JP6419108B2 - Spark plug - Google Patents

Spark plug Download PDF

Info

Publication number
JP6419108B2
JP6419108B2 JP2016104857A JP2016104857A JP6419108B2 JP 6419108 B2 JP6419108 B2 JP 6419108B2 JP 2016104857 A JP2016104857 A JP 2016104857A JP 2016104857 A JP2016104857 A JP 2016104857A JP 6419108 B2 JP6419108 B2 JP 6419108B2
Authority
JP
Japan
Prior art keywords
electrode
electrode material
less
spark plug
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016104857A
Other languages
Japanese (ja)
Other versions
JP2017210652A (en
Inventor
和樹 伊藤
和樹 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2016104857A priority Critical patent/JP6419108B2/en
Priority to CN201710113074.XA priority patent/CN107437725B/en
Publication of JP2017210652A publication Critical patent/JP2017210652A/en
Application granted granted Critical
Publication of JP6419108B2 publication Critical patent/JP6419108B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/39Selection of materials for electrodes

Landscapes

  • Spark Plugs (AREA)

Description

本発明は、アルコール燃料を使用する内燃機関に用いられる点火プラグに関する。特に、アルコール燃料を使用する内燃機関に用いた場合に、耐食性に優れる上に、耐火花消耗性、耐酸化性にも優れる中心電極又は接地電極を備えた点火プラグに関する。   The present invention relates to a spark plug used for an internal combustion engine using alcohol fuel. In particular, when used in an internal combustion engine using alcohol fuel, the present invention relates to a spark plug including a center electrode or a ground electrode that is excellent in corrosion resistance, spark resistance and oxidation resistance.

自動車のエンジン部品などとして点火プラグ(スパークプラグと称することもある。)がある。点火プラグは、代表的には、棒状の中心電極と、中心電極の端面に離間状態で対向配置された接地電極と、を備え(以下、中心電極と接地電極とを電極と称することもある。)、両電極間で火花放電を行い、この放電によって両電極間に流入する燃料混合気体を点火する。特許文献1は、アルコール燃料を使用するエンジンに用いられる点火プラグを開示している。また、特許文献1は、上記点火プラグに備える中心電極として、銅又は銅合金からなる芯部の外周をニッケル合金で囲む構成を開示している。   There is a spark plug (sometimes referred to as a spark plug) as an engine part of an automobile. The spark plug typically includes a rod-shaped center electrode and a ground electrode disposed opposite to the end surface of the center electrode in a separated state (hereinafter, the center electrode and the ground electrode may be referred to as electrodes). ), A spark discharge is performed between the two electrodes, and the fuel mixture gas flowing between the two electrodes is ignited by this discharge. Patent document 1 is disclosing the spark plug used for the engine which uses alcohol fuel. Moreover, patent document 1 is disclosing the structure which surrounds the outer periphery of the core part which consists of copper or a copper alloy with a nickel alloy as a center electrode with which the said ignition plug is equipped.

一方、特許文献2は、耐高温酸化性及び耐食性に優れる点火プラグの電極として、特定の組成のニッケル合金で構成することを開示している。   On the other hand, Patent Document 2 discloses that a spark plug electrode having excellent high-temperature oxidation resistance and corrosion resistance is composed of a nickel alloy having a specific composition.

特開2013−055022号公報JP2013-055022A 特開2014−029002号公報JP 2014-029002 A

アルコール燃料を使用する自動車エンジン等の内燃機関に備えられる点火プラグの電極に対して、耐食性に優れる上に、耐火花消耗性、耐酸化性にも優れることが望まれている。   It is desired that an electrode of a spark plug provided in an internal combustion engine such as an automobile engine using alcohol fuel is excellent in corrosion resistance, spark resistance and oxidation resistance.

しかしながら、従来、アルコール燃料を使用するエンジンに、ニッケル合金で構成した電極を備えた点火プラグを用いた場合に、電極が腐食する原因や、これに対して耐食性に優れる電極材料の構成について十分に検討されていない。   However, when an ignition plug equipped with an electrode made of a nickel alloy is used in an engine using alcohol fuel, the cause of the electrode corroding and the structure of the electrode material having excellent corrosion resistance against this are sufficiently obtained. Not considered.

そこで、本発明の目的の一つは、アルコール燃料を使用する内燃機関に用いた場合に、耐食性に優れる上に、耐火花消耗性、耐酸化性にも優れる電極を備えた点火プラグを提供することにある。   Accordingly, one of the objects of the present invention is to provide an ignition plug provided with an electrode that is excellent in corrosion resistance, spark resistance and oxidation resistance when used in an internal combustion engine using alcohol fuel. There is.

本発明の一態様に係る点火プラグは、中心電極と、前記中心電極の周囲を取り囲む絶縁体と、前記絶縁体の周囲を取り囲む主体金具と、前記主体金具に接合しつつ中心電極と火花放電間隙を有する接地電極と、を備える点火プラグであって、前記中心電極及び前記接地電極の少なくとも一方は、質量%で、希土類元素を合計で0.05%以上0.5%以下、Mnを1.1%以上2.5%以下、Al及びCrの少なくとも一方を0.01%未満、Siを、Si/Mnが0.5以上1.1未満を満たす範囲で含有し、Tiを0.02%以 上0.6%以下含有し、Cを0.005%以上0.05%以下含有し、残部がNi及び不可避不純物からなる電極材料により構成される。
A spark plug according to an aspect of the present invention includes a center electrode, an insulator surrounding the periphery of the center electrode, a metal shell surrounding the insulator, and the center electrode and the spark discharge gap while being bonded to the metal shell. And at least one of the center electrode and the ground electrode is 0.05% by mass and 0.5% or less of the rare earth elements in total, and Mn is 1.%. 1% or more and 2.5% or less, containing at least one of Al and Cr less than 0.01%, Si in a range where Si / Mn satisfies 0.5 or more and less than 1.1, and Ti is 0.02% It contains 0.6% or less on than, C and containing 0.05% or less than 0.005%, and an electrode material balance of Ni and inevitable impurities.

本発明によると、アルコール燃料を使用する内燃機関に用いた場合に、耐食性に優れる上に、耐火花消耗性、耐酸化性にも優れる電極(中心電極、接地電極)を備えた点火プラグを提供することができる。   According to the present invention, when used in an internal combustion engine that uses alcohol fuel, a spark plug having electrodes (center electrode, ground electrode) that are excellent in corrosion resistance, spark resistance and oxidation resistance is provided. can do.

図1は、この発明の一実施例を示す点火プラグを示す一部断面正面図である。FIG. 1 is a partially sectional front view showing a spark plug according to an embodiment of the present invention.

[本発明の実施形態の説明]
本発明者らは、アルコール燃料を使用するエンジンに備える点火プラグの電極を構成する電極材料をニッケル合金とした場合について、電極が腐食する原因と、耐食性に優れる電極材料の構成とを検討した。その結果、以下の知見を得た。腐食した電極を成分分析した結果、S(硫黄)などの電極材料を構成する元素以外の元素が含まれていた。Sは、Niと化合物を形成する元素であり、この化合物の融点が低いことから(概ね800℃程度以下)、電極に付着したSがNiと化合物を形成することで局所的に融点が下がって、この化合物の周囲のNiが腐食したと考えられる。Sなどの元素は、エンジンオイルに含まれていたものと考えられ、経時的に燃焼室に混入したものがアルコールに溶けるなどして電極に付着し、電極が腐食したと考えられる。従って、アルコール燃料を使用するエンジンの燃焼室内は、Sなどの腐食元素が経時的に存在し得る環境と考えられ、このような使用環境での耐食性を高めるには、特定の元素を特定の範囲で含有するニッケル合金とすることが好ましいとの知見を得た。上記知見に基づき、本発明は、電極を特定の組成のニッケル合金からなる電極材料で構成することを規定する。最初に本発明の実施形態の内容を列記して説明する。
(1)実施形態に係る電極材料は、質量%で、希土類元素を合計で0.05%以上0.5%以下、Mnを1.1%以上2.5%以下、Al及びCrの少なくとも一方を0.01%未満、Siを、Si/Mnが0.5以上1.1未満を満たす範囲で含有し、残部がNi及び不可避不純物からなる。Si/Mnとは、Mnの含有量に対するSiの含有量の質量比である。Al及びCrの含有量は0質量%を含む。
[Description of Embodiment of the Present Invention]
The present inventors examined the cause of electrode corrosion and the configuration of an electrode material excellent in corrosion resistance when the electrode material constituting the electrode of the spark plug provided in the engine using alcohol fuel is a nickel alloy. As a result, the following knowledge was obtained. As a result of component analysis of the corroded electrode, elements other than the elements constituting the electrode material such as S (sulfur) were included. S is an element that forms a compound with Ni. Since the melting point of this compound is low (approximately 800 ° C. or less), the S adhering to the electrode locally lowers the melting point by forming a compound with Ni. It is considered that Ni around this compound was corroded. Elements such as S are considered to have been contained in the engine oil, and those mixed into the combustion chamber over time are dissolved in alcohol and attached to the electrode, and the electrode is considered to have corroded. Accordingly, the combustion chamber of an engine using alcohol fuel is considered to be an environment in which corrosive elements such as S can exist over time. In order to improve the corrosion resistance in such an operating environment, a specific element is in a specific range. It was found that it is preferable to use a nickel alloy contained in Based on the above findings, the present invention provides that the electrode is composed of an electrode material made of a nickel alloy having a specific composition. First, the contents of the embodiment of the present invention will be listed and described.
(1) The electrode material according to the embodiment is mass%, the total of rare earth elements is 0.05% to 0.5%, Mn is 1.1% to 2.5%, and at least one of Al and Cr Is less than 0.01%, Si is contained in a range where Si / Mn is 0.5 or more and less than 1.1, and the balance is made of Ni and inevitable impurities. Si / Mn is the mass ratio of the Si content to the Mn content. The content of Al and Cr includes 0% by mass.

上記の電極材料は、特定の組成のニッケル合金で構成されるため、アルコール燃料を使用するエンジンに備える点火プラグの電極を構成する電極材料として使用した場合に、耐食性に優れる上に、耐火花消耗性、耐酸化性にも優れる。詳しくは、以下のように考えられる。
(a)Mnは、Sと化合物を形成する元素であり、形成された化合物の融点(概ね1600℃程度)はNiの融点(1450℃程度)よりも高い。かつ、MnはNiよりも硫化物生成自由エネルギーが低い。そのため、Sなどの腐食元素とNiとが化合物を形成するよりも先にSとMnとが化合物を形成し易く、Niの腐食(Sなどとの化合)を低減できると考えられる。また、SとMnとの化合物は高融点であり、高温環境でも安定して存在できるため、この化合物の周囲(特にNi)が腐食することも抑制できる。
(b)上記の電極材料は、SiをMnに比して特定の範囲で含有するため、Mnを比較的多く含むものの耐酸化性に優れる。SiをMnに比して十分に含有することで、点火プラグの使用時に表面に酸化膜を形成できる。この事後的に形成される酸化膜によって電極の表面から内部への酸素の侵入を低減して内部酸化を抑制できる。
(c)上記の電極材料は、希土類元素を特定の範囲で含有するため、結晶を微細にすることができる。そのため、外部からの酸素や腐食元素が結晶粒界を伝って電極の内部に侵入しようとしても、粒界が長いことで、その侵入度合(深度)が深くなることを抑制できて、内部腐食、内部酸化を抑制できる。
Since the above electrode material is composed of a nickel alloy having a specific composition, when used as an electrode material constituting an electrode of a spark plug provided in an engine using alcohol fuel, it has excellent corrosion resistance and spark consumption. Excellent in resistance and oxidation resistance. The details are considered as follows.
(A) Mn is an element that forms a compound with S, and the melting point (about 1600 ° C.) of the formed compound is higher than the melting point of Ni (about 1450 ° C.). In addition, Mn has lower free energy of sulfide formation than Ni. Therefore, it is considered that S and Mn easily form a compound before Ni and the corrosive element such as S form a compound, and Ni corrosion (combination with S or the like) can be reduced. Moreover, since the compound of S and Mn has a high melting point and can exist stably even in a high temperature environment, it is possible to suppress corrosion around the compound (particularly Ni).
(B) Since the above electrode material contains Si in a specific range as compared with Mn, it contains a relatively large amount of Mn and is excellent in oxidation resistance. By containing Si sufficiently as compared with Mn, an oxide film can be formed on the surface when the spark plug is used. With this oxide film formed afterwards, the infiltration of oxygen from the surface of the electrode to the inside can be reduced to suppress internal oxidation.
(C) Since the above electrode material contains rare earth elements in a specific range, the crystal can be made fine. Therefore, even if external oxygen and corrosive elements try to penetrate the inside of the electrode through the grain boundary, the long grain boundary can suppress the penetration degree (depth) from increasing, and internal corrosion, Internal oxidation can be suppressed.

上記(b),(c)によって、内部酸化を抑制でき、内部酸化の進行によって酸化膜が厚くなり過ぎて酸化膜に亀裂が生じたり、酸化膜が剥離したりすることなどを低減し易く、適切な厚さの酸化膜を良好に維持できる。従って、酸化膜の具備による内部腐食の抑制効果も期待でき、優れた耐食性を長期に亘り維持できると考えられる。   By the above (b) and (c), internal oxidation can be suppressed, and the oxide film becomes too thick due to the progress of internal oxidation, and the oxide film is easily cracked or peeled off. An oxide film having an appropriate thickness can be maintained well. Therefore, the effect of suppressing internal corrosion due to the provision of the oxide film can be expected, and it is considered that excellent corrosion resistance can be maintained for a long time.

(d)上記の電極材料は、比抵抗を増大し易いCr及びAlを含有しない、又は含有しても非常に少なくし、かつMn,Si,希土類元素を特定の範囲とするため、比抵抗の増大を抑制して、火花による消耗を低減できる。   (D) The above electrode material does not contain Cr or Al which tends to increase the specific resistance, or very little even if it is contained, and Mn, Si, rare earth elements are in a specific range, so Suppression can be suppressed and consumption by sparks can be reduced.

電極材料がAlを特定の範囲で含有する場合にはSiと共に酸化抑制効果を更に高められ、耐酸化性により優れる。電極材料がCrを特定の範囲で含有する場合には特に内部酸化の抑制効果を更に高められて、耐酸化性により優れる。   When the electrode material contains Al in a specific range, the effect of inhibiting oxidation can be further enhanced together with Si, and the oxidation resistance is excellent. When the electrode material contains Cr in a specific range, the effect of suppressing internal oxidation is further enhanced, and the oxidation resistance is more excellent.

電極を上記の電極材料で構成することにより、アルコール燃料を使用する自動車エンジン等の内燃機関に用いた場合に、耐食性に優れる上に、耐火花消耗性、耐酸化性に優れる電極を備える点火プラグが得られる。
(2)上記の電極材料の一例として、更に、質量%で、Tiを0.02%以上0.6%以下含有する形態が挙げられる。この電極材料は、質量%で、希土類元素を合計で0.05%以上0.5%以下、Mnを1.1%以上2.5%以下、Al及びCrの少なくとも一方を0.01%未満、Tiを0.02%以上0.6%以下、Siを、Si/Mnが0.5以上1.1未満を満たす範囲で含有し、残部がNi及び不可避不純物からなる。
An ignition plug comprising an electrode that is excellent in corrosion resistance, spark resistance and oxidation resistance when used in an internal combustion engine such as an automobile engine that uses alcohol fuel, by constituting the electrode with the electrode material described above. Is obtained.
(2) As an example of the electrode material described above, a form containing 0.02% or more and 0.6% or less of Ti by mass% can be given. This electrode material has a mass% of rare earth elements of 0.05% to 0.5% in total, Mn of 1.1% to 2.5%, and at least one of Al and Cr of less than 0.01%. , Ti is contained in the range of 0.02% to 0.6%, Si is contained in a range satisfying Si / Mn of 0.5 to less than 1.1, and the balance is made of Ni and inevitable impurities.

上記形態は、Tiを特定の範囲で含有するため、内部酸化の更なる抑制や結晶の微細化が期待できる。
(3)上記の電極材料の一例として、上記希土類元素がY及びNdの少なくとも一方を含む形態が挙げられる。
Since the said form contains Ti in the specific range, the further suppression of internal oxidation and refinement | miniaturization of a crystal | crystallization can be anticipated.
(3) As an example of the electrode material, a form in which the rare earth element includes at least one of Y and Nd can be given.

希土類元素のうち、YやNdは結晶の微細化効果により優れるため、上記形態は、結晶の微細化効果を高められて耐食性、耐酸化性により優れる。
(4)上記の電極材料の一例として、更に、質量%で、Cを0.005%以上0.05%以下含有する形態が挙げられる。この電極材料は、質量%で、希土類元素を合計で0.05%以上0.5%以下、Mnを1.1%以上2.5%以下、Al及びCrの少なくとも一方を0.01%未満、Cを0.005%以上0.05%以下、Siを、Si/Mnが0.5以上1.1未満を満たす範囲で含有し、残部がNi及び不可避不純物からなる。
Among rare earth elements, Y and Nd are superior due to the crystal refining effect. Therefore, the above-described embodiment is improved in the crystal refining effect and is superior in corrosion resistance and oxidation resistance.
(4) As an example of said electrode material, the form which contains 0.005% or more and 0.05% or less of C further by the mass% is mentioned. This electrode material has a mass% of rare earth elements of 0.05% to 0.5% in total, Mn of 1.1% to 2.5%, and at least one of Al and Cr of less than 0.01%. , C is contained in an amount of 0.005% to 0.05%, Si is contained in a range where Si / Mn is 0.5 or more and less than 1.1, and the balance is made of Ni and inevitable impurities.

上記形態は、耐食性、耐火花消耗性、耐酸化性に優れる上に、高温強度を高められる、加工性に優れるといった効果も奏する。
(5)上記の電極材料の一例として、上記電極材料の室温での比抵抗が25μΩ・cm以下である形態が挙げられる。
The above-described form is excellent in corrosion resistance, spark wear resistance, and oxidation resistance, and also has an effect of increasing high-temperature strength and excellent workability.
(5) As an example of the electrode material, a form in which the specific resistance at room temperature of the electrode material is 25 μΩ · cm or less can be given.

上記形態は、比抵抗が小さく、耐火花消耗性に優れる。
(6)上記の電極材料の一例として、上記電極材料を1100℃×50時間加熱したとき、この加熱後の電極材料の平均結晶粒径が300μm以下である形態が挙げられる。
The said form has a small specific resistance, and is excellent in spark erosion consumption.
(6) As an example of said electrode material, when the said electrode material is heated at 1100 degreeC x 50 hours, the form whose average crystal grain diameter of this heated electrode material is 300 micrometers or less is mentioned.

上記の加熱条件は、点火プラグの電極としての使用時に1100℃程度に長時間維持された状態を模擬しているといえる。上記形態は、この場合に結晶粒が成長し難く、すなわち粗大になり難く、平均結晶粒径が小さい状態を維持できるといえる。従って、上記形態は、上記の電極材料からなる電極を備えた点火プラグを、アルコール燃料を用いるエンジンに装着して稼働することにより、電極が1100℃程度の環境に長時間曝された場合でも、結晶粒界が長い状態を維持できて、外部からの酸素や腐食元素が結晶粒界を伝って電極の内部に侵入し難いため、耐食性や耐酸化性に優れる。
(7)上記の電極材料の一例として、上記電極材料を1100℃×50時間加熱したとき、この加熱後の電極材料の表面に形成された酸化膜の厚さが400μm以下である形態が挙げられる。
It can be said that the above heating conditions simulate a state in which the heating condition is maintained at about 1100 ° C. for a long time when used as an electrode of a spark plug. In this case, it can be said that in this case, the crystal grains hardly grow, that is, do not easily become coarse, and the average crystal grain size can be kept small. Therefore, even if the above-mentioned form is operated by attaching a spark plug having an electrode made of the above electrode material to an engine using alcohol fuel, the electrode is exposed to an environment of about 1100 ° C. for a long time. Since the crystal grain boundary can be maintained in a long state and oxygen and corrosive elements from the outside do not easily enter the electrode through the crystal grain boundary, the corrosion resistance and the oxidation resistance are excellent.
(7) As an example of the electrode material, when the electrode material is heated at 1100 ° C. for 50 hours, the oxide film formed on the surface of the heated electrode material has a thickness of 400 μm or less. .

上記の加熱条件は、点火プラグの電極としての使用時に1100℃程度に長時間維持された状態を模擬しているといえる。上記形態は、電極が1100℃程度の環境に長時間曝された場合でも、厚過ぎず適切な厚さの酸化膜を有しており、酸化膜に亀裂が生じ難かったり、酸化膜が剥離し難かったりするといえる。従って、上記形態は、耐酸化性に優れる上に、酸化膜の具備による良好な耐食性を有することができる。   It can be said that the above heating conditions simulate a state in which the heating condition is maintained at about 1100 ° C. for a long time when used as an electrode of a spark plug. In the above embodiment, even when the electrode is exposed to an environment of about 1100 ° C. for a long time, it has an oxide film with an appropriate thickness without being too thick, and it is difficult for the oxide film to crack or the oxide film peels off. It may be difficult. Therefore, the above-mentioned form is excellent in oxidation resistance and can have good corrosion resistance due to the provision of the oxide film.

(8)先端面の面積が1.5mm〜7.0mmである、点火プラグの中心電極に、上述の電極材料を用いる形態が挙げられる。 (8) the area of the tip surface is 1.5mm 2 ~7.0mm 2, the center electrode of the spark plug include forms using the above-described electrode material.

比較的細い中心電極を有する点火プラグを、アルコール燃料を使用する自動車エンジン等の内燃機関に用いた場合であっても、中心電極の電極材料として上述の電極材料を用いることで、耐食性に優れる上に、耐火花消耗性、耐酸化性に優れる中心電極を得られる。   Even when a spark plug having a relatively thin center electrode is used in an internal combustion engine such as an automobile engine using alcohol fuel, the use of the above-described electrode material as the electrode material of the center electrode results in excellent corrosion resistance. In addition, it is possible to obtain a center electrode that is excellent in spark wear resistance and oxidation resistance.

(9)火花放電間隙を介して中心電極に対向する部位の断面積が1.5mm〜5.0mmである、点火プラグの接地電極に、上述の電極材料を用いる形態が挙げられる。 (9) the cross-sectional area of the portion facing the center electrode via a spark discharge gap is 1.5mm 2 ~5.0mm 2, the ground electrode of the spark plug include forms using the above-described electrode material.

比較的細い接地電極を有する点火プラグを、アルコール燃料を使用する自動車エンジン等の内燃機関に用いた場合であっても、接地電極の電極材料として上述の電極材料を用いることで、耐食性に優れる上に、耐火花消耗性、耐酸化性に優れる接地電極を得られる。   Even when a spark plug having a relatively thin ground electrode is used in an internal combustion engine such as an automobile engine using alcohol fuel, the use of the electrode material described above as an electrode material for the ground electrode results in excellent corrosion resistance. In addition, it is possible to obtain a ground electrode excellent in spark wear resistance and oxidation resistance.

[本発明の実施形態の詳細]
以下、本発明の実施形態に係る点火プラグ、点火プラグの接地電極を構成する電極材料を順に詳細に説明する。元素の含有量は、断りが無い限り質量%とする。
・点火プラグ
図1はこの発明に係る点火プラグの一実施例である点火プラグ1の一部断面全体説明図である。なお、図1では紙面下方、すなわち後述する接地電極8が配置されている側を軸線Oの先端方向、紙面上方、すなわち後述する端子金具5が配置されている側を軸線Oの後端方向として説明する。
[Details of the embodiment of the present invention]
Hereinafter, the spark plug according to the embodiment of the present invention and the electrode material constituting the ground electrode of the spark plug will be described in detail in order. The element content is mass% unless otherwise specified.
Spark plug FIG. 1 is a partial cross-sectional explanatory diagram of a spark plug 1 which is an embodiment of a spark plug according to the present invention. In FIG. 1, the lower side of the paper surface, that is, the side on which the ground electrode 8 to be described later is disposed is the front end direction of the axis O, and the upper side of the paper surface, that is, the side on which the terminal metal fitting 5 to be described later is disposed. explain.

この点火プラグ1は、図1に示されるように、軸線O方向に沿って延びる軸孔2を有する略円筒形状の絶縁体3と、前記軸孔2内の先端側に設けられた略棒状の中心電極4と、前記軸孔2内の後端側に設けられた端子金具5と、前記軸孔2内の前記中心電極4と前記端子金具5との間に配置された接続部6と、前記絶縁体3の外周に設けられ、前記軸線O方向先端側から後端側に延びる略円筒形状の主体金具7と、前記主体金具7の先端側端部に固定された基端部及び前記中心電極4との間に火花放電間隙Gを介して対向する先端部を有する接地電極8とを備える。   As shown in FIG. 1, the spark plug 1 includes a substantially cylindrical insulator 3 having a shaft hole 2 extending along the direction of the axis O, and a substantially rod-like shape provided on the distal end side in the shaft hole 2. A center electrode 4, a terminal fitting 5 provided on the rear end side in the shaft hole 2, a connecting portion 6 disposed between the center electrode 4 and the terminal fitting 5 in the shaft hole 2, A substantially cylindrical metal shell 7 provided on the outer periphery of the insulator 3 and extending from the front end side to the rear end side in the direction of the axis O, a base end portion fixed to a front end side end portion of the metal shell 7, and the center A ground electrode 8 having a tip portion opposed to the electrode 4 through a spark discharge gap G is provided.

絶縁体3は、後端側胴部11と、大径部12と、先端側胴部13、脚長部14とを備えている。後端側胴部11は、端子金具5を収容し、端子金具5と主体金具7とを絶縁する。大径部12は、該後端側胴部11よりも先端側に配置され、径方向外向きに突出している。先端側胴部13は、該大径部12の先端側に配置され、大径部12より小さい外径を有し、接続部6を収容する。脚長部14は、該先端側胴部13の先端側に配置され、先端側胴部13より小さい外径を有し、中心電極4を収容する。絶縁体3は、先端側端部が主体金具7の先端側端部から突出した状態で、主体金具7に固定されている。絶縁体3は、機械的強度、熱的強度、電気絶縁性を有する材料(例えば、アルミナ等)で形成される。   The insulator 3 includes a rear end side body portion 11, a large diameter portion 12, a front end side body portion 13, and a leg length portion 14. The rear end side body portion 11 accommodates the terminal fitting 5 and insulates the terminal fitting 5 from the metallic shell 7. The large-diameter portion 12 is disposed on the front end side with respect to the rear end side body portion 11 and protrudes outward in the radial direction. The distal end side body portion 13 is disposed on the distal end side of the large diameter portion 12, has an outer diameter smaller than that of the large diameter portion 12, and accommodates the connection portion 6. The long leg portion 14 is disposed on the distal end side of the distal end side body portion 13 and has an outer diameter smaller than that of the distal end side body portion 13 and accommodates the center electrode 4. The insulator 3 is fixed to the metal shell 7 in a state in which the tip end portion protrudes from the tip end portion of the metal shell 7. The insulator 3 is formed of a material having mechanical strength, thermal strength, and electrical insulation (for example, alumina or the like).

接続部6は、軸孔2内の中心電極4と端子金具5との間に配置され、中心電極4及び端子金具5を軸孔2内に固定すると共にこれらを電気的に接続する。具体的には、接続部6は、抵抗体やガラス等のシール部材にて形成されている。   The connecting portion 6 is disposed between the center electrode 4 and the terminal fitting 5 in the shaft hole 2, and fixes the center electrode 4 and the terminal fitting 5 in the shaft hole 2 and electrically connects them. Specifically, the connection portion 6 is formed of a sealing member such as a resistor or glass.

主体金具7は、略円筒形状を有しており、絶縁体3を内装することにより絶縁体3を保持する。主体金具7における先端方向の外周面にはネジ部24が設けられている。このネジ部24を利用して図示しない内燃機関のシリンダヘッドに点火プラグ1が装着される。主体金具7は、ネジ部24の後端側にフランジ状のガスシール部25を有し、ガスシール部25の後端側にスパナやレンチ等の工具を係合させるための工具係合部26、工具係合部26の後端側に加締め部27を有する。主体金具7は、導電性の鉄鋼材料、例えば、低炭素鋼により形成されることができる。   The metal shell 7 has a substantially cylindrical shape, and holds the insulator 3 by incorporating the insulator 3 therein. A threaded portion 24 is provided on the outer peripheral surface of the metal shell 7 in the distal direction. The spark plug 1 is attached to a cylinder head of an internal combustion engine (not shown) using the screw portion 24. The metal shell 7 has a flange-like gas seal portion 25 on the rear end side of the screw portion 24, and a tool engagement portion 26 for engaging a tool such as a spanner or a wrench on the rear end side of the gas seal portion 25. The caulking portion 27 is provided on the rear end side of the tool engaging portion 26. The metal shell 7 can be formed of a conductive steel material, for example, low carbon steel.

端子金具5は、絶縁体3の後端側からその一部が露出した状態で軸孔2内に挿入されて接続部6により固定されている。端子金具5は、低炭素鋼等の金属材料により形成されることができる。   The terminal fitting 5 is inserted into the shaft hole 2 in a state where a part thereof is exposed from the rear end side of the insulator 3 and is fixed by the connecting portion 6. The terminal fitting 5 can be formed of a metal material such as low carbon steel.

中心電極4は、接続部6に接する後端部28と、前記後端部28から先端側に延びる棒状部29とを有する。中心電極4は、その先端が絶縁体3の先端から突出した状態で絶縁体3の軸孔2内に固定されている。中心電極4は、その軸芯部に埋設されてなる芯部と、芯部を取り囲む外層とを有する2層構造で構成されている。外層は、Niを主成分とするNi合金からなる材料により構成される。芯部は、外層を構成する電極材料よりも熱伝導率の高い材料により構成されており、例えば、Cu、Cu合金、Ag、Ag合金、純Ni等を挙げることができる。なお、中心電極4は、芯部が2層以上の複数の層であり、3層以上の複層構造であってもよいし、芯部がなく、外層のみで構成される単層構造であってもよい。中心電極4は、棒状部29の先端面にチップを有していてもよい。チップを構成する材料としては、Pt合金及びIr合金等を挙げることができる。チップは、例えば、抵抗溶接及び/又はレーザ溶接等により棒状部29に接合される。   The center electrode 4 has a rear end portion 28 in contact with the connection portion 6 and a rod-shaped portion 29 extending from the rear end portion 28 to the front end side. The center electrode 4 is fixed in the shaft hole 2 of the insulator 3 with its tip protruding from the tip of the insulator 3. The center electrode 4 has a two-layer structure having a core portion embedded in the shaft core portion and an outer layer surrounding the core portion. The outer layer is made of a material made of a Ni alloy containing Ni as a main component. The core is made of a material having a higher thermal conductivity than the electrode material constituting the outer layer, and examples thereof include Cu, Cu alloy, Ag, Ag alloy, and pure Ni. The center electrode 4 may have a plurality of layers having a core portion of two or more layers, and may have a multilayer structure of three or more layers, or may have a single layer structure including only the outer layer without the core portion. May be. The center electrode 4 may have a tip on the tip surface of the rod-shaped portion 29. Examples of the material constituting the chip include a Pt alloy and an Ir alloy. The tip is joined to the rod-like portion 29 by, for example, resistance welding and / or laser welding.

接地電極8は、略角柱形状であり、基端部が主体金具7の先端部に接合され、途中で略L字状に屈曲され、先端部が中心電極4の先端との間に火花放電間隙Gを介して対向するように設けられている。接地電極8は、後述するNiを主成分とするNi合金からなる電極材料により構成される。また、この実施形態の接地電極8は、Ni合金からなる単層構造であるが、中心電極4と同様に、接地電極8は、Ni合金により構成される外層と、この外層よりも熱伝導率の高い材料により構成され、該外層の内部の軸心部に同心に埋め込まれてなる芯部とを有してもよい。また、接地電極8は、中心電極4と同様に、接地電極8の先端側面にチップを有していてもよい。   The ground electrode 8 has a substantially prismatic shape, a proximal end portion is joined to the distal end portion of the metal shell 7, is bent in a substantially L shape in the middle, and a spark discharge gap is formed between the distal end portion and the distal end of the center electrode 4. It is provided so as to face each other via G. The ground electrode 8 is made of an electrode material made of a Ni alloy whose main component is Ni, which will be described later. In addition, the ground electrode 8 of this embodiment has a single layer structure made of Ni alloy. However, like the center electrode 4, the ground electrode 8 has an outer layer made of Ni alloy and a thermal conductivity higher than that of the outer layer. And a core portion that is concentrically embedded in the axial center portion of the outer layer. The ground electrode 8 may have a tip on the tip side surface of the ground electrode 8, as with the center electrode 4.

接地電極8は、中心電極4に火花放電間隙Gを介して対向する部位の断面積が1.5mm〜5.0mmとなっている。このような断面積が1.5mm〜5.0mmである比較的細い接地電極8を有する点火プラグ1を、アルコール燃料を使用する自動車エンジン等の内燃機関に用いた場合であっても、接地電極8の電極材料として後述するような電極材料を用いることで、耐食性に優れる上に、耐火花消耗性、耐酸化性に優れる接地電極8が得られる。
・電極材料
・・組成
実施形態の電極材料は、希土類元素,Mn,Siを必須の添加元素として含み、残部がNi及び不可避不純物であるニッケル合金から構成される。上記の必須の添加元素に加えて、Ti,Al,及びCrの少なくとも1種の元素やCを含むことができる。なお、Al及びCrを含有する場合には、非常に少なく含有する。
The ground electrode 8, the cross-sectional area of the portion facing through the spark discharge gap G to the center electrode 4 is in the 1.5mm 2 ~5.0mm 2. The spark plug 1 such cross-sectional area having a relatively narrow ground electrode 8 is 1.5mm 2 ~5.0mm 2, even when used in an internal combustion engine such as an automobile engine using alcohol fuel, By using an electrode material as described later as the electrode material of the ground electrode 8, the ground electrode 8 having excellent corrosion resistance, spark resistance and oxidation resistance is obtained.
-Electrode material-Composition The electrode material of the embodiment includes a rare earth element, Mn, and Si as essential additive elements, and the balance is made of nickel and an inevitable impurity nickel alloy. In addition to the above essential additive elements, at least one element of Ti, Al, and Cr and C can be included. In addition, when it contains Al and Cr, it contains very little.

電極材料はNiを主成分とし、具体的にはNi量を90%以上、更に95%以上、96%以上であることが好ましい。これによって、電極材料は塑性加工性に優れる上に、比抵抗が小さく、すなわち導電率が高く、点火プラグの電極としての使用時、耐火花消耗性に優れる。Ni量が多いほど比抵抗をより低減でき、添加元素の含有量が多いほど耐食性や耐酸化性を高められる傾向にある。
・・・希土類元素
希土類元素は、主として金属間化合物として存在する。実施形態の電極材料は、この金属間化合物による所謂ピン止め効果によって、結晶の成長が抑制され、微細な結晶組織を有する。結晶の微細化及びその維持によって、電極内部への腐食元素や酸素の侵入を低減でき、内部腐食や内部酸化を抑制できる。希土類元素の一部がNiに固溶して存在することを許容するが、上述のように金属間化合物として存在すると微細化効果が十分に得られて好ましい。
The electrode material contains Ni as a main component, and specifically, the amount of Ni is preferably 90% or more, more preferably 95% or more, and 96% or more. As a result, the electrode material is excellent in plastic workability and has a low specific resistance, that is, a high electrical conductivity, and an excellent spark wear resistance when used as an electrode of a spark plug. As the Ni content increases, the specific resistance can be further reduced, and as the content of the additive element increases, the corrosion resistance and oxidation resistance tend to be improved.
... Rare earth elements Rare earth elements exist mainly as intermetallic compounds. The electrode material of the embodiment has a fine crystal structure because the so-called pinning effect by the intermetallic compound suppresses crystal growth. By miniaturizing and maintaining the crystal, the entry of corrosive elements and oxygen into the electrode can be reduced, and internal corrosion and internal oxidation can be suppressed. Although a part of the rare earth element is allowed to be dissolved in Ni, it is preferable that the rare earth element exists as an intermetallic compound as described above because a sufficient effect of miniaturization can be obtained.

実施形態の電極材料は、希土類元素である周期表3族に属する17種の元素のうち、1種の元素のみを含む形態、又は複数種の元素を含む形態とすることができる。特に、Y(イットリウム)及びNd(ネオジム)の少なくとも一方を含むことが好ましい。結晶の微細化効果により優れるからである。   The electrode material of the embodiment can be in a form containing only one element among 17 kinds of elements belonging to Group 3 of the periodic table, which is a rare earth element, or a form containing a plurality of kinds of elements. In particular, at least one of Y (yttrium) and Nd (neodymium) is preferably included. It is because it is excellent by the refinement | miniaturization effect of a crystal | crystallization.

希土類元素の含有量(複数種の元素を含む場合には合計含有量。以下この項について同様。)が多いほど、結晶を微細にし易いため、希土類元素の含有量を0.05%以上とする。結晶微細化効果の向上を考慮すると、希土類元素の含有量は、0.06%以上、更に0.08%以上が好ましい。希土類元素の含有量がある程度少なければ、(1)比抵抗を増大させ難く、比抵抗の増大による電極の熱劣化を抑制して耐火花消耗性に優れる、(2)塑性加工性の低下を抑制して所定の形状の電極に加工し易く、電極の製造性に優れる、といった効果を奏するため、希土類元素の含有量を0.5%以下とする。良好な耐火花消耗性、塑性加工性などを考慮すると、希土類元素の含有量は、0.45%以下、更に0.4%以下、0.3%以下が好ましい。
・・・Mn(マンガン)
Mnは、耐食性の向上効果を有する元素である。詳しくは、Mnは、Sなどの腐食元素と化合物を形成する元素であり、かつNiよりも融点が低い元素である。エンジンの稼働時に点火プラグにおける電極が高温になると、Mnは、Niよりも先に上記腐食元素と化合して、Niの腐食(腐食元素との化合)を抑制する。また、MnとSなどの腐食元素とを含むMnSなどの化合物は、Niよりも融点が高く、高温環境でも安定して存在できる。その結果、MnSなどの化合物の周囲に存在するNiが溶融し難くなることからも、Niの腐食を抑制できる。
As the content of rare earth elements (the total content when multiple elements are included; the same applies to this section below) increases, the finer the crystal, the more rare earth element content should be 0.05% or more. . Considering improvement of the crystal refining effect, the rare earth element content is preferably 0.06% or more, more preferably 0.08% or more. If the rare earth element content is low to a certain extent, (1) it is difficult to increase the specific resistance, the thermal deterioration of the electrode due to the increase of the specific resistance is suppressed and the spark wear resistance is excellent, and (2) the decrease in plastic workability is suppressed. In order to produce an effect that the electrode can be easily processed into a predetermined shape and the productivity of the electrode is excellent, the rare earth element content is set to 0.5% or less. Considering good spark wear resistance, plastic workability, etc., the rare earth element content is preferably 0.45% or less, more preferably 0.4% or less, and 0.3% or less.
... Mn (manganese)
Mn is an element having an effect of improving corrosion resistance. Specifically, Mn is an element that forms a compound with a corrosive element such as S, and has a lower melting point than Ni. When the electrode in the spark plug becomes hot during operation of the engine, Mn combines with the corrosive element prior to Ni to suppress Ni corrosion (combination with the corrosive element). Further, a compound such as MnS containing Mn and a corrosive element such as S has a higher melting point than Ni and can exist stably even in a high temperature environment. As a result, Ni existing around a compound such as MnS becomes difficult to melt, so that corrosion of Ni can be suppressed.

Mn量が多いほど、上記腐食元素との化合物を形成し易く、耐食性を高められることから、Mn量を1.1%以上とする。耐食性の向上を考慮すると、Mn量は1.2%以上、更に1.3%以上、1.5%以上が好ましい。Mn量が多過ぎると、比抵抗の増大による耐火花消耗性の低下を招く。また、Mn量が多いと内部酸化を抑制できるものの、多過ぎると酸化膜が剥離し易くなり、酸化膜の剥離によって耐酸化性の低下を招くため、Mn量を2.5%以下とする。比抵抗の増大抑制、耐酸化性の低下抑制を考慮すると、Mn量は、2.2%以下、更に2.1%以下が好ましい。
・・・Si(珪素)
Siは酸化抑制効果が高い元素である。Siを含有することで、点火プラグの使用時に電極表面にSiを含む酸化物(酸化膜)を事後的に生成できる。この酸化膜によって、電極内部に酸素が侵入することを低減し、内部酸化を抑制できる。内部酸化の抑制によって、緻密で密着性に優れる酸化膜を生成できる上に過剰に厚くならず、厚膜化(ポーラス化)による亀裂や破裂、剥離の発生を抑制して適切な厚さの酸化膜を維持できる。この酸化膜は、電極内部への腐食元素の侵入も低減して、腐食の抑制にも寄与すると期待される。
The larger the Mn content, the easier it is to form a compound with the corrosive element and the higher the corrosion resistance, so the Mn content is 1.1% or more. Considering improvement in corrosion resistance, the amount of Mn is preferably 1.2% or more, more preferably 1.3% or more, and 1.5% or more. If the amount of Mn is too large, the spark wear resistance is reduced due to an increase in specific resistance. Further, although the internal oxidation can be suppressed when the amount of Mn is large, the oxide film is easily peeled off when the amount is too large, and the oxidation resistance is lowered due to the peeling of the oxide film. Therefore, the amount of Mn is set to 2.5% or less. Considering suppression of increase in specific resistance and reduction in oxidation resistance, the amount of Mn is preferably 2.2% or less, and more preferably 2.1% or less.
... Si (silicon)
Si is an element having a high oxidation suppression effect. By containing Si, an oxide (oxide film) containing Si can be subsequently generated on the electrode surface when the spark plug is used. This oxide film can reduce the intrusion of oxygen into the electrode and suppress internal oxidation. By controlling internal oxidation, it is possible to produce a dense oxide film with excellent adhesion, and it does not become excessively thick. The membrane can be maintained. This oxide film is also expected to contribute to the inhibition of corrosion by reducing the penetration of corrosive elements into the electrode.

ここで、上述のようにMn量が多くなると酸化膜が剥離し易いものの、Mn量に比してSi量を調整すると、Siが酸化膜の直下でくさびのように機能すると考えられ、酸化膜の剥離を抑制して良好な耐酸化性を有することができるとの知見を得た。そこで、実施形態の電極材料では、Mn量に比してSi量を特定の範囲とする。具体的には、Si量は、Mnの含有量に対するSiの含有量の質量比Si/Mnが0.5以上1.1未満を満たす範囲とする。質量比Si/Mnが0.5未満であると、相対的にSiが少な過ぎて、Siによる耐酸化性の改善効果が不十分となり、酸化膜が十分に形成されなかったり、剥離し易くなったりして、酸化膜の維持が困難になる。質量比Si/Mnが1.1以上であると、Si過剰による酸化膜の剥離などを生じ、酸化膜の維持が困難になる。良好な耐食性と健全な酸化膜の形成及び維持を考慮すると、質量比Si/Mnは0.51以上1.09以下、更に0.52以上1.08以下とすることができる。なお、希土類元素も上述の酸化膜の直下でくさびとして機能すると考えられる。   Here, although the oxide film easily peels off as the amount of Mn increases as described above, if the amount of Si is adjusted compared to the amount of Mn, it is considered that Si functions like a wedge directly under the oxide film. It was found that the film can be excellent in oxidation resistance by suppressing peeling. Therefore, in the electrode material of the embodiment, the Si amount is set to a specific range as compared with the Mn amount. Specifically, the amount of Si is set to a range in which the mass ratio Si / Mn of the Si content to the Mn content satisfies 0.5 or more and less than 1.1. When the mass ratio Si / Mn is less than 0.5, there is relatively little Si, and the effect of improving the oxidation resistance by Si becomes insufficient, and the oxide film is not sufficiently formed or easily peeled off. As a result, it becomes difficult to maintain the oxide film. When the mass ratio Si / Mn is 1.1 or more, the oxide film is peeled off due to excessive Si, and it becomes difficult to maintain the oxide film. In consideration of good corrosion resistance and the formation and maintenance of a healthy oxide film, the mass ratio Si / Mn can be set to 0.51 to 1.09, more preferably 0.52 to 1.08. Note that the rare earth element is also considered to function as a wedge directly under the above-described oxide film.

具体的なSi量は、例えば、0.9%以上2.0%以下、更に1.0%以上1.5%以下が挙げられる。Si量が多いほど、酸化膜の形成や剥離抑制による酸化抑制効果を得易い。Si量が少ないほど、比抵抗の増大を低減できて耐火花消耗性により優れる。また、酸化膜がポーラスな厚膜になり難く、厚膜化による亀裂の発生や剥離の発生を抑制でき、適切な厚さの酸化膜をより維持し易い。
・・・Al(アルミニウム)
Alは、酸化抑制効果が高い元素であり、Siと共にAlをも含有すると酸化抑制効果を更に高められる。Al量が多過ぎると、上述の酸化膜の厚膜化による損傷や比抵抗の増大を招く。従って、Alを含有する場合、Al量は0.01%未満とし、0.008%以下、更に0.005%以下がより好ましい。実施形態の電極材料は、Alよりも酸化抑制効果が高いSiを必須元素とするため、Alを含まないこと(Al量が0%であること)を許容する。
・・・Cr(クロム)
Crは、腐食元素に対する耐性に優れる上に内部酸化の抑制にも効果がある。Cr量が多過ぎると比抵抗の増大による耐火花消耗性の低下を招く。従って、Crを含有する場合、Cr量は0.01%未満とし、0.008%以下、更に0.005%以下がより好ましい。実施形態の電極材料は、腐食抑制効果が高いMn及び酸化抑制効果が高いSiを必須とするため、Crを含まないこと(Cr量が0%であること)を許容する。
・・・Ti(チタン)
Tiは、結晶の微細化に効果があり、内部腐食、内部酸化の抑制に寄与する。Ti量が多いほど、結晶微細化効果などを得易く、多過ぎると比抵抗の増大による耐火花消耗性の低下を招く。従って、Tiを含有する場合、Ti量は0.02%以上0.6%以下が好ましい。Ti量が多いほど、結晶微細化効果などを得易く、Ti量は0.03%以上、更に0.05%以上が好ましい。比抵抗の増大抑制を考慮すると、Ti量は0.4%以下、更に0.3%以下が好ましい。
・・・その他の元素
実施形態の電極材料は、B(ホウ素)を0%超0.05%以下、更に0.001%以上0.02%以下含有することができる。Bを含有すると、熱間加工性に優れ、点火プラグの電極を製造し易い。
Specific examples of the Si amount include 0.9% to 2.0%, and further 1.0% to 1.5%. The greater the amount of Si, the easier it is to obtain an oxidation suppression effect due to the formation of an oxide film and suppression of peeling. The smaller the amount of Si, the more the increase in specific resistance can be reduced and the more excellent the spark wear resistance. In addition, the oxide film is unlikely to become a porous thick film, and the occurrence of cracks and peeling due to the thick film can be suppressed, and an oxide film having an appropriate thickness can be more easily maintained.
... Al (aluminum)
Al is an element having a high oxidation-inhibiting effect. When Al is contained together with Si, the oxidation-inhibiting effect can be further enhanced. If the amount of Al is too large, damage due to the thickening of the oxide film described above and an increase in specific resistance are caused. Accordingly, when Al is contained, the Al content is less than 0.01%, preferably 0.008% or less, and more preferably 0.005% or less. Since the electrode material of the embodiment uses Si, which has a higher oxidation suppression effect than Al, as an essential element, it does not contain Al (Al content is 0%).
... Cr (chrome)
Cr is excellent in resistance to corrosive elements and is also effective in suppressing internal oxidation. If the amount of Cr is too large, the spark wear resistance is reduced due to an increase in specific resistance. Therefore, when Cr is contained, the Cr content is less than 0.01%, preferably 0.008% or less, and more preferably 0.005% or less. Since the electrode material of the embodiment requires Mn having a high corrosion inhibiting effect and Si having a high oxidation inhibiting effect, it does not contain Cr (the Cr content is 0%).
... Ti (titanium)
Ti has an effect on crystal refinement and contributes to suppression of internal corrosion and internal oxidation. The larger the amount of Ti, the easier it is to obtain a crystal refining effect and the like. Therefore, when Ti is contained, the Ti content is preferably 0.02% or more and 0.6% or less. The larger the amount of Ti, the easier it is to obtain a crystal refinement effect, and the Ti amount is preferably 0.03% or more, and more preferably 0.05% or more. Considering the increase in specific resistance, the Ti content is preferably 0.4% or less, more preferably 0.3% or less.
... Other elements The electrode material of the embodiment may contain B (boron) in excess of 0% to 0.05%, further 0.001% to 0.02%. When B is contained, it is excellent in hot workability and it is easy to manufacture an electrode of a spark plug.

実施形態の電極材料は、C(炭素)を0.005%以上0.05%以下の範囲で含有することができる。Cを含有すると、加工性を確保しつつ、高温強度を高められて好ましい。C量は、0.01%以上0.04%以下、更に0.015%以上0.03%以下がより好ましい。
・・組織
実施形態の電極材料は、上述の特定の組成で構成されることで1100℃程度に長時間保持された場合でも結晶が微細な状態を維持できる。具体的には実施形態の電極材料を1100℃×50時間加熱した後の平均結晶粒径が300μm以下を満たすことが挙げられる。このような電極材料から構成される点火プラグの電極は、内部への腐食元素や酸素の侵入を抑制でき、耐食性、耐酸化性に優れる。上述の添加元素の含有量などによっては、上記平均結晶粒径を290μm以下、更に280μm以下、270μm以下とすることができる。上記平均結晶粒径が小さいほど結晶粒界が長く、外部からの酸素や腐食元素が結晶粒界を伝って電極の内部に侵入し難いため、内部腐食や内部酸化を抑制し易く、下限を設けない。加熱条件の詳細は後述の酸化試験で説明する。
・・比抵抗
実施形態の電極材料は、上述の特定の組成で構成されることで比抵抗が小さい。例えば、室温(代表的には20℃程度)での比抵抗が25μΩ・cm以下を満たすことが挙げられる。比抵抗は、代表的には添加元素の含有量の多寡によって変化し、含有量が少ないほど小さい傾向にある。組成によっては、比抵抗が22μΩ・cm以下、更に20μΩ・cm以下を満たすことができる。比抵抗が小さいほど耐火花消耗性に優れる傾向にあり、下限を設けない。なお、添加元素の含有量が少なく純ニッケルに近いほど、比抵抗が小さいが、耐食性や耐酸化性に劣る。
・・酸化膜の形成状態
実施形態の電極材料は、上述の特定の組成で構成されることで1100℃程度に長時間保持された場合に、特定の厚さの酸化膜が存在し得る。具体的には実施形態の電極材料を1100℃×50時間加熱した後に、電極材料の表面に形成された酸化膜の厚さが400μm以下であることが挙げられる。このような酸化膜は、厚過ぎず、亀裂や剥離が生じ難いといえ、健全な状態で維持され易いといえる。実施形態の電極材料を、アルコール燃料を用いるエンジンに備える点火プラグの電極として利用した場合に、このような適切な厚さの酸化膜を形成できる上に良好に維持できるため、この電極は耐酸化性に優れる上に、この酸化膜によって耐食性にも優れる。上述の添加元素の含有量などによっては、上記酸化膜の厚さを390μm以下、更に380μm以下、370μm以下とすることができる。なお、この酸化膜は、代表的には、後述する試験例に示すように内部酸化物層と表面酸化物層との二層構造を有し、この合計厚さが400μm以下を満たす。加熱条件の詳細は後述の酸化試験で説明する。
・点火プラグの製造方法
点火プラグ1は、例えば次のようにして製造することができる。まず、絶縁体3、中心電極4、主体金具7、及び端子金具等5を公知の材料及び公知の手法により作製する。接地電極8は、後述するように電極材料を製造した後に適宜の形状に調製する。次いで、絶縁体3の軸孔2内に中心電極4を挿設し、接続部6を形成する組成物を軸孔2内に充填する。次いで、端子金具5を軸孔2内に挿入し、組成物を圧縮加熱する。こうして組成物が焼結して接続部6が形成される。一方、主体金具7の端部に接地電極8の基端部を溶接により接合する。次いで、接地電極8が接合された主体金具7に中心電極4等が固定された絶縁体3を組み付ける。最後に、接地電極8の先端部を中心電極4側に折り曲げて、接地電極8の先端側面が中心電極4の先端と対向するようにして、点火プラグ1が製造される。
The electrode material of the embodiment can contain C (carbon) in a range of 0.005% to 0.05%. When C is contained, it is preferable because high temperature strength can be increased while ensuring workability. The amount of C is preferably 0.01% or more and 0.04% or less, more preferably 0.015% or more and 0.03% or less.
.. Structure The electrode material of the embodiment can maintain a fine crystal state even when it is held at about 1100 ° C. for a long time by being configured with the specific composition described above. Specifically, the average crystal grain size after heating the electrode material of the embodiment at 1100 ° C. for 50 hours satisfies 300 μm or less. The electrode of the spark plug composed of such an electrode material can suppress the invasion of corrosive elements and oxygen into the inside, and is excellent in corrosion resistance and oxidation resistance. Depending on the content of the above-described additive elements, the average crystal grain size can be 290 μm or less, further 280 μm or less, 270 μm or less. The smaller the average crystal grain size, the longer the grain boundary, and it is difficult for oxygen and corrosive elements from the outside to enter the electrode through the grain boundary. Absent. Details of the heating conditions will be described in an oxidation test described later.
.. Specific Resistance The electrode material of the embodiment has a small specific resistance by being configured with the specific composition described above. For example, the specific resistance at room temperature (typically about 20 ° C.) satisfies 25 μΩ · cm or less. The specific resistance typically varies depending on the content of the additive element, and tends to be smaller as the content is smaller. Depending on the composition, the specific resistance can satisfy 22 μΩ · cm or less, and further 20 μΩ · cm or less. The smaller the specific resistance, the better the spark resistance, and no lower limit is set. Note that the smaller the content of additive elements and the closer to pure nickel, the smaller the specific resistance, but the poorer the corrosion resistance and oxidation resistance.
.. Formation State of Oxide Film When the electrode material of the embodiment is configured with the above-described specific composition and is held at about 1100 ° C. for a long time, an oxide film having a specific thickness may exist. Specifically, after the electrode material of the embodiment is heated at 1100 ° C. for 50 hours, the thickness of the oxide film formed on the surface of the electrode material is 400 μm or less. It can be said that such an oxide film is not too thick and hardly cracks or peel off, and can be easily maintained in a healthy state. When the electrode material of the embodiment is used as an electrode of a spark plug provided in an engine using alcohol fuel, an oxide film having such an appropriate thickness can be formed and can be maintained well. In addition to excellent properties, this oxide film also provides excellent corrosion resistance. Depending on the content of the additive element described above, the thickness of the oxide film can be 390 μm or less, further 380 μm or less, and 370 μm or less. This oxide film typically has a two-layer structure of an internal oxide layer and a surface oxide layer as shown in a test example to be described later, and the total thickness satisfies 400 μm or less. Details of the heating conditions will be described in an oxidation test described later.
-Spark plug manufacturing method The spark plug 1 can be manufactured as follows, for example. First, the insulator 3, the center electrode 4, the metal shell 7, the terminal metal fittings 5, and the like are manufactured using a known material and a known technique. The ground electrode 8 is prepared in an appropriate shape after the electrode material is manufactured as will be described later. Next, the center electrode 4 is inserted into the shaft hole 2 of the insulator 3, and the composition that forms the connection portion 6 is filled into the shaft hole 2. Next, the terminal fitting 5 is inserted into the shaft hole 2 and the composition is heated by compression. Thus, the composition is sintered to form the connection portion 6. On the other hand, the base end portion of the ground electrode 8 is joined to the end portion of the metal shell 7 by welding. Next, the insulator 3 to which the center electrode 4 and the like are fixed is assembled to the metal shell 7 to which the ground electrode 8 is bonded. Finally, the spark plug 1 is manufactured such that the tip of the ground electrode 8 is bent toward the center electrode 4 so that the tip side of the ground electrode 8 faces the tip of the center electrode 4.

本発明の特徴部分である電極を構成する電極材料の製造方法については、以下に詳細に説明する。
・・電極材料の製造方法
実施形態の電極材料は、代表的には、溶解→鋳造→熱間圧延→冷間伸線及び熱処理という工程によって製造できる。溶解時や鋳造時の雰囲気を、大気雰囲気よりも酸素濃度が低い雰囲気、例えば、酸素濃度が10体積%以下の低酸素雰囲気にすると、希土類元素の酸化を抑制して、希土類元素を含む金属間化合物を電極材料中に十分に存在させられる。
The manufacturing method of the electrode material which comprises the electrode which is the characterizing part of this invention is demonstrated in detail below.
.. Method for producing electrode material Typically, the electrode material of the embodiment can be produced by a process of melting → casting → hot rolling → cold drawing and heat treatment. When the atmosphere during melting or casting is an atmosphere having an oxygen concentration lower than that of the air atmosphere, for example, a low oxygen atmosphere having an oxygen concentration of 10% by volume or less, the oxidation of the rare earth element is suppressed, and between the metals containing the rare earth element The compound is fully present in the electrode material.

冷間伸線後に最終熱処理を行うと、軟化によって加工性を高められ、電極材料を所定の電極形状に加工し易かったり、伸線などの塑性加工時に導入された加工歪みを除去して比抵抗を低減したりすることができる。最終熱処理の条件は、加熱温度は700℃以上1000℃以下、好ましくは800℃以上950℃以下程度、雰囲気は非酸化雰囲気が挙げられる。非酸化雰囲気は、水素雰囲気、窒素雰囲気などの酸素濃度が低い雰囲気(例えば酸素濃度が10体積%以下)、又は酸素を実質的に含有しない雰囲気などが挙げられる。   When the final heat treatment is performed after cold drawing, the workability is improved by softening, the electrode material is easily processed into a predetermined electrode shape, and the processing strain introduced during plastic processing such as wire drawing is removed to reduce the specific resistance. Can be reduced. The conditions for the final heat treatment include a heating temperature of 700 ° C. or higher and 1000 ° C. or lower, preferably 800 ° C. or higher and 950 ° C. or lower, and a non-oxidizing atmosphere. Examples of the non-oxidizing atmosphere include an atmosphere having a low oxygen concentration (for example, an oxygen concentration of 10% by volume or less) such as a hydrogen atmosphere or a nitrogen atmosphere, or an atmosphere that substantially does not contain oxygen.

冷間伸線後に圧延などを行って線材の形状を変えることができる。例えば、断面円形状から断面矩形状などに変更できる。圧延後に上述の最終熱処理を行うことができる。   The shape of the wire can be changed by rolling after cold drawing. For example, it can be changed from a circular cross section to a rectangular cross section. The above-mentioned final heat treatment can be performed after rolling.

その他、予め酸化膜を備える電極材料とすることができる。この場合には、上述の冷間伸線後、又は圧延後、又は最終熱処理後に酸化膜を形成する熱処理(酸化処理)を行う。酸化処理の条件は、バッチ処理では加熱温度は800℃以上1100℃以下、好ましくは900℃以上1000℃以下、雰囲気は大気雰囲気などの酸素を含む雰囲気が挙げられる。酸化処理は、通電方式の加熱炉や雰囲気炉を用いる連続処理とすることができる。
・・電極の製造方法
実施形態の接地電極8は、上述の実施形態の電極材料を適宜な長さに切断したり、切断した材料を更に所定の形状に成形したりすることで製造できる。その他、上述の酸化処理を施して酸化膜を備える電極とすることができる。実施形態の電極は、上述の実施形態の電極材料の組成、組織、比抵抗などの特性・性質を実質的に維持する。
・実施形態の点火プラグの主要な効果
実施形態の点火プラグ1は、アルコール燃料を用いるエンジン、代表的には自動車のエンジンの点火部品に利用できる。なお、アルコール燃料とは、アルコールのみの燃料、又はアルコールとガソリンとを含む混合燃料である。点火プラグ1における接地電極8は、上述した電極材料により構成されるので、アルコール燃料を使用するエンジンの点火部品として点火プラグ1を用いた場合、接地電極8は耐食性に優れる上に、耐火花消耗性、耐酸化性にも優れる。より具体的には、接地電極8を構成する電極材料は、特定の組成で構成され、特にMnを特定の範囲で含むことでSなどの腐食元素による腐食を抑制できる。かつ、実施形態の電極材料は、希土類元素を特定の範囲で含有することで微細結晶組織を良好に維持できると共に、SiをMn量との対比で特定の範囲で含有することで適切な酸化膜の形成及びその維持を良好に行える。この酸化膜によって、内部への腐食元素の侵入の低減も期待できる。並びに、実施形態の電極材料は、特定の組成で構成されることで比抵抗が小さい。これらの効果の詳細は試験例1で説明する。
In addition, an electrode material provided with an oxide film in advance can be used. In this case, a heat treatment (oxidation treatment) for forming an oxide film is performed after the cold wire drawing, after the rolling, or after the final heat treatment. Conditions for the oxidation treatment include a heating temperature of 800 ° C. or higher and 1100 ° C. or lower, preferably 900 ° C. or higher and 1000 ° C. or lower, and an atmosphere containing oxygen such as an air atmosphere in batch processing. The oxidation treatment can be a continuous treatment using an energized heating furnace or an atmospheric furnace.
-Electrode manufacturing method The ground electrode 8 of the embodiment can be manufactured by cutting the electrode material of the above-described embodiment into an appropriate length, or by further forming the cut material into a predetermined shape. In addition, the electrode can be provided with an oxide film by performing the above-described oxidation treatment. The electrode of the embodiment substantially maintains the characteristics and properties such as the composition, structure, and specific resistance of the electrode material of the above-described embodiment.
Main Effects of the Spark Plug of Embodiment The spark plug 1 of the embodiment can be used for an ignition part of an engine using alcohol fuel, typically an automobile engine. The alcohol fuel is a fuel containing only alcohol or a mixed fuel containing alcohol and gasoline. Since the ground electrode 8 in the spark plug 1 is made of the above-described electrode material, when the spark plug 1 is used as an ignition part for an engine using alcohol fuel, the ground electrode 8 is excellent in corrosion resistance and wears out the spark. Excellent in resistance and oxidation resistance. More specifically, the electrode material constituting the ground electrode 8 is configured with a specific composition, and in particular, by containing Mn in a specific range, corrosion due to a corrosive element such as S can be suppressed. In addition, the electrode material of the embodiment can maintain a fine crystal structure satisfactorily by containing rare earth elements in a specific range, and an appropriate oxide film by containing Si in a specific range as compared with the amount of Mn. Can be satisfactorily formed and maintained. This oxide film can also be expected to reduce the penetration of corrosive elements into the interior. In addition, the electrode material of the embodiment has a small specific resistance by being configured with a specific composition. Details of these effects will be described in Test Example 1.

[試験例1]
ニッケル合金からなる電極材料を複数作製し、その特性を評価した。
[Test Example 1]
A plurality of electrode materials made of a nickel alloy were produced and their characteristics were evaluated.

電極材料(線材)は、以下のように作製した。   The electrode material (wire) was produced as follows.

通常の真空溶解炉を用いて、表1に示す組成のニッケル合金の溶湯を作製した。組成の単位は質量%である。「Si/Mn」は質量比、「不純物」は不可避不純物である。   A nickel alloy melt having the composition shown in Table 1 was prepared using a normal vacuum melting furnace. The unit of composition is mass%. “Si / Mn” is a mass ratio, and “impurities” are inevitable impurities.

溶湯の原料には、市販の純Ni(99.0質量%以上Ni)及び各添加元素の粒を用いた。溶湯は精錬して不純物や介在物などを低減、除去した。また、精錬具合を調整して、C量を0.05質量%以下にした。酸素濃度が低くなるように雰囲気を管理して溶解を行い、溶湯温度を適宜調整して真空鋳造を行って鋳塊を得た。   Commercially available pure Ni (99.0 mass% or more Ni) and grains of each additive element were used as the raw material for the molten metal. The molten metal was refined to reduce and remove impurities and inclusions. Moreover, the amount of C was made 0.05 mass% or less by adjusting the refining condition. The atmosphere was controlled so as to lower the oxygen concentration for melting, and the molten metal temperature was appropriately adjusted to perform vacuum casting to obtain an ingot.

Figure 0006419108
Figure 0006419108

得られた鋳塊を再加熱して鍛造加工を施して、約150mm角のビレットを得た。このビレットに熱間圧延を施して、線径5.5mmφの圧延線材を得た。この圧延線材に冷間伸線及び熱処理を組み合わせて施して、冷間伸線材を得た。ここでは、線径2.5mmφの丸線と、線径4.2mmφの丸線を作製した。線径2.5mmφの丸線に更に圧延加工を施して断面矩形状に変形し、1.5mm×2.8mmの平角線を得た。この平角線と、線径4.2mmφの丸線とにそれぞれ、最終熱処理を施して軟材を得た。この軟材を電極材料の試料とする。   The resulting ingot was reheated and forged to obtain a billet of about 150 mm square. This billet was hot-rolled to obtain a rolled wire having a wire diameter of 5.5 mmφ. The rolled wire rod was subjected to a combination of cold wire drawing and heat treatment to obtain a cold wire rod. Here, a round wire with a wire diameter of 2.5 mmφ and a round wire with a wire diameter of 4.2 mmφ were prepared. The round wire having a wire diameter of 2.5 mmφ was further subjected to a rolling process to be deformed into a rectangular cross section, thereby obtaining a 1.5 mm × 2.8 mm rectangular wire. The flat wire and a round wire having a wire diameter of 4.2 mmφ were each subjected to a final heat treatment to obtain a soft material. This soft material is used as a sample of the electrode material.

最終熱処理は、加熱温度を800℃以上1000℃以下から選択し、非酸化雰囲気(窒素雰囲気又は水素雰囲気)とし、連続処理で行った。   In the final heat treatment, the heating temperature was selected from 800 ° C. to 1000 ° C., and a non-oxidizing atmosphere (nitrogen atmosphere or hydrogen atmosphere) was used.

<組成>
各試料の電極材料(軟材)の組成を誘導結合プラズマ(ICP)発光分光分析装置を用いて調べたところ、表1に示す組成と同様であり、表1に示す添加元素と、残部がNi及び不可避不純物によって構成されていた。試料No.1−1〜1−7のNi量は96質量%以上である。表1において「0(ゼロ)」は、検出限界未満であり、実質的に含有されていないことを示す。組成の分析は、ICP発光分光分析法の他、原子吸光光度法などでも行える。
<Composition>
When the composition of the electrode material (soft material) of each sample was examined using an inductively coupled plasma (ICP) emission spectroscopic analyzer, it was the same as the composition shown in Table 1, with the additive elements shown in Table 1 and the balance being Ni. And inevitable impurities. Sample No. The amount of Ni in 1-1 to 1-7 is 96% by mass or more. In Table 1, “0 (zero)” is below the detection limit and indicates that it is not substantially contained. Analysis of the composition can be performed by atomic absorption spectrophotometry as well as ICP emission spectroscopic analysis.

<組織>
各試料の電極材料(軟材)を走査型電子顕微鏡(SEM)で観察してエネルギー分散型X線分析(EDX)による元素分析を行って、又は電子線マイクロアナライザ(EPMA)を用いて調べたところ、希土類元素とNiとの金属間化合物が存在していることが確認できた。
<Organization>
The electrode material (soft material) of each sample was observed with a scanning electron microscope (SEM) and subjected to elemental analysis by energy dispersive X-ray analysis (EDX), or examined using an electron beam microanalyzer (EPMA). However, it was confirmed that an intermetallic compound of rare earth element and Ni was present.

<比抵抗>
各試料の電極材料(軟材)の比抵抗(μΩ・cm)を測定した。その結果を表2に示す。比抵抗(室温)は、電気抵抗測定装置を用いて、直流四端子法により測定した(標点距離GL=100mm)。
<Resistivity>
The specific resistance (μΩ · cm) of the electrode material (soft material) of each sample was measured. The results are shown in Table 2. The specific resistance (room temperature) was measured by a direct current four-terminal method using an electric resistance measuring device (mark distance GL = 100 mm).

<耐火花消耗性>
上述の比抵抗(室温)が25μΩ・cm以下のものを耐火花消耗性に優れるとしてA、25μΩ・cm超のものを耐火花消耗性に劣るとしてCと評価した。評価結果を表2に示す。
<Sparkproof wear resistance>
The above-mentioned specific resistance (room temperature) of 25 μΩ · cm or less was evaluated as A, assuming that it was excellent in spark erosion resistance, and that exceeding 25 μΩ · cm was evaluated as C, indicating that it was poor in spark erosion resistance. The evaluation results are shown in Table 2.

<耐酸化性>
各試料の電極材料(軟材)を加熱して、酸化膜の厚さを調べて、耐酸化性を評価した。ここでは、以下の酸化試験を行い、この試験後の酸化膜の厚さを調べた。
(酸化試験)
各試料の電極材料(軟材)を1100℃に昇温した大気炉に入れて、1時間加熱した後、大気炉の外に取り出して30分間空冷し、再度1時間加熱するという操作を加熱時間が合計50時間となるまで繰り返す。
<Oxidation resistance>
The electrode material (soft material) of each sample was heated, the thickness of the oxide film was examined, and the oxidation resistance was evaluated. Here, the following oxidation test was conducted, and the thickness of the oxide film after this test was examined.
(Oxidation test)
The electrode material (soft material) of each sample was placed in an atmospheric furnace heated to 1100 ° C., heated for 1 hour, then taken out of the atmospheric furnace, air-cooled for 30 minutes, and heated again for 1 hour. Repeat until a total of 50 hours.

上記の酸化試験後、試料の断面を光学顕微鏡で観察し(倍率は50倍〜200倍)、この顕微鏡観察像(写真)を用いて試料の表面に形成された酸化膜の厚さを測定した。この試験で作製した各試料はいずれも、二層構造の酸化膜が形成されている。詳しくは、各試料の酸化膜は、酸化膜の最表面及びその近傍を構成する表面酸化物層と、表面酸化物層の内部に位置する内部酸化物層とを備える。表面酸化物層は、添加元素の含有量が多くNiの含有が少なく、内部酸化物層はNiの含有が多い傾向にある。   After the above oxidation test, the cross section of the sample was observed with an optical microscope (magnification was 50 to 200 times), and the thickness of the oxide film formed on the surface of the sample was measured using this microscope observation image (photograph). . Each sample prepared in this test has an oxide film having a two-layer structure. Specifically, the oxide film of each sample includes a surface oxide layer constituting the outermost surface of the oxide film and the vicinity thereof, and an internal oxide layer positioned inside the surface oxide layer. The surface oxide layer has a high content of additive elements and a low content of Ni, and the internal oxide layer tends to have a high content of Ni.

この試験では、内部酸化物層及び表面酸化物層のそれぞれの厚さ(μm)及び合計厚さ(μm)を測定した。また、両酸化物層の合計厚さが400μm以下のものを耐酸化性に優れるとしてB、350μm以下のものを耐酸化性に非常に優れるとしてA、酸化膜が剥離などしたものを耐酸化性に劣るとしてCと評価した。これらの結果を表2に示す。   In this test, the thickness (μm) and total thickness (μm) of the internal oxide layer and the surface oxide layer were measured. In addition, when the total thickness of both oxide layers is 400 μm or less, B indicates that the oxidation resistance is excellent, B indicates that 350 μm or less is very excellent in oxidation resistance, and A indicates that the oxide film is peeled off. Was evaluated as C. These results are shown in Table 2.

内部酸化物層の厚さは、ニッケル合金から構成される基材領域と内部酸化物層との境界から、内部酸化物層と表面酸化物層との境界までの平均厚さを測定した。表面酸化物層の厚さは、上述の両酸化物層の境界から酸化膜の最表面までの平均厚さを測定した。平均厚さは、上記顕微鏡観察像に画像処理などを施すことで容易に求められる(特許文献2参照)。   The thickness of the internal oxide layer was measured by measuring the average thickness from the boundary between the base material region composed of the nickel alloy and the internal oxide layer to the boundary between the internal oxide layer and the surface oxide layer. For the thickness of the surface oxide layer, the average thickness from the boundary between the two oxide layers described above to the outermost surface of the oxide film was measured. The average thickness can be easily obtained by performing image processing or the like on the microscope observation image (see Patent Document 2).

<平均結晶粒径>
上述の酸化試験(1100℃×50時間)後の各試料の電極材料について、平均結晶粒径(μm)を調べた。その結果を表2に示す。ここでは、試料の断面を光学顕微鏡(倍率は50倍〜200倍)で観察し、この顕微鏡観察像(写真)に対して、交線法(ライン法)を利用して平均結晶粒径を算出した。
<Average crystal grain size>
The average crystal grain size (μm) of the electrode material of each sample after the above oxidation test (1100 ° C. × 50 hours) was examined. The results are shown in Table 2. Here, the cross section of the sample is observed with an optical microscope (magnification is 50 to 200 times), and the average crystal grain size is calculated using the intersection method (line method) for this microscope observation image (photograph). did.

<耐食性>
作製した各試料の電極材料(軟材)について耐食性を調べた。ここでは、腐食剤で試料を覆った状態で加熱保持するという、以下の耐食性試験を行い、この試験後の腐食状態を評価した。
(耐食性試験)
・腐食剤
質量割合で、硫酸カルシウム:グラファイト=80:20の粉末
ここでは、腐食元素としてS(硫黄)を含む塩(硫酸カルシウム)を用いた。但し、腐食元素を含む塩のみで耐食性試験を行ったところ過度に腐食されたため、腐食剤に還元剤としてグラファイト(炭素)を含有させて、腐食状態を調整した。
・熱処理条件
850℃×4時間、加熱炉使用
ここでは、各試料を腐食剤の粉末によって覆った状態で加熱炉に入れて、所定時間保持した。
・腐食の評価
上述の所定の保持時間(4時間)の経過後、各試料を水洗してからクロスセクションポリッシャ(CP)断面をとって、断面積の減少度合いを調べた。ここでは、以下の断面積の減少量(%)を求め、3段階評価とした。減少量(%)と評価結果とを表2に示す。
<Corrosion resistance>
The electrode material (soft material) of each prepared sample was examined for corrosion resistance. Here, the following corrosion resistance test of heating and holding the sample covered with a corrosive was performed, and the corrosion state after this test was evaluated.
(Corrosion resistance test)
-Corrosive agent Powder of calcium sulfate: graphite = 80: 20 in mass ratio Here, a salt (calcium sulfate) containing S (sulfur) as a corrosive element was used. However, when the corrosion resistance test was carried out only with a salt containing a corrosive element, it was excessively corroded. Therefore, the corrosion state was adjusted by adding graphite (carbon) as a reducing agent to the corrosive agent.
Heat treatment conditions: 850 ° C. × 4 hours, use of heating furnace Here, each sample was put in a heating furnace in a state covered with a corrosive powder and held for a predetermined time.
-Evaluation of corrosion After passage of the above-mentioned predetermined holding time (4 hours), each sample was washed with water, and then the cross section polisher (CP) cross section was taken to examine the degree of reduction in the cross sectional area. Here, the reduction amount (%) of the following cross-sectional area was obtained and set as a three-level evaluation. The amount of reduction (%) and the evaluation results are shown in Table 2.

断面積の減少量(%)={(耐食性試験前の断面積−耐食性試験後の断面積)/耐食性試験前の断面積)}×100
減少量が10%以下=耐食性に非常優れる:A
減少量が10%超20%以下=耐食性に優れる:B
減少量が20%超=耐食性に劣る:C
表2に示す値は、各試料の電極材料とした丸線の軟材と平角線の軟材との測定結果のうち、比抵抗、酸化膜の厚さ(合計厚さ)、平均結晶粒径は値が大きい軟材の結果を、耐食性は減少量が大きい軟材の値と評価結果とを示す。また、耐食性、耐火花消耗性、耐酸化性の評価を総合的に評価した結果も表2に示す。総合評価は、上記三つの評価が全てAであるものをA,上記三つの評価のうち少なくとも一つがBであるものをB、上記三つの評価のうち少なくとも一つがCであるものをCと評価する。
Reduction amount of cross-sectional area (%) = {(cross-sectional area before corrosion resistance test−cross-sectional area after corrosion resistance test) / cross-sectional area before corrosion resistance test}} × 100
Reduction amount is 10% or less = Excellent corrosion resistance: A
Reduction amount is over 10% and 20% or less = excellent corrosion resistance: B
Reduction amount is over 20% = poor in corrosion resistance: C
The values shown in Table 2 are specific resistance, oxide film thickness (total thickness), average crystal grain size among the measurement results of the round wire soft material and the flat wire soft material used as the electrode material of each sample. Indicates the result of the softwood having a large value, and the corrosion resistance indicates the value of the softwood having a large decrease and the evaluation result. Table 2 also shows the results of comprehensive evaluation of corrosion resistance, spark wear resistance, and oxidation resistance. Comprehensive evaluation is evaluated as A when all three evaluations are A, B when at least one of the three evaluations is B, and C when at least one of the three evaluations is C To do.

Figure 0006419108
Figure 0006419108

表2に示すように、希土類元素,Mn,Si,適宜Al,Cr,Tiを特定の範囲で含有する特定の組成から構成された試料No.1−1〜1−7は、S(硫黄)といった腐食元素が存在し得る使用環境に曝された場合に腐食され難く、耐食性に優れることが分かる。具体的には、試料No.1−1〜1−7は、耐食性の評価がA、Bであり、上述の減少量が少ない。特に、試料No.1−1〜1−7や試料No.1−103,1−104をみれば、Mn量が2質量%程度以上となると上記減少量が少ない傾向にあり、耐食性により優れることが分かる。Mn量が少ない試料Mo.1−101,1−102は上記減少量が多く、耐食性に劣ることも分かる。この結果から、Mn量を特定の範囲とすることで、S(硫黄)といった腐食元素が存在し得ると共にアルコール燃料を用いる自動車のエンジンといった使用環境での耐食性に優れるといえる。   As shown in Table 2, a sample No. 1 composed of a specific composition containing rare earth elements, Mn, Si, and appropriately Al, Cr, Ti in a specific range. 1-1 to 1-7 are hardly corroded when exposed to a use environment where a corrosive element such as S (sulfur) may be present, and are excellent in corrosion resistance. Specifically, Sample No. As for 1-1 to 1-7, corrosion resistance evaluation is A and B, and the above-mentioned reduction amount is few. In particular, sample no. 1-1 to 1-7 and Sample No. From 1-103 and 1-104, it can be seen that when the amount of Mn is about 2% by mass or more, the amount of decrease tends to be small, and the corrosion resistance is excellent. Sample Mo. It can also be seen that 1-101 and 1-102 have a large reduction amount and are inferior in corrosion resistance. From this result, it can be said that by setting the amount of Mn in a specific range, a corrosive element such as S (sulfur) may exist and the corrosion resistance in an environment of use such as an automobile engine using alcohol fuel is excellent.

また、試料No.1−1〜1−7は、1100℃といった高温環境に曝された場合に適切な厚さの酸化膜を有しており、耐酸化性に優れることが分かる。具体的には、試料No.1−1〜1−7は、酸化膜の合計厚さが400μm以下であり、かつ剥離などすることなく健全に維持されている。   Sample No. 1-1 to 1-7 have an oxide film having an appropriate thickness when exposed to a high-temperature environment such as 1100 ° C., and are found to have excellent oxidation resistance. Specifically, Sample No. In 1-1 to 1-7, the total thickness of the oxide films is 400 μm or less, and is maintained healthy without peeling.

試料No.1−1〜1−7が耐酸化性に優れる理由として、SiをMn量との比で特定の範囲で含有することが考えられる。このことは、試料No.1−1〜1−7と、試料No.1−103,1−104とを比較参照することから裏付けられる。Si/Mnが0.5以上1.1未満である試料No.1−1〜1−7は健全な酸化膜を有している。Si/Mnが0.5未満である試料No.1−104、1.1以上である試料No.1−103はいずれも、酸化膜が剥離して耐酸化性に劣る。試料No.1−104は、Mn量が多く耐食性に優れるものの、Si量が少な過ぎて酸化膜を維持できず、試料No.1−103は、Si量が多過ぎて酸化膜を維持できなかったと考えられる。なお、試料No.1−102は、Si/Mnが1.1以上であるものの、Mn量が非常に少ないことで酸化膜を維持できたと考えられるが、Mn量が少な過ぎて耐食性に劣る。   Sample No. As a reason why 1-1 to 1-7 are excellent in oxidation resistance, it can be considered that Si is contained in a specific range in a ratio to the amount of Mn. This is because sample no. 1-1 to 1-7 and Sample No. This is supported by comparing and referring to 1-103 and 1-104. Sample No. having Si / Mn of 0.5 or more and less than 1.1. 1-1 to 1-7 have a healthy oxide film. Sample No. with Si / Mn of less than 0.5 Sample No. 1-104, 1.1 or higher. In any of 1-103, the oxide film peels off and is inferior in oxidation resistance. Sample No. Although No. 1-104 has a large amount of Mn and excellent corrosion resistance, the amount of Si is too small to maintain the oxide film. No. 1-103 is considered to have failed to maintain the oxide film due to the excessive amount of Si. Sample No. Although No. 1-102 has Si / Mn of 1.1 or more, it is considered that the oxide film could be maintained because the amount of Mn was very small, but the amount of Mn was too small and the corrosion resistance was poor.

試料No.1−1〜1−7が耐食性、耐酸化性に優れる別の理由として、希土類元素が均一的に分散して存在できて結晶粒を微細にできたことが考えられる。このことは、希土類元素を含む試料No.1−1〜1−7の平均結晶粒径が希土類元素を含まない試料No.1−103,1−104に比較して小さいことからも裏付けられる。この試験では、試料No.1−1〜1−7の平均結晶粒径は300μm以下、更に260μm以下である。   Sample No. As another reason that 1-1 to 1-7 are excellent in corrosion resistance and oxidation resistance, it is considered that the rare earth elements can be uniformly dispersed and exist to make the crystal grains fine. This is because Sample No. containing rare earth elements. Sample Nos. 1 to 1-7 having an average crystal grain size of no rare earth element. This is supported by the fact that it is smaller than 1-103 and 1-104. In this test, sample no. The average crystal grain size of 1-1 to 1-7 is 300 μm or less, and further 260 μm or less.

更に、試料No.1−1〜1−7は比抵抗が小さくいずれも25μΩ・cm以下であり、耐火花消耗性に優れることが分かる。試料No.1−103は、Mn量が多く耐食性に優れるものの、上述のように耐酸化性に劣る上に、比抵抗が高く、耐火花消耗性に劣る。   Furthermore, sample no. 1-1 to 1-7 have a small specific resistance and are all 25 μΩ · cm or less, and it is understood that the spark wear resistance is excellent. Sample No. Although 1-103 has a large amount of Mn and excellent corrosion resistance, it is inferior in oxidation resistance as described above, and also has high specific resistance and inferior spark wear resistance.

上記試験結果から、希土類元素,Mn,Si,適宜Al,Cr,Tiを特定の範囲で含有する特定の組成から構成された電極材料は、アルコール燃料を用いるエンジンに備える点火プラグ用の電極の素材に適することが確認された。また、この電極材料から作製された点火プラグ用の電極を備える点火プラグは、アルコール燃料を使用するエンジンに用いられた場合に耐食性に優れると期待される。   From the above test results, an electrode material composed of a specific composition containing rare earth elements, Mn, Si, and appropriately Al, Cr, Ti in a specific range is a material for an electrode for a spark plug provided in an engine using alcohol fuel. It was confirmed that it was suitable. In addition, a spark plug provided with an electrode for a spark plug made of this electrode material is expected to have excellent corrosion resistance when used in an engine using alcohol fuel.

本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。例えば、試験例1に示す電極材料や電極の組成、形状、大きさなどを適宜変更できる。   The present invention is not limited to these exemplifications, but is defined by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims. For example, the electrode material shown in Test Example 1 and the composition, shape, size, and the like of the electrode can be appropriately changed.

また、実施形態の点火プラグ1では、接地電極8に上述の電極材料を用いたが、これに限られることなく、例えば、中心電極のみに上述の電極材料を用いると共に接地電極には公知のNi材料を用いてもよいし、中心電極、接地電極共に上述の電極材料を用いてもよい。   Further, in the spark plug 1 of the embodiment, the above-described electrode material is used for the ground electrode 8. However, the present invention is not limited to this. For example, the above-described electrode material is used only for the center electrode, and a known Ni for the ground electrode A material may be used, and the above-described electrode material may be used for both the center electrode and the ground electrode.

なお、中心電極に上述の電極材料を用いる場合には、中心電極の先端面の面積が1.5mm〜7.0mmであることが好ましい。このような比較的細い中心電極を有する点火プラグを、アルコール燃料を使用する自動車エンジン等の内燃機関に用いた場合であっても、中心電極の電極材料として上述の電極材料を用いることで、耐食性に優れる上に、耐火花消耗性、耐酸化性に優れる中心電極を得られる。 In the case of using the above-described electrode material to the center electrode, it is preferable that the area of the front end surface of the center electrode is 1.5mm 2 ~7.0mm 2. Even when such a spark plug having a relatively thin center electrode is used in an internal combustion engine such as an automobile engine using alcohol fuel, by using the above electrode material as an electrode material of the center electrode, corrosion resistance is achieved. In addition, it is possible to obtain a central electrode that is excellent in spark wear resistance and oxidation resistance.

1 点火プラグ
2 軸孔
3 絶縁体
4 中心電極
5 端子金具
6 接続部
7 主体金具
8 接地電極
11 後端側胴部
12 大径部
13 先端側胴部
14 脚長部
15 基端部
16 先端部
24 ネジ部
25 ガスシール部
26 工具係合部
27 加締め部
28 後端部
29 棒状部
G 間隙
DESCRIPTION OF SYMBOLS 1 Spark plug 2 Shaft hole 3 Insulator 4 Center electrode 5 Terminal metal fitting 6 Connection part 7 Metal fitting 8 Ground electrode 11 Rear end side trunk | drum 12 Large diameter part 13 Front end side trunk | drum 14 Leg long part 15 Base end part 16 Tip part 24 Screw portion 25 Gas seal portion 26 Tool engagement portion 27 Clamping portion 28 Rear end portion 29 Rod-like portion G Gap

Claims (7)

中心電極と、前記中心電極の周囲を取り囲む絶縁体と、前記絶縁体の周囲を取り囲む主体金具と、前記主体金具に接合しつつ中心電極と火花放電間隙を有する接地電極と、
を備える点火プラグであって、
前記中心電極及び前記接地電極の少なくとも一方は、質量%で、
希土類元素を合計で0.05%以上0.5%以下、
Mnを1.1%以上2.5%以下、
Al及びCrの少なくとも一方を0.01%未満、
Siを、Si/Mnが0.5以上1.1未満を満たす範囲で含有し、
Tiを0.02%以上0.6%以下含有し、
Cを0.005%以上0.05%以下含有し、残部がNi及び不可避不純物からなる電極材料により構成される点火プラグ。
A center electrode, an insulator surrounding the periphery of the center electrode, a metal shell surrounding the periphery of the insulator, a ground electrode having a spark discharge gap while being bonded to the metal shell,
A spark plug comprising:
At least one of the center electrode and the ground electrode is in mass%,
0.05% to 0.5% in total of rare earth elements,
Mn is 1.1% or more and 2.5% or less,
Less than 0.01% of at least one of Al and Cr,
Si is contained in a range where Si / Mn satisfies 0.5 or more and less than 1.1,
Containing 0.02% or more and 0.6% or less of Ti,
A spark plug composed of an electrode material containing 0.005% or more and 0.05% or less of C, with the balance being Ni and inevitable impurities.
前記電極材料は、前記希土類元素として、Y及びNdの少なくとも一方を含む請求項1The electrode material includes at least one of Y and Nd as the rare earth element. に記載の点火プラグ。Spark plug as described in. 前記電極材料の室温での比抵抗が25μΩ・cm以下である請求項1又は請求項2に記  The specific resistance at room temperature of the electrode material is 25 μΩ · cm or less. 載の点火プラグ。The spark plugs listed. 前記電極材料を1100℃で50時間加熱したとき、この加熱後の電極材料の平均結晶When the electrode material was heated at 1100 ° C. for 50 hours, the average crystal of the electrode material after heating 粒径が300μm以下である請求項1〜請求項3のいずれか1項に記載の点火プラグ。The spark plug according to any one of claims 1 to 3, wherein the particle size is 300 µm or less. 前記電極材料を1100℃で50時間加熱したとき、この加熱後の電極材料の表面に形  When the electrode material was heated at 1100 ° C. for 50 hours, the surface of the electrode material after heating was shaped. 成された酸化膜の厚さが400μm以下である請求項1〜請求項4のいずれか1項に記載The thickness of the formed oxide film is 400 µm or less. の点火プラグ。Spark plug. 前記中心電極は前記電極材料により構成されてなり、  The center electrode is made of the electrode material,
前記中心電極の先端面の面積は、1.5mm  The area of the tip surface of the center electrode is 1.5 mm 2 〜7.0mm~ 7.0mm 2 である請求項1〜請求項Claims 1 to 5のいずれか1項に記載の点火プラグ。The spark plug according to any one of 5.
前記接地電極は前記電極材料により構成されてなり、
前記接地電極のうち火花放電間隙を介して前記中心電極に対向する部位の断面積は、1 .5mm 〜5.0mm である請求項1〜請求項6のいずれか1項に記載の点火プラグ
The ground electrode is made of the electrode material,
A cross-sectional area of a portion of the ground electrode facing the center electrode through a spark discharge gap is 1 . Spark plug according to any one of claims 1 to 6 is 5mm 2 ~5.0mm 2.
JP2016104857A 2016-05-26 2016-05-26 Spark plug Active JP6419108B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016104857A JP6419108B2 (en) 2016-05-26 2016-05-26 Spark plug
CN201710113074.XA CN107437725B (en) 2016-05-26 2017-02-28 Spark plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016104857A JP6419108B2 (en) 2016-05-26 2016-05-26 Spark plug

Publications (2)

Publication Number Publication Date
JP2017210652A JP2017210652A (en) 2017-11-30
JP6419108B2 true JP6419108B2 (en) 2018-11-07

Family

ID=60458355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016104857A Active JP6419108B2 (en) 2016-05-26 2016-05-26 Spark plug

Country Status (2)

Country Link
JP (1) JP6419108B2 (en)
CN (1) CN107437725B (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717979B2 (en) * 1986-07-08 1995-03-01 三菱マテリアル株式会社 Ni-based alloy spark plug electrode
JPH0445239A (en) * 1990-06-08 1992-02-14 Toshiba Corp Alloy for spark plug
JP5172425B2 (en) * 2008-03-28 2013-03-27 日本特殊陶業株式会社 Spark plug
JP5106679B2 (en) * 2009-12-24 2012-12-26 日本特殊陶業株式会社 Spark plug
WO2012056598A1 (en) * 2010-10-26 2012-05-03 日本特殊陶業株式会社 Spark plug
EP2658050B1 (en) * 2010-12-24 2018-02-28 Ngk Spark Plug Co., Ltd. Spark plug
JP5695609B2 (en) * 2012-08-06 2015-04-08 日本特殊陶業株式会社 Spark plug

Also Published As

Publication number Publication date
CN107437725B (en) 2019-05-14
CN107437725A (en) 2017-12-05
JP2017210652A (en) 2017-11-30

Similar Documents

Publication Publication Date Title
KR101123546B1 (en) Spark plug and electrod matter
US7279827B2 (en) Spark plug with electrode including precious metal
WO2009087894A1 (en) Spark plug for internal combustion engine and method of manufacturing the same
JP5619843B2 (en) Spark plug
WO2016189826A1 (en) Sparkplug
US8664842B2 (en) Spark plug
JP5650969B2 (en) Electrode material, spark plug electrode, and spark plug
JP6155575B2 (en) Electrode material, spark plug electrode, and spark plug
US8593045B2 (en) Spark plug
JP6419108B2 (en) Spark plug
JP6061307B2 (en) Spark plug
JP6719976B2 (en) Electrode material and spark plug electrode
JP6484160B2 (en) Electrode material, spark plug electrode, and spark plug
JP6075707B2 (en) Electrode material, spark plug electrode, and spark plug
EP3540880B1 (en) Spark plug
JP5912986B2 (en) Electrode material, electrode for spark plug and spark plug

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181009

R150 Certificate of patent or registration of utility model

Ref document number: 6419108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250