JP6421104B2 - Main air passage component - Google Patents

Main air passage component Download PDF

Info

Publication number
JP6421104B2
JP6421104B2 JP2015187580A JP2015187580A JP6421104B2 JP 6421104 B2 JP6421104 B2 JP 6421104B2 JP 2015187580 A JP2015187580 A JP 2015187580A JP 2015187580 A JP2015187580 A JP 2015187580A JP 6421104 B2 JP6421104 B2 JP 6421104B2
Authority
JP
Japan
Prior art keywords
passage
main air
air passage
sub
flow meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015187580A
Other languages
Japanese (ja)
Other versions
JP2017062171A (en
Inventor
直也 平尾
直也 平尾
堀江 潤一
潤一 堀江
徳安 昇
徳安  昇
心 齋藤
心 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2015187580A priority Critical patent/JP6421104B2/en
Publication of JP2017062171A publication Critical patent/JP2017062171A/en
Application granted granted Critical
Publication of JP6421104B2 publication Critical patent/JP6421104B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、流体の流量を計測する熱式流量計の吸気管に係わり、例えば、内燃機関の吸入空気流量を測定するのに好適な熱式流量計に関する。   The present invention relates to an intake pipe of a thermal flow meter for measuring a flow rate of a fluid, and relates to a thermal flow meter suitable for measuring an intake air flow rate of an internal combustion engine, for example.

自動車などの内燃機関の吸入空気量を検出する熱式流量計として、質量流量を直接測定できる熱式の熱式流量計が主流である。
前記熱式熱式流量計は計測する空気温度より高い温度に加熱されたセンサ素子から空気中へ奪われる熱量を電気信号として取り出している。このため、センサ素子表面への汚損物質の堆積や水など液体の被覆はセンサ出力の劣化や誤動作の原因となる。
As a thermal flow meter that detects the intake air amount of an internal combustion engine such as an automobile, a thermal thermal flow meter that can directly measure a mass flow rate is the mainstream.
The thermal thermal flow meter extracts the amount of heat taken into the air from the sensor element heated to a temperature higher than the measured air temperature as an electrical signal. For this reason, accumulation of pollutants on the surface of the sensor element and coating with a liquid such as water cause deterioration in sensor output and malfunction.

そこで、計測する空気と供に侵入した汚染物質や水などからセンサ素子を保護する構造が提案されてきた。特開2005―128038では吸気通路から分離した渦巻状の副通路中にセンサ素子を配置することが提案されている。渦巻状の構造で空気と汚損物質や水とを慣性分離し、センサ素子は汚損物質や水の到達しにくい場所に配置されている。   In view of this, a structure for protecting the sensor element from contaminants, water, and the like that have entered with the air to be measured has been proposed. Japanese Patent Application Laid-Open No. 2005-128038 proposes to arrange the sensor element in a spiral sub-passage separated from the intake passage. The air and the pollutant and water are inertially separated by a spiral structure, and the sensor element is disposed in a place where the pollutant and water are difficult to reach.

本方法は、例えば白金巻線抵抗をセンサ素子に用いた熱式流量計では非常に有効であった。   This method is very effective in a thermal flow meter using, for example, a platinum winding resistance as a sensor element.

しかし、近年ではマイクロマシン技術を用いてシリコンなどの半導体基板上に熱式流量計のセンサ素子を製造するものが提案されている。このような半導体タイプのセンサ素子は前記白金巻線抵抗型のセンサ素子に比べて寸法が非常に小さい。形状は薄膜の板状であるため、特に厚さ寸法が数ミクロンと薄くなっている。熱容量が小さいので流量変化への高速応答化や起動時間の短縮、低消費電力などの面では有利であるが、センサ素子への汚損物質や水の衝突や付着の影響が大きくなる点と機械的強度が低下する点で不利である。   However, in recent years, there has been proposed an apparatus for manufacturing a sensor element of a thermal flow meter on a semiconductor substrate such as silicon using a micromachine technique. Such a semiconductor type sensor element has a very small size compared to the platinum winding resistance type sensor element. Since the shape is a thin plate, the thickness is particularly thin, a few microns. The small heat capacity is advantageous in terms of high-speed response to changes in flow rate, shortening of startup time, and low power consumption, but it is mechanically affected by the impact of fouling substances, water collisions and adhesion to the sensor element. This is disadvantageous in that the strength decreases.

特開2005―128038号公報Japanese Patent Laid-Open No. 2005-128038

前記渦巻状の副通路構造でも非常に小さく軽い汚損物質や霧のように粒径の小さな水は分離されずにセンサ素子に到達するものがある。白金巻線抵抗では影響の少なかったこれらの小さな汚損物質や水でも、半導体タイプの小形センサ素子へは、出力特性の変化やセンサ素子の破壊など、大きな影響を与える。   Even in the spiral sub-passage structure, there are some which are very small and lightly fouling substances or water having a small particle diameter such as mist without reaching the sensor element. Even these small pollutants and water, which were less affected by platinum winding resistance, have a large effect on semiconductor-type small sensor elements, such as changes in output characteristics and destruction of sensor elements.

本発明の目的は、吸気管内に汚損物質や水が浸入する環境であっても信頼性の高い半導体タイプの小形センサ素子を用いた熱式流量計を提供することである。   An object of the present invention is to provide a thermal type flow meter using a semiconductor type small sensor element that is highly reliable even in an environment where a pollutant or water enters the intake pipe.

上記課題はセンサ素子が配置された副通路の吸気管内上流部に、吸入空気に混じった汚損物質や水が副通路の入り口へ到達することを防ぎ、空気のみを副通路内へ導く保護部材を配置することで達成される。   The above problem is to provide a protective member that prevents fouling substances and water mixed in the intake air from reaching the entrance of the sub-passage and leads only air into the sub-passage at the upstream portion in the intake pipe of the sub-passage where the sensor element is arranged. Achieved by placing.

好ましくは、前記保護部材は、被計測流体の一部を取り込む副通路を備えた熱式流量計が取り付けられ、前記被計測流体が流れる主空気通路を構成する主空気通路構成部材であって、前記熱式流量計の上流側で前記副通路の流入開口面から離れた位置に設けられ、前記主空気通路の軸方向から投影したときに前記流入開口面が覆われるように設けられた保護部材を有することを特徴とする主空気通路構成部材である。   Preferably, the protection member is a main air passage constituting member to which a thermal flow meter provided with a sub-passage that takes in a part of the fluid to be measured is attached, and constitutes a main air passage through which the fluid to be measured flows. A protective member provided on the upstream side of the thermal flow meter at a position away from the inflow opening surface of the sub-passage so as to cover the inflow opening surface when projected from the axial direction of the main air passage A main air passage component.

好ましくは、前記保護部材は、前記熱式流量計の上流側に位置するところに前記副通路に被計測流体を導入する第2副通路を備えていることを特徴とする主空気通路構成部材である。   Preferably, the protection member includes a second sub passage for introducing a fluid to be measured into the sub passage at a position upstream of the thermal flow meter. is there.

好ましくは、前記保護部材は、前記熱式空気流量計より幅が広いことを特徴とする請求項1に記載の主空気通路構成部材である。   Preferably, the protective member is a main air passage constituting member according to claim 1, wherein the protective member is wider than the thermal air flow meter.

好ましくは、前記保護部材は、前記熱式流量計の上流側に位置するところに分流板を備えていることを特徴とする請求項1に記載の主空気通路構成部材である。   Preferably, the protection member is a main air passage constituting member according to claim 1, further comprising a flow dividing plate located upstream of the thermal flow meter.

好ましくは、前記保護部材は、吸気管に固定されており、前記副通路の流入開口面側にその下流側へ連通する排水口を備えていることを特徴とする請求項1に記載の主空気通路構成部材である。   2. The main air according to claim 1, wherein the protection member is fixed to an intake pipe, and has a drain outlet communicating with the downstream side on the inflow opening surface side of the sub-passage. It is a channel | path structural member.

好ましくは、前記排水口は、下流に向かってその断面積が絞られていることを特徴とする請求項5に記載の主空気通路構成部材である。   Preferably, the drain port is a main air passage component member according to claim 5, wherein the cross-sectional area of the drain port is narrowed toward the downstream side.

好ましくは、前記排水口は、前記副通路の流入開口付近に設けられている通路を特徴とする請求項6に記載の主空気通路構成部材である。   Preferably, the drain port is a main air passage component member according to claim 6, wherein the drain port is a passage provided in the vicinity of an inflow opening of the sub passage.

好ましくは、前記第2副通路は、空気流の上流側から吸気管断面の垂直方向へ投影した場合に、第2吸気口投影面と熱式流量計の吸気口投影面が重ならないようにそれぞれの吸気口を配置することを特徴とする請求項2に記載の主空気通路構成部材である。   Preferably, the second sub-passage is arranged so that the second inlet projection surface and the inlet projection surface of the thermal flow meter do not overlap when projected from the upstream side of the air flow in the vertical direction of the cross section of the intake pipe. The main air passage constituting member according to claim 2, wherein the intake port is disposed.

好ましくは、前記第2副通路は、第1傾斜面と第2傾斜面を備えていることを特徴とする請求項2に記載の主空気通路構成部材である。   Preferably, the second sub passage includes a first inclined surface and a second inclined surface, and the main air passage constituting member according to claim 2.

好ましくは、前記第1傾斜面と前記第2傾斜面は、熱式流量計の空気流れの上流側に備えていることを特徴とする請求項9に記載の主空気通路構成部材である。   10. The main air passage component according to claim 9, wherein the first inclined surface and the second inclined surface are provided on the upstream side of the air flow of the thermal type flow meter.

好ましくは、前記第1傾斜面と前記第2傾斜面は、吸気管壁面と第1傾斜面から成る傾斜角度より吸気管壁面と第2傾斜面から成る傾斜角度が大きいことを特徴とする請求項9に記載の主空気通路構成部材である。   Preferably, the first inclined surface and the second inclined surface have a larger inclination angle between the intake pipe wall surface and the second inclined surface than an inclination angle formed between the intake pipe wall surface and the first inclined surface. 9. The main air passage constituting member according to 9.

好ましくは、前記第2副通路の第2吸気口の面積は熱式流量計の吸気口の面積より大きいことを特徴とする請求項2に記載の主空気通路構成部材である。   3. The main air passage component according to claim 2, wherein an area of the second air inlet of the second sub passage is larger than an area of the air inlet of the thermal flow meter.

好ましくは、前記第2副通路の第2傾斜面に繋がる底面は、吸気管壁面から離れていることを特徴とする請求項2に記載の主空気通路構成部材である。   Preferably, the main air passage constituting member according to claim 2, wherein a bottom surface connected to the second inclined surface of the second sub passage is separated from a wall surface of the intake pipe.

好ましくは、第2副通路の第2傾斜面に繋がる底面と吸気管壁面を連結する支柱を設けたことを特徴とする請求項13に記載の主空気通路構成部材である。   Preferably, the main air passage constituting member according to claim 13, further comprising a support column connecting the bottom surface connected to the second inclined surface of the second sub passage and the wall surface of the intake pipe.

本発明によれば、吸気管に吸入された空気流に非常に小さく軽い汚損物質や水が含まれていても、これら汚損物質や水の影響を受けることなく、信頼性の高い、高精度な熱式流量計を実現できる。   According to the present invention, even if a very small and light fouling substance or water is contained in the air flow sucked into the intake pipe, it is highly reliable and highly accurate without being affected by the fouling substance or water. A thermal flow meter can be realized.

従来の熱式流量計による水の侵入経路図Water intrusion path diagram with a conventional thermal flow meter 本発明の第1の実施形態を示す吸気管の投影図。The projection figure of the intake pipe which shows the 1st Embodiment of this invention. 本発明の第1の実施形態を示す吸気管の断面図。1 is a cross-sectional view of an intake pipe showing a first embodiment of the present invention. 本発明の第1の実施形態を示す吸気管の背面図。The rear view of the intake pipe which shows the 1st Embodiment of this invention. 本発明の第1の実施形態の空気の流れを示した吸気管の断面図1。Sectional drawing 1 of the intake pipe which showed the flow of the air of the 1st Embodiment of this invention. 本発明の第1の実施形態の空気の流れを示した吸気管の断面図2。Sectional drawing 2 of the intake pipe which showed the flow of the air of the 1st Embodiment of this invention. 本発明の第1の実施形態の詳細を示す断面図1。Sectional drawing 1 which shows the detail of the 1st Embodiment of this invention. 本発明の第1の実施形態の詳細を示す断面図2。Sectional drawing 2 which shows the detail of the 1st Embodiment of this invention. 本発明の第2の実施形態を示す吸気管の投影図。The projection figure of the intake pipe which shows the 2nd Embodiment of this invention. 本発明の第2の実施形態を示す吸気管の断面図。Sectional drawing of the intake pipe which shows the 2nd Embodiment of this invention.

図1に従来の熱式流量計1と吸気管11による汚損物質や水の侵入経路を示す。吸気管11に侵入した汚損物質や水16は主通路12を伝わって吸気口2へ侵入する。侵入したものが少量であれば問題はないが、多量に侵入した場合、センサ素子4に付着物が多くなり、高精度な計測が難しくなる。   FIG. 1 shows a path of entry of polluted substances and water by a conventional thermal flow meter 1 and an intake pipe 11. Fouling substances and water 16 that have entered the intake pipe 11 travel along the main passage 12 and enter the intake port 2. There is no problem if the amount of intrusion is small, but if a large amount of intrusion occurs, the amount of deposits on the sensor element 4 increases and high-precision measurement becomes difficult.

そこで本発明では、吸気管11に吸入された空気流に非常に小さく軽い汚損物質や水が含まれていても、信頼性が高く、高精度な測定ができる熱式流量計1を提案した。本発明の手法として、保護部材で熱式流量計1を保護することで水や汚損物質の付着を防ぐことが可能である。   Therefore, the present invention has proposed a thermal flow meter 1 that is highly reliable and can perform highly accurate measurement even if the air flow sucked into the intake pipe 11 contains very small and light fouling substances and water. As a technique of the present invention, it is possible to prevent the adhesion of water and fouling substances by protecting the thermal flow meter 1 with a protective member.

吸気管11に構造物を設けることで吸気管内の圧力損失は増加するが、本発明は圧力損失の抑制も考慮された吸気管11となっている。以下、本発明に係る実施の形態について説明する。   Although the pressure loss in the intake pipe is increased by providing a structure in the intake pipe 11, the present invention provides the intake pipe 11 in consideration of suppression of the pressure loss. Embodiments according to the present invention will be described below.

[実施例1]
図2と図3に本発明の第1の実施形態である吸気管11の構造を示す。図2および図3示す吸気管(主空気通路構成部材)11は、例えばエンジンの吸気管11として熱式流量計1と一緒に取り付けられている。吸気管11は、熱式流量計1の上流側に位置するところに熱式流量計1の副通路3に被計測流体を導入する第2副通路10を備えている。吸気管11に流れ込んだ吸入空気は主通路12と第2副通路10とに分流される。第2副通路10を流れる空気流の一部は副通路3へ流れ、残りは主通路12へ流れる。副通路3を流れた空気がセンサ素子4により空気量として測定される。副通路3を流れた空気も主通路12へ戻る。吸気管11に流れ込んだ空気は全てエンジンへ供給される。
[Example 1]
2 and 3 show the structure of the intake pipe 11 according to the first embodiment of the present invention. An intake pipe (main air passage constituting member) 11 shown in FIGS. 2 and 3 is attached together with the thermal flow meter 1 as an intake pipe 11 of an engine, for example. The intake pipe 11 includes a second sub-passage 10 that introduces a fluid to be measured into the sub-passage 3 of the thermal flow meter 1 at a position located upstream of the thermal flow meter 1. The intake air that has flowed into the intake pipe 11 is divided into the main passage 12 and the second sub-passage 10. A part of the air flow flowing through the second sub-passage 10 flows to the sub-passage 3, and the rest flows to the main passage 12. The air flowing through the auxiliary passage 3 is measured by the sensor element 4 as the amount of air. The air that has flowed through the auxiliary passage 3 also returns to the main passage 12. All the air flowing into the intake pipe 11 is supplied to the engine.

図3は図2に熱式流量計1を取り付けた断面図である。吸気管11には、熱式流量計1の手前に配置される保護部材5を備えている。保護部材5は、吸入空気に含まれた汚損物質や水が熱式流量計1の副通路3に入らず、汚損物質や水を含まない空気のみが熱式流量計1の副通路3に入るようにする。保護部材5は、熱式流量計1の上流側で副通路3の吸気口(流入開口面)2から離れた位置に設けられ、主通路(主空気通路)12の軸方向から投影したときに吸気口2が覆われるように設けられている。保護部材5は、吸気管11に固定されており、副通路3の吸気口2側(熱式流量計1の先端側)にその下流側へ連通する排水口13を備えている。   FIG. 3 is a cross-sectional view of the thermal flow meter 1 attached to FIG. The intake pipe 11 is provided with a protective member 5 disposed in front of the thermal flow meter 1. The protective member 5 does not allow the pollutant or water contained in the intake air to enter the sub-passage 3 of the thermal flow meter 1, and only the air containing no fouling substance or water enters the sub-passage 3 of the thermal flow meter 1. Like that. The protective member 5 is provided at a position away from the inlet (inflow opening surface) 2 of the auxiliary passage 3 on the upstream side of the thermal flow meter 1, and is projected from the axial direction of the main passage (main air passage) 12. The intake port 2 is provided so as to be covered. The protective member 5 is fixed to the intake pipe 11 and includes a drain port 13 communicating with the downstream side of the auxiliary passage 3 on the intake port 2 side (the front end side of the thermal flow meter 1).

保護部材5を熱式流量計1手前に備えることで、吸入空気に含まれた水や汚損物質と空気を分離することができる。これは水や汚損物質と空気の質量の違いを利用している。第2吸気口9へ入った空気流が熱式流量計1の副通路3へ入るためには流れの方向を変える必要がある。第2副通路10は、第1傾斜面7と第2傾斜面8を備えている。第1傾斜面と第2傾斜面は、熱式流量計の空気流れの上流側に設けられている。そして、第1傾斜面7と第2傾斜面8は、熱式流量計1の副通路3へ向かって構成されている。   By providing the protective member 5 in front of the thermal flow meter, it is possible to separate water and fouling substances contained in the intake air from the air. This takes advantage of the difference in mass between water and fouling substances and air. In order for the air flow entering the second air inlet 9 to enter the sub-passage 3 of the thermal flow meter 1, the direction of the flow needs to be changed. The second sub passage 10 includes a first inclined surface 7 and a second inclined surface 8. The first inclined surface and the second inclined surface are provided on the upstream side of the air flow of the thermal flow meter. The first inclined surface 7 and the second inclined surface 8 are configured toward the sub passage 3 of the thermal flow meter 1.

このため、空気流が第2吸気口9へ取り込まれると第2傾斜面8付近の圧力が第1傾斜面7付近の圧力より高くなる。この第2副通路10内に生じる圧力差で空気流の流れ方向が変えられる。空気は質量が軽いため吸気口2へ向かって流れるが、水や汚損物質は質量が重いため流れ方向がほとんど変わらず下流側の排水口13へ向かって流れる。この慣性効果による空気と水や汚損物質との分離により、熱式流量計1の副通路3への水や汚損物質の侵入を防ぐことができる。すなわち、水や汚損物質と空気の質量の違いによる慣性効果を利用し、空気と水や汚損物質とを分離する。第1傾斜面7と第2傾斜面8は、吸気管11の軸方向に沿った吸気管壁面と第1傾斜面7とから成る傾斜角度よりも、吸気管壁面と第2傾斜面8とから成る傾斜角度の方が大きい。   For this reason, when the air flow is taken into the second air inlet 9, the pressure near the second inclined surface 8 becomes higher than the pressure near the first inclined surface 7. The flow direction of the air flow is changed by the pressure difference generated in the second sub passage 10. Since air has a light mass, it flows toward the intake port 2, but water and fouling substances flow toward the downstream drain port 13 with almost no change in the flow direction because of its heavy mass. Separation of air, water, and fouling substances by this inertia effect can prevent water and fouling substances from entering the sub-passage 3 of the thermal flow meter 1. That is, air, water, and a pollutant are separated from each other by using an inertia effect due to a difference in mass between the water and the pollutant and air. The first inclined surface 7 and the second inclined surface 8 are more separated from the intake pipe wall surface and the second inclined surface 8 than the inclination angle formed by the intake pipe wall surface and the first inclined surface 7 along the axial direction of the intake pipe 11. The tilt angle is larger.

図4に図3の構造を下流側から見た様子を示す。水や汚損物質が熱式流量計1の吸気口に侵入するのを防ぐために、保護部材5の横幅は熱式流量計1よりも広くなっている。   FIG. 4 shows a state in which the structure of FIG. 3 is viewed from the downstream side. In order to prevent water and fouling substances from entering the inlet of the thermal flow meter 1, the width of the protective member 5 is wider than that of the thermal flow meter 1.

図5に図3の第2副通路付近を拡大した図を示す。空気流の上流側から吸気管断面の垂直方向に投影した場合に、第2吸気口9の投影面と熱式流量計1の吸気口2の投影面が重ならないようにそれぞれの吸気口を配置する。これは水や汚損物質が直接副通路3へ侵入することを防ぐためである。   FIG. 5 shows an enlarged view of the vicinity of the second sub-passage in FIG. Arrange each intake port so that the projection surface of the second intake port 9 and the projection surface of the intake port 2 of the thermal flow meter 1 do not overlap when projected in the vertical direction of the cross section of the intake pipe from the upstream side of the air flow To do. This is to prevent water and fouling substances from directly entering the auxiliary passage 3.

本発明の実施例では第2吸気口9上端(第1傾斜面7側)と熱式流量計1の底面は同じ高さの位置にある。汚損物質や水は重力によって下降する為、第2吸気口9上端と熱式流量計1の底面の高さを同じ位置にすることで汚損物質や水が吸気口2へ侵入することを防ぐことができる。   In the embodiment of the present invention, the upper end of the second intake port 9 (the first inclined surface 7 side) and the bottom surface of the thermal flow meter 1 are at the same height. Since fouling substances and water descend due to gravity, it is possible to prevent the fouling substances and water from entering the inlet 2 by setting the upper end of the second inlet 9 and the bottom of the thermal flow meter 1 to the same position. Can do.

前記のような保護部材5を熱式流量計1手前に設けたことにより汚損物質や水の付着を防止することが可能だが、それによりセンサ素子4に到達する空気流が減少してしまい、空気の流れが不安定になってしまい熱式流量計1の計測精度が低下してしまうという問題が生じる。   Although the protective member 5 as described above is provided in front of the thermal flow meter, it is possible to prevent the adhesion of pollutants and water, but this reduces the air flow reaching the sensor element 4 and reduces the air flow. As a result, the flow becomes unstable and the measurement accuracy of the thermal flow meter 1 decreases.

この問題に対して、本発明品の保護部材5は第2吸気口9と第1傾斜面7、第2傾斜面8とから形成されている第2副通路10を有することで解決した。
また、各傾斜面の開始位置は図5に示すように第1傾斜面の位置18と第2傾斜面の位置19であり、熱式流量計1よりも手前に設置されている。これによって空気流15が熱式流量計1へ向かう割合が増加し、センサ素子4に必要な空気量を供給することが可能となっている。
To solve this problem, the protection member 5 of the present invention has been solved by having the second sub-passage 10 formed of the second air inlet 9, the first inclined surface 7, and the second inclined surface 8.
Further, as shown in FIG. 5, the start positions of the respective inclined surfaces are a first inclined surface position 18 and a second inclined surface position 19, which are installed in front of the thermal flow meter 1. As a result, the ratio of the air flow 15 toward the thermal flow meter 1 increases, and the necessary air amount can be supplied to the sensor element 4.

第2吸気口9に取り込まれる空気流に水や汚損物質が混ざっている場合、本発明では汚損物質や水が多く含まれた空気は排水口13の方へ流れ、汚損物質や水を含まない空気のみが熱式流量計1の吸気口2へ取り込まれる。このため、熱式流量計1の吸気口2に取り込まれる空気は、第2吸気口9に取り込まれる空気より排水口13に流れる空気の分だけ少なくなる。すると熱式流量計1の副通路3内の特に低流量時に空気の流れが不安定になり、計測精度が低下する。本発明では、第2吸気口9の開口面積は熱式流量計1の吸気口2の開口面積より大きくすることで熱式流量計1の吸気口2に取り込まれる空気を十分確保するようにしている。   When water and fouling substances are mixed in the air flow taken into the second air inlet 9, in the present invention, air containing a large amount of fouling substances and water flows toward the drain port 13 and does not contain fouling substances and water. Only air is taken into the inlet 2 of the thermal flow meter 1. For this reason, the air taken into the intake port 2 of the thermal flow meter 1 is less than the air taken into the second intake port 9 by the amount of air flowing to the drain port 13. As a result, the air flow becomes unstable, particularly at a low flow rate, in the sub-passage 3 of the thermal flow meter 1, and the measurement accuracy decreases. In the present invention, the opening area of the second air inlet 9 is made larger than the opening area of the air inlet 2 of the thermal flow meter 1 so that sufficient air is taken into the air inlet 2 of the thermal flow meter 1. Yes.

慣性分離により、熱式流量計1の吸気口2への流れから外れた汚損物質や水は排水口13から吸気管11の下流側へ速やかに排出される必要がある。このために、排水口13の開口面積は第2副通路10内の開口面積の中で一番小さくなっている。開口面積を小さくすることで排水口13部の流速を速くし、第2通路内に侵入した水が下流側へ流れやすい構造となっている。排水口13は、下流に向かってその断面積が絞られている。排水口13は、副通路3の吸気口2付近に設けられている。絞られた先の出口は、主通路の中心付近に設けられている。   Due to inertial separation, the pollutant and water deviated from the flow to the intake port 2 of the thermal flow meter 1 need to be quickly discharged from the drain port 13 to the downstream side of the intake pipe 11. For this reason, the opening area of the drain port 13 is the smallest among the opening areas in the second sub-passage 10. By reducing the opening area, the flow rate of the drain port 13 is increased, and the water that has entered the second passage easily flows downstream. The drain port 13 has a reduced cross-sectional area toward the downstream. The drainage port 13 is provided in the vicinity of the intake port 2 of the sub-passage 3. The narrowed outlet is provided near the center of the main passage.

図6を用いて分流板について説明する。保護部材5のような障害物を吸気管11内に設けた場合、主通路12を流れる空気流15は保護部材5に当たる。空気の当たる面の縁の角が垂直や鋭角になっていると保護部材5近辺の流れには乱流や剥離、渦が発生してしまい、熱式空気流量計の副通路出口付近の流れが乱れ、熱式流量計1の出力ノイズ増加の原因となる。本発明では分流板6を保護部材5の上流部分に設け、保護部材5周辺に流れる空気をスムーズにし、乱流や剥離、渦の発生を低減している。   The flow dividing plate will be described with reference to FIG. When an obstacle such as the protective member 5 is provided in the intake pipe 11, the air flow 15 flowing through the main passage 12 hits the protective member 5. If the edge of the surface on which the air hits is vertical or acute, turbulence, separation, or vortex will occur in the flow near the protective member 5, and the flow near the sub-passage outlet of the thermal air flow meter Disturbance will cause an increase in output noise of the thermal flow meter 1. In the present invention, the flow dividing plate 6 is provided in the upstream portion of the protective member 5 to smooth the air flowing around the protective member 5 and reduce the occurrence of turbulent flow, separation, and vortex.

また、分流板6には構造強度の面からも有利になる役目がある。分流板6を吸気管11壁面に固定することで保護部材5と吸気管11の接着面積が増え、集中荷重による保護部材5の破損に強くなる。   Further, the flow dividing plate 6 has a role that is advantageous from the viewpoint of structural strength. By fixing the flow dividing plate 6 to the wall surface of the intake pipe 11, the adhesion area between the protection member 5 and the intake pipe 11 is increased, and the protection member 5 is strongly damaged by concentrated load.

図7に第2副通路底面と吸気管が一体になっている図を示す。本発明の第2副通路10の底面は吸気管11壁面とから離れている。第2副通路10と吸気管11が一体になっている場合、吸気管11壁面に付着して空気に押されて伝わってきた水14は、第2副通路10へ侵入すると、第2傾斜面8始点に滞留してしまう。溜まった水の体積が大きくなると空気流に弾かれた水が熱式流量計1の吸気口2へ飛散してしまい、熱式流量計1の計測精度を低下させる。これを防ぐために、本発明は図8のように分離構造17を用いることで、第2副通路10の底面と吸気管11壁面を分離させた。第2副通路10の第2傾斜面8に繋がる底面は、吸気管壁面から離れている。これによって、吸気管11から伝わってくる水14は第2副通路10を伝わることなく主通路12の下流へ流れる為、熱式流量計1の副通路3へ取り込まれることが無くなる。   FIG. 7 shows a view in which the bottom surface of the second sub-passage and the intake pipe are integrated. The bottom surface of the second auxiliary passage 10 of the present invention is separated from the wall surface of the intake pipe 11. In the case where the second sub-passage 10 and the intake pipe 11 are integrated, the water 14 attached to the wall surface of the intake pipe 11 and pushed by the air enters the second sub-passage 10 and enters the second inclined surface. 8 stays at the starting point. When the volume of the accumulated water increases, the water repelled by the air flow is scattered to the intake port 2 of the thermal flow meter 1, and the measurement accuracy of the thermal flow meter 1 is lowered. In order to prevent this, the present invention separates the bottom surface of the second sub-passage 10 and the wall surface of the intake pipe 11 by using the separation structure 17 as shown in FIG. The bottom surface connected to the second inclined surface 8 of the second sub-passage 10 is separated from the intake pipe wall surface. As a result, the water 14 transmitted from the intake pipe 11 flows downstream of the main passage 12 without passing through the second sub-passage 10, and therefore is not taken into the sub-passage 3 of the thermal flow meter 1.

前記の第2副通路10の底面を吸気管11壁面から分離させることで、水の侵入を防ぐことが可能である。だが、それによって片持ち梁構造となり集中荷重が発生してしまう。この結果、保護部材5の耐久性に問題が生じてしまう。そこで、分離箇所に一本の支柱で接続させることで両持ち梁構造にした。すなわち、第2副通路10の第2傾斜面8に繋がる底面と吸気管壁面を連結する支柱を設けた。これによって片持ち梁に対する根元の集中荷重を抑えることができる。   By separating the bottom surface of the second sub-passage 10 from the wall surface of the intake pipe 11, it is possible to prevent water from entering. However, this creates a cantilever structure and generates concentrated loads. As a result, a problem occurs in the durability of the protective member 5. Therefore, a double-supported beam structure was created by connecting the separation points with a single column. That is, a support column that connects the bottom surface connected to the second inclined surface 8 of the second sub-passage 10 and the intake pipe wall surface is provided. As a result, the concentrated load at the base of the cantilever can be suppressed.

[実施例2]
次に第2の実施形態を図9に示す。本実施形態の特徴は、保護部材5の第2吸気口9が熱式流量計1の取り付け口方向に設けられていることである。これにより、吸気管11上流側から見た投影面積が第1の実施形態よりも小さくなるため、吸気管11内の圧力損失を小さくすることができる。吸気管11内の圧力損失は自動車エンジンにとって重要な性能の一つである。ディーゼルエンジンの場合、圧力損失が大きいとエンジンへの吸入により多くのエネルギーを必要とするため、エンジンの燃料消費効率が悪化する。また、ガソリンエンジンの場合では、スロットルバルブ全開時の吸入空気量が少なくなるためエンジンの最大出力値が小さくなる。このため、吸気管11の圧力損失は小さいほうが望ましい。
[Example 2]
Next, a second embodiment is shown in FIG. The feature of this embodiment is that the second intake port 9 of the protection member 5 is provided in the direction of the attachment port of the thermal flow meter 1. As a result, the projected area viewed from the upstream side of the intake pipe 11 is smaller than that in the first embodiment, so that the pressure loss in the intake pipe 11 can be reduced. The pressure loss in the intake pipe 11 is one of the important performances for the automobile engine. In the case of a diesel engine, if the pressure loss is large, a large amount of energy is required for suction into the engine, so that the fuel consumption efficiency of the engine deteriorates. In the case of a gasoline engine, the maximum output value of the engine is reduced because the intake air amount when the throttle valve is fully opened is reduced. For this reason, it is desirable that the pressure loss of the intake pipe 11 is small.

図10に実施形態2の断面図を示す。排水口13は熱式流量計1の底面に備えており、第2副通路10に侵入した水は排水口13をたどって主通路12の下流へ流れていく。   FIG. 10 shows a cross-sectional view of the second embodiment. The drain port 13 is provided on the bottom surface of the thermal flow meter 1, and water that has entered the second sub-passage 10 follows the drain port 13 and flows downstream of the main passage 12.

第2傾斜面8は熱式流量計1を第2副通路10へ侵入した水から防いでおり、空気の流れ方向を吸気口2へ導く構造となっている。   The second inclined surface 8 prevents the thermal flow meter 1 from water that has entered the second sub-passage 10, and has a structure that guides the air flow direction to the intake port 2.

吸気管11壁面へ付着した水は空気流に押されて他の水滴と一緒になりながら壁面を下流方向へ進む。吸気管11壁面に付着した水滴の体積が大きくなると重力の影響を受けるため、水滴は吸気管11の底の部分へ溜まり下流方向へ流れる。第2の実施形態では第2吸気口9が吸気管11の上側にあるため、水の侵入する割合を少なくすることができる。   The water adhering to the wall surface of the intake pipe 11 is pushed by the air flow and advances along the wall surface in the downstream direction while being combined with other water droplets. When the volume of water droplets adhering to the wall surface of the intake pipe 11 is increased, it is affected by gravity, so that the water drops accumulate at the bottom portion of the intake pipe 11 and flow downstream. In the second embodiment, since the second intake port 9 is located above the intake pipe 11, the rate of water intrusion can be reduced.

また、分流板6を設けることで両持ち梁構造にすることでき、片持ち梁構造による根元の集中荷重を抑制することができる。   Further, by providing the flow dividing plate 6, a double-supported beam structure can be obtained, and the concentrated load at the base due to the cantilever beam structure can be suppressed.

以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. Furthermore, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

1 熱式流量計
2 吸気口
3 副通路
4 センサ素子
5 保護部材
6 分流板
7 第1傾斜面
8 第2傾斜面
9 第2吸気口
10 第2副通路
11 吸気管(主空気通路構成部材)
12 主通路
13 排水口
14 水
15 空気流
16 汚損物や水
17 分離構造
18 第1傾斜面の位置
19 第2傾斜面の位置
DESCRIPTION OF SYMBOLS 1 Thermal type flow meter 2 Intake port 3 Subpassage 4 Sensor element 5 Protection member 6 Dividing plate 7 1st inclined surface 8 2nd inclined surface 9 2nd intake port 10 2nd auxiliary passage 11 Intake pipe (main air passage component)
12 Main passage 13 Drain outlet 14 Water 15 Air flow 16 Stained material and water 17 Separation structure 18 Position of first inclined surface 19 Position of second inclined surface

Claims (5)

被計測流体の一部を取り込む副通路を備えた熱式流量計が取り付けられ、前記被計測流体が流れる主空気通路を構成する主空気通路構成部材であって、
前記熱式流量計の上流側で前記副通路の流入開口面から離れた位置に設けられ、前記主空気通路の軸方向から投影したときに前記流入開口面が覆われるように設けられた保護部材を有する主空気通路構成部材において、
前記保護部材は、前記熱式流量計の上流側に位置するところに分流板を備えことを特徴とする主空気通路構成部材。
A thermal flow meter provided with a sub-passage that takes in a part of the fluid to be measured is attached, and is a main air passage constituting member that constitutes a main air passage through which the fluid to be measured flows,
A protective member provided on the upstream side of the thermal flow meter at a position away from the inflow opening surface of the sub-passage so as to cover the inflow opening surface when projected from the axial direction of the main air passage In the main air passage component having
The protective member, the main air passage forming member, characterized in that it comprises a shunt plate at the position on the upstream side of the thermal flow meter.
被計測流体の一部を取り込む副通路を備えた熱式流量計が取り付けられ、前記被計測流体が流れる主空気通路を構成する主空気通路構成部材であって、
前記熱式流量計の上流側で前記副通路の流入開口面から離れた位置に設けられ、前記主空気通路の軸方向から投影したときに前記流入開口面が覆われるように設けられた保護部材を有する主空気通路構成部材において、
前記保護部材は、前記主空気通路構成部材に固定されており、前記副通路の流入開口面側にその下流側へ連通する排水口を備えたことを特徴とする主空気通路構成部材。
A thermal flow meter provided with a sub-passage that takes in a part of the fluid to be measured is attached, and is a main air passage constituting member that constitutes a main air passage through which the fluid to be measured flows,
A protective member provided on the upstream side of the thermal flow meter at a position away from the inflow opening surface of the sub-passage so as to cover the inflow opening surface when projected from the axial direction of the main air passage In the main air passage component having
The protective member, the main air passage forming member is fixed to the sub-passage main air passage forming member comprising the inlet opening side to a drain port communicating to the downstream side of the.
請求項2において、
前記排水口は、下流に向かってその断面積が絞られていることを特徴とする主空気通路構成部材。
In claim 2,
The drainage port has a main air passage constituent member whose cross-sectional area is narrowed toward the downstream.
請求項3において、
前記排水口は、前記副通路の流入開口付近に設けられたことを特徴とする主空気通路構成部材。
In claim 3,
The drainage port, the main air passage forming member, wherein the provided et been near the inflow opening of the auxiliary passage.
被計測流体の一部を取り込む副通路を備えた熱式流量計が取り付けられ、前記被計測流体が流れる主空気通路を構成する主空気通路構成部材であって、
前記熱式流量計の上流側で前記副通路の流入開口面から離れた位置に設けられ、前記主空気通路の軸方向から投影したときに前記流入開口面が覆われるように設けられた保護部材を有する主空気通路構成部材において、
前記保護部材は、前記熱式流量計の上流側に位置するところに前記副通路に被計測流体を導入する第2副通路を備え、
前記第2副通路は、空気流の上流側から前記主空気通路構成部材の断面の垂直方向へ投影した場合に、前記第2副通路の吸気口投影面と熱式流量計の吸気口投影面が重ならないようにそれぞれの吸気口を配置することを特徴とする主空気通路構成部材。
A thermal flow meter provided with a sub-passage that takes in a part of the fluid to be measured is attached, and is a main air passage constituting member that constitutes a main air passage through which the fluid to be measured flows,
A protective member provided on the upstream side of the thermal flow meter at a position away from the inflow opening surface of the sub-passage so as to cover the inflow opening surface when projected from the axial direction of the main air passage In the main air passage component having
The protective member includes a second sub-passage for introducing a fluid to be measured into the sub-passage at a position located on the upstream side of the thermal flow meter,
The second sub passage, when projected from the upstream side of the air flow in the vertical direction of the cross section of the main air passage forming member, inlet projection plane of the inlet plane of projection of the second sub passage and thermal flow meter the main air passage forming member, characterized in that bets are arranged to avoid any respective inlet overlap.
JP2015187580A 2015-09-25 2015-09-25 Main air passage component Expired - Fee Related JP6421104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015187580A JP6421104B2 (en) 2015-09-25 2015-09-25 Main air passage component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015187580A JP6421104B2 (en) 2015-09-25 2015-09-25 Main air passage component

Publications (2)

Publication Number Publication Date
JP2017062171A JP2017062171A (en) 2017-03-30
JP6421104B2 true JP6421104B2 (en) 2018-11-07

Family

ID=58429602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015187580A Expired - Fee Related JP6421104B2 (en) 2015-09-25 2015-09-25 Main air passage component

Country Status (1)

Country Link
JP (1) JP6421104B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111634187A (en) * 2020-05-18 2020-09-08 广汽本田汽车有限公司 Wading protection device for vehicle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19942511B4 (en) * 1999-09-07 2005-07-14 Robert Bosch Gmbh Device for measuring at least one parameter of a flowing medium
DE10015918A1 (en) * 2000-03-30 2001-10-04 Bosch Gmbh Robert Suction-air parameter measurement device for internal combustion engine, has protective grating which differently influences movement paths of solid particles in air
JP3716163B2 (en) * 2000-06-16 2005-11-16 株式会社日立製作所 Air flow measurement device
DE10154253B4 (en) * 2001-11-05 2006-06-22 Siemens Ag Device with an air intake pipe and an air mass sensor assembly inserted therein
JP4512499B2 (en) * 2005-02-14 2010-07-28 日立オートモティブシステムズ株式会社 Air flow measurement device
JP5728841B2 (en) * 2010-07-26 2015-06-03 オムロン株式会社 Flow measurement structure and flow measurement device

Also Published As

Publication number Publication date
JP2017062171A (en) 2017-03-30

Similar Documents

Publication Publication Date Title
US7891240B2 (en) Thermal type flow measuring device
KR100880549B1 (en) Device for determining at least one parameter of a flowing medium
US9217655B2 (en) Sensor system for determining at least one flow property of a fluid medium flowing in a main flow direction
JP3716163B2 (en) Air flow measurement device
KR101398827B1 (en) Plug-in sensor with improved flow dynamics
JP5178388B2 (en) Air flow measurement device
US6871534B1 (en) Flow rate measuring device
JP5178148B2 (en) Heating resistor type air flow measuring device
JP3782669B2 (en) Thermal flow meter
JPH11248505A (en) Apparatus for measuring flow rate of medium flowing through duct
JP5168223B2 (en) Air flow measurement device
US11053877B2 (en) Air flow rate measuring device
JP4934198B2 (en) Plug-in sensor with optimized outflow
JP2011075361A (en) Thermal type flow rate measuring apparatus
JP5826360B1 (en) Flow measuring device
JP4512499B2 (en) Air flow measurement device
JP5464294B2 (en) Air flow measurement device
JP6289585B1 (en) Flow measuring device
JP3709385B2 (en) Gas flow measuring device for internal combustion engine
CN107949783B (en) Gas sensor device
JP3848934B2 (en) Air flow measurement device
JP2004226315A (en) Thermal flow rate measuring device
JP6421104B2 (en) Main air passage component
ZA200206052B (en) Device for measuring air flow, comprising a device for separating foreign particles.
JP4659623B2 (en) Thermal flow meter

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170119

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181015

R150 Certificate of patent or registration of utility model

Ref document number: 6421104

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees