is placed in the autoclave. Carbon dioxide gas was introduced into the flask and held at a gauge pressure of 4.0 MPa at room temperature (about 25 ° C.) for 72 hours. The pressure of the autoclave was released, and the resulting expandable particles were taken out, introduced into a high-pressure foaming tank, and foamed by heating for 20 seconds with steam (water vapor) having a gauge pressure of 0.55 MPa. The resulting primary foamed particles (foamed particles obtained by the first foaming) were 12 times in bulk (bulk density 0.085 g / cm 3 ).

<発泡粒子の製造例2>
ポリプラスチックス社製の環状ポリオレフィンの樹脂粒子(TOPAS 5013F−04:エチレン−ノルボルネン共重合体、平均粒子径3.0mm、密度1.02g/cm)をオートクレーブ内にいれ、炭酸ガスボンベからオートクレーブ内に炭酸ガスを導入し、ゲージ圧4.0MPaにて20℃下で72時間保持した。オートクレーブの圧力を開放し、得られた発泡性粒子を取り出した後、高圧発泡槽に導入し、ゲージ圧0.15MPaの蒸気(水蒸気)にて60秒加熱することで発泡を行った。得られた一次発泡粒子(1回目の発泡で得られた発泡粒子)の嵩倍数は4倍(嵩密度0.255g/cm)であった。
<Production Example 2 of Expanded Particle>
Cyclic polyolefin resin particles (TOPAS 5013F-04: ethylene-norbornene copolymer, average particle size 3.0 mm, density 1.02 g / cm 3 ) manufactured by Polyplastics Co., Ltd. are placed in an autoclave, and the carbon dioxide gas cylinder is placed in the autoclave. Carbon dioxide gas was introduced into the flask and held at 20 ° C. under a gauge pressure of 4.0 MPa for 72 hours. The pressure of the autoclave was released, and the resulting expandable particles were taken out, introduced into a high-pressure foaming tank, and foamed by heating for 60 seconds with steam (water vapor) having a gauge pressure of 0.15 MPa. The resulting primary foamed particles (foamed particles obtained by the first foaming) had a bulk multiple of 4 times (bulk density of 0.255 g / cm 3 ).

<発泡粒子の製造例3>
ポリプラスチックス社製の環状ポリオレフィンの樹脂粒子(TOPAS 5013F−04:エチレン−ノルボルネン共重合体、平均粒子径3.0mm、密度1.02g/cm)をオートクレーブ内にいれ、炭酸ガスボンベからオートクレーブ内に炭酸ガスを導入し、ゲージ圧4.0MPaにて20℃下で72時間保持した。オートクレーブの圧力を開放し、得られた発泡性粒子を取り出した後、高圧発泡槽に導入し、ゲージ圧0.35MPaの蒸気(水蒸気)にて60秒加熱することで発泡を行った。得られた一次発泡粒子(1回目の発泡で得られた発泡粒子)の嵩倍数は18倍(嵩密度0.0567g/cm)であった。
<Production Example 3 of Expanded Particle>
Cyclic polyolefin resin particles (TOPAS 5013F-04: ethylene-norbornene copolymer, average particle size 3.0 mm, density 1.02 g / cm 3 ) manufactured by Polyplastics Co., Ltd. are placed in an autoclave, and the carbon dioxide gas cylinder is placed in the autoclave. Carbon dioxide gas was introduced into the flask and held at 20 ° C. under a gauge pressure of 4.0 MPa for 72 hours. The pressure of the autoclave was released, and the resulting expandable particles were taken out, introduced into a high-pressure foaming tank, and foamed by heating for 60 seconds with steam (water vapor) having a gauge pressure of 0.35 MPa. The resulting primary foamed particles (foamed particles obtained by the first foaming) were 18 times in bulk (bulk density 0.0567 g / cm 3 ).

<発泡粒子の製造例4/実施例1〜3及び10に使用>
発泡粒子の製造例1にて得られた発泡粒子を再度オートクレーブ内にいれ、窒素ボンベからオートクレーブ内に窒素を導入し、ゲージ圧1.0MPaにて室温下で72時間保持した。オートクレーブの圧力を開放し発泡性発泡粒子を取り出した後、高圧発泡槽に導入し、ゲージ圧0.35MPaの蒸気にて60秒加熱することで再発泡を行った。得られた二次発泡粒子の嵩倍数は25倍(嵩密度0.0408g/cm)であった。また、発泡粒子の連続気泡率は装置測定下限以下(≦3%)であった。
<Production Example 4 of foamed particles / used in Examples 1 to 3 and 10>
The foamed particles obtained in Production Example 1 of foamed particles were again placed in the autoclave, nitrogen was introduced into the autoclave from the nitrogen cylinder, and held at room temperature for 72 hours at a gauge pressure of 1.0 MPa. After releasing the pressure of the autoclave and taking out the foamable foamed particles, the foamed foamed particles were introduced into a high-pressure foaming tank and re-foamed by heating with steam having a gauge pressure of 0.35 MPa for 60 seconds. The resulting secondary expanded particles had a bulk magnification of 25 times (bulk density 0.0408 g / cm 3 ). Further, the open cell ratio of the expanded particles was below the apparatus measurement lower limit (≦ 3%).

<発泡粒子の製造例5/実施例4〜6に使用>
発泡粒子の製造例2にて得られた発泡粒子を再度オートクレーブ内にいれ、窒素ボンベからオートクレーブ内に窒素を導入し、ゲージ圧1.0MPaにて室温下で24時間保持した。オートクレーブの圧力を開放し発泡性発泡粒子を取り出した後、高圧発泡槽に導入し、ゲージ圧0.40MPaの蒸気にて30秒加熱することで再発泡を行った。得られた二次発泡粒子の嵩倍数は9倍(嵩密度0.1133g/cm)であった。また、発泡粒子の連続気泡率は装置測定下限以下(≦3%)であった。
<Used in Production Example 5 / Examples 4 to 6 of Expanded Particles>
The expanded particles obtained in Production Example 2 of expanded particles were again placed in the autoclave, nitrogen was introduced into the autoclave from the nitrogen cylinder, and the mixture was held at room temperature at a gauge pressure of 1.0 MPa for 24 hours. After releasing the pressure of the autoclave and taking out the foamable foamed particles, the foamed foamed particles were introduced into a high-pressure foaming tank and re-foamed by heating with steam having a gauge pressure of 0.40 MPa for 30 seconds. The secondary expanded particles thus obtained had a bulk multiple of 9 times (bulk density 0.1133 g / cm 3 ). Further, the open cell ratio of the expanded particles was below the apparatus measurement lower limit (≦ 3%).

<発泡粒子の製造例6/実施例7〜9に使用>
発泡粒子の製造例3にて得られた発泡粒子を再度オートクレーブ内にいれ、窒素ボンベからオートクレーブ内に窒素を導入し、ゲージ圧1.0MPaにて室温下で24時間保持した。オートクレーブの圧力を開放し発泡性発泡粒子を取り出した後、高圧発泡槽に導入し、ゲージ圧0.35MPaの蒸気にて30秒加熱することで再発泡を行った。得られた二次発泡粒子の嵩倍数は39倍(嵩密度0.0262g/cm)であった。また、発泡粒子の連続気泡率は4%であった。
<Used for Production Example 6 / Examples 7 to 9 of Expanded Particle>
The expanded particles obtained in Production Example 3 of expanded particles were again placed in an autoclave, nitrogen was introduced into the autoclave from a nitrogen cylinder, and the resultant was kept at a gauge pressure of 1.0 MPa at room temperature for 24 hours. After releasing the pressure of the autoclave and taking out the foamable foamed particles, the foamed foamed particles were introduced into a high-pressure foaming tank and re-foamed by heating with steam having a gauge pressure of 0.35 MPa for 30 seconds. The resulting secondary expanded particles had a bulk multiple of 39 times (bulk density 0.0262 g / cm 3 ). The open cell ratio of the expanded particles was 4%.

<発泡粒子の製造例7/比較例1〜4に使用>
ポリプラスチックス社製の環状ポリオレフィンの樹脂粒子(TOPAS 6013F−04)をオートクレーブ内にいれ、炭酸ガスボンベからオートクレーブ内に炭酸ガスを導入し、ゲージ圧4.0MPaにて室温下で72時間保持した。オートクレーブの圧力を開放し、得られた発泡性粒子を取り出した後、高圧発泡槽に導入し、ゲージ圧0.55MPaの蒸気にて60秒加熱することで発泡を行った。得られた一次発泡粒子の嵩倍数は25倍(嵩密度0.0408g/cm)であった。また、発泡粒子の連続気泡率は43%であった。
<Used for Production Example 7 / Comparative Examples 1-4 for Expanded Particles>
Cyclic polyolefin resin particles (TOPAS 6013F-04) manufactured by Polyplastics Co., Ltd. were placed in an autoclave, carbon dioxide was introduced into the autoclave from a carbon dioxide gas cylinder, and held at room temperature at a gauge pressure of 4.0 MPa for 72 hours. The pressure of the autoclave was released, and the resulting expandable particles were taken out, introduced into a high-pressure foaming tank, and foamed by heating for 60 seconds with steam having a gauge pressure of 0.55 MPa. The resulting primary expanded particles had a bulk multiple of 25 times (bulk density 0.0408 g / cm 3 ). Further, the open cell ratio of the expanded particles was 43%.

<実施例1;発泡粒子の多段発泡性評価>
製造例4にて得られた発泡粒子を再度オートクレーブ内にいれ、窒素ボンベからオートクレーブ内に窒素を導入し、ゲージ圧1.0MPaにて室温下で72時間保持した。オートクレーブの圧力を開放し、得られた発泡性発泡粒子を取り出した後、高圧発泡槽に導入し、ゲージ圧0.35MPaの蒸気にて60秒加熱することで再発泡を行った。得られた三次発泡粒子の嵩倍数は50倍(嵩密度0.0204g/cm)であった。
<実施例2;発泡粒子の多段発泡性評価>
製造例4にて得られた発泡粒子を再度オートクレーブ内にいれ、窒素ボンベからオートクレーブ内に窒素を導入し、ゲージ圧1.0MPaにて室温下で72時間保持した。オートクレーブの圧力を開放し、得られた発泡性発泡粒子を取り出した後、高圧発泡槽に導入し、ゲージ圧0.35MPaの蒸気にて180秒加熱することで再発泡を行った。得られた三次発泡粒子の嵩倍数は63倍(嵩密度0.0162g/cm)であった。
<Example 1; Evaluation of multistage foamability of expanded particles>
The expanded particles obtained in Production Example 4 were again placed in the autoclave, nitrogen was introduced into the autoclave from the nitrogen bomb, and held at room temperature for 72 hours at a gauge pressure of 1.0 MPa. After releasing the pressure of the autoclave and taking out the expandable foam particles obtained, the foamed foam particles were introduced into a high-pressure foaming tank and re-foamed by heating with steam having a gauge pressure of 0.35 MPa for 60 seconds. The volume expansion factor of the obtained tertiary expanded particles was 50 times (bulk density 0.0204 g / cm 3 ).
<Example 2; Evaluation of multistage foamability of expanded particles>
The expanded particles obtained in Production Example 4 were again placed in the autoclave, nitrogen was introduced into the autoclave from the nitrogen bomb, and held at room temperature for 72 hours at a gauge pressure of 1.0 MPa. The pressure of the autoclave was released, and the obtained expandable foam particles were taken out, introduced into a high-pressure foam tank, and re-foamed by heating with steam having a gauge pressure of 0.35 MPa for 180 seconds. The bulk expansion factor of the obtained tertiary expanded particles was 63 times (bulk density 0.0162 g / cm 3 ).

<実施例3;発泡粒子の多段発泡性評価>
製造例4にて得られた発泡粒子を再度オートクレーブ内にいれ、窒素ボンベからオートクレーブ内に窒素を導入し、ゲージ圧1.0MPaにて室温下で72時間保持した。オートクレーブの圧力を開放し、得られた発泡性発泡粒子を取り出した後、高圧発泡槽に導入し、ゲージ圧0.35MPaの蒸気にて600秒加熱することで再発泡を行った。得られた三次発泡粒子の嵩倍数は72倍(嵩密度0.0142g/cm)であった。
<Example 3; Evaluation of multi-stage foamability of expanded particles>
The expanded particles obtained in Production Example 4 were again placed in the autoclave, nitrogen was introduced into the autoclave from the nitrogen bomb, and held at room temperature for 72 hours at a gauge pressure of 1.0 MPa. After releasing the pressure of the autoclave and taking out the foamable foam particles obtained, the foamed foam particles were introduced into a high-pressure foaming tank and re-foamed by heating with steam having a gauge pressure of 0.35 MPa for 600 seconds. The bulk expansion factor of the obtained tertiary expanded particles was 72 times (bulk density 0.0142 g / cm 3 ).

<実施例4;発泡粒子の多段発泡性評価>
製造例5にて得られた発泡粒子を再度オートクレーブ内にいれ、窒素ボンベからオートクレーブ内に窒素を導入し、ゲージ圧1.0MPaにて室温下で24時間保持した。オートクレーブの圧力を開放し、得られた発泡性発泡粒子を取り出した後、高圧発泡槽に導入し、ゲージ圧0.35MPaの蒸気にて60秒加熱することで再発泡を行った。得られた三次発泡粒子の嵩倍数は25倍(嵩密度0.0408g/cm)であった。
<Example 4; Evaluation of multistage foamability of expanded particles>
The expanded particles obtained in Production Example 5 were again placed in the autoclave, nitrogen was introduced into the autoclave from the nitrogen bomb, and held at a gauge pressure of 1.0 MPa at room temperature for 24 hours. After releasing the pressure of the autoclave and taking out the expandable foam particles obtained, the foamed foam particles were introduced into a high-pressure foaming tank and re-foamed by heating with steam having a gauge pressure of 0.35 MPa for 60 seconds. The volume expansion factor of the obtained tertiary expanded particles was 25 times (bulk density 0.0408 g / cm 3 ).

<実施例5;発泡粒子の多段発泡性評価>
製造例5にて得られた発泡粒子を再度オートクレーブ内にいれ、窒素ボンベからオートクレーブ内に窒素を導入し、ゲージ圧1.0MPaにて室温下で24時間保持した。オートクレーブの圧力を開放し、得られた発泡性発泡粒子を取り出した後、高圧発泡槽に導入し、ゲージ圧0.35MPaの蒸気にて120秒加熱することで再発泡を行った。得られた三次発泡粒子の嵩倍数は34倍(嵩密度0.03g/cm)であった。
<実施例6;発泡粒子の多段発泡性評価>
製造例5にて得られた発泡粒子を再度オートクレーブ内にいれ、窒素ボンベからオートクレーブ内に窒素を導入し、ゲージ圧1.0MPaにて室温下で24時間保持した。オートクレーブの圧力を開放し、得られた発泡性発泡粒子を取り出した後、高圧発泡槽に導入し、ゲージ圧0.35MPaの蒸気にて180秒加熱することで再発泡を行った。得られた三次発泡粒子の嵩倍数は70倍(嵩密度0.0146g/cm)であった。
<Example 5: Evaluation of multistage foamability of expanded particles>
The expanded particles obtained in Production Example 5 were again placed in the autoclave, nitrogen was introduced into the autoclave from the nitrogen bomb, and held at a gauge pressure of 1.0 MPa at room temperature for 24 hours. After releasing the pressure of the autoclave and taking out the foamable foam particles obtained, the foamed foam particles were introduced into a high-pressure foaming tank and re-foamed by heating with steam having a gauge pressure of 0.35 MPa for 120 seconds. The volume expansion factor of the obtained tertiary expanded particles was 34 times (bulk density 0.03 g / cm 3 ).
<Example 6: Evaluation of multi-stage foamability of expanded particles>
The expanded particles obtained in Production Example 5 were again placed in the autoclave, nitrogen was introduced into the autoclave from the nitrogen bomb, and held at a gauge pressure of 1.0 MPa at room temperature for 24 hours. The pressure of the autoclave was released, and the obtained expandable foam particles were taken out, introduced into a high-pressure foam tank, and re-foamed by heating with steam having a gauge pressure of 0.35 MPa for 180 seconds. The bulk expansion factor of the obtained tertiary expanded particles was 70 times (bulk density 0.0146 g / cm 3 ).

<実施例7;発泡粒子の多段発泡性評価>
製造例6にて得られた発泡粒子を再度オートクレーブ内にいれ、窒素ボンベからオートクレーブ内に窒素を導入し、ゲージ圧1.0MPaにて室温下で24時間保持した。オートクレーブの圧力を開放し、得られた発泡性発泡粒子を取り出した後、高圧発泡槽に導入し、ゲージ圧0.35MPaの蒸気にて30秒加熱することで再発泡を行った。得られた三次発泡粒子の嵩倍数は94倍(嵩密度0.0109g/cm)であった。
<実施例8;発泡粒子の多段発泡性評価>
製造例6にて得られた発泡粒子を再度オートクレーブ内にいれ、窒素ボンベからオートクレーブ内に窒素を導入し、ゲージ圧1.0MPaにて室温下で24時間保持した。オートクレーブの圧力を開放し、得られた発泡性発泡粒子を取り出した後、高圧発泡槽に導入し、ゲージ圧0.35MPaの蒸気にて60秒加熱することで再発泡を行った。得られた三次発泡粒子の嵩倍数は114倍(嵩密度0.0089g/cm)であった。
<Example 7: Evaluation of multistage foamability of expanded particles>
The expanded particles obtained in Production Example 6 were again placed in the autoclave, nitrogen was introduced into the autoclave from the nitrogen bomb, and held at a gauge pressure of 1.0 MPa at room temperature for 24 hours. After releasing the pressure of the autoclave and taking out the foamable foam particles obtained, the foamed foam particles were introduced into a high-pressure foaming tank and re-foamed by heating with steam having a gauge pressure of 0.35 MPa for 30 seconds. The volume expansion factor of the obtained tertiary expanded particles was 94 times (bulk density 0.0109 g / cm 3 ).
<Example 8: Evaluation of multistage foamability of foamed particles>
The expanded particles obtained in Production Example 6 were again placed in the autoclave, nitrogen was introduced into the autoclave from the nitrogen bomb, and held at a gauge pressure of 1.0 MPa at room temperature for 24 hours. After releasing the pressure of the autoclave and taking out the expandable foam particles obtained, the foamed foam particles were introduced into a high-pressure foaming tank and re-foamed by heating with steam having a gauge pressure of 0.35 MPa for 60 seconds. The bulk expansion factor of the obtained tertiary expanded particles was 114 times (bulk density 0.0089 g / cm 3 ).

<実施例9;発泡粒子の多段発泡性評価>
製造例6にて得られた発泡粒子を再度オートクレーブ内にいれ、窒素ボンベからオートクレーブ内に窒素を導入し、ゲージ圧1.0MPaにて室温下で24時間保持した。オートクレーブの圧力を開放し、得られた発泡性発泡粒子を取り出した後、高圧発泡槽に導入し、ゲージ圧0.35MPaの蒸気にて180秒加熱することで再発泡を行った。得られた三次発泡粒子の嵩倍数は93倍(嵩密度0.0110g/cm)であった。
<実施例10;発泡粒子の成形性評価>
製造例4にて得られた発泡粒子を再度オートクレーブ内にいれ、窒素ボンベからオートクレーブ内に窒素を導入し、ゲージ圧1.0MPaにて室温下で72時間保持した。オートクレーブの圧力を開放し、得られた発泡性発泡粒子を取り出した後、高圧成形機を用いて発泡成形を実施した。具体的には、縦400mm×横300mm×厚さ30mmの内寸の成形用金型内に発泡粒子を充填し、ゲージ圧0.35MPaの蒸気を240秒導入して加熱し、冷却することで発泡成形体を得た。得られた成形体を室温下で乾燥させたところ、倍数25倍相当の成形体(密度0.0408g/cm)が得られた。得られた成形体の外観は良好であった。
<Example 9: Evaluation of multistage foamability of expanded particles>
The expanded particles obtained in Production Example 6 were again placed in the autoclave, nitrogen was introduced into the autoclave from the nitrogen bomb, and held at a gauge pressure of 1.0 MPa at room temperature for 24 hours. The pressure of the autoclave was released, and the obtained expandable foam particles were taken out, introduced into a high-pressure foam tank, and re-foamed by heating with steam having a gauge pressure of 0.35 MPa for 180 seconds. The volume expansion factor of the obtained tertiary expanded particles was 93 times (bulk density 0.0110 g / cm 3 ).
<Example 10: Evaluation of moldability of expanded particles>
The expanded particles obtained in Production Example 4 were again placed in the autoclave, nitrogen was introduced into the autoclave from the nitrogen bomb, and held at room temperature for 72 hours at a gauge pressure of 1.0 MPa. After releasing the pressure of the autoclave and taking out the expandable foamed particles, foam molding was performed using a high-pressure molding machine. Specifically, foaming particles are filled into a molding die having an internal dimension of 400 mm in length, 300 mm in width, and 30 mm in thickness, steam with a gauge pressure of 0.35 MPa is introduced for 240 seconds, heated, and cooled. A foamed molded product was obtained. When the obtained molded body was dried at room temperature, a molded body (density 0.0408 g / cm 3 ) corresponding to a multiple of 25 times was obtained. The appearance of the obtained molded body was good.

<比較例1;発泡粒子の多段発泡性評価>
製造例7にて得られた発泡粒子を再度オートクレーブ内にいれ、窒素ボンベからオートクレーブ内に窒素を導入し、ゲージ圧1.0MPaにて室温下で72時間保持した。オートクレーブの圧力を開放し、得られた発泡性発泡粒子を取り出した後、高圧発泡槽に導入し、ゲージ圧0.35MPaの蒸気にて15秒加熱することで再発泡を行った。得られた二次発泡粒子の嵩倍数は33倍(嵩密度0.0309g/cm)であった。
<比較例2;発泡粒子の多段発泡性評価>
製造例7にて得られた発泡粒子を再度オートクレーブ内にいれ、窒素ボンベからオートクレーブ内に窒素を導入し、ゲージ圧1.0MPaにて室温下で72時間保持した。オートクレーブの圧力を開放し、得られた発泡性発泡粒子を取り出した後、高圧発泡槽に導入し、ゲージ圧0.35MPaの蒸気にて60秒加熱することで再発泡を行った。得られた二次発泡粒子の嵩倍数は40倍(嵩密度0.0255g/cm)であった。
<Comparative Example 1; Evaluation of multi-stage foamability of foamed particles>
The expanded particles obtained in Production Example 7 were again placed in the autoclave, nitrogen was introduced into the autoclave from the nitrogen bomb, and held at room temperature for 72 hours at a gauge pressure of 1.0 MPa. After releasing the pressure of the autoclave and taking out the foamable foam particles obtained, the foamed foam particles were introduced into a high-pressure foaming tank and re-foamed by heating with steam having a gauge pressure of 0.35 MPa for 15 seconds. The resulting secondary expanded particles had a bulk magnification of 33 times (bulk density: 0.0309 g / cm 3 ).
<Comparative Example 2; Evaluation of multi-stage foamability of expanded particles>
The expanded particles obtained in Production Example 7 were again placed in the autoclave, nitrogen was introduced into the autoclave from the nitrogen bomb, and held at room temperature for 72 hours at a gauge pressure of 1.0 MPa. After releasing the pressure of the autoclave and taking out the expandable foam particles obtained, the foamed foam particles were introduced into a high-pressure foaming tank and re-foamed by heating with steam having a gauge pressure of 0.35 MPa for 60 seconds. The resulting secondary expanded particles had a bulk magnification of 40 times (bulk density: 0.0255 g / cm 3 ).

<比較例3;発泡粒子の多段発泡性評価>
製造例7にて得られた発泡粒子を再度オートクレーブ内にいれ、窒素ボンベからオートクレーブ内に窒素を導入し、ゲージ圧1.0MPaにて室温下で72時間保持した。オートクレーブの圧力を開放し、得られた発泡性発泡粒子を取り出した後、高圧発泡槽に導入し、ゲージ圧0.35MPaの蒸気にて180秒加熱することで再発泡を行った。得られた二次発泡粒子の嵩倍数は37倍(嵩密度0.0276g/cm)であった。
<比較例4;発泡粒子の成形性評価>
製造例7にて得られた発泡粒子を再度オートクレーブ内にいれ、窒素ボンベからオートクレーブ内に窒素を導入し、ゲージ圧1.0MPaにて室温下で72時間保持した。オートクレーブの圧力を開放し、得られた発泡性発泡粒子を取り出した後、高圧成形機を用いて発泡成形を実施した。具体的には、縦400mm×横300mm×厚さ30mmの内寸の成形用金型内に発泡粒子を充填し、ゲージ圧0.35MPaの蒸気を180秒導入して加熱し、冷却することで発泡成形体を得た。得られた成形体は二次発泡力不足によるボイドが見られた。なお、得られた成形体は、倍数25倍相当(密度0.0408g/cm)であった。
実施例1〜9及び比較例1〜3の結果を表1に、実施例10及び比較例4の結果を表2に示す。
<Comparative Example 3; Evaluation of multi-stage foamability of expanded particles>
The expanded particles obtained in Production Example 7 were again placed in the autoclave, nitrogen was introduced into the autoclave from the nitrogen bomb, and held at room temperature for 72 hours at a gauge pressure of 1.0 MPa. The pressure of the autoclave was released, and the obtained expandable foam particles were taken out, introduced into a high-pressure foam tank, and re-foamed by heating with steam having a gauge pressure of 0.35 MPa for 180 seconds. The resulting secondary expanded particles had a bulk magnification of 37 times (bulk density 0.0276 g / cm 3 ).
<Comparative Example 4: Moldability evaluation of expanded particles>
The expanded particles obtained in Production Example 7 were again placed in the autoclave, nitrogen was introduced into the autoclave from the nitrogen bomb, and held at room temperature for 72 hours at a gauge pressure of 1.0 MPa. After releasing the pressure of the autoclave and taking out the expandable foamed particles, foam molding was performed using a high-pressure molding machine. Specifically, foaming particles are filled into a molding die having an internal dimension of 400 mm long × 300 mm wide × 30 mm thick, steam with a gauge pressure of 0.35 MPa is introduced for 180 seconds, heated, and cooled. A foamed molded product was obtained. In the obtained molded product, voids due to insufficient secondary foaming power were observed. In addition, the obtained molded object was equivalent to 25 times (density 0.0408 g / cm < 3 >).
The results of Examples 1 to 9 and Comparative Examples 1 to 3 are shown in Table 1, and the results of Example 10 and Comparative Example 4 are shown in Table 2.

Figure 0006436583
Figure 0006436583

発泡性は、発泡率(実施例:3回目の嵩倍数÷2回目の嵩倍数、比較例:2回目の嵩倍数÷1回目の嵩倍数)が
・1.7以上である場合を○
・1.7未満である場合を×
とする。
The foaming property is obtained when the foaming ratio (Example: 3rd bulk multiple / second bulk multiple, comparative example: second bulk multiple / first bulk multiple) is 1.7 or more.
・ If less than 1.7 ×
And

Figure 0006436583
Figure 0006436583

外観は、
・良好な場合を○
・ボイドがある場合を×
とする。
Appearance is
・ ○
・ If there is a void ×
And

製造例4では、嵩倍数12倍(嵩密度;0.085g/cm)の発泡粒子に、窒素で内圧付与し、再度発泡を行うことで嵩倍数25倍(嵩密度;0.0408g/cm)発泡粒子を作製している。一方、製造例7では、樹脂粒子から直接嵩倍数25倍(嵩密度;0.0408g/cm)の発泡粒子を作製している。表1から、1回目の発泡を抑制した実施例1〜9は、2.0倍以上の再発泡性を示したのに対し、抑制しなかった比較例1〜3は、最大再発泡性が1.6倍であった。表2から、1回目の発泡を抑制した方が、より良好な成形体を作製できることがわかる。 In Production Example 4, by applying an internal pressure to the foamed particles having a bulk multiple of 12 times (bulk density; 0.085 g / cm 3 ) with nitrogen and foaming again, the bulk multiple is 25 times (bulk density; 0.0408 g / cm). 3 ) Foamed particles are produced. On the other hand, in Production Example 7, foamed particles having a bulk multiple of 25 times (bulk density: 0.0408 g / cm 3 ) are produced directly from the resin particles. From Table 1, Examples 1-9 which suppressed the foaming of the 1st time showed re-foaming property of 2.0 times or more, whereas Comparative Examples 1-3 which did not suppress have the maximum re-foaming property. It was 1.6 times. From Table 2, it can be seen that a better molded body can be produced by suppressing the first foaming.

Claims (6)

基材樹脂としての環状オレフィン系樹脂と、無機系物理発泡剤とを含む発泡性粒子を発泡させて型内成形用の発泡粒子を製造する方法であり、前記発泡は、2回以上のn回行われ、1回目の発泡で得られた発泡粒子が0.51〜0.051g/cm 3 の嵩密度T1を示し、n回目の発泡で得られた発泡粒子が0.051〜0.0068g/cm 3 の嵩密度T2を示し、前記嵩密度T2が、前記嵩密度T1の0.6倍以下である条件で行われることを特徴とする環状オレフィン系樹脂発泡粒子の製造方法。 This is a method of producing foamed particles for in-mold molding by foaming expandable particles containing a cyclic olefin resin as a base resin and an inorganic physical foaming agent, and the foaming is performed twice or more times. The foamed particles obtained by the first foaming showed a bulk density T1 of 0.51 to 0.051 g / cm 3 , and the foamed particles obtained by the nth foaming were 0.051 to 0.0068 g / A method for producing foamed cyclic olefin resin particles , wherein the bulk density T2 is cm 3, and the bulk density T2 is 0.6 times or less of the bulk density T1 . 前記無機系物理発泡剤が、二酸化炭素、窒素、酸素、空気及びアルゴンから選択される請求項に記載の環状オレフィン系樹脂発泡粒子の製造方法。 The method for producing foamed cyclic olefin resin particles according to claim 1 , wherein the inorganic physical foaming agent is selected from carbon dioxide, nitrogen, oxygen, air and argon. 前記環状オレフィン系樹脂が、鎖状オレフィン成分と環状オレフィン成分とから構成される共重合体から選択される請求項1又は2に記載の環状オレフィン系樹脂発泡粒子の製造方法。 The manufacturing method of the cyclic olefin resin expanded particle of Claim 1 or 2 with which the said cyclic olefin resin is selected from the copolymer comprised from a chain olefin component and a cyclic olefin component. 前記鎖状オレフィン成分が炭素数2〜6のエチレン系炭化水素に由来する成分であり、前記環状オレフィン成分が炭素数3〜10の単環又は多環の炭化水素に由来する成分である請求項1〜のいずれか1つに記載の環状オレフィン系樹脂発泡粒子の製造方法。 The chain olefin component is a component derived from an ethylene hydrocarbon having 2 to 6 carbon atoms, and the cyclic olefin component is a component derived from a monocyclic or polycyclic hydrocarbon having 3 to 10 carbon atoms. producing a cycloolefin resin foamed particles according to any one of 1 to 3. 前記環状オレフィン系樹脂発泡粒子が、40%以下の連続気泡率を有する請求項1〜4のいずれか1つに記載の環状オレフィン系樹脂発泡粒子の製造方法The method for producing foamed cyclic olefin resin particles according to any one of claims 1 to 4, wherein the foamed cyclic olefin resin particles have an open cell ratio of 40% or less. 請求項1〜5のいずれか1つの方法により環状オレフィン系樹脂発泡粒子を得、前記環状オレフィン系樹脂発泡粒子を型内発泡成型して発泡成形体を得る発泡成形体の製造方法Claim to obtain a cycloolefin resin foamed particles by the method of any one of claim 1 to 5, the manufacturing method of the foamed molded to obtain the cyclic olefin-based resin foamed particles were mold foam molding foamed moldings.
JP2016054035A 2015-03-23 2016-03-17 Method for producing cyclic olefin-based resin expanded particles and method for producing expanded molded body Active JP6436583B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015059992 2015-03-23
JP2015059992 2015-03-23

Publications (2)

Publication Number Publication Date
JP2016180098A JP2016180098A (en) 2016-10-13
JP6436583B2 true JP6436583B2 (en) 2018-12-12

Family

ID=57131246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016054035A Active JP6436583B2 (en) 2015-03-23 2016-03-17 Method for producing cyclic olefin-based resin expanded particles and method for producing expanded molded body

Country Status (1)

Country Link
JP (1) JP6436583B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2904842B2 (en) * 1989-02-20 1999-06-14 三井化学株式会社 Foamable polymer composition and foam
JP3207219B2 (en) * 1991-06-20 2001-09-10 旭化成株式会社 Low-expanded particles of polyolefin resin and method for producing the same
JP3165503B2 (en) * 1992-03-30 2001-05-14 出光興産株式会社 Foamable resin composition and foam
JP3403436B2 (en) * 1992-11-12 2003-05-06 三井化学株式会社 Expandable polymer particles and foams
JP3526660B2 (en) * 1995-06-07 2004-05-17 株式会社ジェイエスピー In-mold foaming particles and in-mold foam molding
JPH0938967A (en) * 1995-07-31 1997-02-10 Mitsui Petrochem Ind Ltd Cyclic olefin based resin foamable pellet, preparation of said foamable pellet, and preparation of cyclic olefin basedresin foamable body
DE19619813A1 (en) * 1995-10-30 1997-11-20 Hoechst Ag Polymer foams
JPH10176077A (en) * 1996-12-19 1998-06-30 Kanegafuchi Chem Ind Co Ltd Polyolefin-based resin preexpanded particle and its production
JP4014262B2 (en) * 1997-09-29 2007-11-28 三井化学株式会社 Foam and its use
JP5308184B2 (en) * 2009-02-19 2013-10-09 Dmノバフォーム株式会社 Expandable resin particles

Also Published As

Publication number Publication date
JP2016180098A (en) 2016-10-13

Similar Documents

Publication Publication Date Title
JP7326023B2 (en) Thermoplastic elastomer foamed particles and molded products thereof
EP3124521B1 (en) High-density polyethylene mixed resin particles, composite resin particles, foamed particles and foamed molded body
EP3339358B1 (en) Polypropylene resin foamed particles, method for producing polypropylene resin foamed particles and polypropylene resin in-mold foam-molded article
JP2016188321A (en) Foamed particle and foamed molding
JP3207219B2 (en) Low-expanded particles of polyolefin resin and method for producing the same
JPWO2009041361A1 (en) Polypropylene resin composition for foaming and method for producing injection foam molding using the same
BR112020010372A2 (en) particle foams for aircraft interior applications
Guo et al. Fabrication of high temperature polyphenylsulfone nanofoams using high pressure liquid carbon dioxide
JP6436583B2 (en) Method for producing cyclic olefin-based resin expanded particles and method for producing expanded molded body
EP3235860A1 (en) Polypropylene resin foamed particles
JP6529458B2 (en) Cyclic olefin-based resin foam particles, method for producing the same, and foam molded article
JPWO2016147919A1 (en) Polypropylene-based resin expanded particles and method for producing the same
EP3381976B1 (en) Method for producing polypropylene-based resin foamed particles, polypropylene-based resin foamed particles, and in-mold foam molded article
JP2014077123A (en) Styrene-modified thermoplastic polyester resin particles and method for manufacturing the same; expandable styrene-modified thermoplastic polyester resin particles; styrene-modified thermoplastic polyester resin prefoamed particles; and styrene-modified thermoplastic polyester resin foam molding
EP3012287B1 (en) Polypropylene resin foamed particles having excellent flame resistance and conductivity and polypropylene resin-type in-mold foam molded body
JP3560238B2 (en) Method for producing expanded polypropylene resin particles, expanded polypropylene resin particles, and expanded molded article in polypropylene resin mold
JP4831647B2 (en) Polypropylene resin foam particles
JP6392657B2 (en) Foamed particles and foamed molded body
JP2001018943A (en) Container and its manufacture
JP4128850B2 (en) Method for producing in-mold foam molded product of polypropylene resin expanded particles
JP2005015592A (en) Manufacturing process of in-mold foamed molded article
JP7311672B1 (en) Method for producing expanded beads and expanded beads
JP7191495B2 (en) Expandable polyolefin composition and method
WO2020261694A1 (en) Modified expandable particles and molded object obtained from expandable particles
JP2023118261A (en) Polypropylene-based resin composition and injection foam molded body thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181112

R150 Certificate of patent or registration of utility model

Ref document number: 6436583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150