JP6427982B2 - measuring device - Google Patents

measuring device Download PDF

Info

Publication number
JP6427982B2
JP6427982B2 JP2014127016A JP2014127016A JP6427982B2 JP 6427982 B2 JP6427982 B2 JP 6427982B2 JP 2014127016 A JP2014127016 A JP 2014127016A JP 2014127016 A JP2014127016 A JP 2014127016A JP 6427982 B2 JP6427982 B2 JP 6427982B2
Authority
JP
Japan
Prior art keywords
optical
holder
measuring
shape
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014127016A
Other languages
Japanese (ja)
Other versions
JP2016006388A (en
Inventor
義憲 井手
義憲 井手
俊哉 瀧谷
俊哉 瀧谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2014127016A priority Critical patent/JP6427982B2/en
Publication of JP2016006388A publication Critical patent/JP2016006388A/en
Application granted granted Critical
Publication of JP6427982B2 publication Critical patent/JP6427982B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、例えば光学素子の形状等を測定できる測定装置に関する。   The present invention relates to a measuring apparatus that can measure, for example, the shape of an optical element.

撮像レンズ等の光学素子では、製造誤差などによって表裏の光学面中心に相対的なずれ(偏心)が生じることがあり、それにより光学性能が劣化する恐れがある。そこで、実際に形成された光学素子において偏心度を把握することが重要となっている。偏心度を測定する装置としては、2つの測定機器を光学素子の表裏面に対向して配置し、各々の測定機器の測定結果から偏心度を求めるものが知られている(特許文献1,2)   In an optical element such as an imaging lens, a relative deviation (eccentricity) may occur between the front and back optical surface centers due to a manufacturing error or the like, which may deteriorate optical performance. Therefore, it is important to grasp the degree of eccentricity in the actually formed optical element. As an apparatus for measuring the degree of eccentricity, an apparatus is known in which two measuring devices are arranged opposite to the front and back surfaces of an optical element and the eccentricity is obtained from the measurement results of each measuring device (Patent Documents 1 and 2). )

特許第5399304号明細書Japanese Patent No. 5399304 特許第3604996号明細書Japanese Patent No. 3604996

ところで、近年においては、精度の高い光学素子が要求される傾向があり、例えば偏心度の許容範囲はとしてサブミクロンレベルのものが要求されている。これに対し、サブミクロンレベルで偏心度を測定するためには、測定機器の分解能を高めることは勿論のこと、測定機器の固定を剛的に行う必要がある。加えて、2つの測定機器の取り付け位置のずれは、理想状態に対して数十nmレベル以内に抑えることが要求される。   By the way, in recent years, there is a tendency that an optical element with high accuracy is required. For example, an allowable range of eccentricity is required to be a submicron level. On the other hand, in order to measure the eccentricity at the submicron level, it is necessary to firmly fix the measuring device as well as to increase the resolution of the measuring device. In addition, it is required that the displacement of the mounting positions of the two measuring devices be suppressed to a level of several tens of nanometers with respect to the ideal state.

特許文献1には、それぞれステージに載置した2つの干渉計を、レンズの両面に対向して配置して、各々レンズの光学面を測定する装置が開示されている。しかるに、特許文献1の構成では、2つの干渉計の相対位置を決定する部品の点数が多く、また構造長が長いので、温度変化が生じると2つの干渉計の検出軸にずれが生じる恐れがあり、それにより測定結果の誤差が生じる恐れがある。又、2つの干渉計は、それぞれ片持ち状のZステージに保持されているから剛的な保持が難しく、また構造上固有振動数が比較的低くなることから振動の発生を招きやすく、理想状態に対して数十nmレベル以内に抑えることは困難である。   Patent Document 1 discloses an apparatus for measuring the optical surface of each lens by disposing two interferometers placed on the stage so as to face both surfaces of the lens. However, in the configuration of Patent Document 1, since the number of parts for determining the relative position of the two interferometers is large and the structure length is long, there is a possibility that the detection axes of the two interferometers may shift when the temperature changes. There is a possibility that an error of the measurement result occurs. In addition, the two interferometers are each held on a cantilevered Z stage, making it difficult to hold them rigidly. Also, the structure has a relatively low natural frequency, which tends to cause vibrations. On the other hand, it is difficult to keep it within several tens of nm level.

特許文献2には、被測定物の上面側及び下面側に、被測定物の形状に沿って走査する上面光プローブ及び下面光プローブを配置した装置が開示されている。上面光プローブ及び下面光プローブは、それぞれステージ構造に搭載されているが、特許文献1と同様に2つのプローブの相対位置を決定する部品の点数が多く、また構造長が長いので、温度変化が生じると2つの光プローブにずれが生じる恐れがあり、それにより測定結果の誤差が生じる恐れがある。又、特許文献2の構成は、光プローブの検出光線を基準ミラーを介して反射するようにしているが、この基準ミラーの位置決めが難しく、構成をより複雑化させている。   Patent Document 2 discloses an apparatus in which an upper surface optical probe and a lower surface optical probe that scan along the shape of the object to be measured are arranged on the upper surface side and the lower surface side of the object to be measured. The upper surface optical probe and the lower surface optical probe are mounted on the stage structure, respectively. However, as in Patent Document 1, the number of parts for determining the relative position of the two probes is large, and the structure length is long, so that the temperature change is large. If this occurs, there is a risk that the two optical probes will be displaced, which may cause an error in the measurement result. In the configuration of Patent Document 2, the detection light beam of the optical probe is reflected through the reference mirror. However, it is difficult to position the reference mirror, and the configuration is further complicated.

本発明は、上述した課題に鑑みてなされたものであり、簡素な構造を持ちながら、光学素子の高精度な測定を行える測定装置を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a measuring apparatus that can measure an optical element with high accuracy while having a simple structure.

請求項1に記載の測定装置は、
光学素子の対向する第1面及び第2面の形状を測定する測定装置において、
前記第1面の形状を測定する第1の光学測定手段と、
前記第2面の形状を測定する第2の光学測定手段と、
前記第1の光学測定手段を剛的に固定する第1支持部材と、前記第2の光学測定手段を剛的に固定する第2支持部材と、前記第1支持部材と第2支持部材を連結する一対の連結部材を備えたホルダとを有し、
前記連結部材は、前記第1の光学測定手段の光軸及び前記第2の光学測定手段の光軸に略一致する上下方向である基準軸を挟んで、前記第1支持部材と前記第2支持部材とを複数個所で連結し、前記ホルダは前記基準軸に対して直交する方向から見たときに閉じた形状を有し、
前記ホルダは、矩形枠状であり、
前記ホルダを支持するために2カ所で連結されたフレームを有し、前記ホルダと前記フレームとの連結部を結んだ線上に、前記第1の光学測定手段及び前記第2の光学測定手段を保持したホルダの重心が位置し、
前記ホルダの連結部材の中央で、前記フレームがそれぞれ連結されていることを特徴とする。
The measuring apparatus according to claim 1 comprises:
In a measuring apparatus for measuring the shape of the first surface and the second surface of the optical element facing each other,
First optical measurement means for measuring the shape of the first surface;
Second optical measurement means for measuring the shape of the second surface;
A first support member for rigidly fixing the first optical measurement means, a second support member for rigidly fixing the second optical measurement means, and the first support member and the second support member are connected. A holder having a pair of connecting members
The connecting member sandwiches an optical axis of the first optical measuring unit and a reference axis which is a vertical direction substantially coinciding with the optical axis of the second optical measuring unit, with the first supporting member and the second supporting member being sandwiched therebetween. Connecting the member at a plurality of locations, the holder has a closed shape when viewed from a direction orthogonal to the reference axis,
The holder has a rectangular frame shape,
It has a frame connected at two points to support the holder, and holds the first optical measurement means and the second optical measurement means on a line connecting the connection portions of the holder and the frame. The center of gravity of the holder
The frames are respectively connected at the center of the connecting member of the holder .

本発明によれば、前記連結部材が、前記第1の光学測定手段の光軸及び前記第2の光学測定手段の光軸に略一致する基準軸を挟んで、前記第1支持部材と前記第2支持部材とを複数個所で連結し、前記ホルダが、前記基準軸に対して直交する方向から見たときに閉じた形状を有するので、片持ち形状に比べ剛性が高く固有振動数が比較的高いため振動等が生じにくいものとなっている。これにより、簡素な構造を有しながらも、2つの光学測定手段を精度良く保持できるので、光学素子の高精度な形状測定を行うことが出来、これにより偏心度を精度良く把握できる。尚、前記第1支持部材と前記第2支持部材と前記連結部材とを一体物として前記ホルダを形成しても良く、これにより更に剛性が高まるが、個々の部材を接合して形成することで、閉じた形状であっても低コストで容易に形成できる。   According to the present invention, the connecting member has the first support member and the first optical member sandwiching the reference axis that substantially coincides with the optical axis of the first optical measurement unit and the optical axis of the second optical measurement unit. Since the holder has a closed shape when viewed from a direction orthogonal to the reference axis, the rigidity is higher and the natural frequency is relatively lower than the cantilever shape. Since it is high, vibration and the like are difficult to occur. As a result, the two optical measuring means can be held with high accuracy while having a simple structure, so that the shape of the optical element can be measured with high accuracy, and the degree of eccentricity can be grasped with high accuracy. The holder may be formed by integrating the first support member, the second support member, and the connecting member, and this further increases the rigidity, but by joining and forming individual members. Even a closed shape can be easily formed at low cost.

請求項2に記載の測定装置は、請求項1に記載の発明において、前記ホルダは、前記基準軸に対して直交する方向から見たときに線対称の形状を有することを特徴とする。   The measuring apparatus according to claim 2 is characterized in that, in the invention according to claim 1, the holder has a line-symmetric shape when viewed from a direction orthogonal to the reference axis.

更に、前記ホルダは前記基準軸に対して直交する方向から見たときに線対称となる構造を有するから、前記基準軸に対して、前記第1の光学測定手段の光軸及び前記第2の光学測定手段の光軸とを略一致するように取り付けたとき、基準軸の両側で温度変動により生ずる膨張又は収縮が均一となり、これにより環境温度変化時においても、前記第1の光学測定手段の光軸と、前記第2の光学測定手段の光軸とのずれを抑制できる。   Furthermore, since the holder has a structure that is line symmetric when viewed from a direction orthogonal to the reference axis, the optical axis of the first optical measuring means and the second axis are relative to the reference axis. When the optical measuring means is mounted so as to be substantially coincident with the optical axis, the expansion or contraction caused by the temperature fluctuation is uniform on both sides of the reference axis, so that even when the environmental temperature changes, the first optical measuring means Deviation between the optical axis and the optical axis of the second optical measuring means can be suppressed.

請求項3に記載の測定装置は、請求項1又は2に記載の発明において、前記ホルダは、前記基準軸の方向から見たときに,少なくとも2本の対称軸に対して線対称となる形状を有することを特徴とする。   According to a third aspect of the present invention, in the measurement apparatus according to the first or second aspect, the holder has a shape that is line symmetric with respect to at least two symmetry axes when viewed from the direction of the reference axis. It is characterized by having.

これにより、環境温度変化時においても、前記第1の光学測定手段の光軸と、前記第2の光学測定手段の光軸とのずれを更に抑制できる。   Thereby, even when the environmental temperature changes, the deviation between the optical axis of the first optical measuring means and the optical axis of the second optical measuring means can be further suppressed.

前記ホルダと前記フレームとの連結部(面であればその中心)を結んだ線上に前記重心が位置するようにすることで、前記重心位置を振動の節とすることができ、外部振動源の影響が前記光学測定手段に及ぶことを抑制できる。   The center of gravity can be used as a vibration node by positioning the center of gravity on a line connecting the connection portions of the holder and the frame (or the center of the surface if the surface). It is possible to suppress the influence on the optical measuring means.

請求項に記載の測定装置は、請求項1〜3のいずれかに記載の発明において、前記ホルダと前記フレームとの連結部を結んだ線は、前記基準軸に直交することを特徴とする。 A measuring apparatus according to a fourth aspect is characterized in that, in the invention according to any one of the first to third aspects, a line connecting the connecting portions of the holder and the frame is orthogonal to the reference axis. .

これにより、ホルダの対称性が一層向上するので、高精度な測定が可能になる。   Thereby, the symmetry of the holder is further improved, so that highly accurate measurement is possible.

請求項に記載の測定装置は、請求項1〜4のいずれかに記載の発明において、前記フレームは可動ステージ上に載置されていることを特徴とする。 According to a fifth aspect of the present invention, in the invention according to any one of the first to fourth aspects, the frame is placed on a movable stage.

例えば干渉計などの光学測定手段を用いた場合、移動させることなく一度に測定できる範囲はせいぜい1〜2mm程度である。よって、より広範囲の測定が必要となる光学素子を測定する場合、光学素子に対して相対移動させる可動ステージに、前記フレームを介して前記ホルダを搭載するのが好ましい。   For example, when an optical measuring means such as an interferometer is used, the range that can be measured at one time without being moved is at most about 1 to 2 mm. Therefore, when measuring an optical element that requires a wider range of measurement, the holder is preferably mounted on the movable stage that is moved relative to the optical element via the frame.

前記ホルダを矩形状とすることで、前記第1支持部材である第1辺に前記第1の光学測定手段を取り付け、それと対向する前記第2支持部材である第3辺に前記第2の光学測定手段を取り付けた上で、前記連結部材である第2辺と第4辺の寸法を等しくすることで、温度変化時の熱膨張が釣り合ったホルダを提供できる。 By making the holder rectangular, the first optical measuring means is attached to the first side which is the first support member, and the second optical is attached to the third side which is the second support member facing the first optical measurement means. By attaching the measuring means and making the dimensions of the second side and the fourth side, which are the connecting members, equal, it is possible to provide a holder in which the thermal expansion at the time of temperature change is balanced.

請求項に記載の測定装置は、請求項1〜のいずれかに記載の発明において、前記第1の光学測定手段と前記第2の光学測定手段は白色干渉計であることを特徴とする。 The measuring apparatus according to claim 6 is the invention according to any one of claims 1 to 5 , wherein the first optical measuring means and the second optical measuring means are white interferometers. .

白色干渉計を用いることで、測定対象となる光学素子の一部の領域のみの測定でも面中心検出を行うことができ、また測定範囲に対して光学素子が大きい場合でも、2つの白色干渉計を移動させることなく固定したままで、光学素子の形状、ひいては偏心度測定が可能となる。但し、白色干渉計に限らず、測定対象となる光学素子の一部の領域のみの測定でも面中心検出を行うことができるものであれば用いることは可能である。   By using the white interferometer, it is possible to detect the center of the surface even when measuring only a partial region of the optical element to be measured, and even if the optical element is large relative to the measurement range, two white interferometers It is possible to measure the shape of the optical element, and hence the degree of eccentricity, while the lens is fixed without being moved. However, not only the white interferometer, but also any one that can detect the surface center can be used even in the measurement of only a partial region of the optical element to be measured.

請求項に記載の測定装置は、請求項1〜のいずれかに記載の発明において、前記第1の光学測定手段の光軸と前記第2の光学測定手段の光軸とを位置決めする位置決め手段を有することを特徴とする。
According to a seventh aspect of the present invention, in the measurement apparatus according to any one of the first to sixth aspects, the optical axis of the first optical measurement unit and the optical axis of the second optical measurement unit are positioned. It has the means.

前記位置決め手段を用いることで、前記第1の光学測定手段の光軸と前記第2の光学測定手段の光軸とを精度良く位置決めすることができる。   By using the positioning means, the optical axis of the first optical measurement means and the optical axis of the second optical measurement means can be accurately positioned.

本発明によれば、簡素な構造を持ちながら、光学素子の高精度な測定を行える測定装置を提供することができる。   According to the present invention, it is possible to provide a measuring apparatus that can measure an optical element with high accuracy while having a simple structure.

本実施形態の測定装置1の正面図である。1 is a front view of a measuring apparatus 1 of the present embodiment. 図1の測定装置1を矢印II方向に見た図である。It is the figure which looked at the measuring apparatus 1 of FIG. 1 in the arrow II direction. 測定装置に用いる白色干渉計10の一例を示す模式図である。It is a schematic diagram which shows an example of the white interferometer 10 used for a measuring apparatus. 別な実施の形態にかかるホルダ4’に白色干渉計10を取り付けた状態で示している図である。It is the figure shown in the state which attached the white interferometer 10 to the holder 4 'concerning another embodiment. 別な実施の形態にかかるホルダ4”を軸線AX方向に見た図2と同様な図である。It is the same figure as FIG. 2 which looked at holder 4 "concerning another embodiment in the axis line AX direction. 変形例にかかる測定装置の正面図であるが、フレーム等は省略して示している。Although it is a front view of the measuring device concerning a modification, a frame etc. are omitted and shown. 図6の測定装置を矢印VII方向に見た図である。It is the figure which looked at the measuring apparatus of FIG. 6 in the arrow VII direction.

以下、図面を参照しながら本発明にかかる実施形態について説明する。ただし、以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されているが、発明の範囲は以下の実施形態及び図示例に限定されるものではない。   Embodiments according to the present invention will be described below with reference to the drawings. However, although various technically preferable limitations for carrying out the present invention are given to the embodiments described below, the scope of the invention is not limited to the following embodiments and illustrated examples.

図1は、本実施形態の測定装置1の正面図である。図2は、図1の測定装置1を矢印II方向に見た図である。図1において、測定装置1は、X方向(図1で左右方向)及びY方向(図1で紙面垂直方向)に移動可能な可動ステージ2に載置されたフレーム3を有する。金属製のフレーム3は、可動ステージ2に固定される台板3aと、台板3aからZ方向(図1で上下方向)に延在する一対のアーム部3b、3bを有している。   FIG. 1 is a front view of the measuring apparatus 1 of the present embodiment. FIG. 2 is a view of the measuring apparatus 1 of FIG. 1 as viewed in the direction of arrow II. In FIG. 1, a measuring apparatus 1 has a frame 3 mounted on a movable stage 2 that can move in the X direction (left-right direction in FIG. 1) and Y direction (vertical direction in FIG. 1). The metal frame 3 has a base plate 3a fixed to the movable stage 2 and a pair of arm portions 3b and 3b extending from the base plate 3a in the Z direction (vertical direction in FIG. 1).

アーム部3b、3bの上端は、互いに向くように鈎状となっており、その端部3c、3cにホルダ4が連結されている。端部3c、3cとホルダ4との固定は、ボルトなどを用いることが好ましいが溶接でも良い。   The upper ends of the arm portions 3b and 3b are hooked so as to face each other, and the holder 4 is connected to the end portions 3c and 3c. The ends 3c and 3c and the holder 4 are preferably fixed using bolts or the like, but may be welded.

ホルダ4は、例えば鋳造などにより形成された金属製の矩形枠状であって、上壁(第1支持部材)4aと下壁(第2支持部材)4bの両端を、側壁(連結部材)4c、4dにより(後述する基準軸を挟んで複数箇所で)連結したごとき一体形状を有する。上壁4aの中央及び下壁4bの中央には、貫通したねじ孔4e、4fが形成されている。アーム部3b、3bの端部3c、3cは、側壁4c、4dの中央にそれぞれ連結されている。   The holder 4 is, for example, a metal rectangular frame formed by casting or the like, and both ends of an upper wall (first support member) 4a and a lower wall (second support member) 4b are connected to side walls (connecting members) 4c. 4d (in a plurality of places with a reference axis to be described later) connected to each other, and has an integral shape. In the center of the upper wall 4a and the center of the lower wall 4b, penetrating screw holes 4e and 4f are formed. The end portions 3c and 3c of the arm portions 3b and 3b are connected to the centers of the side walls 4c and 4d, respectively.

上壁4aのねじ孔4eに白色干渉計(第1の光学測定手段)10の端部に形成された雄ねじ10aを螺合させつつ、白色干渉計10が上壁4aに取り付けられており、その検出部はホルダ4の内側において下方を向いている。一方、下壁4bのねじ孔4fに白色干渉計(第2の光学測定手段)10の端部に形成された雄ねじ10aを螺合させつつ、白色干渉計10が下壁4bに取り付けられており、その検出部はホルダ4の内側において上方を向いている。2つの白色干渉計10の光軸は略一致している。尚、アーム部3b、3bの端部3c、3cと、側壁4c、4dの連結部を結んだ直線L(軸線AXと直交する)上に、2つの白色干渉計10とホルダ4の総合重心Gが位置している。これにより、総合重心Gの位置を振動の節とすることができ、外部振動源の影響が白色干渉計10に及ぶことを抑制できる。   The white interferometer 10 is attached to the upper wall 4a while the male screw 10a formed at the end of the white interferometer (first optical measuring means) 10 is screwed into the screw hole 4e of the upper wall 4a. The detection unit faces downward inside the holder 4. On the other hand, the white interferometer 10 is attached to the lower wall 4b while the male screw 10a formed at the end of the white interferometer (second optical measuring means) 10 is screwed into the screw hole 4f of the lower wall 4b. The detection part faces upward inside the holder 4. The optical axes of the two white interferometers 10 are substantially coincident. Note that the total center of gravity G of the two white interferometers 10 and the holder 4 is on a straight line L (perpendicular to the axis AX) connecting the end portions 3c and 3c of the arm portions 3b and 3b and the connecting portions of the side walls 4c and 4d. Is located. Thereby, the position of the total gravity center G can be used as a vibration node, and the influence of the external vibration source on the white interferometer 10 can be suppressed.

ホルダ4の内側において、2つの白色干渉計10に挟まれた位置に、測定対象となるレンズ(光学素子)LSが、支持部5により保持された状態で配置されている。   Inside the holder 4, a lens (optical element) LS to be measured is disposed in a state held by the support unit 5 at a position between the two white interferometers 10.

ホルダ4は、2つの白色干渉計10の光軸と略一致する軸線(基準軸とする)AXを有し、軸線AXに対して直交する方向(図1の方向)から見たときに線対称となる閉じた矩形形状を有している。但し、これに限らずホルダ4の形状は線対称で閉じていれば、例えば多角形状もしくは環状であっても良い。本実施の形態は、ホルダ4の軸線AXが基準軸と一致する例である。   The holder 4 has an axis line AX that substantially coincides with the optical axes of the two white interferometers 10 (reference axis) AX, and is line symmetric when viewed from a direction orthogonal to the axis line AX (direction in FIG. 1). It has a closed rectangular shape. However, the shape of the holder 4 is not limited thereto, and may be, for example, a polygonal shape or an annular shape as long as the shape of the holder 4 is closed in line symmetry. The present embodiment is an example in which the axis AX of the holder 4 coincides with the reference axis.

更にホルダ4は、図2に示すように軸線AXの方向から見たときに矩形状であって,少なくとも2本の対称軸BX,CXに対しても線対称となる形状を有している。   Furthermore, as shown in FIG. 2, the holder 4 is rectangular when viewed from the direction of the axis AX, and has a shape that is line symmetric with respect to at least two symmetry axes BX and CX.

図3は、白色干渉計10の一例を示す模式図である。この白色干渉計10は、マイケルソン型干渉計であるが、このタイプに限られることはない。光源11から出射された光束は、フィルター12を通過し、ビームスプリッタ13で反射されて、被測定物(ここでは球)OBJ側に向かい、対物レンズ14を通過し,ビームスプリッタ15に入射して分岐される。ビームスプリッタ15を通過した一部の光束は、被測定物OBJに入射し、残りの光束はビームスプリッタ15で反射して,光路長が既知であるミラー16に入射する。   FIG. 3 is a schematic diagram showing an example of the white interferometer 10. The white interferometer 10 is a Michelson interferometer, but is not limited to this type. The light beam emitted from the light source 11 passes through the filter 12, is reflected by the beam splitter 13, travels toward the object to be measured (here, a sphere) OBJ, passes through the objective lens 14, and enters the beam splitter 15. Branch off. A part of the light beam that has passed through the beam splitter 15 is incident on the object OBJ to be measured, and the remaining light beam is reflected by the beam splitter 15 and is incident on the mirror 16 whose optical path length is known.

被測定物OBJからの反射光束と、ミラー16からの反射光束は、再びビームスプリッタ15で結合され、対物レンズ14、ビームスプリッタ13を通過し、CCDカメラ17で干渉画像が検出される。尚、対物レンズ14,ビームスプリッタ15,ミラー16は、アクチュエータ18により一体的に移動可能となっている。対物レンズ14及びビームスプリッタ15の光軸が、白色干渉計10の光軸となる。   The reflected light beam from the object OBJ and the reflected light beam from the mirror 16 are combined again by the beam splitter 15, pass through the objective lens 14 and the beam splitter 13, and an interference image is detected by the CCD camera 17. The objective lens 14, the beam splitter 15, and the mirror 16 can be moved integrally by an actuator 18. The optical axes of the objective lens 14 and the beam splitter 15 are the optical axes of the white interferometer 10.

レンズの形状測定前において、2つの白色干渉計10の光軸を一致させ、且つ光軸のチルトが生じないように校正する必要がある。本実施の形態においては、位置決め手段としてのねじ孔4e、4fが高精度に形成されているので、ねじ孔4e、4fに白色干渉計10を取り付けることで、互いの光軸を一致させ且つチルトが生じないようにできる。尚、ホルダ4に対して白色干渉計10の光軸のシフト又はチルトの有無を確認する場合、例えば特願2013−192575号に記載の方法を用いることができる。   Before the lens shape measurement, it is necessary to calibrate so that the optical axes of the two white interferometers 10 coincide with each other and no tilt of the optical axes occurs. In the present embodiment, since the screw holes 4e and 4f as positioning means are formed with high accuracy, by attaching the white interferometer 10 to the screw holes 4e and 4f, the optical axes are aligned with each other and tilted. Can be prevented. In addition, when confirming the presence or absence of shift or tilt of the optical axis of the white interferometer 10 with respect to the holder 4, for example, a method described in Japanese Patent Application No. 2013-192575 can be used.

本実施形態の動作について説明する。図1に示すように、ホルダ4により対向配置した状態で保持された一方の白色干渉計10により、レンズLSの上側面(第1の面)の形状測定を行い、同時に他方の白色干渉計10により、レンズLSの下側面(第2の面)の形状測定を行う。より広範囲の測定が必要な場合には、可動ステージ2を駆動して、レンズLSに対して相対移動させれば良い。以上の測定により上側面と下側面の中心位置(光軸)が分かるので、そのズレであるレンズLSの偏心度の測定を行うことができる。   The operation of this embodiment will be described. As shown in FIG. 1, the shape of the upper side surface (first surface) of the lens LS is measured by one white interferometer 10 held in a state of being opposed to the holder 4, and at the same time, the other white interferometer 10. Thus, the shape of the lower surface (second surface) of the lens LS is measured. If a wider range of measurement is required, the movable stage 2 may be driven and moved relative to the lens LS. Since the center position (optical axis) of the upper side surface and the lower side surface is known by the above measurement, the eccentricity of the lens LS that is the deviation can be measured.

本実施の形態によれば、ホルダ4が、軸線AXに対して直交する方向から見たときに閉じた矩形状を有するので、剛性が高く固有振動数が比較的高いため振動等が生じにくくなっている。又、温度変化が生じた場合、ホルダ4は軸線AXに線対称な形状であるので、側壁4c、4dの熱膨張が等しくなり、これにより上壁4aと下壁4bとの間隔は変動するが、それぞれに取り付けられた白色干渉計10の光軸と、ホルダ4の軸線AXとにずれは殆ど生じない。又、ホルダ4は、軸線AXの方向から見たときに,2本の対称軸BX,CXに対しても線対称となる形状を有しているので、対称軸BX,CXの方向にも均等にホルダ4の熱膨張が生じるから、温度変化時における白色干渉計10の光軸と、ホルダ4の軸線AXとのずれを有効に抑制できる。   According to the present embodiment, since the holder 4 has a rectangular shape that is closed when viewed from a direction orthogonal to the axis AX, vibration and the like are less likely to occur because the rigidity is high and the natural frequency is relatively high. ing. Further, when the temperature changes, the holder 4 has a shape symmetrical with respect to the axis AX, so that the thermal expansion of the side walls 4c and 4d becomes equal, and the distance between the upper wall 4a and the lower wall 4b varies accordingly. There is almost no deviation between the optical axis of the white interferometer 10 attached to each of them and the axis AX of the holder 4. In addition, since the holder 4 has a shape that is line symmetric with respect to the two symmetry axes BX and CX when viewed from the direction of the axis AX, the holder 4 is also equal in the direction of the symmetry axes BX and CX. Thus, the thermal expansion of the holder 4 occurs, so that it is possible to effectively suppress the deviation between the optical axis of the white interferometer 10 and the axis AX of the holder 4 when the temperature changes.

尚、ホルダ4は、基準軸AXに直交する方向又は基準軸AXの方向から見たときに、必ずしも線対称である必要はない。例えば図1,2に一点鎖線で示すように、ホルダ4に付属物(例えば配線を固定するためのボス等)SBを形成した場合や、穴や切欠などを設けた場合など非対称形状であっても、ホルダ4が閉じた形状であって上述の機能を阻害しない限り本発明の効果が得られる。   The holder 4 does not necessarily have line symmetry when viewed from the direction orthogonal to the reference axis AX or the direction of the reference axis AX. For example, as shown by the alternate long and short dash line in FIGS. 1 and 2, when the accessory (for example, a boss for fixing the wiring) SB is formed on the holder 4 or when a hole or a notch is provided, However, the effect of the present invention can be obtained as long as the holder 4 has a closed shape and does not impair the above-described function.

図4は、別な実施の形態にかかるホルダ4’に白色干渉計10を取り付けた状態で示している。図4において、金属製のホルダ4’は、同一形状、同一素材の上板4a’と下板4b’の両端を、同一形状、同一素材の側板4c’、4d’にボルトBTを用いて締結することにより、矩形枠状の形状を有する。それ以外は、上述した実施の形態と同様である。本実施の形態によれば、上述した実施の形態より低コストで精度良くホルダ4'を製造できる。   FIG. 4 shows the white interferometer 10 attached to a holder 4 ′ according to another embodiment. In FIG. 4, the metal holder 4 ′ has the same shape and the same material, and the upper plate 4 a ′ and the lower plate 4 b ′ are fastened to the side plates 4 c ′ and 4 d ′ of the same shape and the same material using bolts BT. By doing so, it has a rectangular frame shape. Other than that, it is the same as the embodiment described above. According to the present embodiment, the holder 4 ′ can be manufactured with higher accuracy at lower cost than the above-described embodiment.

図5は、別な実施の形態にかかるホルダ4”を軸線AX方向に見た図2と同様な図である。本実施の形態のホルダ4”は、図5において、対称軸BXに対してのみ線対称な形状となっている。又、ホルダ4”はねじ孔の代わりに溝4e”を形成しており、背面側(図5で矢印で示す方向)から白色干渉計10を差し入れて取り付ける構成となっている。   FIG. 5 is a view similar to FIG. 2 in which the holder 4 ″ according to another embodiment is viewed in the direction of the axis AX. The holder 4 ″ of this embodiment is the same as the axis of symmetry BX in FIG. Only has a line-symmetric shape. Further, the holder 4 ″ is formed with a groove 4e ″ instead of a screw hole, and the white interferometer 10 is inserted and attached from the back side (the direction indicated by the arrow in FIG. 5).

以上述べた実施の形態においては、ホルダ4の軸線と基準軸とが一致した例をあげて説明したが、例えば図6,7に示すように、ホルダ4の軸線HXと、白色干渉計10の軸線と略一致する基準軸AXとがシフトしていている場合でも、基準軸AXに直交する方向に見てホルダ4が閉じた形状である限り本発明の範囲内である。   In the embodiment described above, the example in which the axis of the holder 4 and the reference axis coincide with each other has been described. However, as shown in FIGS. 6 and 7, for example, the axis HX of the holder 4 and the white interferometer 10 Even when the reference axis AX substantially coincident with the axis is shifted, it is within the scope of the present invention as long as the holder 4 is closed when viewed in the direction orthogonal to the reference axis AX.

本発明は、明細書に記載の実施例に限定されるものではなく、他の実施例・変形例を含むことは、本明細書に記載された実施例や思想から本分野の当業者にとって明らかである。   The present invention is not limited to the embodiments described in the specification, and other embodiments and modifications are apparent to those skilled in the art from the embodiments and ideas described in the present specification. It is.

1 測定装置
2 可動ステージ
3 フレーム
3a 台板
3b アーム部
3c 端部
4、4’、4” ホルダ
4a 上壁
4b 下壁
4c、4d 側壁
4a’ 上板
4b’ 下板
4c’、4d’ 側板
4e、4f ねじ孔
4e” 溝
5 支持部
10 干渉計
11 光源
12 フィルター
13 ビームスプリッタ
14 対物レンズ
15 ビームスプリッタ
16 ミラー
17 カメラ
18 アクチュエータ
AX 軸線(基準軸)
BX,CX ホルダの対称軸
LS レンズ
DESCRIPTION OF SYMBOLS 1 Measuring apparatus 2 Movable stage 3 Frame 3a Base plate 3b Arm part 3c End part 4, 4 ', 4 "Holder 4a Upper wall 4b Lower wall 4c, 4d Side wall 4a' Upper board 4b 'Lower board 4c', 4d 'Side board 4e 4f screw hole 4e "groove 5 support part 10 interferometer 11 light source 12 filter 13 beam splitter 14 objective lens 15 beam splitter 16 mirror 17 camera 18 actuator AX axis (reference axis)
Axis of symmetry LS lens for BX and CX holders

Claims (7)

光学素子の対向する第1面及び第2面の形状を測定する測定装置において、
前記第1面の形状を測定する第1の光学測定手段と、
前記第2面の形状を測定する第2の光学測定手段と、
前記第1の光学測定手段を剛的に固定する第1支持部材と、前記第2の光学測定手段を剛的に固定する第2支持部材と、前記第1支持部材と第2支持部材を連結する一対の連結部材を備えたホルダとを有し、
前記連結部材は、前記第1の光学測定手段の光軸及び前記第2の光学測定手段の光軸に略一致する上下方向である基準軸を挟んで、前記第1支持部材と前記第2支持部材とを複数個所で連結し、前記ホルダは前記基準軸に対して直交する方向から見たときに閉じた形状を有し、
前記ホルダは、矩形枠状であり、
前記ホルダを支持するために2カ所で連結されたフレームを有し、前記ホルダと前記フレームとの連結部を結んだ線上に、前記第1の光学測定手段及び前記第2の光学測定手段を保持したホルダの重心が位置し、
前記ホルダの連結部材の中央で、前記フレームがそれぞれ連結されていることを特徴とする測定装置。
In a measuring apparatus for measuring the shape of the first surface and the second surface of the optical element facing each other,
First optical measurement means for measuring the shape of the first surface;
Second optical measurement means for measuring the shape of the second surface;
A first support member for rigidly fixing the first optical measurement means, a second support member for rigidly fixing the second optical measurement means, and the first support member and the second support member are connected. A holder having a pair of connecting members
The connecting member sandwiches an optical axis of the first optical measuring unit and a reference axis which is a vertical direction substantially coinciding with the optical axis of the second optical measuring unit, with the first supporting member and the second supporting member being sandwiched therebetween. Connecting the member at a plurality of locations, the holder has a closed shape when viewed from a direction orthogonal to the reference axis,
The holder has a rectangular frame shape,
It has a frame connected at two points to support the holder, and holds the first optical measurement means and the second optical measurement means on a line connecting the connection portions of the holder and the frame. The center of gravity of the holder
The measuring apparatus , wherein the frames are respectively connected at the center of the connecting member of the holder .
前記ホルダは、前記基準軸に対して直交する方向から見たときに線対称の形状を有することを特徴とする請求項1に記載の測定装置。   The measuring apparatus according to claim 1, wherein the holder has a line-symmetric shape when viewed from a direction orthogonal to the reference axis. 前記ホルダは、前記基準軸の方向から見たときに,少なくとも2本の対称軸に対して線対称となる形状を有することを特徴とする請求項1又は2に記載の測定装置。   The measuring apparatus according to claim 1, wherein the holder has a shape that is line symmetric with respect to at least two symmetry axes when viewed from the direction of the reference axis. 前記ホルダと前記フレームとの連結部を結んだ線は、前記基準軸に直交することを特徴とする請求項1〜3のいずれかに記載の測定装置。 Line connecting the coupling portion with the said holder frame, measuring device according to any one of claims 1 to 3, characterized in that perpendicular to the reference axis. 前記フレームは可動ステージ上に載置されていることを特徴とする請求項1〜4のいずれかに記載の測定装置。 The measuring apparatus according to claim 1, wherein the frame is placed on a movable stage. 前記第1の光学測定手段と前記第2の光学測定手段は白色干渉計であることを特徴とする請求項1〜のいずれかに記載の測定装置。 Measurement apparatus according to any one of claims 1 to 5, wherein the first optical measuring means second optical measuring means, which is a white light interferometer. 前記第1の光学測定手段の光軸と前記第2の光学測定手段の光軸とを位置決めする位置決め手段を有することを特徴とする請求項1〜のいずれかに記載の測定装置。 Measurement apparatus according to any one of claims 1 to 6, characterized in that it comprises a positioning means for positioning the optical axis of the second optical measuring means and the optical axis of the first optical measuring means.
JP2014127016A 2014-06-20 2014-06-20 measuring device Expired - Fee Related JP6427982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014127016A JP6427982B2 (en) 2014-06-20 2014-06-20 measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014127016A JP6427982B2 (en) 2014-06-20 2014-06-20 measuring device

Publications (2)

Publication Number Publication Date
JP2016006388A JP2016006388A (en) 2016-01-14
JP6427982B2 true JP6427982B2 (en) 2018-11-28

Family

ID=55224901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014127016A Expired - Fee Related JP6427982B2 (en) 2014-06-20 2014-06-20 measuring device

Country Status (1)

Country Link
JP (1) JP6427982B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4630374A (en) * 1985-01-24 1986-12-23 The Warner & Swasey Company Bridge type coordinate measuring machine
JPH01152306A (en) * 1987-12-09 1989-06-14 Sumitomo Rubber Ind Ltd Method and apparatus for measuring shape
JPH04369409A (en) * 1991-05-21 1992-12-22 Mitsubishi Electric Corp Optical thickness measuring apparatus
JPH07280522A (en) * 1994-04-05 1995-10-27 Mitsubishi Heavy Ind Ltd Inspection device of liquid crystal color filter
JPH10170243A (en) * 1996-12-11 1998-06-26 Matsushita Electric Ind Co Ltd Method and device for measuring shape
JP2001227908A (en) * 2000-02-18 2001-08-24 Canon Inc Optical measuring apparatus
JP4260180B2 (en) * 2006-11-02 2009-04-30 パナソニック株式会社 Three-dimensional shape measuring device and probe for three-dimensional shape measuring device
JP5298619B2 (en) * 2008-04-30 2013-09-25 コニカミノルタ株式会社 Eccentricity measuring method and eccentricity measuring device
JP2008256715A (en) * 2008-06-18 2008-10-23 Kuroda Precision Ind Ltd Surface shape measuring device of thin plate
JP5399304B2 (en) * 2010-03-23 2014-01-29 富士フイルム株式会社 Aspherical surface measuring method and apparatus

Also Published As

Publication number Publication date
JP2016006388A (en) 2016-01-14

Similar Documents

Publication Publication Date Title
JP5627610B2 (en) Method and apparatus for measuring substrate shape or thickness information
JP5189321B2 (en) Solid immersion lens holder
US7342666B2 (en) Method and apparatus for measuring holding distortion
JPWO2013084557A1 (en) Shape measuring device
JP2012177620A (en) Measurement instrument
JP2008047653A5 (en)
JP2004317424A (en) Autocollimator
JP5517097B2 (en) Refractive index measuring device and refractive index measuring method
KR20210038901A (en) System and method for measuring flatness of photomask with reduced error due to gravity
JP6427982B2 (en) measuring device
JP5606039B2 (en) Stage device and wavefront aberration measuring device
TW201413217A (en) Multi-axis differential interferometer
JP5762905B2 (en) Inspection jig and lens driving device inspection method
Seppä et al. Quasidynamic calibration of stroboscopic scanning white light interferometer with a transfer standard
Tyrrell et al. Development of a combined interference microscope objective and scanning probe microscope
JPH07190734A (en) Circumferential surface profile measuring method
JP2013108823A (en) Stand base of magnet stand
JP5236993B2 (en) Block gauge holder
JP2011038967A (en) Positioning device, and optical adapter mountable thereon and dismountable therefrom
JP4093564B2 (en) Clamp device tilt adjustment method
JP2007010516A (en) Wave aberration measuring device, wave aberration measuring method and inspection lens holding adjusting mechanism
JP3919796B2 (en) Displacement measuring device
JP2011237379A (en) Inclination angle measurement device
JP2000180135A (en) Interference measuring instrument
CN114894117A (en) Standard mirror unit, standard mirror installation assembly and wafer detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181015

R150 Certificate of patent or registration of utility model

Ref document number: 6427982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees