JP6420768B2 - 熱伝達装置を用いた低損失な永久電流スイッチ - Google Patents

熱伝達装置を用いた低損失な永久電流スイッチ Download PDF

Info

Publication number
JP6420768B2
JP6420768B2 JP2015547199A JP2015547199A JP6420768B2 JP 6420768 B2 JP6420768 B2 JP 6420768B2 JP 2015547199 A JP2015547199 A JP 2015547199A JP 2015547199 A JP2015547199 A JP 2015547199A JP 6420768 B2 JP6420768 B2 JP 6420768B2
Authority
JP
Japan
Prior art keywords
temperature
current switch
superconducting
permanent current
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015547199A
Other languages
English (en)
Other versions
JP2016505308A (ja
Inventor
アレクサンダー ジョナス,フィリップ
アレクサンダー ジョナス,フィリップ
アフメトフ,アレクサンデル
アドルフ アッカーマン,ロベルト
アドルフ アッカーマン,ロベルト
アベル マントゥール,フィリップ
アベル マントゥール,フィリップ
ゲオルゲ プフライデラー,グレン
ゲオルゲ プフライデラー,グレン
フォス,マシュー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV filed Critical Koninklijke Philips NV
Publication of JP2016505308A publication Critical patent/JP2016505308A/ja
Application granted granted Critical
Publication of JP6420768B2 publication Critical patent/JP6420768B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/3804Additional hardware for cooling or heating of the magnet assembly, for housing a cooled or heated part of the magnet assembly or for temperature control of the magnet assembly
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/381Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
    • G01R33/3815Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets with superconducting coils, e.g. power supply therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/006Supplying energising or de-energising current; Flux pumps

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Description

本発明は、一般的に、低損失な永久電流スイッチに関する。より特定的には、低温環境における超伝導永久磁石を用いた使用のための低損失な永久電流スイッチに関する。
本特許出願は、2013年12月17日に出願された米国仮特許出願第61/737939号に係る優先権を主張するものであり、ここにおいて参照として包含されている。
超伝導磁石は、核磁気共鳴(NMR)解析、および、磁気共鳴画像(MRI)を含む、種々のコンテクスト(context)において使用されている。超伝導を具現化するために、磁石は、絶対零度に近い温度で低温環境の中に維持されている。典型的に、磁石は、低温槽の中に配置され、液体ヘリウムといった低温液体によって冷却されている、一つまたはそれ以上の導電性コイルを含んでいる。
多くの超伝導磁石は、「永久モード(”persistent mode”)」において動作する。永久モードにおいては、超伝導磁石を形成する一つまたはそれ以上の超伝導な導電性コイルが、外部電源からの電流を用いて最初に励磁されて、磁場をスタートアップする。一旦、所望の磁場が獲得されると、電源は磁石から切断され、磁石は、超伝導性のおかげで電流と磁場を維持する。
永久モードで動作するために、永久電流スイッチが、リード線にわたり典型的に備えられ、磁石に対して励磁電流を供給する。磁石励磁期間(例えば、スタートアップ)の最中に、永久電流スイッチは、抵抗状態に置かれる。超伝導な導電性コイルが、電源からの電流によって励磁されるようにするためである。一旦、磁石が励磁されると、永久電流スイッチは、超伝導磁石に係る通常の永久モード動作のための超伝導状態にスイッチされる。
永久電流スイッチは、熱の適用によって、超伝導状態と抵抗状態との間でスイッチされ得る。永久電流スイッチが低温(例えば、約4°K)にある場合には、超伝導状態にあり、抵抗はほぼゼロである。しかしながら、永久電流スイッチが、抵抗モード温度、典型的には超伝導温度よりも高い温度、まで熱せられる場合、抵抗状態にある。抵抗状態において、永久電流スイッチは、典型的な電気的スイッチのように「オープン(”open”)」ではなく、むしろ、典型的には数オームと数十オームとの間の抵抗を有している。
超伝導磁石をチャージ(charge)している最中に、永久電流スイッチは抵抗モード温度まで熱せられ、かつ、磁石をチャージするために、スイッチにわたり電圧が適用される。このことは、典型的に、永久電流スイッチの中にエネルギーを放出する。典型的には、永久電流スイッチは、極めて低い温度(低温)の環境の中に配置されており、スイッチの中に放出されたエネルギーは、典型的には、熱負荷として環境の中に伝達される。この熱は、低温冷凍システムを使用して、または、沸騰凍結材(boiling cryogen)を通じて、取り除くことができる。冷凍システムは、典型的に、極めて低い温度(低温)の環境において熱を取り除くことに非効率的である。結果として、このことは、非常に大きく、高価な、抵抗性の永久電流スイッチを使用することを要求し、もしくは、高価な凍結材がボイルオフ(boil off)されて、磁石がチャージされた後で取り替えられる。これらのことは、いずれも望ましいものではない。
本発明に係る一つの態様は、装置を提供することができる。
本装置は、筐体を有し、かつ、前記筐体の中に熱シールドが配置された低温槽であり、前記熱シールドは、内部領域を定め、かつ、さらに、前記熱シールドと前記筐体との間に配置された断熱領域を定める、低温槽と、
前記断熱領域において配置された第1ステージエレメント、および、前記内部領域において配置され、前記第1ステージエレメントに係る温度よりも低い温度において動作するように構成されている第2ステージエレメント、を有するコールドヘッドコールドヘッドと、
前記コールドヘッドの前記第1ステージエレメントに対して熱的に結合された第1熱交換エレメントと、
前記コールドヘッドの前記第2ステージエレメントに対して熱的に結合された第2熱交換エレメントと、
前記筐体の中に配置され、かつ、電流が流れるときに磁場を生じるように構成されている、導電性コイルと、
前記筐体の中に配置され、かつ、導電性コイルにわたり接続された永久電流スイッチであり、超伝導温度において電気的に超伝導性を有し、かつ、前記超伝導温度より高い抵抗モード温度においては電気的に抵抗である、超伝導材料を含む、永久電流スイッチと、
前記永久電流スイッチを前記抵抗モード温度まで加熱するために、選択的に動作化および非動作化されるように構成されている、永久電流スイッチヒーターと、
前記永久電流スイッチを前記第2熱交換エレメントに対して熱的に結合している熱伝導性リンクと、を含み、
前記永久電流スイッチは、対流性熱放出ループを介して、前記第1熱交換エレメントに対して熱的に結合されており、かつ、
前記熱伝導性リンクは、前記超伝導温度において第1熱伝導性を有し、かつ、前記超伝導温度より高い第2温度において第2熱伝導性を有する材料を含み、
前記第1熱伝導性は、前記第2熱伝導性より大きい。
いくつかの実施例において、本装置は、さらに、
前記筐体の中に配置され、かつ、前記第2熱交換エレメントに接続された、超伝導対流性冷却ループと、を含み、
前記超伝導対流性冷却ループは、その中に配置され、かつ、前記導電性コイルを前記超伝導温度まで冷却するように構成されている、低温液体を有する。
いくつかの実施例において、本装置は、さらに、
磁石励磁期間の最中に、前記永久電流スイッチヒーターを動作化するように構成されているコントローラと、を含み、前記導電性コイルは前記超伝導温度に持ちこまれ、かつ、所定の強度をもつ前記磁場を生成するようにチャージされ、
前記コントローラは、さらに、前記導電性コイルが、一旦、前記所定の強度をもつ前記磁場を生成するようにチャージされると、前記磁石励磁期間の後に続くオペレーション期間の最中は、前記永久電流スイッチヒーターを非動作化するように構成されている。
いくつかの実施例においては、前記磁石励磁期間の最中に、
前記永久電流スイッチから前記第2熱交換エレメントへ前記熱伝導性リンクを介して伝達される熱よりも、多くの熱が、前記永久電流スイッチから前記第1熱交換エレメントへ前記対流性熱放出ループを介して伝達される。
いくつかの実施例において、前記超伝導温度は約4°Kであり、かつ、前記第1熱交換エレメントは約40°Kの温度である。
本発明に係る別の態様は、導電性コイル、前記導電性コイルにわたり接続された永久電流スイッチ、永久電流スイッチヒーター、および、前記永久電流スイッチに対して対流性熱放出ループを介して熱的に結合されている第1熱交換エレメント、を含むデバイスをオペレーションする方法を提供することができ、前記永久電流スイッチは、超伝導温度において超伝導性を有し、かつ、前記超伝導温度より高い抵抗モード温度において電気的に抵抗である、超伝導材料を含む。
本方法は、磁石励磁期間の最中に、
前記導電性コイルを前記超伝導温度まで冷却するステップと、
前記永久電流スイッチの温度を前記抵抗モード温度まで上げるように、前記永久電流スイッチヒーターを加熱するステップと、
所望の強度をもつ磁場を生成するように前記導電性コイルをチャージするために、前記導電性コイルに対してエネルギーを適用するステップと、
前記導電性コイルに対して前記エネルギーを適用する一方で、前記永久電流スイッチから前記第1熱交換エレメントへ、前記対流性熱放出ループを介して、熱を放出するステップと、を含む。
いくつかの実施例において、本方法は、さらに、
前記永久電流スイッチの上に前記第1熱交換エレメントを配置するステップ、を含み、
前記磁石励磁期間の最中に、前記第1熱交換エレメントは、前記超伝導温度より高い第1温度である。
いくつかの実施例において、前記第1温度は約40°Kであり、かつ、前記超伝導温度は約4°Kである。
いくつかの実施例において、本方法は、さらに、前記磁石励磁期間の後に続くオペレーション期間の最中に、
前記永久電流スイッチから第2熱交換エレメントへ、熱伝導性リンクを介して、熱を放出するステップと、を含み、
前記第2熱交換エレメントは、前記オペレーション期間の最中に、前記超伝導温度である。
いくつかの実施例において、
前記熱伝導性リンクは、前記超伝導温度において第1熱伝導性を有し、かつ、前記超伝導温度より高い第2温度において第2熱伝導性を有する材料を含み、
前記第1熱伝導性は、前記第2熱伝導性より大きい。
いくつかの実施例において、
前記磁石励磁期間および前記オペレーション期間の最中に、前記第1熱交換エレメントは、前記超伝導温度より実質的に高い第1温度である。
いくつかの実施例において、前記超伝導温度は約4°Kであり、かつ、前記第1温度は約40°Kである。
本発明に係るさらに別の態様は、装置を提供することができる。本装置は、
超伝導温度において超伝導性を有し、かつ、前記超伝導温度より高い抵抗モード温度において電気的に抵抗である、超伝導材料を含む、永久電流スイッチと、
第1熱交換エレメントと、
前記永久電流スイッチを前記第1熱交換エレメントに対して熱的に結合している、対流性熱放出ループと、
前記第1熱交換エレメントから離れて置かれた、第2熱交換エレメントと、
前記永久電流スイッチを前記第2熱交換エレメントに対して熱的に結合している、熱伝導性リンクと、を含む。
いくつかの実施例において、前記対流性熱放出ループは、2フェイズのヒートパイプを含む。
いくつかの実施例において、
前記熱伝導性リンクは、前記超伝導温度において第1熱伝導性を有し、かつ、前記超伝導温度より高い第2温度において第2熱伝導性を有する材料を含み、
前記第1熱伝導性は、前記第2熱伝導性より大きい。
いくつかの実施例において、本装置は、さらに、低温槽を含み、
前記低温槽は、筐体と、
熱シールドであり、前記筐体の中に配置され、かつ、前記熱シールドと前記筐体との間の断熱領域を定める、熱シールドと、を含む。
いくつかの実施例において、第1熱交換エレメントは、前記熱シールドを含む。
いくつかの実施例において、前記断熱領域は、真空である。
いくつかの実施例において、本装置は、さらに、
筐体の中に配置され、かつ、選択的に動作化および非動作化されるように構成されている、永久電流スイッチヒーターと、を含み、
前記永久電流スイッチヒーターが動作化されると、前記永久電流スイッチを前記抵抗モード温度まで加熱する。
いくつかの実施例において、本装置は、さらに、
筐体の中に配置され、かつ、前記第2熱交換エレメントに接続された、超伝導対流性冷却ループと、を含み、
前記超伝導対流性冷却ループは、その中に配置され、かつ、前記永久電流スイッチを前記超伝導温度まで冷却するように構成されている、低温液体を有する。
本発明は、添付の図面と併せて考慮することにより、以降に示される典型的な実施例に係る詳細な説明から直ちに理解されよう。
図1は、磁気共鳴画像(MRI)装置の典型的な一つの実施例を示している。 図2は、熱放出装置を用いた永久電流スイッチの典型的な実施例を示している。 図3は、MRI装置の中で使用され得る超伝導磁石システムの典型的な実施例を示しており、熱放出装置を用いた永久電流スイッチを含んでいる。 図4は、超伝導磁石と永久電流スイッチを用いた磁石システムを励磁して動作する典型的な実施例を説明するフローチャートである。
これから、添付の図面を参照して、本発明が、より完全に以降に説明され、本発明の実施例が示される。本発明は、しかしながら、異なる形式において具現化され得るものであり、ここにおいて明らかにされる実施例に限定されるものと理解されるべきではない。むしろ、これらの実施例は、本発明の実施例を教示するものとして提供される。本発明開示および特許請求の範囲において、おおよそ(approximately)所定の値を有するものと言及される場合は、その値の10%以内の値を意味する。そして、約(about)所定の値を有するものと言及される場合は、その値の25%以内の値を意味するものである。
図1は、磁気共鳴画像(MRI)装置100の典型的な一つの実施例を示している。MRI装置100は、磁石102、患者10を保持するように構成されている患者テーブル104、MRI装置100が画像を生成するために患者10の少なくとも一部分を少なくとも部分的に取り囲むように構成されている勾配コイル106、少なくとも画像化される患者10の部分に対してラジオ周波数を適用し、かつ、磁場のアライメントを変更するように構成されているラジオ周波数コイル108、および、ラジオ周波数信号によって生じた磁場における変化を検出するように構成されているスキャナ110、を含んでいる。
MRI装置の一般的な動作はよく知られており、従って、ここにおいては繰り返されない。
図2は、MRI装置100といったMRI装置の中で使用され得る、熱放出装置を用いた永久電流スイッチの典型的な実施例を示している。特に、図2は、以下のものを示している。第1ステージエレメント202と第2ステージエレメント203を伴うコールドヘッド(cold head)201、第1ステージ熱交換器または熱伝達エレメント204、対流性熱放出ループ205、熱伝導性熱放出リンク206、永久電流スイッチ207、永久電流スイッチヒーター208、および、第1および第2の導電性チャージリンク209aおよび209b、である。
第1熱交換器204は、コールドヘッド201の第1ステージエレメント202と熱的コミュニケーション(thermal communication)する。ここで、第1ステージエレメント202は、一般的に、第2ステージエレメント203(例えば、約4°K)より高い温度(例えば、約40°K)において動作する。
対流性熱放出ループ205は、永久電流スイッチ207を第1熱交換器204と接続している。いくつかの実施例において、対流性熱放出ループ205は、以下により詳細に説明されるように、2ステージのヒートパイプを含んでよい。
熱伝導性熱放出リンク206は、望ましくは、永久電流スイッチ207を、コールドヘッド201の第2ステージエレメント203、及び/又は、コールドヘッド201の第2ステージエレメント203に接続され得る第2熱交換器(図2に示されていない)と接続している。
永久電流スイッチ207は、超伝導材料を含んでいる。超伝導材料は、超伝導温度(例えば、約4°K)において電気的に超伝導性を有し、かつ、超伝導温度より高い抵抗モード温度において電気的に抵抗である。
永久電流スイッチヒーター208は、例えば、コントローラ(図2に示されていない)の制御下で、加熱電流を適用することによって、選択的に、動作化/ターンオン、および、非動作化/ターンオフされ得る。
以降により詳しく説明されるように、永久電流スイッチ207が、抵抗状態であるように永久電流スイッチヒーター208によって加熱され、かつ、第1と第2の導電性チャージリンク209aと209bとの間にチャージ電圧(charging voltage)が適用された場合、次に、結果として生じる永久電流スイッチ207を通じた電流によって熱が生成される。図2に示された装置は、永久電流スイッチ207からの熱放出のために2つのパス(path)を備えている。第1パスは、対流性熱放出ループ205を介して第1熱交換エレメントまでであり、第1熱交換エレメントは、コールドヘッド201の第1ステージエレメント202及び/又は第1ステージ熱交換器204を含み得る。そして、第2パスは、熱伝導性熱放出リンク206を介して第2熱交換エレメントまでであり、第2熱交換エレメントは、コールドヘッド201の第2ステージエレメント203及び/又は第2ステージ熱交換器(図2に示されていない)を含み得る。第2ステージ熱交換器は、第2ステージエレメント203に対して熱的に結合または接続され得る。熱放出のための2つパスだけが示されているが、本発明の他の実施例は、あらゆる数量のステージ/エレメントおよび熱放出パスを有し得るものである。
図3を参照して、図2に示される永久電流スイッチ207および熱放出装置のオペレーションが、より上手く説明される。図3は、超伝導磁石システム300の典型的な実施例を示している。超伝導磁石システムは、MRI装置100といったMRI装置において使用され得るもので、図2に係る永久電流スイッチ207および熱放出装置を含み得る。
超伝導磁石システム300は、図2に示される装置を含み得る。以下の装置を含むものである。第1ステージエレメント202と第2ステージエレメント203を伴うコールドヘッド201、第1熱交換器または熱伝達エレメント204、対流性熱放出ループ205、熱伝導性熱放出リンク206、永久電流スイッチ207、永久電流スイッチヒーター208、および、第1と第2の導電性チャージリンク209aと209b、である。
超伝導磁石システム300は、また、第2熱交換器または熱伝達エレメント305、コンプレッサ306、超伝導対流性冷却ループ308、一つまたはそれ以上の導電性コイル313(励磁された場合には超伝導磁石を含む)、および、磁石コントローラ380、を含んでいる。超伝導対流性冷却ループ308は、第2熱交換器305を介してコールドヘッド203の第2ステージエレメント203に熱的に結合されている。図3に示されるように、永久電流スイッチ207は、導電性コイル313のターミナルにわたり接続されている。
超伝導磁石システム300は、さらに、筐体を有する低温槽301、または、外部真空容器316、および、筐体316の中に配置された熱シールド315を含んでいる。熱シールドは、熱シールド315と筐体316との間に配置された断熱領域314bから、少なくとも部分的に、内部領域314aを熱的に隔離している。ここで、一般的に、熱シールド315は、内部領域314aを完全には取り囲まなくてよいことが理解されるべきである。例えば、図3に示されるように、熱シールド315は、開口部または隙間を含んでよい。熱放出ループ205、コールドヘッド201の一部、電線またはプローブ、等といった種々の構成が、内部領域314aと断熱領域314bとの間を通ることができるようにである。いくつかの実施例において、熱シールド315は、閉じた構造ではないが、それにもかかわらず一般的にその中の領域を定める開放端の領域を含んでよい。他の形状および構成も可能である。
一般的に、超伝導磁石システム300は、図3に示されるもの以外の数多くの他のエレメントを有し得る。例えば、システムのスタートアップの最中に導電性コイル313に電力を供給するための電源、超伝導磁石システム300のオペレーションをモニタリングするために磁石コントローラ380に接続された一つまたはそれ以上のセンサ、等を含んでいる。
一つの実施例において、第2ステージエレメント203、対流性熱放出ループ205、熱伝導性熱放出リンク206、永久電流スイッチ207、永久電流スイッチヒーター208、第1および第2の導電性チャージリンク209aおよび209b、第2熱交換器305、超伝導対流性冷却ループ308、および、導電性コイル313は、内部領域314aの中に配置される。第1熱交換器204とコールドヘッド201の第1ステージエレメント202は、断熱領域314bの中に配置される。コンプレッサ306とコントローラ380は、低温槽301の外部に配置される。
有利なことに、内部領域314aと筐体316の内側の断熱領域314は、あらゆる気体、液体、等が除去された真空スペースを含んでいる。定められた構成(例えば、コールドヘッド201の第2ステージエレメント203、対流性熱放出ループ205、熱伝導性熱放出リンク206、永久電流スイッチ207、永久電流スイッチヒーター208、第1および第2の導電性チャージリンク209aおよび209b、第2熱交換器305、超伝導対流性冷却ループ308、導電性コイル313、および、コールドヘッド201の第1ステージエレメント202、等)によって占められる領域を除いた第1真空を有している。
いくつかの実施例において、熱シールド315は、コールドヘッド201の第1ステージエレメント202に対して熱的に結合または接続されている。いくつかの実施例において、第1熱交換器204は、熱シールド315に取付けられ、または、その一部である。
熱伝導性熱放出リンク206は、永久電流スイッチ207と内部領域314aの中に配置された第2熱交換エレメントとの間に接続されている。第2熱交換エレメントは、例えば、コールドヘッド201の第2ステージエレメント203または第2ステージエレメント203に対して熱的に結合または接続された第2熱交換器305である。有利なことに、いくつかの実施例において、熱伝導性熱放出リンク206は、以下の材料を含んでいる。超伝導温度(例えば、約4°K)において第1熱伝導性を有し、かつ、第2温度(例えば、約40°K)において第2熱伝導性を有しており、第2温度は超伝導温度より高く、第1熱伝導性は第2熱伝導性より大きい、材料である。
いくつかの実施例において、磁石コントローラ380は、メモリ(例えば、揮発性及び/又は不揮発性メモリ)およびプロセッサ(例えば、マイクロプロセッサ)を含んでよい。プロセッサは、メモリの中に保管されたコンピュータプログラムを実行し、磁石システム300に、ここにおいて説明されるような一つまたはそれ以上のアクション及び/又はプロセスを実施させるように構成されてよい。
図3に関して、これから、永久電流スイッチ207および関連する熱放出装置の典型的なオペレーションの説明が示される。
オペレーションにおいて、第1熱交換エレメントは、第1熱交換器204及び/又はコールドヘッド201の第1ステージエレメント202を含み得るが、永久電流スイッチ207の上にあるように配置されてよい。この点について、第1熱交換エレメントは、直接的に永久電流スイッチの上に配置されても、配置されなくてもよい。しかし、有利なことに、第1熱交換エレメントは、永久電流スイッチ207よりも、地球に関して、より高い高度または位置に配置される。
オペレーションにおいて、超伝導対流性冷却ループ308は、その中に低温液体(例えば、液体または気体ヘリウム)が配置されている。コールドヘッド201は、コンプレッサによって駆動され、超伝導対流性冷却ループ308の中の低温液体を冷却する。次に、超伝導対流性冷却ループ308は、導電性コイル313を超伝導温度(例えば、約4°K)まで冷却して、導電性コイル313は超伝導性となる。この時に、第1熱交換器204は断熱領域314bにおいて配置されており、熱シールド315に対して熱的に結合されてよい。従って、第1熱交換器204は、第1温度(例えば、約40°K)にあり、第1温度は、内部領域314aにおける超伝導対流性冷却ループ308の導電性コイル313に係る超伝導温度(例えば、約4°K)より高い。
スタートアップまたは磁石励磁の最中に、導電性コイル313は、所望の磁場強度を伴う磁場を生成するようにチャージされる。これを達成するために、永久電流スイッチヒーター208が、動作化またはターンオンされる(例えば、磁石コントローラ380の制御下において)。抵抗モード温度まで永久電流スイッチ207を加熱するようにであり、その温度は超伝導温度より高いものである。永久電流スイッチ207は、抵抗モード温度まで加熱されると、数オームから数十オームの範囲のインピーダンスをもつ抵抗状態にある。抵抗状態にある永久電流スイッチ207を用いて、電源(低温槽301の外部にあり、図3には示されていない)からの電力を適用することによって導電性コイル313が励磁される。これは、第1および第2の導電性チャージリンク209aおよび209bを介して実行され、それにより、導電性コイル313に磁場を生じさせている。導電性コイル313によって生成される磁場は、電源からの電力供給を継続することによって、所望またはターゲットの磁場強度までランプアップされ得る。
永久電流スイッチ207が抵抗状態にある間に、第1および第2の導電性チャージリンク209aおよび209bにわたる電圧は、永久電流スイッチ207を通る電流を生じさせる。それは、次に、永久電流スイッチ207におけるエネルギー消散を生じさせる。このエネルギー消散は、熱の形態をとり、永久電流スイッチ207の温度を上げる。いくつかの実施例においては、電源から永久電流スイッチ207を通して電流が流れた後、抵抗損失によって生成された熱は、永久電流スイッチを抵抗モード温度又はそれ以上に維持するために十分であり得る。抵抗状態で動作し続けるためである。いくつかの実施例において、永久電流スイッチヒーター208は、この時点で非動作化またはターンオフされてよく、一方で、電源からの電力は供給され続ける。
磁石励磁期間の最中に、対流性熱放出ループ205は、永久電流スイッチ207から第1熱交換器204へ熱を伝達する。一つの典型的な実施例において、第1熱交換器204は、断熱領域314bにおいて熱シールド315の外部に配置される。さらに、第1熱交換器204は、第1温度(例えば、約40°K)にあってよい。超伝導温度(例えば、約4°K)より高い温度である。いくつかの実施例において、永久電流スイッチ207の温度は、第1熱交換エレメント204の第1温度より高い。従って、永久電流スイッチ207の上に配置された第1熱交換器204を用いて、熱は、永久電流スイッチ207から第1熱交換器204へ対流性熱放出ループ205を介して対流して流れ得る。このようにして、磁石励磁期間の最中に永久電流スイッチ207によって生成された熱負荷は、内部領域314aに配置された、より低温で、より効率的でない、コールドヘッド201の第2ステージエレメント203へ伝達されるより、むしろ、熱シールド315の外部に配置された、コールドヘッド201の第1ステージエレメント202へ伝達され得る。
いくつかの実施例において、対流性熱放出ループ205は、2フェイズのヒートパイプを含み得る。その場合、例えば、液体は、第1熱交換器204から永久電流スイッチ207まで、重力によって流れる。そこで、永久電流スイッチ207からの熱は、液体を気体に変化させる。気体は、対流によって第1熱交換器204まで上昇して流れ、そこで、熱が除去されて、気体が液体化される。
上述のように、この時点で、磁石励磁期間の最中に、永久電流スイッチ207は、上昇した温度(例えば、40°K以上)にある。そこにおいて消散される電力のせいで、超伝導温度(例えば、約4°K)より高い温度である。従って、いくつかの実施例において、熱伝導性熱放出リンク206は、永久電流スイッチ207に接続される。熱伝導性熱放出リンク206は、上昇した温度にあり、超伝導温度での熱伝導性よりも大きい熱伝導性を有している。従って、そうした実施例においては、内部領域314aにおいて熱伝導性熱放出リンク206を介して、永久電流スイッチ207から第2熱交換エレメント(例えば、コールドヘッド201の第2ステージエレメント203または第2熱交換器305)へ伝達される熱は、僅かであり又は無い。有利なことに、このことは、コールドヘッド201の第2ステージエレメント203に対して熱的に結合されている超伝導対流性冷却ループ308において低温液体が沸騰することを低減し、または、妨げる。
導電性コイル313が、所望の磁場強度の磁場を生成するように励磁された後で、永久電流スイッチヒーター208は、非動作化またはターンオフされ(例えば、磁石コントローラ308の制御下において)、電源が導電性コイル313から切断される。磁石システム300が通常オペレーションへ移行するからである。従って、永久電流スイッチの温度は減少する。
一旦、永久電流スイッチ207が、第1熱交換器204の第1温度(例えば、約40°K)より低い温度に達すると、次に、対流性熱放出ループ205は停滞し、より高温の第1熱交換器204から、その下に置かれている、より低温の永久電流スイッチ207へ、僅かな熱が伝達されるか、または、熱は伝達されない。永久電流スイッチ207の温度が低下しているので、いくつかの実施例において、熱伝導性熱放出リンク206の熱伝導性が増加する。永久電流スイッチ207から、内部領域314aにおける第2熱交換エレメント(例えば、コールドヘッド201の第2ステージエレメント203または第2熱交換器305)へ、増加している量の熱が伝達されるようにである。最終的に、永久電流スイッチ207は、超伝導温度(例えば、約4°K)まで冷却され、超伝導状態へスイッチする。この時点において、磁石システム300は、上述のように、永久モードにおいて、通常に動作する。
図4は、磁石システム300といった、超伝導磁石と永久電流スイッチを用いた磁石システムを励磁して動作する典型的な方法400を説明するフローチャートである。
ステップ410において、磁石(例えば、一つの実施例において、導電性コイル)が、例えば、コンプレッサとコールドヘッドによって、超伝導温度(例えば、約4°K)まで冷却される。
ステップ420において、磁石励磁期間が始まり、永久電流スイッチを抵抗モード温度まで加熱するように、永久電流スイッチヒーターがターンオンまたは動作化される。永久電流スイッチが抵抗状態にあるようにである。
ステップ430において、磁石の磁場をチャージするために、外部電源からエネルギーが適用される。
ステップ440において、熱は、永久電流スイッチから第1熱交換エレメントへ、対流性熱放出ループを介して、対流して放出される。第1熱交換エレメントは、典型的に、磁石システムの超伝導温度より高い第1温度(例えば、約40°K)にあり、かつ、永久電流スイッチの上に配置されている。有利なことに、上述のように、第1熱交換エレメントは、低温槽の断熱領域の中で、かつ、磁石システムの低温槽において備えられる熱シールドの外部に、配置される。
ステップ450において、所望の強度または強さの磁場を生成するように磁石が励磁されたか否かが(例えば、磁石コントローラによって)判断される。いくつかの実施例において、このことは、磁石(例えば、導電性コイル313)を通じた電流の測定によって、または、磁場プローブによって行われる。
磁石が、所望の磁場強度まで未だ励磁されていないと、ステップ450において判断された場合、ステップ420から440が継続される。
しかしながら、磁石が所望の磁場強度まで励磁されたと、ステップ450において判断された場合、次にプロセスは、ステップ460に進む。
ステップ460において、永久電流スイッチヒーターが、ターンオフまたは非動作化され得る。いくつかの実施例において、永久電流スイッチを通じて流れる電流が、永久電流スイッチを抵抗状態に維持するために十分な熱放出を生じている場合には、永久電流スイッチヒーターが、より早いステップにおいてターンオフまたは非動作化されていてよい。その場合には、所望の磁場強度をもつ磁場を供給するように磁石が励磁されたものとステップ450において判断された後で、永久電流スイッチの非動作化またはターンオフが維持される。
ステップ470において、電源が磁石(例えば、一つまたはそれ以上の導電性コイル)から切断され、磁石システムの通常オペレーション期間を開始する。
ステップ480において、永久電流スイッチは、第1熱交換エレメントの第1温度より低い温度まで冷える。この時点で、対流性熱放出ループは動作を停止し、より高温の第1熱交換エレメントから、その下に置かれている、より冷めた永久電流スイッチへ、対流性熱放出ループを介して、僅かな熱が伝達されるか、または、熱は伝達されない。このとき、熱は、永久電流スイッチから第2熱交換エレメントへ放出される。例えば、超伝導温度であってよい。有利なことに、いくつかの実施例において、第2熱交換エレメントは、磁石システムの低温槽の内部領域で、低温槽において備えられる熱シールドの中に配置されてよい。
ステップ490において、永久電流スイッチは、超伝導温度まで冷え、超伝導状態へスイッチする。この時点で、磁石システムは、上述のように、永久モードにおいて、通常に動作する。
ここにおいて所望の実施例が開示される一方で、本発明の主旨および範囲から逸脱することなく多くの変形が可能である。そうした変形は、ここにおける明細書、図面、および、特許請求の範囲を検討した後で、当業者にとって明らかになるだろう。本発明は、従って、添付の特許請求の範囲を除いて限定されるべきものではない。

Claims (18)

  1. 筐体を有し、かつ、前記筐体の中に熱シールドが配置された低温槽であり、
    前記熱シールドは、内部領域を定め、かつ、さらに、前記熱シールドと前記筐体との間に配置された断熱領域を定める、低温槽と、
    前記断熱領域において配置された第1ステージエレメント、および、前記内部領域において配置され、前記第1ステージエレメントに係る温度よりも低い温度において動作するように構成されている第2ステージエレメント、を有するコールドヘッドと、
    前記コールドヘッドの前記第1ステージエレメントに対して熱的に結合された第1熱交換エレメントと、
    前記コールドヘッドの前記第2ステージエレメントに対して熱的に結合された第2熱交換エレメントと、
    前記筐体の中に配置され、かつ、電流が流れるときに磁場を生じるように構成されている、導電性コイルと、
    前記筐体の中に配置され、かつ、導電性コイルにわたり接続された永久電流スイッチであり、超伝導温度において電気的に超伝導性を有し、かつ、前記超伝導温度より高い抵抗モード温度においては電気的に抵抗である、超伝導材料を含む、永久電流スイッチと、
    前記永久電流スイッチを前記抵抗モード温度まで加熱するために、選択的に動作化および非動作化されるように構成されている、永久電流スイッチヒーターと、
    対流性熱放出ループと、
    前記永久電流スイッチを前記第2熱交換エレメントに対して熱的に結合している熱伝導性リンクと、
    を含み、
    前記永久電流スイッチは、前記対流性熱放出ループを介して、前記第1熱交換エレメントに対して熱的に結合されており、かつ、
    前記熱伝導性リンクは、前記超伝導温度において第1熱伝導性を有し、かつ、前記超伝導温度より高い第2温度において第2熱伝導性を有する材料を含み、
    前記第1熱伝導性は、前記第2熱伝導性より大きい、
    装置。
  2. 前記装置は、さらに、
    前記筐体の中に配置され、かつ、前記第2熱交換エレメントに接続された、超伝導対流性冷却ループと、を含み、
    前記超伝導対流性冷却ループは、その中に配置され、かつ、前記導電性コイルを前記超伝導温度まで冷却するように構成されている、低温液体を有する、
    請求項1に記載の装置。
  3. 前記装置は、さらに、
    磁石励磁期間の最中に、前記永久電流スイッチヒーターを動作化するように構成されているコントローラと、を含み、
    前記導電性コイルは前記超伝導温度に持ちこまれ、かつ、所定の強度をもつ前記磁場を生成するようにチャージされ、
    前記コントローラは、さらに、
    前記導電性コイルが、一旦、前記所定の強度をもつ前記磁場を生成するようにチャージされると、前記磁石励磁期間の後に続くオペレーション期間の最中は、前記永久電流スイッチヒーターを非動作化するように構成されている、
    請求項2に記載の装置。
  4. 前記磁石励磁期間の最中に、
    前記永久電流スイッチから前記第2熱交換エレメントへ前記熱伝導性リンクを介して伝達される熱よりも、多くの熱が、前記永久電流スイッチから前記第1熱交換エレメントへ前記対流性熱放出ループを介して伝達される、
    請求項3に記載の装置。
  5. 前記超伝導温度は約4°Kであり、かつ、前記第1熱交換エレメントは約40°Kの温度である、
    請求項1に記載の装置。
  6. 導電性コイル、前記導電性コイルにわたり接続された永久電流スイッチ、永久電流スイッチヒーター、2ステージのコールドヘッドに係る第1ステージエレメントに熱的に結合され、かつ、前記永久電流スイッチに対しても対流性熱放出ループを介して熱的に結合されている第1熱交換エレメント、および、該2ステージのコールドヘッドに係る第2ステージエレメントに熱的に結合され、かつ、前記永久電流スイッチに対しても熱伝導性リンクを介して熱的に結合されている第2熱交換エレメント、を含むデバイスをオペレーションする方法であって、
    前記永久電流スイッチは、超伝導温度において超伝導性を有し、かつ、前記超伝導温度より高い抵抗モード温度において電気的に抵抗である、超伝導材料を含み、
    前記方法は、磁石励磁期間の最中に、
    前記導電性コイルを前記超伝導温度まで冷却するステップと、
    前記永久電流スイッチの温度を前記抵抗モード温度まで上げるように、前記永久電流スイッチヒーターを加熱するステップと、
    所望の強度をもつ磁場を生成するように前記導電性コイルをチャージするために、前記導電性コイルにエネルギーを与えるステップと、
    前記導電性コイルに対して前記エネルギーを適用する一方で、前記永久電流スイッチから前記第1熱交換エレメントへ、前記対流性熱放出ループを介して、熱を放出するステップと、
    を含み、
    前記方法は、さらに、前記磁石励磁期間の後に続くオペレーション期間の最中に、
    前記永久電流スイッチから第2熱交換エレメントへ、熱伝導性リンクを介して、熱を放出するステップと、
    を含み、
    前記熱伝導性リンクは、前記超伝導温度において第1熱伝導性を有し、かつ、前記超伝導温度より高い第2温度において第2熱伝導性を有する材料を含み、
    前記第1熱伝導性は、前記第2熱伝導性より大きい、
    方法。
  7. 前記方法は、さらに、
    前記永久電流スイッチの上に前記第1熱交換エレメントを配置するステップ、を含み、
    前記磁石励磁期間の最中に、前記第1熱交換エレメントは、前記超伝導温度より高い第1温度である、
    請求項6に記載の方法。
  8. 前記第1温度は約40°Kであり、かつ、前記超伝導温度は約4°Kである、
    請求項7に記載の方法。
  9. 前記第2熱交換エレメントは、前記オペレーション期間の最中に、前記超伝導温度である、
    請求項6に記載の方法。
  10. 前記磁石励磁期間および前記オペレーション期間の最中に、前記第1熱交換エレメントは、前記超伝導温度より実質的に高い第1温度である、
    請求項9に記載の方法。
  11. 前記超伝導温度は約4°Kであり、かつ、前記第1温度は約40°Kである、
    請求項10に記載の方法。
  12. 超伝導温度において超伝導性を有し、かつ、前記超伝導温度より高い抵抗モード温度において電気的に抵抗である、超伝導材料を含む、永久電流スイッチと、
    コールドヘッドに係る第1ステージエレメントに熱的に結合された第1熱交換エレメントと、
    前記永久電流スイッチを前記第1熱交換エレメントに対して熱的に結合している、対流性熱放出ループと、
    前記第1熱交換エレメントから離れて置かれ、かつ、前記コールドヘッドに係る第2ステージエレメントに熱的に結合された、第2熱交換エレメントと、
    前記永久電流スイッチを前記第2熱交換エレメントに対して熱的に結合している、熱伝導性リンクと、
    を含み、
    前記熱伝導性リンクは、前記超伝導温度において第1熱伝導性を有し、かつ、前記超伝導温度より高い第2温度において第2熱伝導性を有する材料を含み、
    前記第1熱伝導性は、前記第2熱伝導性より大きい、
    装置。
  13. 前記対流性熱放出ループは、二相ヒートパイプを含む、
    請求項12に記載の装置。
  14. 前記装置は、さらに、低温槽を含み、
    前記低温槽は、
    筐体と、
    熱シールドであり、前記筐体の中に配置され、かつ、前記熱シールドと前記筐体との間の断熱領域を定める、熱シールドと、
    を含む、請求項12に記載の装置。
  15. 第1熱交換エレメントは、前記熱シールドを含む、
    請求項14に記載の装置。
  16. 前記断熱領域は、真空である、
    請求項14に記載の装置。
  17. 前記装置は、さらに、
    筐体の中に配置され、かつ、選択的に動作化および非動作化されるように構成されている、永久電流スイッチヒーターと、を含み、
    前記永久電流スイッチヒーターが動作化されると、前記永久電流スイッチを前記抵抗モード温度まで加熱する、
    請求項12に記載の装置。
  18. 前記装置は、さらに、
    導電性コイルと、
    筐体の中に配置され、かつ、前記第2熱交換エレメントに接続された、超伝導対流性冷却ループと、を含み、
    前記超伝導対流性冷却ループは、その中に配置され、かつ、前記導電性コイルを前記超伝導温度まで冷却するように構成されている、低温液体を有する、
    請求項12に記載の装置。
JP2015547199A 2012-12-17 2013-09-22 熱伝達装置を用いた低損失な永久電流スイッチ Active JP6420768B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261737939P 2012-12-17 2012-12-17
US61/737,939 2012-12-17
PCT/IB2013/058736 WO2014096995A1 (en) 2012-12-17 2013-09-22 Low-loss persistent current switch with heat transfer arrangement

Publications (2)

Publication Number Publication Date
JP2016505308A JP2016505308A (ja) 2016-02-25
JP6420768B2 true JP6420768B2 (ja) 2018-11-07

Family

ID=49726820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015547199A Active JP6420768B2 (ja) 2012-12-17 2013-09-22 熱伝達装置を用いた低損失な永久電流スイッチ

Country Status (5)

Country Link
US (1) US10107879B2 (ja)
EP (1) EP2932288B1 (ja)
JP (1) JP6420768B2 (ja)
CN (1) CN104884967B (ja)
WO (1) WO2014096995A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105393133B (zh) * 2013-06-21 2019-06-04 皇家飞利浦有限公司 用于结合的磁共振成像和辐射治疗的低温恒温器和***
CN105453197B (zh) * 2013-07-26 2018-06-08 皇家飞利浦有限公司 用于响应于磁场控制超导磁体***的冷却回路的方法和设备
US10056178B2 (en) * 2014-01-27 2018-08-21 Hitachi, Ltd. Superconducting magnet device
JP6378039B2 (ja) * 2014-10-23 2018-08-22 株式会社日立製作所 超電導磁石およびmri装置、nmr装置
CN107110927B (zh) * 2014-12-12 2020-03-03 皇家飞利浦有限公司 用于在失冷情况下保持超导磁体***中的真空的***和方法
EP3362812A4 (en) * 2015-10-16 2019-06-26 Synaptive Medical (Barbados) Inc. MAGNETIC RESONANCE GAUGING SYSTEM WITH ABILITY FOR QUICK FIELD RAMPING
WO2017093101A1 (en) * 2015-12-04 2017-06-08 Koninklijke Philips N.V. Cryogenic cooling system with temperature-dependent thermal shunt
US11125663B1 (en) 2016-03-11 2021-09-21 Montana Instruments Corporation Cryogenic systems and methods
US10775285B1 (en) 2016-03-11 2020-09-15 Montana Intruments Corporation Instrumental analysis systems and methods
JP6860513B2 (ja) * 2018-03-14 2021-04-14 株式会社東芝 超電導磁石装置
JP6860517B2 (ja) * 2018-03-19 2021-04-14 株式会社東芝 超電導磁石装置
JP7048413B2 (ja) * 2018-05-23 2022-04-05 株式会社東芝 超電導磁石装置の運転方法および超電導磁石装置
WO2020076988A1 (en) * 2018-10-09 2020-04-16 Montana Instruments Corporation Cryocooler assemblies and methods
CN109660235B (zh) * 2018-11-30 2021-12-31 同济大学 一种用于高温超导电磁铁的热控式持续电流开关电路
US11309110B2 (en) * 2019-02-28 2022-04-19 General Electric Company Systems and methods for cooling a superconducting switch using dual cooling paths
JP7171943B2 (ja) * 2019-03-22 2022-11-15 コーニンクレッカ フィリップス エヌ ヴェ 持続電流スイッチの温度を制御するためのシステム
US11956924B1 (en) 2020-08-10 2024-04-09 Montana Instruments Corporation Quantum processing circuitry cooling systems and methods
US11428764B2 (en) * 2021-01-29 2022-08-30 Synaptive Medical Inc. Magnetic resonance imaging system and method for rapid shutdown and recharge of a superconducting magnet

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4926647A (en) * 1989-04-10 1990-05-22 General Electric Company Cryogenic precooler and cryocooler cold head interface receptacle
JP3019683B2 (ja) * 1993-09-20 2000-03-13 株式会社日立製作所 永久電流スイッチ及び超電導マグネットシステム
US5361055A (en) 1993-12-17 1994-11-01 General Dynamics Corporation Persistent protective switch for superconductive magnets
JP3322981B2 (ja) 1994-03-04 2002-09-09 東芝トランスポートエンジニアリング株式会社 永久電流スイッチ
JP3265139B2 (ja) * 1994-10-28 2002-03-11 株式会社東芝 極低温装置
US5513498A (en) * 1995-04-06 1996-05-07 General Electric Company Cryogenic cooling system
US5512870A (en) 1995-08-11 1996-04-30 General Electric Company Superconducting switch
WO1997011472A1 (fr) 1995-09-20 1997-03-27 Hitachi, Ltd. Aimant supraconducteur
US6646836B2 (en) 2001-03-01 2003-11-11 Kabushiki Kaisha Kobe Seiko Sho Superconducting magnet apparatus in persistent mode
DE102004058006B3 (de) * 2004-12-01 2006-06-08 Siemens Ag Supraleitungseinrichtung mit Kryosystem und supraleitendem Schalter
JP2007221013A (ja) * 2006-02-20 2007-08-30 Hitachi Ltd 永久電流スイッチ
US8134434B2 (en) 2007-01-05 2012-03-13 Quantum Design, Inc. Superconducting quick switch
JP5175594B2 (ja) * 2008-03-31 2013-04-03 株式会社東芝 極低温冷却装置およびその制御方法
US8238988B2 (en) * 2009-03-31 2012-08-07 General Electric Company Apparatus and method for cooling a superconducting magnetic assembly
JP2010283186A (ja) 2009-06-05 2010-12-16 Hitachi Ltd 冷凍機冷却型超電導磁石
JP2011082229A (ja) * 2009-10-05 2011-04-21 Hitachi Ltd 伝導冷却型超電導マグネット

Also Published As

Publication number Publication date
CN104884967A (zh) 2015-09-02
JP2016505308A (ja) 2016-02-25
US10107879B2 (en) 2018-10-23
WO2014096995A1 (en) 2014-06-26
US20150323626A1 (en) 2015-11-12
EP2932288A1 (en) 2015-10-21
CN104884967B (zh) 2018-05-22
EP2932288B1 (en) 2022-11-16

Similar Documents

Publication Publication Date Title
JP6420768B2 (ja) 熱伝達装置を用いた低損失な永久電流スイッチ
US10411460B2 (en) System and method for automatically ramping down a superconducting persistent magnet
US10698049B2 (en) System and method for maintaining vacuum in superconducting magnet system in event of loss of cooling
JP6139784B2 (ja) 磁場に応答して超電導磁石システムのための冷却ループを制御する方法及び装置
GB2420910A (en) Superconducting device having a cryogenic system and a superconducting switch
JPWO2014199793A1 (ja) 磁気共鳴イメージング装置、および、その運転方法
US20070102422A1 (en) Switching circuit controlling multiple heating elements
US10969448B2 (en) Magnetic resonance imaging (MRI) apparatus and cryostat for MRI apparatus
US9500730B2 (en) Reduced-gas-flow electrical leads for superconducting magnet system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181012

R150 Certificate of patent or registration of utility model

Ref document number: 6420768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250