JP6435385B2 - Substrate processing chemical generation method, substrate processing chemical generation unit, substrate processing method, and substrate processing system - Google Patents

Substrate processing chemical generation method, substrate processing chemical generation unit, substrate processing method, and substrate processing system Download PDF

Info

Publication number
JP6435385B2
JP6435385B2 JP2017176835A JP2017176835A JP6435385B2 JP 6435385 B2 JP6435385 B2 JP 6435385B2 JP 2017176835 A JP2017176835 A JP 2017176835A JP 2017176835 A JP2017176835 A JP 2017176835A JP 6435385 B2 JP6435385 B2 JP 6435385B2
Authority
JP
Japan
Prior art keywords
tmah
chemical solution
gas
oxygen
substrate processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017176835A
Other languages
Japanese (ja)
Other versions
JP2018019089A (en
Inventor
淳靖 三浦
淳靖 三浦
秀和 石川
秀和 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Original Assignee
Screen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd filed Critical Screen Holdings Co Ltd
Publication of JP2018019089A publication Critical patent/JP2018019089A/en
Application granted granted Critical
Publication of JP6435385B2 publication Critical patent/JP6435385B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Weting (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

本発明は、基板に供給される薬液を生成する基板処理用の薬液生成方法および薬液生成ユニットに関する。さらに、本発明は、基板処理用の薬液生成方法で生成された薬液で基板を処理する基板処理方法と、基板処理用の薬液生成ユニットを備える基板処理システムに関する。処理対象となる基板には、たとえば、半導体ウエハ、液晶表示装置用基板、プラズマディスプレイ用基板、FED(Field Emission Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板などが含まれる。   The present invention relates to a substrate processing chemical generation method and a chemical generation unit for generating a chemical supplied to a substrate. Furthermore, the present invention relates to a substrate processing method for processing a substrate with a chemical solution generated by a chemical processing method for substrate processing, and a substrate processing system including a chemical processing unit for substrate processing. Examples of substrates to be processed include semiconductor wafers, liquid crystal display substrates, plasma display substrates, FED (Field Emission Display) substrates, optical disk substrates, magnetic disk substrates, magneto-optical disk substrates, and photomasks. Substrate, ceramic substrate, solar cell substrate and the like.

半導体装置や液晶表示装置などの製造工程では、半導体ウエハや液晶表示装置用ガラス基板などの基板を処理する基板処理装置が用いられる。特許文献1に記載の枚葉式の基板処理装置は、基板に供給される薬液中の溶存酸素量を低減する脱気ユニットと、基板に供給される薬液を貯留する薬液タンク内に窒素ガスを供給する不活性ガス供給路とを備えている。   In the manufacturing process of a semiconductor device or a liquid crystal display device, a substrate processing apparatus for processing a substrate such as a semiconductor wafer or a glass substrate for a liquid crystal display device is used. The single-wafer type substrate processing apparatus described in Patent Document 1 includes a degassing unit that reduces the amount of dissolved oxygen in a chemical solution supplied to a substrate, and nitrogen gas in a chemical solution tank that stores the chemical solution supplied to the substrate. And an inert gas supply path to be supplied.

特許第4723268号公報Japanese Patent No. 4723268

特許文献1の基板処理装置は、薬液中の酸素によって基板が酸化されることを防止するために、脱気によって薬液中の溶存酸素量を低減している。さらに、この基板処理装置は、薬液タンク内で酸素ガスが薬液に溶け込むことを防止するために、薬液タンク内に窒素ガスを供給している。しかしながら、本願発明者らの研究によると、薬液の処理能力は、薬液タンク内への窒素ガスの供給によって低下する場合があることが分かった。   In the substrate processing apparatus of Patent Document 1, the amount of dissolved oxygen in the chemical solution is reduced by deaeration in order to prevent the substrate from being oxidized by oxygen in the chemical solution. Further, this substrate processing apparatus supplies nitrogen gas into the chemical tank in order to prevent oxygen gas from being dissolved in the chemical liquid in the chemical tank. However, according to the study by the inventors of the present application, it has been found that the chemical treatment capacity may be reduced by the supply of nitrogen gas into the chemical tank.

そこで、本発明の目的は、安定した処理能力を有する薬液を生成できる基板処理用の薬液生成方法および薬液生成ユニットを提供することである。さらに、本発明の他の目的は、基板間での処理のばらつきを抑えることができる基板処理方法および基板処理システムを提供することである。   Accordingly, an object of the present invention is to provide a chemical solution generation method and a chemical solution generation unit for substrate processing that can generate a chemical solution having a stable processing capability. Furthermore, another object of the present invention is to provide a substrate processing method and a substrate processing system that can suppress variations in processing between substrates.

前記目的を達成するための請求項1に記載の発明は、TMAH(水酸化テトラメチルアンモニウム)を含むTMAH含有薬液に、酸素ガスを含む酸素含有ガスを供給することにより、前記TMAH含有薬液に前記酸素含有ガスを溶解させるガス溶解工程と、前記酸素含有ガスを溶解させた前記TMAH含有薬液中の溶存酸素濃度を変更することにより、基板に形成されたポリシリコン膜を前記TMAH含有薬液によりエッチングする処理能力であるエッチングレートが前記TMAH含有薬液中の溶存酸素濃度の上昇に伴って上昇し、前記エッチングレートが前記TMAH含有薬液中の溶存酸素濃度の低下に伴って低下するように、前記エッチングレートを調整する調整工程とを含む、基板処理用の薬液生成方法である。 In order to achieve the above object, the invention according to claim 1 is characterized in that an oxygen-containing gas containing oxygen gas is supplied to a TMAH-containing chemical solution containing TMAH (tetramethylammonium hydroxide), whereby the TMAH-containing chemical solution is Etching the polysilicon film formed on the substrate with the TMAH-containing chemical solution by changing the gas dissolving step for dissolving the oxygen-containing gas and the dissolved oxygen concentration in the TMAH-containing chemical solution in which the oxygen-containing gas is dissolved The etching rate is increased so that the etching rate, which is a processing capability, increases as the dissolved oxygen concentration in the TMAH-containing chemical solution increases, and the etching rate decreases as the dissolved oxygen concentration in the TMAH-containing chemical solution decreases. The chemical | medical solution production | generation method for board | substrate processing including the adjustment process which adjusts.

この方法によれば、酸素ガスを含む酸素含有ガスが、TMAHを含むTMAH含有薬液に供給される。これにより、基板に供給される薬液が生成される。本願発明者らの研究によると、窒素ガスを含む窒素含有ガスをTMAH含有薬液に供給すると、TMAH含有薬液の処理能力(たとえば、単位時間当たりのエッチング量)が低下していくことが分かった。その一方で、酸素含有ガスをTMAH含有薬液に供給すると、TMAH含有薬液の処理能力が安定することが分かった。したがって、TMAH含有薬液に酸素含有ガスを溶解させることにより、処理能力の安定した基板処理用の薬液を生成できる。さらに、本願発明者らの研究によると、処理能力の低下したTMAH含有薬液に酸素含有ガスを供給すると、TMAH含有薬液の処理能力が高まることが分かった。したがって、TMAH含有薬液に酸素含有ガスを溶解させることにより、TMAH含有薬液の処理能力を回復させることができる。   According to this method, the oxygen-containing gas containing oxygen gas is supplied to the TMAH-containing chemical solution containing TMAH. Thereby, the chemical | medical solution supplied to a board | substrate is produced | generated. According to the study by the present inventors, it has been found that when a nitrogen-containing gas containing nitrogen gas is supplied to the TMAH-containing chemical solution, the processing capability of the TMAH-containing chemical solution (for example, the etching amount per unit time) decreases. On the other hand, it was found that when the oxygen-containing gas was supplied to the TMAH-containing chemical solution, the processing capability of the TMAH-containing chemical solution was stabilized. Therefore, by dissolving the oxygen-containing gas in the TMAH-containing chemical solution, it is possible to generate a chemical solution for substrate processing with stable processing capability. Furthermore, according to the study by the present inventors, it has been found that when the oxygen-containing gas is supplied to the TMAH-containing chemical solution having a reduced processing capacity, the processing capability of the TMAH-containing chemical solution is increased. Therefore, by dissolving the oxygen-containing gas in the TMAH-containing chemical solution, the processing ability of the TMAH-containing chemical solution can be recovered.

請求項2に記載の発明は、前記ガス溶解工程は、前記TMAH含有薬液を貯留するタンク内で前記TMAH含有薬液に前記酸素含有ガスを溶解させる工程を含む、請求項1に記載の基板処理用の薬液生成方法である。   The invention according to claim 2 is the substrate processing according to claim 1, wherein the gas dissolving step includes a step of dissolving the oxygen-containing gas in the TMAH-containing chemical solution in a tank storing the TMAH-containing chemical solution. This is a method for producing a chemical solution.

請求項3に記載の発明は、前記ガス溶解工程は、前記TMAH含有薬液を貯留するタンク内の前記TMAH含有薬液を循環させる循環経路内で前記TMAH含有薬液に前記酸素含有ガスを溶解させる工程を含む、請求項1または2に記載の基板処理用の薬液生成方法である。   The invention according to claim 3 is a step of dissolving the oxygen-containing gas in the TMAH-containing chemical solution in a circulation path for circulating the TMAH-containing chemical solution in a tank storing the TMAH-containing chemical solution. It is a chemical | medical solution production | generation method for substrate processing of Claim 1 or 2 containing.

請求項4に記載の発明は、前記調整工程は、前記TMAH含有薬液中の溶存酸素濃度を測定する測定工程と、前記測定工程で測定された溶存酸素濃度が所定の濃度よりも高い場合に、前記TMAH含有薬液に、窒素ガスを含む窒素含有ガスを供給することにより、前記TMAH含有薬液に前記窒素含有ガスを溶解させる窒素溶解工程と、前記測定工程で測定された溶存酸素濃度が前記所定の濃度よりも低い場合に、前記TMAH含有薬液に前記酸素含有ガスを供給することにより、前記TMAH含有薬液に前記酸素含有ガスを溶解させる酸素溶解工程とを含む、請求項1〜3のいずれか一項に記載の基板処理用の薬液生成方法である。   Invention of Claim 4 WHEREIN: The said adjustment process is a measurement process which measures the dissolved oxygen concentration in the said TMAH containing chemical | medical solution, and when the dissolved oxygen concentration measured by the said measurement process is higher than predetermined | prescribed density | concentration, A nitrogen-dissolving step of dissolving the nitrogen-containing gas in the TMAH-containing chemical solution by supplying a nitrogen-containing gas containing nitrogen gas to the TMAH-containing chemical solution, and the dissolved oxygen concentration measured in the measuring step is the predetermined value An oxygen dissolving step of dissolving the oxygen-containing gas in the TMAH-containing chemical solution by supplying the oxygen-containing gas to the TMAH-containing chemical solution when the concentration is lower than the concentration. The method for producing a chemical for substrate processing according to the item.

この方法によれば、TMAH含有薬液に供給されるガスが、TMAH含有薬液中の溶存酸素濃度に応じて切り替えられる。すなわち、TMAH含有薬液中の溶存酸素濃度がフィードバックされ、酸素含有ガスおよび窒素含有ガスの一方が、TMAH含有薬液に供給される。これにより、TMAH含有薬液中の溶存酸素濃度のばらつきが抑えられる。したがって、溶存酸素濃度が均一な基板処理用の薬液が生成される。   According to this method, the gas supplied to the TMAH-containing chemical solution is switched according to the dissolved oxygen concentration in the TMAH-containing chemical solution. That is, the dissolved oxygen concentration in the TMAH-containing chemical solution is fed back, and one of the oxygen-containing gas and the nitrogen-containing gas is supplied to the TMAH-containing chemical solution. Thereby, the dispersion | variation in the dissolved oxygen concentration in a TMAH containing chemical | medical solution is suppressed. Therefore, a chemical for substrate processing with a uniform dissolved oxygen concentration is generated.

請求項5に記載の発明は、前記測定工程は、前記TMAH含有薬液を貯留するタンク内の前記TMAH含有薬液を循環させる循環経路を流れる前記TMAH含有薬液中の溶存酸素濃度を測定する工程を含む、請求項4に記載の基板処理用の薬液生成方法である。   The invention according to claim 5 includes the step of measuring the dissolved oxygen concentration in the TMAH-containing chemical solution flowing through a circulation path for circulating the TMAH-containing chemical solution in a tank storing the TMAH-containing chemical solution. The method for producing a chemical for substrate processing according to claim 4.

請求項6に記載の発明は、請求項1〜5のいずれか一項に記載の基板処理用の薬液生成方法により生成された前記TMAH含有薬液を、ポリシリコン膜が形成された基板に供給し、前記基板の前記ポリシリコン膜をエッチングするTMAH供給工程を含む、基板処理方法である。この構成によれば、請求項1の発明に関して述べた効果と同様な効果を奏することができる。さらに、溶存酸素濃度が調整されたTMAH含有薬液が、基板に供給される。そのため、基板間での処理のばらつきを抑えることができる。   The invention according to claim 6 supplies the TMAH-containing chemical solution generated by the chemical processing method for substrate processing according to any one of claims 1 to 5 to the substrate on which the polysilicon film is formed. The substrate processing method includes a TMAH supply step of etching the polysilicon film of the substrate. According to this configuration, it is possible to achieve an effect similar to the effect described with respect to the invention of claim 1. Further, a TMAH-containing chemical solution with the dissolved oxygen concentration adjusted is supplied to the substrate. For this reason, variations in processing between substrates can be suppressed.

請求項7に記載の発明は、TMAH(水酸化テトラメチルアンモニウム)を含むTMAH含有薬液に、酸素ガスを含む酸素含有ガスを供給することにより、前記TMAH含有薬液に前記酸素含有ガスを溶解させる酸素溶解手段と、前記酸素含有ガスを溶解させた前記TMAH含有薬液中の溶存酸素濃度を変更することにより、基板に形成されたポリシリコン膜を前記TMAH含有薬液によりエッチングする処理能力であるエッチングレートが前記TMAH含有薬液中の溶存酸素濃度の上昇に伴って上昇し、前記エッチングレートが前記TMAH含有薬液中の溶存酸素濃度の低下に伴って低下するように、前記エッチングレートを調整する調整手段とを含む、基板処理用の薬液生成ユニットである。この構成によれば、請求項1の発明に関して述べた効果と同様な効果を奏することができる。 The invention according to claim 7 is an oxygen which dissolves the oxygen-containing gas in the TMAH-containing chemical solution by supplying an oxygen-containing gas containing oxygen gas to the TMAH-containing chemical solution containing TMAH (tetramethylammonium hydroxide). and dissolving means, by changing the dissolved oxygen concentration of the TMAH-containing chemical solution obtained by dissolving the oxygen-containing gas, the etching rate is a process capable of etching the polysilicon film formed on the substrate by the TMAH-containing chemical liquid Adjusting means for adjusting the etching rate so that the dissolved oxygen concentration in the TMAH-containing chemical solution increases as the dissolved oxygen concentration increases, and the etching rate decreases as the dissolved oxygen concentration in the TMAH-containing chemical solution decreases. It is the chemical | medical solution production | generation unit for a board | substrate process containing. According to this configuration, it is possible to achieve an effect similar to the effect described with respect to the invention of claim 1.

請求項8に記載の発明は、前記基板処理用の薬液生成ユニットは、前記TMAH含有薬液を貯留するタンクをさらに含み、前記酸素溶解手段は、前記タンク内で前記TMAH含有薬液に前記酸素含有ガスを溶解させる手段を含む、請求項7に記載の基板処理用の薬液生成ユニットである。   According to an eighth aspect of the present invention, the chemical processing unit for processing a substrate further includes a tank for storing the TMAH-containing chemical, and the oxygen dissolving means supplies the oxygen-containing gas to the TMAH-containing chemical in the tank. The chemical | medical solution production | generation unit for a substrate processing of Claim 7 containing the means to dissolve | melt.

請求項9に記載の発明は、前記基板処理用の薬液生成ユニットは、前記TMAH含有薬液を貯留するタンクと、前記タンク内の前記TMAH含有薬液を循環させる循環経路とをさらに含み、前記酸素溶解手段は、前記循環経路内で前記TMAH含有薬液に前記酸素含有ガスを溶解させる手段を含む、請求項7または8に記載の基板処理用の薬液生成ユニットである。   The invention according to claim 9 is characterized in that the chemical processing unit for substrate processing further includes a tank for storing the TMAH-containing chemical and a circulation path for circulating the TMAH-containing chemical in the tank. The means is a chemical processing unit for substrate processing according to claim 7 or 8, comprising means for dissolving the oxygen-containing gas in the TMAH-containing chemical within the circulation path.

請求項10に記載の発明は、前記調整手段は、前記TMAH含有薬液中の溶存酸素濃度を測定する測定手段と、窒素ガスを含む窒素含有ガスを前記TMAH含有薬液に供給することにより、前記TMAH含有薬液に前記窒素含有ガスを溶解させる窒素溶解手段と、前記測定手段によって測定された溶存酸素濃度が所定の濃度よりも高い場合に、前記窒素溶解手段を制御することにより、前記TMAH含有薬液に前記窒素含有ガスを溶解させ、前記測定手段によって測定された溶存酸素濃度が前記所定の濃度よりも低い場合に、前記酸素溶解手段を制御することにより、前記TMAH含有薬液に前記酸素含有ガスを溶解させる制御手段とを含む、請求項7〜9のいずれか一項に記載の基板処理用の薬液生成ユニットである。この構成によれば、請求項4の発明に関して述べた効果と同様な効果を奏することができる。   The invention according to claim 10 is characterized in that the adjusting means supplies the TMAH-containing chemical liquid with a measuring means for measuring a dissolved oxygen concentration in the TMAH-containing chemical liquid and supplying a nitrogen-containing gas containing nitrogen gas to the TMAH-containing chemical liquid. Nitrogen dissolving means for dissolving the nitrogen-containing gas in the containing chemical solution, and when the dissolved oxygen concentration measured by the measuring means is higher than a predetermined concentration, by controlling the nitrogen dissolving means, the TMAH containing chemical solution When the dissolved oxygen concentration measured by the measuring means is lower than the predetermined concentration, the oxygen-containing gas is dissolved in the TMAH-containing chemical solution by controlling the oxygen-dissolving means when the nitrogen-containing gas is dissolved. The chemical | medical solution production | generation unit for a substrate processing as described in any one of Claims 7-9 containing the control means to be made. According to this configuration, it is possible to achieve the same effect as the effect described with respect to the invention of claim 4.

請求項11に記載の発明は、前記基板処理用の薬液生成ユニットは、前記TMAH含有薬液を貯留するタンクと、前記タンク内の前記TMAH含有薬液を循環させる循環経路とをさらに含み、前記測定手段は、前記循環経路を流れる前記TMAH含有薬液中の溶存酸素濃度を測定する手段を含む、請求項10に記載の基板処理用の薬液生成ユニットである。
請求項12に記載の発明は、請求項7〜11のいずれか一項に記載の薬液生成ユニットと、前記薬液生成ユニットによって生成された前記TMAH含有薬液を、ポリシリコン膜が形成された基板に供給する処理ユニットとを含む、基板処理システムである。この構成によれば、請求項6の発明に関して述べた効果と同様な効果を奏することができる。
The invention according to claim 11 is characterized in that the chemical processing unit for substrate processing further includes a tank for storing the TMAH-containing chemical and a circulation path for circulating the TMAH-containing chemical in the tank. The chemical | medical solution production | generation unit for a substrate processing of Claim 10 containing a means to measure the dissolved oxygen concentration in the said TMAH containing chemical | medical solution which flows through the said circulation path | route.
The invention according to claim 12 provides the chemical solution generating unit according to any one of claims 7 to 11 and the TMAH-containing chemical solution generated by the chemical solution generating unit on a substrate on which a polysilicon film is formed. A substrate processing system including a processing unit to be supplied. According to this configuration, it is possible to achieve the same effect as that described in regard to the invention of claim 6.

本発明の第1実施形態に係る基板処理システムの模式図である。1 is a schematic diagram of a substrate processing system according to a first embodiment of the present invention. TMAH中の溶存酸素濃度を調整するときのフローの一例を示す図である。It is a figure which shows an example of the flow when adjusting the dissolved oxygen concentration in TMAH. 窒素ガスおよびドライエアーをこの順番でタンク内に供給したときのTMAH中の溶存酸素濃度の推移を示すグラフである。It is a graph which shows transition of the dissolved oxygen concentration in TMAH when nitrogen gas and dry air are supplied in the tank in this order. タンク内に窒素ガスを供給した場合のエッチングレートの推移を示すグラフである。It is a graph which shows transition of the etching rate at the time of supplying nitrogen gas in a tank. タンク内に炭酸ガスを供給した場合のエッチングレートの推移を示すグラフである。It is a graph which shows transition of the etching rate at the time of supplying a carbon dioxide gas in a tank. タンク内にドライエアーを供給した場合のエッチングレートの推移を示すグラフである。It is a graph which shows transition of the etching rate at the time of supplying dry air in a tank. 窒素ガスの供給によって処理能力が低下したTMAHにドライエアーを供給したときのTMAHの処理能力の変化を示すグラフである。It is a graph which shows the change of the processing capacity of TMAH when dry air is supplied to TMAH in which processing capacity fell by supply of nitrogen gas. 本発明の第2実施形態に係る基板処理システムの模式図である。It is a schematic diagram of the substrate processing system which concerns on 2nd Embodiment of this invention. ミキシングユニットの模式図である。It is a schematic diagram of a mixing unit. 溶解ユニットの模式図である。It is a schematic diagram of a dissolution unit. 溶解促進ユニットの構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of a melt | dissolution promotion unit. 溶解促進ユニットの構成の他の例を示す模式図である。It is a schematic diagram which shows the other example of a structure of a melt | dissolution promotion unit.

以下では、本発明の実施形態を、添付図面を参照して詳細に説明する。
図1は、本発明の第1実施形態に係る基板処理システム1の模式図である。図2は、TMAH中の溶存酸素濃度を調整するときのフローの一例を示す図である。
図1に示すように、基板処理システム1は、薬液やリンス液などの処理液を用いて基板Wを処理する処理ユニット2と、薬液の一例であるTMAHを処理ユニット2に供給する薬液生成ユニットとしての薬液供給ユニット3と、基板処理システム1に備えられた装置やバルブの開閉を制御する制御装置4とを含む。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a schematic diagram of a substrate processing system 1 according to the first embodiment of the present invention. FIG. 2 is a diagram illustrating an example of a flow for adjusting the dissolved oxygen concentration in TMAH.
As shown in FIG. 1, a substrate processing system 1 includes a processing unit 2 that processes a substrate W using a processing liquid such as a chemical liquid or a rinsing liquid, and a chemical liquid generation unit that supplies TMAH, which is an example of a chemical liquid, to the processing unit 2. And a control device 4 for controlling the opening and closing of the devices and valves provided in the substrate processing system 1.

処理ユニット2および薬液供給ユニット3は、共通の装置の一部であってもよいし、互いに独立したユニット(互いに独立して移動させることができるユニット)であってもよい。すなわち、基板処理システム1は、処理ユニット2および薬液供給ユニット3を含む基板処理装置を備えていてもよいし、処理ユニット2を含む基板処理装置と、基板処理装置から離れた位置に配置された薬液供給ユニット3とを備えていてもよい。   The processing unit 2 and the chemical solution supply unit 3 may be a part of a common device, or may be units independent of each other (units that can be moved independently of each other). That is, the substrate processing system 1 may include a substrate processing apparatus including the processing unit 2 and the chemical solution supply unit 3, and is disposed at a position away from the substrate processing apparatus including the processing unit 2 and the substrate processing apparatus. A chemical solution supply unit 3 may be provided.

また、処理ユニット2は、基板Wを一枚ずつ処理する枚葉式のユニットであってもよいし、複数枚の基板Wを一括して処理するバッチ式のユニットであってもよい。図1では、処理ユニット2が、枚葉式のユニットである例を示している。処理ユニット2で行われる処理は、ポリシリコン膜(Poly−Si膜)など対象膜が最外層に形成された基板Wにエッチング液を供給するエッチング処理であってもよいし、露光後の基板Wに現像液を供給する現像処理であってもよい。当然、エッチング処理および現像処理以外の処理が、処理ユニット2で行われてもよい。   The processing unit 2 may be a single-wafer type unit that processes the substrates W one by one, or may be a batch type unit that processes a plurality of substrates W at once. FIG. 1 shows an example in which the processing unit 2 is a single-wafer type unit. The processing performed in the processing unit 2 may be an etching process in which an etching solution is supplied to the substrate W on which the target film is formed as the outermost layer, such as a polysilicon film (Poly-Si film), or the exposed substrate W It may be a development process in which a developer is supplied. Naturally, processes other than the etching process and the development process may be performed in the processing unit 2.

図1に示す処理ユニット2は、箱形のチャンバー5と、チャンバー5内で基板Wを水平に保持して基板Wの中心を通る鉛直な軸線まわりに基板Wを回転させるスピンチャック6と、薬液やリンス液などの処理液を基板Wに向けて吐出する処理液ノズル9〜12とを含む。さらに、処理ユニット2は、スピンチャック6の上方で水平に配置された円板状の遮断板7と、遮断板7を昇降させる昇降ユニット(図示せず)と、スピンチャック6を取り囲む筒状のカップ8とを含む。処理液ノズル9〜12は、基板Wの上面に向けて薬液を吐出する2つの薬液ノズル(第1薬液ノズル9および第2薬液ノズル10)と、基板Wの上面に向けてリンス液を吐出する2つのリンス液ノズル(第1リンス液ノズル11および第2リンス液ノズル12)とを含む。第2リンス液ノズル12は、遮断板7の中心軸線に沿って上下方向に延びており、第2リンス液ノズル12の下端部には、遮断板7の下面中央部から下方にリンス液を吐出する吐出口が設けられている。   The processing unit 2 shown in FIG. 1 includes a box-shaped chamber 5, a spin chuck 6 that holds the substrate W horizontally in the chamber 5 and rotates the substrate W about a vertical axis passing through the center of the substrate W, and a chemical solution And processing liquid nozzles 9 to 12 that discharge a processing liquid such as a rinsing liquid toward the substrate W. Further, the processing unit 2 includes a disk-shaped blocking plate 7 disposed horizontally above the spin chuck 6, a lifting unit (not shown) for moving the blocking plate 7 up and down, and a cylindrical shape surrounding the spin chuck 6. Cup 8. The treatment liquid nozzles 9 to 12 discharge two chemical liquid nozzles (a first chemical liquid nozzle 9 and a second chemical liquid nozzle 10) that discharge a chemical liquid toward the upper surface of the substrate W, and discharge a rinse liquid toward the upper surface of the substrate W. Two rinse liquid nozzles (the first rinse liquid nozzle 11 and the second rinse liquid nozzle 12) are included. The second rinsing liquid nozzle 12 extends in the vertical direction along the central axis of the blocking plate 7, and the rinsing liquid is discharged downward from the center of the lower surface of the blocking plate 7 to the lower end of the second rinsing liquid nozzle 12. A discharge port is provided.

図1に示すように、第1薬液ノズル9は、薬液供給ユニット3に接続されている。第2薬液ノズル10は、第2薬液バルブ14が介装された第2薬液配管15に接続されている。第1リンス液ノズル11は、第1リンス液バルブ16が介装された第1リンス液配管17に接続されている。第2リンス液ノズル12は、第2リンス液バルブ18が介装された第2リンス液配管19に接続されている。第1薬液ノズル9には、薬液の一例であるTMAH(水溶液)が供給され、第2薬液ノズル10には、薬液の一例であるフッ酸が供給される。第1リンス液ノズル11および第2リンス液ノズル12には、リンス液の一例である純水(脱イオン水:Deionzied Water)が供給される。   As shown in FIG. 1, the first chemical liquid nozzle 9 is connected to the chemical liquid supply unit 3. The second chemical liquid nozzle 10 is connected to a second chemical liquid pipe 15 in which a second chemical liquid valve 14 is interposed. The first rinse liquid nozzle 11 is connected to a first rinse liquid pipe 17 in which a first rinse liquid valve 16 is interposed. The second rinse liquid nozzle 12 is connected to a second rinse liquid pipe 19 in which a second rinse liquid valve 18 is interposed. The first chemical liquid nozzle 9 is supplied with TMAH (aqueous solution) that is an example of a chemical liquid, and the second chemical liquid nozzle 10 is supplied with hydrofluoric acid that is an example of a chemical liquid. The first rinse liquid nozzle 11 and the second rinse liquid nozzle 12 are supplied with pure water (deionized water) that is an example of a rinse liquid.

TMAHは、有機アルカリの一例である。TMAHは、エッチング液および現像液の一例でもある。第1薬液ノズル9に供給されるTMAHは、界面活性剤を含んでいてもよいし、界面活性剤を含んでいなくてもよい。また、第2薬液ノズル10に供給される薬液は、フッ酸に限らず、硫酸、酢酸、硝酸、塩酸、フッ酸、アンモニア水、過酸化水素水、有機酸(たとえばクエン酸、蓚酸など)、有機アルカリ、界面活性剤、腐食防止剤のうちの少なくとも1つを含む液であってもよい。第1リンス液ノズル11に供給されるリンス液は、純水に限らず、炭酸水、電解イオン水、水素水、オゾン水、および希釈濃度(たとえば、10〜100ppm程度)の塩酸水のいずれかであってもよい。第2リンス液ノズル12に供給されるリンス液についても同様である。   TMAH is an example of an organic alkali. TMAH is also an example of an etchant and a developer. TMAH supplied to the 1st chemical | medical solution nozzle 9 may contain surfactant, and does not need to contain surfactant. Further, the chemical liquid supplied to the second chemical nozzle 10 is not limited to hydrofluoric acid, but sulfuric acid, acetic acid, nitric acid, hydrochloric acid, hydrofluoric acid, aqueous ammonia, hydrogen peroxide, organic acids (such as citric acid and oxalic acid), It may be a liquid containing at least one of an organic alkali, a surfactant, and a corrosion inhibitor. The rinse liquid supplied to the first rinse liquid nozzle 11 is not limited to pure water, but is any of carbonated water, electrolytic ion water, hydrogen water, ozone water, and hydrochloric acid water having a diluted concentration (for example, about 10 to 100 ppm). It may be. The same applies to the rinsing liquid supplied to the second rinsing liquid nozzle 12.

処理ユニット2では、たとえば、フッ酸、純水、TMAH、および純水を、この順番で基板Wの上面全域に順次供給するエッチング処理が行われる。具体的には、制御装置4は、スピンチャック6によって基板Wを水平に保持させながらこの基板Wを鉛直な軸線まわりに回転させる。この状態で、制御装置4は、第2薬液バルブ14を開いて、第2薬液ノズル10から基板Wの上面に向けてフッ酸を吐出させる。基板Wに供給されたフッ酸は、基板Wの回転による遠心力によって基板W上を外方に広がり、基板Wの上面周縁部から基板Wの周囲に排出される。制御装置4は、第2薬液ノズル10からのフッ酸の吐出を停止させた後、第1リンス液バルブ16を開閉することにより、第1リンス液ノズル11から回転状態の基板Wの上面に向けて純水を吐出させる。これにより、基板W上のフッ酸が純水によって洗い流される。   In the processing unit 2, for example, an etching process is performed in which hydrofluoric acid, pure water, TMAH, and pure water are sequentially supplied to the entire upper surface of the substrate W in this order. Specifically, the control device 4 rotates the substrate W around a vertical axis while holding the substrate W horizontally by the spin chuck 6. In this state, the control device 4 opens the second chemical liquid valve 14 and discharges hydrofluoric acid from the second chemical liquid nozzle 10 toward the upper surface of the substrate W. The hydrofluoric acid supplied to the substrate W spreads outward on the substrate W due to the centrifugal force caused by the rotation of the substrate W, and is discharged from the periphery of the upper surface of the substrate W to the periphery of the substrate W. After stopping the discharge of hydrofluoric acid from the second chemical liquid nozzle 10, the control device 4 opens and closes the first rinse liquid valve 16, so that the first rinse liquid nozzle 11 faces the upper surface of the rotating substrate W. To discharge pure water. Thereby, the hydrofluoric acid on the substrate W is washed away with pure water.

次に、制御装置4は、薬液供給ユニット3を制御することにより、第1薬液ノズル9から回転状態の基板Wの上面に向けてTMAHを吐出させる。その後、制御装置4は、昇降ユニットを制御することにより、遮断板7の下面を基板Wの上面に近接させる。この状態で、制御装置4は、第2リンス液バルブ18を開閉することにより、第2リンス液ノズル12から回転状態の基板Wの上面に向けて純水を吐出させる。続いて、制御装置4は、昇降ユニットを制御することにより、遮断板7の下面を基板Wの上面にさらに近接させる。この状態で、制御装置4は、スピンチャック6によって基板Wを高速回転させることにより、基板Wを乾燥させる。このようにして、基板Wに対する一連の処理が行われる。   Next, the control device 4 controls the chemical solution supply unit 3 to discharge TMAH from the first chemical solution nozzle 9 toward the upper surface of the rotating substrate W. Thereafter, the control device 4 controls the lifting unit to bring the lower surface of the blocking plate 7 close to the upper surface of the substrate W. In this state, the control device 4 opens and closes the second rinse liquid valve 18 to discharge pure water from the second rinse liquid nozzle 12 toward the upper surface of the rotating substrate W. Subsequently, the control device 4 brings the lower surface of the blocking plate 7 closer to the upper surface of the substrate W by controlling the lifting unit. In this state, the control device 4 dries the substrate W by rotating the substrate W at a high speed by the spin chuck 6. In this way, a series of processes are performed on the substrate W.

図1に示すように、薬液供給ユニット3は、TMAHを貯留するタンク20と、タンク20内のTMAHを処理ユニット2(第1薬液ノズル9)に案内する第1薬液配管21と、タンク20内のTMAHを第1薬液配管21に送る送液ポンプ22と、第1薬液配管21の内部を開閉する第1薬液バルブ23とを含む。さらに、薬液供給ユニット3は、第1薬液バルブ23よりも上流側(タンク20側)で第1薬液配管21とタンク20とを接続する循環配管24と、循環配管24の内部を開閉する循環バルブ25と、タンク20内の液量が所定量を下回ったときに薬液供給源からのTMAHをタンク20に補充する補充配管26とを含む。   As shown in FIG. 1, the chemical solution supply unit 3 includes a tank 20 that stores TMAH, a first chemical solution pipe 21 that guides TMAH in the tank 20 to the processing unit 2 (first chemical solution nozzle 9), and a tank 20. A liquid feed pump 22 for sending the TMAH to the first chemical liquid pipe 21 and a first chemical liquid valve 23 for opening and closing the inside of the first chemical liquid pipe 21 are included. Furthermore, the chemical supply unit 3 includes a circulation pipe 24 that connects the first chemical liquid pipe 21 and the tank 20 on the upstream side (tank 20 side) of the first chemical liquid valve 23, and a circulation valve that opens and closes the inside of the circulation pipe 24. 25 and a replenishment pipe 26 for replenishing the tank 20 with TMAH from the chemical solution supply source when the amount of liquid in the tank 20 falls below a predetermined amount.

タンク20内のTMAHが処理ユニット2に供給されるときには、第1薬液バルブ23が開かれ、循環バルブ25が閉じられる。この状態では、送液ポンプ22によってタンク20から第1薬液配管21に送られたTMAHが、処理ユニット2に供給される。一方、処理ユニット2へのTMAHの供給が停止されている状態では、第1薬液バルブ23が閉じられ、循環バルブ25が開かれる。この状態では、送液ポンプ22によってタンク20から第1薬液配管21に送られたTMAHが、循環配管24を通じてタンク20内に戻る。そのため、処理ユニット2へのTMAHの供給が停止されている供給停止中は、TMAHが、タンク20、第1薬液配管21、および循環配管24によって形成された循環経路X1を循環し続ける。循環経路X1(循環ライン)には、図示しない温度調節機構(加熱機構または冷却機構)が配置されており、この温度調節機構によって処理ユニット2に供給されるTMAHの温度が調節される。   When TMAH in the tank 20 is supplied to the processing unit 2, the first chemical valve 23 is opened and the circulation valve 25 is closed. In this state, TMAH sent from the tank 20 to the first chemical liquid pipe 21 by the liquid feed pump 22 is supplied to the processing unit 2. On the other hand, in a state where the supply of TMAH to the processing unit 2 is stopped, the first chemical valve 23 is closed and the circulation valve 25 is opened. In this state, TMAH sent from the tank 20 to the first chemical liquid pipe 21 by the liquid feed pump 22 returns to the tank 20 through the circulation pipe 24. Therefore, while supply of TMAH to the processing unit 2 is stopped, TMAH continues to circulate through the circulation path X1 formed by the tank 20, the first chemical liquid pipe 21, and the circulation pipe 24. A temperature adjustment mechanism (heating mechanism or cooling mechanism) (not shown) is arranged in the circulation path X1 (circulation line), and the temperature of TMAH supplied to the processing unit 2 is adjusted by this temperature adjustment mechanism.

図1に示すように、薬液供給ユニット3は、タンク20内で窒素ガスをTMAHに溶解させることにより、TMAH中の溶存窒素濃度を上昇させる窒素溶解ユニット27と、タンク20内で酸素ガスをTMAHに溶解させることにより、TMAH中の溶存酸素濃度を上昇させる酸素溶解ユニット28と、TMAH中の溶存酸素濃度を検出する溶存ガスセンサー29とを含む。溶存ガスセンサー29は、第1薬液配管21などの配管内を流れるTMAH中の溶存酸素濃度を測定するセンサーであってもよいし、タンク20内に貯留されているTMAH中の溶存酸素濃度を測定するセンサーであってもよい。   As shown in FIG. 1, the chemical supply unit 3 includes a nitrogen dissolving unit 27 that increases the concentration of dissolved nitrogen in TMAH by dissolving nitrogen gas in TMAH in the tank 20, and oxygen gas in the tank 20 is TMAH. The oxygen dissolution unit 28 for increasing the dissolved oxygen concentration in TMAH and the dissolved gas sensor 29 for detecting the dissolved oxygen concentration in TMAH are included. The dissolved gas sensor 29 may be a sensor that measures the dissolved oxygen concentration in the TMAH flowing in the pipe such as the first chemical liquid pipe 21, and measures the dissolved oxygen concentration in the TMAH stored in the tank 20. It may be a sensor.

窒素溶解ユニット27は、窒素ガスを含む窒素含有ガスをTMAHに供給することにより、窒素ガスをTMAHに溶解させる。酸素溶解ユニット28は、酸素ガスを含む酸素含有ガスをTMAHに供給することにより、酸素ガスをTMAHに溶解させる。窒素含有ガスは、窒素ガスであってもよいし、窒素ガスと窒素ガス以外のガスとの混合ガスであってもよい。同様に、酸素含有ガスは、酸素ガスであってもよいし、酸素ガスと酸素ガス以外のガスとの混合ガスであってもよい。以下では、窒素含有ガスが、不活性ガスの一例である窒素ガスであり、酸素含有ガスが、概ね8対2の割合で窒素と酸素とを含むドライエアー(乾燥した清浄空気)である例について説明する。また、酸素含有ガスおよび窒素含有ガスのいずれでもよく、ガスの種類を問わない場合には、単に「ガス」という。   The nitrogen dissolving unit 27 dissolves nitrogen gas in TMAH by supplying nitrogen-containing gas containing nitrogen gas to TMAH. The oxygen dissolving unit 28 dissolves oxygen gas in TMAH by supplying oxygen-containing gas containing oxygen gas to TMAH. The nitrogen-containing gas may be nitrogen gas or a mixed gas of nitrogen gas and a gas other than nitrogen gas. Similarly, the oxygen-containing gas may be oxygen gas or a mixed gas of oxygen gas and gas other than oxygen gas. Hereinafter, an example in which the nitrogen-containing gas is nitrogen gas which is an example of an inert gas, and the oxygen-containing gas is dry air (dry clean air) containing nitrogen and oxygen in a ratio of approximately 8 to 2. explain. Further, either an oxygen-containing gas or a nitrogen-containing gas may be used.

図1に示すように、窒素溶解ユニット27は、窒素ガスをタンク20内で吐出するガス配管30と、ガス配管30から吐出されるガスの流量を変更する流量調整バルブ31とを含む。同様に、酸素溶解ユニット28は、ドライエアーをタンク20内で吐出するガス配管30と、ガス配管30から吐出されるガスの流量を変更する流量調整バルブ31とを含む。ガス配管30は、TMAH中(液中)に配置された吐出口からガスを吐出することにより、TMAH中に気泡を発生させるバブリング配管32であってもよい。また、ガス配管30は、タンク20内で液面の上方に配置された吐出口からガスを吐出することにより、タンク20内のガスを図示しない排気管に排出させるパージ配管33であってもよい。図1では、バブリング配管32およびパージ配管33が、窒素溶解ユニット27および酸素溶解ユニット28のそれぞれに備えられている例が示されている。   As shown in FIG. 1, the nitrogen dissolving unit 27 includes a gas pipe 30 that discharges nitrogen gas in the tank 20, and a flow rate adjustment valve 31 that changes the flow rate of the gas discharged from the gas pipe 30. Similarly, the oxygen dissolving unit 28 includes a gas pipe 30 that discharges dry air in the tank 20, and a flow rate adjusting valve 31 that changes the flow rate of the gas discharged from the gas pipe 30. The gas pipe 30 may be a bubbling pipe 32 that generates bubbles in TMAH by discharging gas from a discharge port arranged in TMAH (in liquid). Further, the gas pipe 30 may be a purge pipe 33 for discharging the gas in the tank 20 to an exhaust pipe (not shown) by discharging the gas from a discharge port disposed above the liquid level in the tank 20. . FIG. 1 shows an example in which a bubbling pipe 32 and a purge pipe 33 are provided in each of the nitrogen dissolving unit 27 and the oxygen dissolving unit 28.

制御装置4は、窒素溶解ユニット27および酸素溶解ユニット28によって、流量調整バルブ31の開度に対応する流量で、窒素ガスおよびドライエアーの少なくとも一方をタンク20内に供給させることにより、TMAH中の溶存酸素濃度を一定の濃度に調整する。具体的には、制御装置4は、TMAH中の溶存酸素濃度を上昇または低下させたり、一定の濃度に維持したりする。制御装置4は、流量調整バルブ31の開度を制御することにより、タンク20内への窒素ガスの供給流量を調整する。同様に、制御装置4は、流量調整バルブ31の開度を制御することにより、タンク20内へのドライエアーの供給流量を調整する。   The control device 4 causes the nitrogen dissolving unit 27 and the oxygen dissolving unit 28 to supply at least one of nitrogen gas and dry air into the tank 20 at a flow rate corresponding to the opening degree of the flow rate adjusting valve 31, so that Adjust the dissolved oxygen concentration to a certain concentration. Specifically, the control device 4 increases or decreases the dissolved oxygen concentration in TMAH, or maintains it at a constant concentration. The control device 4 adjusts the supply flow rate of nitrogen gas into the tank 20 by controlling the opening degree of the flow rate adjustment valve 31. Similarly, the control device 4 adjusts the supply flow rate of dry air into the tank 20 by controlling the opening degree of the flow rate adjustment valve 31.

タンク20内へのガス(窒素ガスおよびドライエアーの少なくとも一方)の供給は、薬液供給ユニット3から処理ユニット2にTMAHが供給されているとき(薬液供給中)に行われてもよいし、薬液供給ユニット3から処理ユニット2へのTMAHの供給が停止されているとき(供給停止中)に行われてもよいし、薬液供給中および供給停止中に行われてもよい。たとえば、タンク20内へのドライエアーの供給が、薬液供給中および供給停止中の全期間に亘って行われてもよい。また、窒素ガスおよびドライエアーが、交互にタンク20内に供給されてもよい。タンク20内に供給されたガスは、図示しない排気ラインを介してタンク20の外部に排出されている。   Supply of gas (at least one of nitrogen gas and dry air) into the tank 20 may be performed when TMAH is supplied from the chemical solution supply unit 3 to the processing unit 2 (during chemical solution supply), or chemical solution It may be performed when the supply of TMAH from the supply unit 3 to the processing unit 2 is stopped (while the supply is stopped), or may be performed while the chemical solution is being supplied and while the supply is being stopped. For example, the supply of dry air into the tank 20 may be performed over the entire period during the supply of the chemical solution and the stop of the supply. Further, nitrogen gas and dry air may be alternately supplied into the tank 20. The gas supplied into the tank 20 is discharged to the outside of the tank 20 through an exhaust line (not shown).

図1に示すように、溶存ガスセンサー29は、TMAH中の溶存酸素濃度を検出する。溶存ガスセンサー29の検出値は、制御装置4に入力される。制御装置4は、溶存ガスセンサー29の検出値に基づいて、TMAHへの窒素ガスおよびドライエアーの供給を制御してもよい。具体的には、図2に示すように、TMAH中の溶存酸素濃度が、溶存ガスセンサー29によって測定されると(ステップS1)、制御装置4は、溶存ガスセンサー29の検出値に基づいて、測定された溶存酸素濃度が所定の濃度と一致しているか否かを判断する(ステップS2)。測定された溶存酸素濃度が所定の濃度である場合(S2でYesの場合)には、制御装置4は、タンク20内へのガスの供給状態を一定に維持する(ステップS3)。   As shown in FIG. 1, the dissolved gas sensor 29 detects the dissolved oxygen concentration in TMAH. The detection value of the dissolved gas sensor 29 is input to the control device 4. The control device 4 may control the supply of nitrogen gas and dry air to the TMAH based on the detection value of the dissolved gas sensor 29. Specifically, as shown in FIG. 2, when the dissolved oxygen concentration in TMAH is measured by the dissolved gas sensor 29 (step S1), the control device 4 is based on the detection value of the dissolved gas sensor 29. It is determined whether or not the measured dissolved oxygen concentration matches a predetermined concentration (step S2). When the measured dissolved oxygen concentration is a predetermined concentration (Yes in S2), the control device 4 keeps the supply state of gas into the tank 20 constant (step S3).

一方、溶存酸素濃度が所定の濃度よりも高い場合(S2でNO(High)の場合)には、制御装置4は、窒素溶解ユニット27によって、タンク20内に窒素ガスを供給させる(ステップS4)。これにより、TMAH中の溶存酸素濃度が所定の濃度まで低下する。これとは反対に、溶存酸素濃度が所定の濃度よりも低い場合(S2でNO(Low)の場合)には、制御装置4は、酸素溶解ユニット28によって、タンク20内にドライエアーを供給させる(ステップS5)。これにより、TMAH中の溶存酸素濃度が所定の濃度まで上昇する。そして、TMAH中の溶存酸素濃度が、再び、溶存ガスセンサー29によって測定される(ステップS1に戻る)。このようにして、TMAH中の溶存酸素濃度が最適な濃度に調整される。   On the other hand, when the dissolved oxygen concentration is higher than the predetermined concentration (NO in S2 and High), the control device 4 causes the nitrogen dissolving unit 27 to supply nitrogen gas into the tank 20 (step S4). . Thereby, the dissolved oxygen concentration in TMAH falls to a predetermined concentration. On the other hand, when the dissolved oxygen concentration is lower than the predetermined concentration (in the case of NO (Low) in S2), the control device 4 causes the oxygen dissolution unit 28 to supply dry air into the tank 20. (Step S5). Thereby, the dissolved oxygen concentration in TMAH rises to a predetermined concentration. Then, the dissolved oxygen concentration in TMAH is again measured by the dissolved gas sensor 29 (return to step S1). In this way, the dissolved oxygen concentration in TMAH is adjusted to an optimum concentration.

図3は、窒素ガスおよびドライエアーをこの順番でタンク20内に供給したときのTMAH中の溶存酸素濃度の推移を示すグラフである。図4は、タンク20内に窒素ガスを供給した場合のエッチングレート(単位時間当たりのエッチング量)の推移を示すグラフである。図5は、タンク20内に炭酸ガスを供給した場合のエッチングレートの推移を示すグラフである。図6は、タンク20内にドライエアーを供給した場合のエッチングレートの推移を示すグラフである。図7は、窒素ガスの供給によって処理能力(エッチングレート)が低下したTMAHにドライエアーを供給したときのTMAHの処理能力の変化を示すグラフである。   FIG. 3 is a graph showing the transition of dissolved oxygen concentration in TMAH when nitrogen gas and dry air are supplied into the tank 20 in this order. FIG. 4 is a graph showing the transition of the etching rate (etching amount per unit time) when nitrogen gas is supplied into the tank 20. FIG. 5 is a graph showing the transition of the etching rate when carbon dioxide gas is supplied into the tank 20. FIG. 6 is a graph showing the transition of the etching rate when dry air is supplied into the tank 20. FIG. 7 is a graph showing changes in the processing capacity of TMAH when dry air is supplied to TMAH whose processing capacity (etching rate) has been lowered by the supply of nitrogen gas.

図4は、窒素ガスをタンク20内に供給しながら、所定の時間間隔を空けて複数枚の基板Wを処理したときの測定値を示している。図5は、炭酸ガスをタンク20内に供給しながら、所定の時間間隔を空けて複数枚の基板Wを処理したときの測定値を示している。図6は、ドライエアーをタンク20内に供給しながら、所定の時間間隔を空けて複数枚の基板Wを処理したときの測定値を示している。   FIG. 4 shows measured values when a plurality of substrates W are processed with a predetermined time interval while supplying nitrogen gas into the tank 20. FIG. 5 shows measured values when a plurality of substrates W are processed with a predetermined time interval while supplying carbon dioxide into the tank 20. FIG. 6 shows measured values when a plurality of substrates W are processed with a predetermined time interval while supplying dry air into the tank 20.

図3に示すように、TMAHへの窒素ガスの供給を開始すると、TMAH中の溶存酸素濃度は、急激に減少した後、窒素ガスの供給前よりも低い値(0付近)で安定する。その後、TMAHに供給されるガスをドライエアーに変更すると、TMAH中の溶存酸素濃度は、ドライエアーの供給前よりも高い値まで急激に上昇した後、窒素ガスの供給前よりも高い値で安定する。TMAHのpH(水素イオン指数)に関しては、いずれのガスがTMAHに供給されているときでも、概ね一定の値で安定している。   As shown in FIG. 3, when the supply of nitrogen gas to TMAH is started, the dissolved oxygen concentration in TMAH decreases rapidly and then stabilizes at a lower value (near 0) than before the supply of nitrogen gas. After that, when the gas supplied to TMAH is changed to dry air, the dissolved oxygen concentration in TMAH rapidly rises to a higher value than before supplying dry air, and then stable at a higher value than before supplying nitrogen gas. To do. Regarding the pH (hydrogen ion index) of TMAH, even when any gas is supplied to TMAH, it is stable at a substantially constant value.

図4に示すように、TMAHに窒素ガスを溶解させると、エッチングレートが次第に低下していく。図5に示すように、TMAHに炭酸ガスを溶解させると、TMAHに窒素ガスを溶解させたときよりも大きな割合で、エッチングレートが次第に低下していく。炭酸ガスの供給によって、エッチングレートが急激に低下した理由は、以下の通りであると考えられる。   As shown in FIG. 4, when nitrogen gas is dissolved in TMAH, the etching rate gradually decreases. As shown in FIG. 5, when carbon dioxide gas is dissolved in TMAH, the etching rate gradually decreases at a larger rate than when nitrogen gas is dissolved in TMAH. The reason why the etching rate rapidly decreases due to the supply of carbon dioxide gas is considered as follows.

すなわち、水酸基(OH)を含むTMAHが、シリコン(Si)を含む基板Wに供給されると、「Si+4OH→Si(OH)」の反応によって、シリコンがエッチングされる。すなわち、水酸基がシリコンのエッチングに寄与している。その一方で、炭酸ガスがTMAH(水溶液)に供給されると、「CO+HO→H+HCO 」の反応によって、水素イオン(H)が増加する。TMAHに含まれる水酸基は、この水素イオンと結合してHOに変化する。そのため、炭酸ガスの供給によってエッチングレートが急激に低下したと考えられる。 That is, when TMAH containing a hydroxyl group (OH ) is supplied to a substrate W containing silicon (Si), silicon is etched by a reaction of “Si + 4OH → Si (OH) 4 ”. That is, the hydroxyl group contributes to the etching of silicon. On the other hand, when carbon dioxide gas is supplied to TMAH (aqueous solution), hydrogen ions (H + ) increase due to the reaction of “CO 2 + H 2 O → H + + HCO 3 ”. The hydroxyl group contained in TMAH is combined with this hydrogen ion and changed to H 2 O. For this reason, it is considered that the etching rate rapidly decreased due to the supply of carbon dioxide gas.

一方、図6に示すように、TMAHにドライエアーを溶解させると、エッチングレートが殆ど変化しない。また、図7に示すように、窒素ガスの供給によって処理能力(エッチングレート)が低下したTMAHにドライエアーを溶解させると、TMAHの処理能力が回復する。
ドライエアーは、約80%の窒素ガスと、約20%の酸素ガスとによって構成されており、酸素ガスを含む点で、窒素ガスとは異なる。したがって、TMAHの処理能力の安定や回復は、酸素によってもたらされたと考えられる。さらに、図5に示す測定結果から、TMAHに供給されるガスの二酸化炭素の濃度は、低い方が好ましい。つまり、水に溶解することで水素イオン(H)を発生させる酸性ガスの一例である二酸化炭素の濃度は、低い方が好ましい。ドライエアーは二酸化炭素を含むものの、その濃度は、0.0390vol%であり、極めて低い。
On the other hand, as shown in FIG. 6, when dry air is dissolved in TMAH, the etching rate hardly changes. Further, as shown in FIG. 7, when dry air is dissolved in TMAH whose processing capability (etching rate) is reduced by supplying nitrogen gas, the processing capability of TMAH is recovered.
Dry air is composed of about 80% nitrogen gas and about 20% oxygen gas, and is different from nitrogen gas in that it contains oxygen gas. Therefore, it is considered that the stabilization and recovery of the processing capacity of TMAH was brought about by oxygen. Furthermore, from the measurement results shown in FIG. 5, it is preferable that the concentration of carbon dioxide in the gas supplied to TMAH is lower. That is, it is preferable that the concentration of carbon dioxide, which is an example of an acidic gas that generates hydrogen ions (H + ) by being dissolved in water, be low. Although dry air contains carbon dioxide, its concentration is 0.0390 vol%, which is extremely low.

前述のように、第1実施形態では、酸素ガスを含む酸素含有ガスの一例であるドライエアーが、TMAHを含むTMAH含有薬液に供給される。これにより、薬液が生成され、基板Wに供給される。そのため、基板処理システム1は、安定したエッチングレートで基板Wを処理できる。さらに、基板処理システム1は、酸素含有ガスをTMAH含有薬液に溶解させることにより、TMAH含有薬液の処理能力を回復させることができる。   As described above, in the first embodiment, dry air, which is an example of an oxygen-containing gas containing oxygen gas, is supplied to a TMAH-containing chemical solution containing TMAH. Thereby, a chemical solution is generated and supplied to the substrate W. Therefore, the substrate processing system 1 can process the substrate W at a stable etching rate. Furthermore, the substrate processing system 1 can recover the processing capability of the TMAH-containing chemical solution by dissolving the oxygen-containing gas in the TMAH-containing chemical solution.

第2実施形態
次に、本発明の第2実施形態について説明する。以下の図8〜図9Bにおいて、前述の図1〜図7に示された各部と同等の構成部分については、図1等と同一の参照符号を付してその説明を省略する。
図8は、本発明の第2実施形態に係る基板処理システム201の模式図である。図9Aは、ミキシングユニット242の模式図である。図9Bは、溶解ユニット243の模式図である。
Second Embodiment Next, a second embodiment of the present invention will be described. In FIG. 8 to FIG. 9B below, the same components as those shown in FIG. 1 to FIG. 7 are given the same reference numerals as those in FIG.
FIG. 8 is a schematic diagram of a substrate processing system 201 according to the second embodiment of the present invention. FIG. 9A is a schematic diagram of the mixing unit 242. FIG. 9B is a schematic diagram of the dissolution unit 243.

図8に示すように、第2実施形態に係る基板処理システム201は、薬液やリンス液などの処理液を用いて基板Wを処理する処理ユニット2と、薬液の一例であるTMAHを処理ユニット2に供給する薬液供給ユニット203と、基板処理システム201に備えられた装置やバルブの開閉を制御する制御装置4とを含む。制御装置4は、第1実施形態と同様に、薬液供給ユニット203を制御することにより、溶存酸素濃度が調整されたTMAHを処理ユニット2に供給する。   As shown in FIG. 8, the substrate processing system 201 according to the second embodiment includes a processing unit 2 that processes a substrate W using a processing liquid such as a chemical liquid or a rinsing liquid, and a TMAH that is an example of a chemical liquid. And a control device 4 that controls opening and closing of devices and valves provided in the substrate processing system 201. As in the first embodiment, the control device 4 controls the chemical solution supply unit 203 to supply TMAH with the dissolved oxygen concentration adjusted to the processing unit 2.

図8に示すように、第2実施形態に係る薬液供給ユニット203は、窒素溶解ユニットおよび酸素溶解ユニットを除き、第1実施形態に係る薬液供給ユニット3と同様の構成を備えている。すなわち、第2実施形態に係る薬液供給ユニット203は、第1実施形態に係る窒素溶解ユニット27および酸素溶解ユニット28に代えて、タンク20に接続された接続配管(第1薬液配管21、循環配管24、および補充配管26のうちの少なくとも一つ)内で窒素ガスをTMAHに溶解させることにより、TMAH中の溶存窒素濃度を上昇させる窒素溶解ユニット227と、接続配管内で酸素ガスをTMAHに溶解させることにより、TMAH中の溶存酸素濃度を上昇させる酸素溶解ユニット228とを含む。   As shown in FIG. 8, the chemical solution supply unit 203 according to the second embodiment has the same configuration as the chemical solution supply unit 3 according to the first embodiment except for the nitrogen dissolving unit and the oxygen dissolving unit. That is, the chemical solution supply unit 203 according to the second embodiment is connected to the tank 20 instead of the nitrogen dissolving unit 27 and the oxygen dissolving unit 28 according to the first embodiment (first chemical solution pipe 21, circulation pipe). 24 and at least one of the supplementary pipes 26) by dissolving nitrogen gas in TMAH, the nitrogen dissolving unit 227 increases the dissolved nitrogen concentration in TMAH, and oxygen gas is dissolved in TMAH in the connecting pipe. And an oxygen dissolving unit 228 for increasing the dissolved oxygen concentration in TMAH.

窒素溶解ユニット227は、第1薬液配管21と循環配管24との接続位置よりも上流側(タンク20側)で第1薬液配管21に介装されていてもよいし、循環配管24に介装されていてもよい。すなわち、窒素溶解ユニット227は、循環経路X1に介装されていてもよい。また、窒素溶解ユニット227は、第1薬液配管21と循環配管24との接続位置よりも下流側で第1薬液配管21に介装されていてもよいし、補充配管26に介装されていてもよい。すなわち、窒素溶解ユニット227は、循環経路X1以外の経路(非循環経路)に介装されていてもよい。窒素溶解ユニット227と同様に、酸素溶解ユニット228は、第1薬液配管21、循環経路X1、および補充配管26のいずれに介装されていてもよい。図8では、3つの窒素溶解ユニット227が、それぞれ、第1薬液配管21、循環経路X1、および補充配管26に介装されており、3つの酸素溶解ユニット228が、それぞれ、第1薬液配管21、循環経路X1、および補充配管26に介装されている例が示されている。   The nitrogen dissolving unit 227 may be interposed in the first chemical liquid pipe 21 on the upstream side (tank 20 side) from the connection position between the first chemical liquid pipe 21 and the circulation pipe 24, or may be interposed in the circulation pipe 24. May be. That is, the nitrogen dissolving unit 227 may be interposed in the circulation path X1. Further, the nitrogen dissolving unit 227 may be interposed in the first chemical liquid pipe 21 on the downstream side of the connection position between the first chemical liquid pipe 21 and the circulation pipe 24 or in the replenishment pipe 26. Also good. That is, the nitrogen dissolving unit 227 may be interposed in a route (non-circulation route) other than the circulation route X1. Similar to the nitrogen dissolving unit 227, the oxygen dissolving unit 228 may be interposed in any of the first chemical liquid pipe 21, the circulation path X1, and the replenishing pipe 26. In FIG. 8, three nitrogen dissolving units 227 are interposed in the first chemical solution pipe 21, the circulation path X <b> 1, and the replenishment pipe 26, respectively, and the three oxygen dissolving units 228 are each in the first chemical solution pipe 21. In this example, the circulation path X1 and the supplementary pipe 26 are interposed.

窒素溶解ユニット227は、TMAHと窒素ガスとを混合するミキシングユニット242(図9A参照)であってもよいし、ガスのみを透過させる半透膜244を用いて窒素ガスをTMAHに溶解させる溶解ユニット243(図9B参照)であってもよい。同様に、酸素溶解ユニット228は、TMAHと酸素ガスとを混合するミキシングユニット242であってもよいし、ガスのみを透過させる半透膜244を用いて酸素ガスをTMAHに溶解させる溶解ユニット243であってもよい。   The nitrogen dissolving unit 227 may be a mixing unit 242 (see FIG. 9A) that mixes TMAH and nitrogen gas, or a melting unit that dissolves nitrogen gas in TMAH using a semipermeable membrane 244 that allows only gas to permeate. It may be 243 (see FIG. 9B). Similarly, the oxygen dissolving unit 228 may be a mixing unit 242 that mixes TMAH and oxygen gas, or a melting unit 243 that dissolves oxygen gas in TMAH using a semipermeable membrane 244 that allows only gas to permeate. There may be.

図9Aに示すように、ミキシングユニット242は、接続配管に介装されたスタティックミキサー245と、ガス(窒素ガスまたはドライエアー)をスタティックミキサー245に供給するガス配管246とを含む。スタティックミキサー245は、接続配管に介装されたパイプ247と、パイプ247内に配置されており、液体の流通方向に延びる軸線まわりに捩れた撹拌フィン248とを含む。ガス配管246は、パイプ247に接続されていてもよいし、パイプ247よりも上流側で接続配管に接続されていてもよい。接続配管からのTMAHと、ガス配管246からのガスとが、パイプ247内に供給されると、TMAHおよびガスの混合流体が、撹拌フィン248に沿って流れる。その間に、混合流体の回転および分断が繰り返され、TMAHおよびガスがパイプ247内で均一に混合される。これにより、ガスが、TMAHに溶解し、TMAH中の溶存窒素濃度または溶存酸素濃度が上昇する。   As shown in FIG. 9A, the mixing unit 242 includes a static mixer 245 interposed in a connection pipe and a gas pipe 246 that supplies gas (nitrogen gas or dry air) to the static mixer 245. The static mixer 245 includes a pipe 247 interposed in the connection pipe, and a stirring fin 248 disposed in the pipe 247 and twisted around an axis extending in the liquid flow direction. The gas pipe 246 may be connected to the pipe 247 or may be connected to the connection pipe on the upstream side of the pipe 247. When TMAH from the connection pipe and gas from the gas pipe 246 are supplied into the pipe 247, the mixed fluid of TMAH and gas flows along the stirring fin 248. Meanwhile, rotation and division of the mixed fluid are repeated, and TMAH and gas are uniformly mixed in the pipe 247. Thereby, gas melt | dissolves in TMAH and the dissolved nitrogen concentration or dissolved oxygen concentration in TMAH rises.

図9Bに示すように、溶解ユニット243は、接続配管に介装された半透膜ユニット249と、ガス(窒素ガスまたはドライエアー)を半透膜244ユニットに供給するガス配管246とを含む。半透膜244ユニットは、接続配管に介装された筒状のハウジング250と、ハウジング250内に配置された複数の中空糸膜251とを含む。中空糸膜251は、ガスのみを透過させる半透膜244によって形成された筒状で糸状の膜である。接続配管から半透膜244ユニットに供給されたTMAHは、複数の中空糸膜251の内部を通過した後、半透膜244ユニットから接続配管に排出される。ガス配管246は、ハウジング250に接続されている。ガス配管246からのガスは、中空糸膜251の周囲でハウジング250の内部に供給される。そのため、ハウジング250の内部がガスによって加圧され、ガスが、中空糸膜251を透過する。これにより、ガスが中空糸膜251内のTMAHに溶解し、TMAH中の溶存窒素濃度または溶存酸素濃度が上昇する。   As shown in FIG. 9B, the dissolution unit 243 includes a semipermeable membrane unit 249 interposed in a connection pipe, and a gas pipe 246 that supplies gas (nitrogen gas or dry air) to the semipermeable membrane 244 unit. The semipermeable membrane 244 unit includes a cylindrical housing 250 interposed in the connection pipe, and a plurality of hollow fiber membranes 251 disposed in the housing 250. The hollow fiber membrane 251 is a tubular and thread-like membrane formed by a semipermeable membrane 244 that allows only gas to pass therethrough. TMAH supplied from the connection pipe to the semipermeable membrane 244 unit passes through the inside of the plurality of hollow fiber membranes 251 and is then discharged from the semipermeable membrane 244 unit to the connection pipe. The gas pipe 246 is connected to the housing 250. The gas from the gas pipe 246 is supplied to the inside of the housing 250 around the hollow fiber membrane 251. Therefore, the inside of the housing 250 is pressurized with gas, and the gas passes through the hollow fiber membrane 251. Thereby, gas melt | dissolves in TMAH in the hollow fiber membrane 251, and the dissolved nitrogen concentration or dissolved oxygen concentration in TMAH rises.

他の実施形態
本発明の第1および第2実施形態の説明は以上であるが、本発明は、第1および第2実施形態の内容に限定されるものではなく、請求項記載の範囲内において種々の変更が可能である。
たとえば、窒素溶解ユニット27、227は、図10Aおよび図10Bに示すように、タンク20内でのTMAHと窒素ガスとの接触時間を増加させることにより、TMAH中の溶存窒素量を増加させる溶解促進ユニット34を含んでいてもよい。同様に、酸素溶解ユニット28、228は、タンク20内でのTMAHと酸素ガスとの接触時間を増加させることにより、TMAH中の溶存ガス量を増加させる溶解促進ユニット34を含んでいてもよい。この場合、溶解促進ユニット34は、タンク20内でTMAHを上向きに噴射する噴水ユニット35(図10A参照)を含んでいてもよいし、フィンユニット36(図10B参照)を含んでいてもよいし、噴水ユニット35およびフィンユニット36の両方を含んでいてもよい。
Other Embodiments Although the first and second embodiments of the present invention have been described above, the present invention is not limited to the contents of the first and second embodiments, and is within the scope of the claims. Various changes are possible.
For example, as shown in FIGS. 10A and 10B, the nitrogen dissolution units 27 and 227 increase the amount of dissolved nitrogen in TMAH by increasing the contact time between TMAH and nitrogen gas in the tank 20. A unit 34 may be included. Similarly, the oxygen dissolution units 28 and 228 may include a dissolution promotion unit 34 that increases the amount of dissolved gas in TMAH by increasing the contact time between TMAH and oxygen gas in the tank 20. In this case, the dissolution promoting unit 34 may include a fountain unit 35 (see FIG. 10A) that injects TMAH upward in the tank 20, or may include a fin unit 36 (see FIG. 10B). Both the fountain unit 35 and the fin unit 36 may be included.

図10Aは、溶解促進ユニット34の構成の一例を示す模式図である。図10Aに示すように、噴水ユニット35は、タンク20内でTMAHを上向きに噴射することにより、TMAHを液面よりも上方に移動させる噴射ノズル37と、タンク20内のTMAHを噴射ノズル37に導く案内配管38と、タンク20内のTMAHを案内配管38を通じて噴射ノズル37に送るポンプ39とを含む。   FIG. 10A is a schematic diagram illustrating an example of the configuration of the dissolution promoting unit 34. As shown in FIG. 10A, the fountain unit 35 injects TMAH upward in the tank 20 to move the TMAH upward from the liquid level, and the TMAH in the tank 20 to the injection nozzle 37. It includes a guide pipe 38 that guides it, and a pump 39 that sends TMAH in the tank 20 to the injection nozzle 37 through the guide pipe 38.

図10Bは、溶解促進ユニット34の構成の他の例を示す模式図である。図10Bに示すように、フィンユニット36は、タンク20内に配置された1つ以上のステージ40と、タンク20内のTMAHをステージ40に導く案内配管38と、タンク20内のTMAHを案内配管38を通じてステージ40に送るポンプ39とを含む。各ステージ40は、水平な姿勢に保持されたプレートであってもよいし、上向きに開いたトレイであってもよい。図10Bでは、フィンユニット36が、複数のトレイとしての複数のステージ40を含む例が示されている。複数のステージ40は、上下に間隔を空けて水平な姿勢で保持されている。タンク20内のTMAHは、案内配管38から一番上のステージ40に向けて吐出される。一番上を除く他のステージ40は、その上側のステージ40から溢れたTMAHが落下する位置に配置されている。   FIG. 10B is a schematic diagram illustrating another example of the configuration of the dissolution promoting unit 34. As shown in FIG. 10B, the fin unit 36 includes one or more stages 40 arranged in the tank 20, a guide pipe 38 that guides the TMAH in the tank 20 to the stage 40, and a guide pipe that guides the TMAH in the tank 20. And a pump 39 that feeds the stage 40 through 38. Each stage 40 may be a plate held in a horizontal posture, or may be a tray opened upward. FIG. 10B shows an example in which the fin unit 36 includes a plurality of stages 40 as a plurality of trays. The plurality of stages 40 are held in a horizontal posture with an interval in the vertical direction. TMAH in the tank 20 is discharged from the guide pipe 38 toward the uppermost stage 40. The other stages 40 except the top are arranged at positions where TMAH overflowing from the upper stage 40 falls.

また、第1および第2実施形態では、窒素溶解ユニットおよび酸素溶解ユニットの両方が、薬液供給ユニットに設けられている場合について説明した。しかし、TMAH含有薬液への窒素含有ガスの供給が不要な場合は、酸素溶解ユニットだけが、薬液供給ユニットに設けられていてもよい。
また、第1および第2実施形態では、溶存ガスセンサーが、薬液供給ユニットに設けられている場合について説明した。しかし、TMAH含有薬液中の溶存酸素濃度の測定を行わない場合には、薬液供給ユニットは、溶存ガスセンサーを備えていなくてもよい。
In the first and second embodiments, the case where both the nitrogen dissolving unit and the oxygen dissolving unit are provided in the chemical solution supply unit has been described. However, when the supply of the nitrogen-containing gas to the TMAH-containing chemical solution is unnecessary, only the oxygen dissolving unit may be provided in the chemical solution supply unit.
In the first and second embodiments, the case where the dissolved gas sensor is provided in the chemical solution supply unit has been described. However, when the measurement of the dissolved oxygen concentration in the TMAH-containing chemical solution is not performed, the chemical solution supply unit may not include the dissolved gas sensor.

その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。   In addition, various design changes can be made within the scope of matters described in the claims.

1 :基板処理システム
2 :処理ユニット
3 :薬液供給ユニット(薬液生成ユニット)
4 :制御装置(制御手段)
27 :窒素溶解ユニット(窒素溶解手段)
28 :酸素溶解ユニット(酸素溶解手段)
29 :溶存ガスセンサー(測定手段)
201 :基板処理システム
203 :薬液供給ユニット(薬液生成ユニット)
227 :窒素溶解ユニット(窒素溶解手段)
228 :酸素溶解ユニット(酸素溶解手段)
W :基板
1: Substrate processing system 2: Processing unit 3: Chemical solution supply unit (chemical solution generating unit)
4: Control device (control means)
27: Nitrogen dissolving unit (nitrogen dissolving means)
28: Oxygen dissolution unit (oxygen dissolution means)
29: Dissolved gas sensor (measuring means)
201: Substrate processing system 203: Chemical solution supply unit (chemical solution generation unit)
227: Nitrogen dissolving unit (nitrogen dissolving means)
228: Oxygen dissolving unit (oxygen dissolving means)
W: Substrate

Claims (12)

TMAH(水酸化テトラメチルアンモニウム)を含むTMAH含有薬液に、酸素ガスを含む酸素含有ガスを供給することにより、前記TMAH含有薬液に前記酸素含有ガスを溶解させるガス溶解工程と、
前記酸素含有ガスを溶解させた前記TMAH含有薬液中の溶存酸素濃度を変更することにより、基板に形成されたポリシリコン膜を前記TMAH含有薬液によりエッチングする処理能力であるエッチングレートが前記TMAH含有薬液中の溶存酸素濃度の上昇に伴って上昇し、前記エッチングレートが前記TMAH含有薬液中の溶存酸素濃度の低下に伴って低下するように、前記エッチングレートを調整する調整工程とを含む、基板処理用の薬液生成方法。
A gas dissolving step of dissolving the oxygen-containing gas in the TMAH-containing chemical solution by supplying an oxygen-containing gas containing oxygen gas to the TMAH-containing chemical solution containing TMAH (tetramethylammonium hydroxide);
An etching rate, which is a processing capability for etching a polysilicon film formed on a substrate with the TMAH-containing chemical solution, by changing the dissolved oxygen concentration in the TMAH-containing chemical solution in which the oxygen-containing gas is dissolved is the TMAH-containing chemical solution. An adjustment step of adjusting the etching rate such that the etching rate increases with an increase in the dissolved oxygen concentration therein and the etching rate decreases with a decrease in the dissolved oxygen concentration in the TMAH-containing chemical solution. Chemical solution generation method.
前記ガス溶解工程は、前記TMAH含有薬液を貯留するタンク内で前記TMAH含有薬液に前記酸素含有ガスを溶解させる工程を含む、請求項1に記載の基板処理用の薬液生成方法。   2. The method for generating a chemical for substrate processing according to claim 1, wherein the gas dissolving step includes a step of dissolving the oxygen-containing gas in the TMAH-containing chemical in a tank that stores the TMAH-containing chemical. 前記ガス溶解工程は、前記TMAH含有薬液を貯留するタンク内の前記TMAH含有薬液を循環させる循環経路内で前記TMAH含有薬液に前記酸素含有ガスを溶解させる工程を含む、請求項1または2に記載の基板処理用の薬液生成方法。   3. The gas dissolving step includes a step of dissolving the oxygen-containing gas in the TMAH-containing chemical solution in a circulation path for circulating the TMAH-containing chemical solution in a tank that stores the TMAH-containing chemical solution. The chemical | medical solution production | generation method for substrate processing of. 前記調整工程は、
前記TMAH含有薬液中の溶存酸素濃度を測定する測定工程と、
前記測定工程で測定された溶存酸素濃度が所定の濃度よりも高い場合に、前記TMAH含有薬液に、窒素ガスを含む窒素含有ガスを供給することにより、前記TMAH含有薬液に前記窒素含有ガスを溶解させる窒素溶解工程と、
前記測定工程で測定された溶存酸素濃度が前記所定の濃度よりも低い場合に、前記TMAH含有薬液に前記酸素含有ガスを供給することにより、前記TMAH含有薬液に前記酸素含有ガスを溶解させる酸素溶解工程とを含む、請求項1〜3のいずれか一項に記載の基板処理用の薬液生成方法。
The adjustment step includes
A measuring step of measuring a dissolved oxygen concentration in the TMAH-containing chemical solution;
When the dissolved oxygen concentration measured in the measurement step is higher than a predetermined concentration, the nitrogen-containing gas is dissolved in the TMAH-containing chemical solution by supplying the TMAH-containing chemical solution with a nitrogen-containing gas containing nitrogen gas. A nitrogen dissolving step,
Oxygen dissolution that dissolves the oxygen-containing gas in the TMAH-containing chemical solution by supplying the oxygen-containing gas to the TMAH-containing chemical solution when the dissolved oxygen concentration measured in the measurement step is lower than the predetermined concentration The chemical | medical solution production | generation method for substrate processing as described in any one of Claims 1-3 including a process.
前記測定工程は、前記TMAH含有薬液を貯留するタンク内の前記TMAH含有薬液を循環させる循環経路を流れる前記TMAH含有薬液中の溶存酸素濃度を測定する工程を含む、請求項4に記載の基板処理用の薬液生成方法。   5. The substrate processing according to claim 4, wherein the measuring step includes a step of measuring a dissolved oxygen concentration in the TMAH-containing chemical solution flowing through a circulation path for circulating the TMAH-containing chemical solution in a tank storing the TMAH-containing chemical solution. Chemical solution generation method. 請求項1〜5のいずれか一項に記載の基板処理用の薬液生成方法により生成された前記TMAH含有薬液を、ポリシリコン膜が形成された基板に供給し、前記基板の前記ポリシリコン膜をエッチングするTMAH供給工程を含む、基板処理方法。   The TMAH-containing chemical solution generated by the chemical processing method for substrate processing according to any one of claims 1 to 5 is supplied to a substrate on which a polysilicon film is formed, and the polysilicon film on the substrate is A substrate processing method including a TMAH supplying step of etching. TMAH(水酸化テトラメチルアンモニウム)を含むTMAH含有薬液に、酸素ガスを含む酸素含有ガスを供給することにより、前記TMAH含有薬液に前記酸素含有ガスを溶解させる酸素溶解手段と、
前記酸素含有ガスを溶解させた前記TMAH含有薬液中の溶存酸素濃度を変更することにより、基板に形成されたポリシリコン膜を前記TMAH含有薬液によりエッチングする処理能力であるエッチングレートが前記TMAH含有薬液中の溶存酸素濃度の上昇に伴って上昇し、前記エッチングレートが前記TMAH含有薬液中の溶存酸素濃度の低下に伴って低下するように、前記エッチングレートを調整する調整手段とを含む、基板処理用の薬液生成ユニット。
Oxygen dissolving means for dissolving the oxygen-containing gas in the TMAH-containing chemical solution by supplying an oxygen-containing gas containing oxygen gas to the TMAH-containing chemical solution containing TMAH (tetramethylammonium hydroxide);
An etching rate, which is a processing capability for etching a polysilicon film formed on a substrate with the TMAH-containing chemical solution, by changing the dissolved oxygen concentration in the TMAH-containing chemical solution in which the oxygen-containing gas is dissolved is the TMAH-containing chemical solution. A substrate processing comprising: an adjusting means for adjusting the etching rate so as to increase with an increase in the dissolved oxygen concentration therein and to decrease with the decrease in the dissolved oxygen concentration in the TMAH-containing chemical solution Chemical solution generation unit.
前記基板処理用の薬液生成ユニットは、前記TMAH含有薬液を貯留するタンクをさらに含み、
前記酸素溶解手段は、前記タンク内で前記TMAH含有薬液に前記酸素含有ガスを溶解させる手段を含む、請求項7に記載の基板処理用の薬液生成ユニット。
The chemical processing unit for substrate processing further includes a tank for storing the TMAH-containing chemical.
The said oxygen melt | dissolution means is a chemical | medical solution production | generation unit for a substrate processing of Claim 7 containing the means to melt | dissolve the said oxygen containing gas in the said TMAH containing chemical | medical solution in the said tank.
前記基板処理用の薬液生成ユニットは、前記TMAH含有薬液を貯留するタンクと、前記タンク内の前記TMAH含有薬液を循環させる循環経路とをさらに含み、
前記酸素溶解手段は、前記循環経路内で前記TMAH含有薬液に前記酸素含有ガスを溶解させる手段を含む、請求項7または8に記載の基板処理用の薬液生成ユニット。
The chemical treatment unit for substrate processing further includes a tank for storing the TMAH-containing chemical solution, and a circulation path for circulating the TMAH-containing chemical solution in the tank,
9. The chemical processing unit for substrate processing according to claim 7 or 8, wherein the oxygen dissolving means includes means for dissolving the oxygen-containing gas in the TMAH-containing chemical liquid in the circulation path.
前記調整手段は、
前記TMAH含有薬液中の溶存酸素濃度を測定する測定手段と、
窒素ガスを含む窒素含有ガスを前記TMAH含有薬液に供給することにより、前記TMAH含有薬液に前記窒素含有ガスを溶解させる窒素溶解手段と、
前記測定手段によって測定された溶存酸素濃度が所定の濃度よりも高い場合に、前記窒素溶解手段を制御することにより、前記TMAH含有薬液に前記窒素含有ガスを溶解させ、前記測定手段によって測定された溶存酸素濃度が前記所定の濃度よりも低い場合に、前記酸素溶解手段を制御することにより、前記TMAH含有薬液に前記酸素含有ガスを溶解させる制御手段とを含む、請求項7〜9のいずれか一項に記載の基板処理用の薬液生成ユニット。
The adjusting means includes
Measuring means for measuring the dissolved oxygen concentration in the TMAH-containing chemical solution;
A nitrogen-dissolving means for dissolving the nitrogen-containing gas in the TMAH-containing chemical solution by supplying a nitrogen-containing gas containing nitrogen gas to the TMAH-containing chemical solution;
When the dissolved oxygen concentration measured by the measuring means is higher than a predetermined concentration, the nitrogen-containing gas is dissolved in the TMAH-containing chemical solution by controlling the nitrogen dissolving means, and measured by the measuring means Control means for dissolving the oxygen-containing gas in the TMAH-containing chemical liquid by controlling the oxygen dissolving means when the dissolved oxygen concentration is lower than the predetermined concentration. The chemical | medical solution production | generation unit for the substrate processing as described in one term.
前記基板処理用の薬液生成ユニットは、前記TMAH含有薬液を貯留するタンクと、前記タンク内の前記TMAH含有薬液を循環させる循環経路とをさらに含み、
前記測定手段は、前記循環経路を流れる前記TMAH含有薬液中の溶存酸素濃度を測定する手段を含む、請求項10に記載の基板処理用の薬液生成ユニット。
The chemical treatment unit for substrate processing further includes a tank for storing the TMAH-containing chemical solution, and a circulation path for circulating the TMAH-containing chemical solution in the tank,
The chemical | medical solution production | generation unit for substrate processing of Claim 10 with which the said measurement means contains a means to measure the dissolved oxygen concentration in the said TMAH containing chemical | medical solution which flows through the said circulation path.
請求項7〜11のいずれか一項に記載の薬液生成ユニットと、
前記薬液生成ユニットによって生成された前記TMAH含有薬液を、ポリシリコン膜が形成された基板に供給する処理ユニットとを含む、基板処理システム。
The chemical liquid production unit according to any one of claims 7 to 11,
And a processing unit that supplies the TMAH-containing chemical generated by the chemical generating unit to a substrate on which a polysilicon film is formed.
JP2017176835A 2012-05-15 2017-09-14 Substrate processing chemical generation method, substrate processing chemical generation unit, substrate processing method, and substrate processing system Active JP6435385B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012111758 2012-05-15
JP2012111758 2012-05-15

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013025312A Division JP6300139B2 (en) 2012-05-15 2013-02-13 Substrate processing method and substrate processing system

Publications (2)

Publication Number Publication Date
JP2018019089A JP2018019089A (en) 2018-02-01
JP6435385B2 true JP6435385B2 (en) 2018-12-05

Family

ID=61081755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017176835A Active JP6435385B2 (en) 2012-05-15 2017-09-14 Substrate processing chemical generation method, substrate processing chemical generation unit, substrate processing method, and substrate processing system

Country Status (1)

Country Link
JP (1) JP6435385B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6995547B2 (en) 2017-09-22 2022-01-14 株式会社Screenホールディングス Chemical solution generation method, chemical solution generator and substrate processing device
JP7096004B2 (en) * 2018-02-07 2022-07-05 株式会社Screenホールディングス Board processing method and board processing equipment
JP7126468B2 (en) 2019-03-20 2022-08-26 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus
JP2022041076A (en) 2020-08-31 2022-03-11 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000279902A (en) * 1999-03-30 2000-10-10 Nomura Micro Sci Co Ltd Method of washing substrate
JP2000315670A (en) * 1999-04-30 2000-11-14 Nec Corp Cleaning method of semiconductor substrate
JP3489555B2 (en) * 2000-09-22 2004-01-19 ヤマハ株式会社 Silicon residue removal method
JP4015823B2 (en) * 2001-05-14 2007-11-28 株式会社東芝 Alkali developer manufacturing method, alkali developer, pattern forming method, resist film peeling method, and chemical solution coating apparatus
JP2009260020A (en) * 2008-04-16 2009-11-05 Kurita Water Ind Ltd Cleaning water for electronic material, method of cleaning electronic material, and system for supplying water containing dissolved gas

Also Published As

Publication number Publication date
JP2018019089A (en) 2018-02-01

Similar Documents

Publication Publication Date Title
JP6300139B2 (en) Substrate processing method and substrate processing system
JP6435385B2 (en) Substrate processing chemical generation method, substrate processing chemical generation unit, substrate processing method, and substrate processing system
TWI553888B (en) Substrate processing apparatus and substrate processing method
CN109545704B (en) Chemical liquid generating method, chemical liquid generating apparatus, and substrate processing apparatus
JP2018117032A (en) Substrate processing apparatus
US20180096863A1 (en) Substrate processing method, substrate processing apparatus, and storage medium
KR102006061B1 (en) Substrate treatment device and substrate treatment method
JP5189121B2 (en) Substrate processing apparatus, substrate processing method, and recording medium on which a computer program for executing the substrate processing method is recorded
US10458010B2 (en) Substrate liquid processing apparatus, substrate liquid processing method, and storage medium
KR102126116B1 (en) Substrate processing method and substrate processing apparatus
JP6571942B2 (en) Substrate processing equipment
WO2020105403A1 (en) Substrate treatment method and substrate treatment device
JP5194044B2 (en) Treatment liquid supply apparatus and treatment liquid supply method
US20240170297A1 (en) Substrate treating method and substrate treating apparatus
JP6939960B1 (en) Wafer cleaning water supply device
WO2023223908A1 (en) Substrate treatment device and substrate treatment method
US20220367203A1 (en) Substrate processing method and substrate processing apparatus
KR20240041253A (en) Substrate processing apparatus and substrate processing method
TW202412098A (en) Substrate processing apparatus and substrate processing method
JP2024004752A (en) Substrate processing method and substrate processing device
JP2013008976A (en) Cleaning method of electronic material member

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181112

R150 Certificate of patent or registration of utility model

Ref document number: 6435385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250