JP6419102B2 - Ni-base superalloy and method for producing Ni-base superalloy - Google Patents

Ni-base superalloy and method for producing Ni-base superalloy Download PDF

Info

Publication number
JP6419102B2
JP6419102B2 JP2016080674A JP2016080674A JP6419102B2 JP 6419102 B2 JP6419102 B2 JP 6419102B2 JP 2016080674 A JP2016080674 A JP 2016080674A JP 2016080674 A JP2016080674 A JP 2016080674A JP 6419102 B2 JP6419102 B2 JP 6419102B2
Authority
JP
Japan
Prior art keywords
grain boundary
heat treatment
carbide
base superalloy
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016080674A
Other languages
Japanese (ja)
Other versions
JP2017190493A (en
Inventor
孝一 ▲高▼澤
孝一 ▲高▼澤
昌人 吉田
昌人 吉田
榮二 前田
榮二 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2016080674A priority Critical patent/JP6419102B2/en
Publication of JP2017190493A publication Critical patent/JP2017190493A/en
Application granted granted Critical
Publication of JP6419102B2 publication Critical patent/JP6419102B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

この発明は、高温延性に優れたNi基超合金に関するものである。   The present invention relates to a Ni-base superalloy excellent in high temperature ductility.

近年の火力発電においては、発電効率の向上やCOガス排出量の低減を目指してますます高温の蒸気を利用することが求められており、700℃を超える温度の蒸気を利用する技術の開発も進められている。このような高温環境下においては、火力発電プラントの主要大型鍛造部材である蒸気タービンロータなどに従来のFe基合金を適用することができず、Ni基超合金の適用が望まれている。 In recent thermal power generation, it is required to use steam at higher temperatures aiming at improving power generation efficiency and reducing CO 2 gas emission, and development of technology that uses steam at a temperature exceeding 700 ° C. Is also underway. Under such a high temperature environment, a conventional Fe-based alloy cannot be applied to a steam turbine rotor or the like which is a main large forging member of a thermal power plant, and application of a Ni-based superalloy is desired.

一般的なNi基超合金の大型鍛造部材は、ここでは製品重量が1トン以上の部材を大型鍛造部材とするが、溶体化熱処理とそれに続いて時効熱処理が施される。溶体化熱処理においては、鍛造中に生成した炭化物を適度に固溶させる。時効熱処理においては、溶体化熱処理中に合金中に固溶したCやその他の合金元素を再び粒内や粒界に析出させ、所望の組織を形成させる。Ni基超合金の高温延性は時効後の組織に強く依存する。そのため、Ni基超合金の大型鍛造部材において所望の高温延性を具備させるには、溶体化熱処理で適切な量の炭化物を固溶させ、さらに時効熱処理で適切な量の析出物を析出させることが必要である。具体的な指標として、溶体化熱処理中に固溶しなかった炭化物、すなわち未固溶炭化物の量や大きさを把握することが重要である。また、特に粒界に析出物を析出させるタイプのNi基超合金では、粒界がどのくらい析出物によって被覆されたかを示す粒界被覆率が重要な指標となる。   Here, a general Ni-based superalloy large forged member is a large forged member having a product weight of 1 ton or more, but is subjected to a solution heat treatment followed by an aging heat treatment. In the solution heat treatment, carbides generated during forging are appropriately dissolved. In the aging heat treatment, C and other alloy elements dissolved in the alloy during the solution heat treatment are precipitated again in the grains and at the grain boundaries to form a desired structure. The high temperature ductility of Ni-base superalloys strongly depends on the structure after aging. Therefore, in order to provide a desired high temperature ductility in a Ni-based superalloy large-sized forged member, an appropriate amount of carbide should be dissolved in solution heat treatment, and an appropriate amount of precipitate should be precipitated in aging heat treatment. is necessary. As a specific index, it is important to grasp the amount and size of carbides that did not dissolve during solution heat treatment, that is, undissolved carbides. In particular, in a Ni-base superalloy of the type that precipitates at the grain boundaries, the grain boundary coverage indicating how much the grain boundaries are covered by the precipitates is an important index.

特開2008−50664号公報JP 2008-50664 A 特開2012−219339号公報JP 2012-219339 A 特開2011−84812号公報JP 2011-84812 A

従来、Ni基あるいはNi−Fe基超合金大型鍛造部材に関する技術はいくつか開示されている。例えば特許文献1は、高温延性に優れたNi−Fe基超合金とその蒸気タービンロータに関するものであるが、特許文献1では上記の未固溶炭化物、粒界被覆率のいずれにも言及がなく、これらの観点での評価はなされていない。   Conventionally, several techniques related to a Ni-based or Ni-Fe-based superalloy large forged member have been disclosed. For example, Patent Document 1 relates to a Ni—Fe-based superalloy excellent in high-temperature ductility and its steam turbine rotor. Evaluation from these viewpoints has not been made.

また特許文献2は、粒界にMCあるいはM23型(M:金属元素,C:炭素)の炭化物を、粒界の炭化物の面積率を結晶粒内の炭化物の面積率で除した値として定義される炭化物面積比率が0.6〜3.0を満たすように析出させ、火力発電タービンロータ用Ni基超合金の粒界強化を図っている。しかし特許文献2で扱う炭化物面積比率は結晶粒内の炭化物量に左右され、粒界に対する効果のみを適切に表していない可能性がある。特許文献2でも未固溶炭化物や冷却速度に関する記述はないため、これらの影響を除外した評価となっており、Ni基超合金大型鍛造部材への適性を評価するには不十分と考えられる。 Patent Document 2 is a value obtained by dividing MC or M 23 C 6 type (M: metal element, C: carbon) carbide at the grain boundary by dividing the area ratio of the carbide at the grain boundary by the area ratio of the carbide in the crystal grain. Is precipitated so as to satisfy a carbide area ratio defined as 0.6 to 3.0, and grain boundary strengthening of a Ni-based superalloy for a thermal power generation turbine rotor is attempted. However, the carbide area ratio handled in Patent Document 2 depends on the amount of carbide in the crystal grains, and may not appropriately represent only the effect on the grain boundaries. Since there is no description regarding the insoluble carbide and the cooling rate in Patent Document 2, the evaluation excludes these influences, and it is considered insufficient to evaluate the suitability for a Ni-based superalloy large forged member.

特許文献3では炭化物の粒界被覆率を50%に規定し、かつ、結晶粒界10μm当たりの析出物量を3個以上と規定することによってクリープ延性の向上を図っているが、上記の観点から着目すべきは未固溶炭化物の量と大きさであり、Ni基超合金大型鍛造部材としての適性評価には不十分と考えられる。   Patent Document 3 attempts to improve the creep ductility by defining the carbide grain boundary coverage to 50% and regulating the amount of precipitates per 10 μm grain boundary to 3 or more. It should be noted that the amount and size of the undissolved carbide is insufficient for evaluating the suitability as a Ni-based superalloy large forged member.

本発明は、上記事情を背景としてなされたものであり、大型鍛造部材においても、高温延性に影響を及ぼす粒界被覆率を適切に制御することによって、高温において優れた延性を示し、造部材用として好適なNi基超合金を提供することを目的としている。   The present invention has been made against the background of the above circumstances, and even in large forged members, by appropriately controlling the grain boundary coverage that affects high temperature ductility, it exhibits excellent ductility at high temperatures, An object of the present invention is to provide a suitable Ni-base superalloy.

すなわち、本発明のNi基超合金のうち、第1の形態は、 質量%で、C:0.01−0.15%、Cr:10−25%、Co:5−20%、Mo:8−15%、Al:0.5−2%、Ti:0.5%以下、B:0.006%以下を含み、残部をNiおよび不可避不純物からなる組成を有する固溶強化型のNi基超合金であって、合金内の粒界の長さに対して炭化物で被覆された粒界の長さの割合で定義される粒界被覆率が30%以上であり、未固溶炭化物が、平均円相当径が0.85〜0.95μm、平均数密度が、1.8×10 −2 〜2.4×10 −2 個/μm であり、
700℃における伸びが30%以上で、室温における伸びと700℃における伸びの差が10%以内であることを特徴とする。
That is, among the Ni-based superalloys of the present invention, the first form is mass%, C: 0.01-0.15%, Cr: 10-25%, Co: 5-20%, Mo: 8 -15%, Al: 0.5-2%, Ti: 0.5% or less, B: 0.006% or less, with the balance being Ni and an inevitable impurity composition of Ni base an alloy state, and are intergranular coverage defined by the ratio of the length of the coated grain boundaries carbide against intergranular length of the alloy is 30% or more, undissolved carbides, The average equivalent circle diameter is 0.85 to 0.95 μm, the average number density is 1.8 × 10 −2 to 2.4 × 10 −2 pieces / μm 2 ,
The elongation at 700 ° C. is 30% or more, and the difference between the elongation at room temperature and the elongation at 700 ° C. is within 10% .

他の形態のNi基超合金の発明は、前記形態の本発明において、粒界がMCおよびM23型の炭化物の析出によって粒界強化されていることを特徴とする。
ただし、Mは合金中の炭化物形成元素である
The invention of another form of the Ni-base superalloy is characterized in that, in the above-described form of the present invention, the grain boundaries are strengthened by precipitation of M 6 C and M 23 C 6 type carbides.
Where M is a carbide forming element in the alloy.

他の形態のNi基超合金の発明は、前記形態の本発明において、前記組成に、さらに、質量%で、Fe:3%以下を含有することを特徴とする。 Invention other forms of Ni-base superalloys, the present invention of the embodiment, the composition further contains, by mass%, Fe: characterized in that it contains 3% or less.

他の形態のNi基超合金の発明は、前記形態の本発明において、蒸気タービン材料に使用されることを特徴とする。   The invention of another form of the Ni-base superalloy is used for the steam turbine material in the above-described form of the invention.

本発明のNi基超合金の製造方法のうち、第1の形態は、前記形態の本発明のいずれかに記載のNi基超合金の製造方法であって、
溶製、鍛造したNi基合金に対して、1050℃〜1200℃の温度範囲において1〜10時間の溶体化熱処理を行い、その後、700〜750℃の温度範囲において1〜120時間の時効熱処理を行うことを特徴とする。
Among the methods for producing a Ni-base superalloy according to the present invention, a first aspect is a method for producing a Ni-base superalloy according to any of the aspects of the present invention,
The solution and forged Ni-based alloy are subjected to solution heat treatment for 1 to 10 hours in a temperature range of 1050 ° C. to 1200 ° C., and then subjected to aging heat treatment for 1 to 120 hours in a temperature range of 700 to 750 ° C. It is characterized by performing.

他の形態のNi基超合金の製造方法の発明は、前記形態の本発明において、700〜750℃の温度範囲において1〜120時間の時効熱処理を行った後に、更に630〜670℃の温度範囲で1〜50時間の時効熱処理を行うことを特徴とする。 In another aspect of the invention of the method for producing a Ni-base superalloy according to the present invention, the aging heat treatment is performed for 1 to 120 hours in the temperature range of 700 to 750 ° C. , and then the temperature range of 630 to 670 ° C. And aging heat treatment for 1 to 50 hours .

以下に本発明で規定した技術的項目について説明する。   The technical items defined in the present invention will be described below.

粒界被覆率:30〜100%
高温において粒界は変形が起こりやすい弱化因子となる。炭化物により粒界を被覆すると、被覆された部分の粒界近傍での転位の集積およびサブグレイン化が抑制されるため、高温において粒界近傍での局所的かつ急激な変形が起こりにくくなる。そのため、変形は粒界近傍のみならず粒内でも起こり、伸びや絞りといった延性が向上する。このような効果を得るためには、炭化物による粒界被覆率を30%以上にする必要がある。なお、同様の理由で、下限を40%とするのが一層望ましい。
Grain boundary coverage: 30 to 100%
Grain boundaries become weakening factors that are likely to deform at high temperatures. When the grain boundary is coated with carbide, dislocation accumulation and subgraining in the vicinity of the grain boundary of the coated portion are suppressed, and therefore local and rapid deformation near the grain boundary is less likely to occur at high temperatures. Therefore, deformation occurs not only in the vicinity of the grain boundary but also in the grain, and ductility such as elongation and drawing is improved. In order to obtain such an effect, it is necessary to set the grain boundary coverage by carbide to 30% or more. For the same reason, it is more desirable to set the lower limit to 40%.

未固溶炭化物の大きさ:平均円相当径換算で0.85〜0.95μm
未固溶炭化物の大きさは母相内に固溶しているC原子の量に依存しているため、所望の粒界被覆率を確保するには未固溶炭化物の大きさを制御するのが望ましい。
未固溶炭化物の平均円相当径が0.95μmを超えると、母相内のC原子が欠乏し粒界被覆率が30%未満となる。一方、未固溶炭化物の平均円相当径が0.85μmを下回る場合、母相内に過剰なC原子が固溶し粒界炭化物の粗大化を招くおそれがある。従って、未固溶炭化物の大きさは平均円相当径換算で0.85〜0.95μmの範囲とすることが望ましい。なお、同様の理由で、下限を0.87μm、上限を0.93μmとするのが一層望ましい。
Size of undissolved carbide: 0.85 to 0.95 μm in terms of average equivalent circle diameter
Since the size of the insoluble carbide depends on the amount of C atoms dissolved in the matrix, the size of the insoluble carbide should be controlled in order to secure a desired grain boundary coverage. Is desirable.
If the average equivalent circle diameter of the undissolved carbide exceeds 0.95 μm, C atoms in the matrix phase are deficient and the grain boundary coverage is less than 30%. On the other hand, when the average equivalent circle diameter of undissolved carbides is less than 0.85 μm, excessive C atoms may dissolve in the matrix and cause coarsening of grain boundary carbides. Therefore, the size of the insoluble carbide is preferably in the range of 0.85 to 0.95 μm in terms of the average equivalent circle diameter. For the same reason, it is more desirable that the lower limit is 0.87 μm and the upper limit is 0.93 μm.

未固溶炭化物の量:平均数密度換算で1.8×10−2〜2.4×10−2個/μm
未固溶炭化物の量も母相内に固溶しているC原子の量を左右する。未固溶炭化物の平均数密度が2.4×10−2個/μmを超えると、母相内のC原子が欠乏し、粒界被覆率が30%未満となる。一方、未固溶炭化物の平均数密度が1.8×10−2個/μmを下回る場合、母相内に固溶しているC原子が過剰となり粒界炭化物の粗大化につながる可能性が懸念される。従って、未固溶炭化物の量は平均数密度で1.8×10−2〜2.4×10−2個/μmの範囲とすることが望ましい。なお、同様の理由で、下限を1.9×10−2個/μm、上限を2.2×10−2個/μmとするのが一層望ましい。
Amount of undissolved carbide: 1.8 × 10 −2 to 2.4 × 10 −2 pieces / μm 2 in terms of average number density
The amount of undissolved carbide also affects the amount of C atoms dissolved in the matrix. When the average number density of undissolved carbide exceeds 2.4 × 10 −2 pieces / μm 2 , C atoms in the parent phase are deficient, and the grain boundary coverage is less than 30%. On the other hand, when the average number density of undissolved carbides is less than 1.8 × 10 −2 / μm 2 , there is a possibility that C atoms dissolved in the matrix will be excessive, leading to coarsening of grain boundary carbides. Is concerned. Therefore, the amount of undissolved carbide is desirably in the range of 1.8 × 10 −2 to 2.4 × 10 −2 pieces / μm 2 in terms of average number density. For the same reason, it is more desirable to set the lower limit to 1.9 × 10 −2 pieces / μm 2 and the upper limit to 2.2 × 10 −2 pieces / μm 2 .

以下に、本発明を好適に適用可能な組成について説明する。なお、以下の成分は、いずれも質量%で示されている。   Below, the composition which can apply this invention suitably is demonstrated. In addition, all the following components are shown by the mass%.

C:0.01〜0.15%
Cは炭化物を形成して合金の結晶粒粗大化を抑制し、粒界に析出して高温強度を向上させる添加元素であるが、含有量が少ないと強度の向上に十分な効果がないため少なくとも0.01%以上の含有が必要である。しかし、含有量が多すぎると過剰な炭化物が形成されてγ´相など他の有用な析出量が減少するなど悪影響が懸念されるので、上限は0.15%とする。なお、同様の理由により下限を0.03%、上限を0.10%とするのが望ましい。
C: 0.01 to 0.15%
C is an additive element that forms carbides and suppresses the grain coarsening of the alloy and precipitates at the grain boundaries to improve the high-temperature strength. However, if the content is low, there is no sufficient effect to improve the strength. It is necessary to contain 0.01% or more. However, if the content is too high, excess carbides are formed and other useful precipitation amounts such as the γ 'phase are reduced, so the upper limit is made 0.15%. For the same reason, it is desirable that the lower limit is 0.03% and the upper limit is 0.10%.

Cr:10〜25%
Crは合金の耐酸化性、耐食性、強度を高めるために必要な元素である。また、Cと結合して炭化物を生成し高温強度を高める。しかし、含有量が多すぎるとマトリクスの不安定化を招き、σ相やα−Crなどの有害なTCP相の生成を助長して延性や靭性に悪影響をもたらす。従って、Crの含有量は10〜25%に限定する。同様の理由により、下限は18%、上限は23%とするのが望ましい。
Cr: 10 to 25%
Cr is an element necessary for increasing the oxidation resistance, corrosion resistance, and strength of the alloy. Moreover, it combines with C to form carbides and increase the high temperature strength. However, when the content is too large, the matrix is destabilized, and the generation of harmful TCP phases such as σ phase and α-Cr is promoted to adversely affect ductility and toughness. Therefore, the Cr content is limited to 10 to 25%. For the same reason, the lower limit is preferably 18% and the upper limit is preferably 23%.

Co:5〜20%
CoはAl、Ti、Nb、Wといった合金元素の分配係数を1に近づけて合金の偏析性を改善する元素である。Coを5%以上含まないと上記の効果が十分得られず、20%を超えると鍛造性を悪化させるだけでなく、ラーベス相を生成しやすくなるため、高温でのマトリクスの組織を却って不安定にするとともに高温組織安定性を悪化させる。したがってCoの含有量は5〜20%の範囲に限定する。同様の理由で、下限を10%、上限を15%とすることが望ましい。
Co: 5-20%
Co is an element that improves the segregation of the alloy by bringing the distribution coefficient of alloy elements such as Al, Ti, Nb, and W close to 1. If 5% or more of Co is not included, the above effect cannot be obtained sufficiently. If it exceeds 20%, not only the forgeability is deteriorated, but also a Laves phase is easily generated. And deteriorates the high-temperature structure stability. Therefore, the Co content is limited to a range of 5 to 20%. For the same reason, it is desirable to set the lower limit to 10% and the upper limit to 15%.

Mo:〜15%
Moは主にマトリクスに固溶してこれを強化するとともに、γ´相に固溶して同相のAlサイトに置換することにより同相の安定性を高めるので、高温強度と組織安定性をともに高めるのに有効である。Mo含有量が8%未満では上記効果が不十分であり、15%を超えるとラーベス相を生成しやすくなるため、高温でのマトリクスの組織を却って不安定にするとともに高温組織安定性を悪化させる。したがって、Moの含有量は〜15%の範囲に限定する。同様の理由で、上限を12%とするのが望ましい。
Mo: 8 ~15%
Mo mainly dissolves in the matrix and strengthens it, and by increasing the stability of the in-phase by dissolving in the γ 'phase and replacing it with the Al-phase of the in-phase, both the high-temperature strength and the structural stability are increased. It is effective. If the Mo content is less than 8% , the above effect is insufficient, and if it exceeds 15%, a Laves phase is likely to be generated. Therefore, the matrix structure at high temperature is made unstable and the high-temperature structure stability is deteriorated. . Therefore, the Mo content is limited to a range of 8 to 15%. For similar reasons, to the upper limit of 12% it is desirable.

Al:0.5〜2%
AlはNiと結合してγ´相を析出させ、合金の析出強化に寄与する。しかし含有量が多すぎるとγ´相が粒界に凝集して粗大化し、高温での機械的特性を著しく損ねるほか、熱間加工性も低下させる。従って、Al含有量は0.5〜2%に限定する。同様の理由で下限は0.8%、上限は1.2%とすることが望ましい。
Al: 0.5-2%
Al combines with Ni to precipitate a γ ′ phase, contributing to precipitation strengthening of the alloy. However, if the content is too large, the γ 'phase aggregates and becomes coarse at the grain boundaries, which significantly impairs the mechanical properties at high temperatures and also reduces hot workability. Therefore, the Al content is limited to 0.5-2%. For the same reason, it is desirable that the lower limit is 0.8% and the upper limit is 1.2%.

Fe:3%以下
Feは含有量を多くすると合金のコスト低減に効果があるため所望により含有させる。しかし過剰にFeを含有させるとラーベス相が生成し、熱間延性低下など材料特性の悪化を招く。そのため、所望により含有させるFeの含有量は3%以下とする。同様の理由で、下限は0.5%、上限は1.5%とすることが望ましい。
Fe: 3% or less Fe is contained as desired because increasing the content has the effect of reducing the cost of the alloy. However, when Fe is contained excessively, a Laves phase is generated, which causes deterioration of material properties such as hot ductility reduction. Therefore, the content of Fe contained if desired is set to 3% or less. For the same reason, it is desirable that the lower limit is 0.5% and the upper limit is 1.5%.

Ti:0.5%以下
Tiは主にMC炭化物を形成して合金の結晶粒粗大化を抑制するとともに、Niと結合してγ´相を析出させ、合金の析出強化に寄与するため含有させる。しかし過度に含有させると高温でのγ´相の安定性を低下させ、さらにη相を生成し強度や延性、靭性、高温長時間での組織安定性を損ねる。従って、含有させるTiの含有量は0.5%以下に限定する。同様の理由により、下限は0.1%とすることが望ましい。

Ti: with 0.5% or less Ti mainly suppress coarsening of crystal grains by forming a MC carbide to precipitate γ'-phase in combination with Ni, because was contributes to precipitation strengthening of the alloy containing Have it. However, if it is contained excessively, the stability of the γ ′ phase at high temperature is lowered, and further, the η phase is generated, and the strength, ductility, toughness, and structure stability at high temperature for a long time are impaired. Therefore, the content of Ti to be containing organic is limited to 0.5% or less. For the same reason, the lower limit is preferably 0.1 % .

B:0.006%以下
Bは粒界に偏析して高温特性に寄与するので所望により含有させる。但し、多過ぎる含有は硼化物を形成し易くなり、逆に粒界脆化を招く。したがって、所望により含有させるBの含有量は0.006%以下とする。なお、上記作用を十分に得るためには、0.001%以上含有するのが望ましく、また上記と同様の理由により、さらに下限を0.002%、上限を0.005%とするのが望ましい。
B: 0.006% or less B is segregated at the grain boundary and contributes to high temperature characteristics, so is contained as desired. However, when the content is too large, borides are easily formed, and conversely, grain boundary embrittlement is caused. Therefore, the B content to be contained if desired is 0.006% or less. In order to sufficiently obtain the above action, the content is preferably 0.001% or more, and for the same reason as described above, the lower limit is preferably 0.002% and the upper limit is preferably 0.005%. .

以下に本発明の熱処理条件を決定した理由を説明する。 The reason for determining the heat treatment conditions of the present invention will be described below.

溶体化熱処理条件:1050℃〜1200℃,1〜10時間
一般的に、固溶強化型Ni基超合金においては鍛造工程中に析出した炭化物が溶体化熱処理工程において母相に固溶し、続く時効熱処理において母相中に固溶したC原子や合金元素原子が粒界炭化物を形成する。
この一連の熱処理において、溶体化処理温度が1050℃を下回ると炭化物の固溶が進まず、時効熱処理において十分な量の粒界炭化物が析出しない。一方、溶体化熱処理温度が1200℃を上回ると結晶粒が著しく粗大化し、機械的性質や非破壊検査における超音波の浸透性などに悪影響をもたらす。例えば、Ni基超合金であるAlloy617では、溶体化熱処理温度が1050℃を下回ると鍛造工程中に析出した炭化物の固溶が進まず、粒界炭化物を形成するに十分な量のC原子や合金元素原子が母相に固溶しないため粒界被覆率が30%未満となる。一方、溶体化熱処理温度が1200℃を上回ると鍛造工程中に析出した炭化物が過剰に固溶し、粒界ピン止め効果が失われて、例えば結晶粒度番号が1以下になるなど結晶粒が著しく粗大化する。従って、溶体化処理温度は1050℃〜1200℃が望ましい。同様の理由により、溶体化処理温度の下限は1070℃が一層望ましく、上限は1120℃が一層望ましい。
Solution heat treatment conditions: 1050 ° C. to 1200 ° C., 1 to 10 hours Generally, in a solid solution strengthened Ni-base superalloy, carbides precipitated during the forging process are dissolved in the parent phase in the solution heat treatment process and continue. In the aging heat treatment, C atoms and alloy element atoms dissolved in the matrix phase form grain boundary carbides.
In this series of heat treatments, if the solution treatment temperature falls below 1050 ° C., the solid solution of carbide does not proceed, and a sufficient amount of grain boundary carbides does not precipitate in the aging heat treatment. On the other hand, when the solution heat treatment temperature exceeds 1200 ° C., the crystal grains are remarkably coarsened, which adversely affects mechanical properties and ultrasonic penetration in nondestructive inspection. For example, in Alloy 617, which is a Ni-based superalloy, if the solution heat treatment temperature falls below 1050 ° C., solid solution of carbides precipitated during the forging process does not proceed, and a sufficient amount of C atoms and alloys to form grain boundary carbides. Since element atoms do not dissolve in the matrix, the grain boundary coverage is less than 30%. On the other hand, when the solution heat treatment temperature exceeds 1200 ° C., carbides precipitated during the forging process are excessively dissolved, and the grain boundary pinning effect is lost. It becomes coarse. Accordingly, the solution treatment temperature is desirably 1050 ° C to 1200 ° C. For the same reason, the lower limit of the solution treatment temperature is more preferably 1070 ° C., and the upper limit is more preferably 1120 ° C.

また、溶体化熱処理の効果を十分発現させるには1時間以上保持する必要があるが、10時間を超える保持時間では溶体化熱処理の効果が飽和するだけでなく過剰な熱処理コスト発生にもつながるため、保持時間は1〜10時間の範囲とすることが望ましい。なお、Ni基超合金大型鍛造部材では中心部と表面部の温度差をなくすため、部材の大きさに応じて溶体化熱処理時間の範囲を1〜10時間の範囲で調節できる。
なお、同様の理由で保持時間は下限を3時間とするのが一層望ましく、上限を7時間とすることが一層望ましい。
Moreover, in order to fully develop the effect of the solution heat treatment, it is necessary to hold for 1 hour or more. However, if the holding time exceeds 10 hours, the effect of the solution heat treatment is not only saturated but also excessive heat treatment costs are generated. The holding time is preferably in the range of 1 to 10 hours. In the Ni-based superalloy large forged member, the temperature difference between the center portion and the surface portion is eliminated, so that the range of the solution heat treatment time can be adjusted in the range of 1 to 10 hours according to the size of the member.
For the same reason, the lower limit of the holding time is more preferably 3 hours, and the upper limit is more preferably 7 hours.

時効熱処理条件:
1段目 700〜750℃,1〜120時間
2段目 630〜670℃,1〜50時間
固溶強化型Ni基超合金では通常、溶体化熱処理のみを行って使用に供するが、その場合は十分な量の粒界炭化物を形成することが出来ず、粒界被覆率が30%未満となる。そのため、本発明においては時効熱処理を実施する。
1段目の時効熱処理温度の700〜750℃においては、粒内に強化相であるガンマプライム相が析出する一方で、粒界にはM6C型の炭化物が析出する。1段目時効温度が700℃を下回るとCおよび炭化物形成元素の拡散速度が小さくなるため、所望の量の粒界炭化物が析出しなくなる。また、1段目時効温度が750℃を超えると炭化物およびガンマプライム相の析出ノーズから外れるため、それぞれの析出量低下が懸念される。従って、1段目時効温度範囲は700〜750℃とすることが望ましい。
また、1段目の時効熱処理で所望の効果を発現させるには1時間以上の保持時間とする必要があるが、120時間を超えて時効熱処理を施すとガンマプライム相の粗大化による合金の強度低下が懸念される。そのため、1段目時効時間は1〜120時間の範囲とすることが望ましい。
Aging heat treatment conditions:
1st stage 700 to 750 ° C., 1 to 120 hours 2nd stage 630 to 670 ° C., 1 to 50 hours In a solid solution strengthened Ni-base superalloy, usually only solution heat treatment is performed for use. A sufficient amount of grain boundary carbide cannot be formed, and the grain boundary coverage is less than 30%. Therefore, an aging heat treatment is performed in the present invention.
At a first stage aging heat treatment temperature of 700 to 750 ° C., a gamma prime phase which is a strengthening phase precipitates in the grains, while M6C type carbides precipitate at the grain boundaries. When the first stage aging temperature is lower than 700 ° C., the diffusion rate of C and carbide forming elements decreases, so that a desired amount of grain boundary carbide does not precipitate. Moreover, since it will remove | deviate from the precipitation nose of a carbide | carbonized_material and a gamma prime phase when the 1st-stage aging temperature exceeds 750 degreeC, we are anxious about the fall of each precipitation amount. Therefore, the first stage aging temperature range is desirably 700 to 750 ° C.
In order to achieve the desired effect by the first stage aging heat treatment, it is necessary to set the holding time of 1 hour or more. However, if the aging heat treatment is performed for more than 120 hours, the strength of the alloy due to the coarsening of the gamma prime phase is increased. There is concern about the decline. Therefore, the first stage aging time is desirably in the range of 1 to 120 hours.

本発明では、1段目の時効処理のみで時効を完結しても良いが、さらに、2段目を行うようにしてもよい。
2段目の時効熱処理温度の630〜670℃においては、粒界にM23型の炭化物が析出して粒界被覆率を上げることができる。2段目時効温度が630℃を下回るとCおよび炭化物形成元素の拡散速度が小さくなるため、所望の量の粒界炭化物が析出しなくなる。一方、M23型の炭化物は成長速度が比較的大きいため、2段目時効温度が670℃を超えるとM23型炭化物の粗大化が起こり、粒界を適切に被覆することができない。従って、2段目時効温度範囲は630〜670℃とすることが望ましい。
2段目時効の効果を十分に発現させるためには保持時間を1時間以上とする必要があるが、前述のようにM23型の炭化物は成長が速いため、保持時間が50時間を超えると粗大化するおそれがある。従って、2段目時効時間は1〜50時間の範囲とすることが望ましい。なお、結晶粒の大きさによっては1段目の時効熱処理を行えば粒界の炭化物析出サイトが消費され、続く2段目の時効熱処理でM23型炭化物の析出サイトが残されていない場合もある。そのため、2段目の時効熱処理は必ずしも必須ではない。
In the present invention, the aging may be completed only by the first stage aging treatment, but the second stage may be further performed.
At the second stage aging heat treatment temperature of 630 to 670 ° C., M 23 C 6 type carbide precipitates at the grain boundaries, and the grain boundary coverage can be increased. When the second stage aging temperature is lower than 630 ° C., the diffusion rate of C and carbide forming elements becomes small, so that a desired amount of grain boundary carbide does not precipitate. On the other hand, since the growth rate of M 23 C 6 type carbide is relatively high, when the second stage aging temperature exceeds 670 ° C., the M 23 C 6 type carbide is coarsened and the grain boundaries can be appropriately covered. Can not. Therefore, it is desirable that the second stage aging temperature range is 630 to 670 ° C.
In order to fully develop the effect of the second stage aging, the holding time needs to be 1 hour or more. However, as described above, since the M 23 C 6 type carbide grows quickly, the holding time is 50 hours. If it exceeds, there is a risk of coarsening. Therefore, it is desirable that the second stage aging time be in the range of 1 to 50 hours. Depending on the size of the crystal grains, if the first stage of aging heat treatment is performed, the carbide precipitation sites at the grain boundaries are consumed, and the subsequent second stage of aging heat treatment does not leave M 23 C 6 type carbide precipitation sites. In some cases. Therefore, the second stage aging heat treatment is not always essential.

以上説明したように、本発明によれば、粒界被覆率を適切に制御して、高温において優れた延性を示すNi基超合金を提供することを目的としている。   As described above, an object of the present invention is to provide a Ni-base superalloy that exhibits excellent ductility at high temperatures by appropriately controlling the grain boundary coverage.

本発明の実施例における、室温と700℃における伸びと粒界被覆率の関係を示すグラフである。It is a graph which shows the relationship between the elongation in room temperature, 700 degreeC, and a grain-boundary coverage in the Example of this invention. 同じく、粒界被覆率と未固溶炭化物の平均円相当径の関係を示すグラフである。Similarly, it is a graph showing the relationship between the grain boundary coverage and the average equivalent circle diameter of undissolved carbide. 同じく、粒界被覆率と未固溶炭化物の平均数密度の関係を示すグラフである。Similarly, it is a graph showing the relationship between the grain boundary coverage and the average number density of undissolved carbides.

以下に、本発明の一実施形態を説明する。
本発明のNi基合金は、固溶強化型のものであり、代表的には、ASME/ASTM UNSN06617/W.Nr.2.4663aで規定されるAlloy617などの組成が示される。
Hereinafter, an embodiment of the present invention will be described.
The Ni-based alloy of the present invention is of a solid solution strengthened type, and is typically ASME / ASTM UNSN06617 / W. Nr. Compositions such as Alloy 617 as defined in 2.4663a are shown.

本発明のNi基合金は、常法により溶製することができ、本発明としては特に溶製の方法が限定されるものではない。
該Ni基合金は、溶製後、溶体化処理、時効処理を行う。
溶体化は、例えば1050〜1200℃で、1〜10時間の条件で行うことができる。また、時効処理は、少なくとも1段で行う処理が望ましく、700〜750℃で、1〜120時間の範囲で行うことができる。また、2段目を行う場合には、630〜670℃で、1〜50時間の範囲で行うことができる。
The Ni-based alloy of the present invention can be melted by a conventional method, and the melting method is not particularly limited as the present invention.
The Ni-based alloy is subjected to solution treatment and aging treatment after melting.
The solution treatment can be performed, for example, at 1050 to 1200 ° C. for 1 to 10 hours. Further, the aging treatment is desirably performed in at least one stage, and can be performed at 700 to 750 ° C. for 1 to 120 hours. Moreover, when performing the 2nd step | paragraph, it can carry out at the range of 630-670 degreeC for 1 to 50 hours.

また、Ni基合金は所望により鍛造等の加工を行うことができる。加工における条件は、本願発明は特に限定されるものではない。   The Ni-based alloy can be processed such as forging as desired. The conditions for processing are not particularly limited in the present invention.

この発明による主たる効果として、700℃において優れた延性を有し、大型鍛造部材用に好適なNi基超合金を提供することが可能となる。さらに従たる効果として、該発明合金を高効率発電プラントの蒸気タービンロータ等の高温部材に適用することにより、発電効率の向上やCOガス排出量の低減が期待できる。 As a main effect of the present invention, it is possible to provide a Ni-base superalloy having excellent ductility at 700 ° C. and suitable for large forged members. Furthermore, as a subordinate effect, the application of the alloy according to the present invention to a high-temperature member such as a steam turbine rotor of a high-efficiency power plant can be expected to improve power generation efficiency and reduce CO 2 gas emission.

質量%で、C:0.05%、Cr:22.3%、Co:12.5%、Mo:9.7%、Al:1.0%、Ti:0.4%、B:0.0029%を含むNi基超合金の50kg丸型インゴットを真空誘導溶解法により溶製し、これを鍛造して板にした。鍛造板を適当な大きさに切り出し、1100℃×3hの溶体化熱処理後、1100℃から600℃までの平均冷却速度を0.5、3、10、100℃/minに制御して室温まで冷却した。続いて、725℃×100hおよび650℃×24hの2回時効熱処理を行い試験材とした。   By mass%, C: 0.05%, Cr: 22.3%, Co: 12.5%, Mo: 9.7%, Al: 1.0%, Ti: 0.4%, B: 0.00. A 50 kg round ingot of a Ni-base superalloy containing 0029% was melted by a vacuum induction melting method and forged into a plate. Cut out the forged plate to an appropriate size, and after solution heat treatment at 1100 ° C. × 3 h, control the average cooling rate from 1100 ° C. to 600 ° C. to 0.5, 3, 10, 100 ° C./min to cool to room temperature did. Subsequently, aging heat treatment was performed twice at 725 ° C. × 100 h and 650 ° C. × 24 h to obtain test materials.

時効熱処理後、試験材を機械加工し、組織観察試験片と引張試験片にした。引張試験片の標点間距離は40mmとした。
引張試験温度は室温と700℃とし、破断前後の標点間距離の比から伸び(塑性伸び)を求めた。
組織観察は電界放出形走査電子顕微鏡(FE−SEM)を用いて行い、各試料につき倍率3000倍で10視野(1視野面積:1080μm)で撮影し、それぞれの視野内の全粒界長さに対して炭化物で被覆された粒界長さの比を求め、これを平均して粒界被覆率とした。
また、各視野内の未固溶炭化物の個数と面積を画像解析ソフトと用いて計測した。未固溶炭化物の大きさは、各視野における個々の未固溶炭化物の面積を画像解析ソフトで計測し、これと同じ面積を持つ円の直径、すなわち円相当径に換算し、換算した円相当径を平均して得られる平均円相当径として表記した。未固溶炭化物の数密度は、視野ごとの未固溶炭化物の個数を観察視野の面積で除した値を算出し、これを観察視野数で平均した平均数密度として表記した。
After the aging heat treatment, the test material was machined into a structure observation specimen and a tensile specimen. The distance between the gauge points of the tensile test piece was 40 mm.
The tensile test temperature was room temperature and 700 ° C., and elongation (plastic elongation) was obtained from the ratio of the distance between the gauge points before and after fracture.
Tissue observation is performed using a field emission scanning electron microscope (FE-SEM), and each sample is photographed at a magnification of 3000 times in 10 fields (one field area: 1080 μm 2 ), and the total grain boundary length in each field. The ratio of the grain boundary length coated with carbide was obtained and averaged to obtain the grain boundary coverage.
In addition, the number and area of insoluble carbides in each field of view were measured using image analysis software. The size of undissolved carbide is measured by measuring the area of each insoluble carbide in each field of view with image analysis software, converting it to the diameter of a circle with the same area, that is, the equivalent circle diameter, and equivalent to the converted circle It was expressed as an average equivalent circle diameter obtained by averaging the diameters. The number density of undissolved carbide was calculated by dividing the number of undissolved carbide for each field by the area of the observation field, and expressed as an average number density averaged by the number of observation fields.

表1に本実施例における室温と700℃における伸び、粒界被覆率、未固溶炭化物の平均円相当径と平均数密度をまとめる。
図1に粒界被覆率と室温および700℃における伸びの関係を示す。同図より、粒界被覆率が30%以上となる網掛けの領域であれば、700℃における伸びが30%以上となり、粒界被覆率に依らずほぼ一定であることが判った。また、同じく粒界被覆率が30%以上であれば、室温における伸びと700℃における伸びの差が10%以内となり、室温と同じ延性を有するとみなせる。粒界被覆率が30%を下回ると、粒界被覆率の低下に伴い700℃での伸びが低下する。
図2に粒界被覆率と未固溶炭化物の平均円相当径の関係を示す。粒界被覆率は平均円相当径の増加に伴い減少する傾向があるが、同図の網掛け部に示すように、平均円相当径が0.85〜0.95μmの範囲内では粒界被覆率が30%以上となることが判った。図3に粒界被覆率と未固溶炭化物の平均数密度の関係を示す。粒界被覆率は平均数密度の増加に伴い減少する傾向があるが、同図の網掛け部に示すように、平均数密度が1.8×10−2〜2.4×10−2個/μmの範囲内では粒界被覆率が30%以上となることが判った。
Table 1 summarizes the elongation at room temperature and 700 ° C. in this example, the grain boundary coverage, the average equivalent circle diameter and the average number density of undissolved carbides.
FIG. 1 shows the relationship between the grain boundary coverage and the elongation at room temperature and 700 ° C. From the figure, it was found that in the shaded region where the grain boundary coverage is 30% or more, the elongation at 700 ° C. is 30% or more and is almost constant regardless of the grain boundary coverage. Similarly, if the grain boundary coverage is 30% or more, the difference between the elongation at room temperature and the elongation at 700 ° C. is within 10%, and it can be regarded as having the same ductility as that at room temperature. When the grain boundary coverage is less than 30%, the elongation at 700 ° C. is lowered with the decrease in the grain boundary coverage.
FIG. 2 shows the relationship between the grain boundary coverage and the average equivalent circle diameter of the undissolved carbide. The grain boundary coverage tends to decrease as the average equivalent circle diameter increases, but as shown in the shaded area in the figure, the grain boundary coverage is within the range of the average equivalent circle diameter of 0.85 to 0.95 μm. It was found that the rate was 30% or more. FIG. 3 shows the relationship between the grain boundary coverage and the average number density of undissolved carbides. Grain boundary coverage tends to decrease as the average number density increases, but the average number density is 1.8 × 10 −2 to 2.4 × 10 −2 as shown in the shaded area in FIG. It was found that the grain boundary coverage was 30% or more within the range of / μm 2 .

Figure 0006419102
Figure 0006419102

以上、本発明について、上記実施形態および実施例に基づいて説明を行ったが、本発明の範囲を逸脱しない限りは、上記説明における適宜の内容の変更が可能である。   As mentioned above, although this invention was demonstrated based on the said embodiment and Example, unless it deviates from the scope of the present invention, the content in the said description can be changed appropriately.

Claims (6)

質量%で、C:0.01−0.15%、Cr:10−25%、Co:5−20%、Mo:8−15%、Al:0.5−2%、Ti:0.5%以下、B:0.006%以下を含み、残部をNiおよび不可避不純物からなる組成を有する固溶強化型のNi基超合金であって、合金内の粒界の長さに対して炭化物で被覆された粒界の長さの割合で定義される粒界被覆率が30%以上であり、未固溶炭化物が、平均円相当径が0.85〜0.95μm、平均数密度が、1.8×10−2〜2.4×10−2個/μmであり、
700℃における伸びが30%以上で、室温における伸びと700℃における伸びの差が10%以内であることを特徴とするNi基超合金。
In mass%, C: 0.01-0.15%, Cr: 10-25%, Co: 5-20%, Mo: 8-15%, Al: 0.5-2%, Ti: 0.5 %, B: 0.006% or less, the balance being a solid solution strengthened Ni-base superalloy having a composition consisting of Ni and inevitable impurities, which is carbide with respect to the grain boundary length in the alloy. The grain boundary coverage defined by the ratio of the length of the coated grain boundary is 30% or more, the undissolved carbide has an average equivalent circle diameter of 0.85 to 0.95 μm, and an average number density of 1 .8 × 10 −2 to 2.4 × 10 −2 pieces / μm 2 ,
An Ni-base superalloy having an elongation at 700 ° C. of 30% or more and a difference between an elongation at room temperature and an elongation at 700 ° C. within 10%.
粒界がMCおよびM23型の炭化物の析出によって粒界強化されていることを特徴とする請求項1記載のNi基超合金。
ただし、Mは合金中の炭化物形成元素である
The Ni-base superalloy according to claim 1, wherein the grain boundaries are strengthened by precipitation of M 6 C and M 23 C 6 type carbides.
Where M is a carbide forming element in the alloy.
上記組成にさらに、質量%でFe:3%以下を含むことを特徴とする請求項1または2に記載のNi基超合金。   The Ni-based superalloy according to claim 1 or 2, further comprising Fe: 3% or less by mass% in the composition. 蒸気タービン材料に使用されることを特徴とする請求項1〜3のいずれか1項に記載のNi基超合金。   The Ni-base superalloy according to any one of claims 1 to 3, which is used for a steam turbine material. 請求項1〜4のいずれかに記載のNi基超合金の製造方法であって、
溶製、鍛造したNi基合金に対して、1050℃〜1200℃の温度範囲において1〜10時間の溶体化熱処理を行い、その後、700〜750℃の温度範囲において1〜120時間の時効熱処理を行うことを特徴とするNi基超合金の製造方法。
A method for producing a Ni-base superalloy according to any one of claims 1 to 4,
The solution and forged Ni-based alloy are subjected to solution heat treatment for 1 to 10 hours in a temperature range of 1050 ° C. to 1200 ° C., and then subjected to aging heat treatment for 1 to 120 hours in a temperature range of 700 to 750 ° C. A method for producing a Ni-base superalloy, which is performed.
700〜750℃の温度範囲において1〜120時間の時効熱処理を行った後に、更に630〜670℃の温度範囲で1〜50時間の時効熱処理を行うことを特徴とする請求項5記載のNi基超合金の製造方法。 6. The Ni base according to claim 5 , wherein after the aging heat treatment is performed for 1 to 120 hours in a temperature range of 700 to 750 ° C., the aging heat treatment is further performed for 1 to 50 hours in a temperature range of 630 to 670 ° C. Superalloy manufacturing method.
JP2016080674A 2016-04-13 2016-04-13 Ni-base superalloy and method for producing Ni-base superalloy Active JP6419102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016080674A JP6419102B2 (en) 2016-04-13 2016-04-13 Ni-base superalloy and method for producing Ni-base superalloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016080674A JP6419102B2 (en) 2016-04-13 2016-04-13 Ni-base superalloy and method for producing Ni-base superalloy

Publications (2)

Publication Number Publication Date
JP2017190493A JP2017190493A (en) 2017-10-19
JP6419102B2 true JP6419102B2 (en) 2018-11-07

Family

ID=60085063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016080674A Active JP6419102B2 (en) 2016-04-13 2016-04-13 Ni-base superalloy and method for producing Ni-base superalloy

Country Status (1)

Country Link
JP (1) JP6419102B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7125663B2 (en) * 2018-04-02 2022-08-25 大同特殊鋼株式会社 Highly corrosion-resistant Fe- or Ni-based alloy and its production method
CN109280812A (en) * 2018-11-01 2019-01-29 华能国际电力股份有限公司 Heat treatment process of nickel-iron-based deformed high-temperature alloy friction welding joint

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119641A (en) * 1984-11-16 1986-06-06 Sumitomo Metal Ind Ltd Highly corrosion-resistant ni-base alloy and its production
US6551372B1 (en) * 1999-09-17 2003-04-22 Rolls-Royce Corporation High performance wrought powder metal articles and method of manufacture
JP5395516B2 (en) * 2009-05-29 2014-01-22 株式会社東芝 Nickel-based alloy for steam turbine turbine rotor and steam turbine turbine rotor
JP6223743B2 (en) * 2013-08-07 2017-11-01 株式会社東芝 Method for producing Ni-based alloy

Also Published As

Publication number Publication date
JP2017190493A (en) 2017-10-19

Similar Documents

Publication Publication Date Title
JP6839401B1 (en) Manufacturing method of Ni-based super heat-resistant alloy and Ni-based super heat-resistant alloy
CN110050080B (en) Ni-based wrought alloy material and turbine high-temperature component using same
US11718897B2 (en) Precipitation hardenable cobalt-nickel base superalloy and article made therefrom
WO2018151222A1 (en) Ni-BASED HEAT-RESISTANT ALLOY AND METHOD FOR MANUFACTURING SAME
JP5792500B2 (en) Ni-base superalloy material and turbine rotor
JP5995158B2 (en) Ni-base superalloys
JP5537587B2 (en) Ni-base alloy welding material and welding wire, welding rod and welding powder using the same
US11519056B2 (en) Ni-based super-heat-resistant alloy for aircraft engine cases, and aircraft engine case formed of same
WO2018151262A1 (en) Ni-based alloy, gas turbine material, and method for manufacturing ni-based alloy
JP4768672B2 (en) Ni-base alloy excellent in structure stability and high-temperature strength and method for producing Ni-base alloy material
JP5395516B2 (en) Nickel-based alloy for steam turbine turbine rotor and steam turbine turbine rotor
JP4387331B2 (en) Ni-Fe base alloy and method for producing Ni-Fe base alloy material
JP2014070230A (en) METHOD FOR PRODUCING Ni-BASED SUPERALLOY
JP6419102B2 (en) Ni-base superalloy and method for producing Ni-base superalloy
JP5645054B2 (en) Nickel-base heat-resistant superalloys and heat-resistant superalloy components containing annealing twins
WO2017170433A1 (en) Method for producing ni-based super heat-resistant alloy
JP6690359B2 (en) Austenitic heat-resistant alloy member and method for manufacturing the same
JP2018059135A (en) Ni-BASED HEAT-RESISTANT ALLOY MEMBER AND METHOD FOR PRODUCING THE SAME
WO2018061317A1 (en) Method of manufacturing ni-based super heat resistant alloy extruded material, and ni-based super heat resistant alloy extruded material
JP6176665B2 (en) Ni-Fe base alloy and method for producing Ni-Fe base alloy material
JP2015187304A (en) Heat resistant alloy excellent in high temperature strength, method for producing the same, and heat resistant alloy spring
JP6025216B2 (en) Fe-Ni base alloy and method for producing Fe-Ni base alloy
JP2013209721A (en) Ni-BASED ALLOY AND METHOD FOR PRODUCING THE SAME
JP2012107269A (en) Nickel-based heat-resistant superalloy and heat-resistant superalloy member

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181009

R150 Certificate of patent or registration of utility model

Ref document number: 6419102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250