JP6415509B2 - Reverse osmosis membrane regeneration method - Google Patents

Reverse osmosis membrane regeneration method Download PDF

Info

Publication number
JP6415509B2
JP6415509B2 JP2016196634A JP2016196634A JP6415509B2 JP 6415509 B2 JP6415509 B2 JP 6415509B2 JP 2016196634 A JP2016196634 A JP 2016196634A JP 2016196634 A JP2016196634 A JP 2016196634A JP 6415509 B2 JP6415509 B2 JP 6415509B2
Authority
JP
Japan
Prior art keywords
reverse osmosis
osmosis membrane
membrane device
water
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016196634A
Other languages
Japanese (ja)
Other versions
JP2018058018A (en
Inventor
和郎 丸山
和郎 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP2016196634A priority Critical patent/JP6415509B2/en
Priority to KR1020170125261A priority patent/KR102398703B1/en
Publication of JP2018058018A publication Critical patent/JP2018058018A/en
Application granted granted Critical
Publication of JP6415509B2 publication Critical patent/JP6415509B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/10Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Description

本発明は、逆浸透膜の再生方法に関する。   The present invention relates to a method for regenerating a reverse osmosis membrane.

従来、半導体製造工程や液晶ディスプレイ製造工程において使用される超純水は超純水製造システムにより製造されている。超純水製造システムは、逆浸透膜装置、イオン交換樹脂装置、脱気装置等を備え、原水からイオン性成分や非イオン性の成分、微粒子等の不純物を除去して超純水を製造する。   Conventionally, ultrapure water used in a semiconductor manufacturing process and a liquid crystal display manufacturing process is manufactured by an ultrapure water manufacturing system. The ultrapure water production system includes a reverse osmosis membrane device, an ion exchange resin device, a deaeration device, etc., and produces ultrapure water by removing impurities such as ionic components, nonionic components, and fine particles from raw water. .

ここで、近年、半導体製造工程で使用される超純水について、ホウ素濃度の更なる低減が求められており、例えば、ホウ素濃度で50ng/L以下、さらには、1ng/L以下が求められてきている。超純水中のホウ素濃度を低減する方法としては、被処理水をホウ素選択性イオン交換樹脂で処理する方法が知られている。しかしながら、この方法では、ホウ素選択性イオン交換樹脂の薬品再生が行われるため、超純水製造システムにおける薬品の使用量が著しく増大するという問題がある。また、ホウ素選択性イオン交換樹脂からの有機物の溶出が問題となり、ホウ素の要求濃度は満たせるものの、全有機炭素(TOC)の要求濃度を満たすことが難しいという問題もある。   Here, in recent years, there has been a demand for further reduction of the boron concentration of ultrapure water used in the semiconductor manufacturing process. For example, a boron concentration of 50 ng / L or less, and further 1 ng / L or less has been demanded. ing. As a method of reducing the boron concentration in ultrapure water, a method of treating water to be treated with a boron selective ion exchange resin is known. However, in this method, since chemical regeneration of the boron selective ion exchange resin is performed, there is a problem that the amount of the chemical used in the ultrapure water production system is remarkably increased. Further, elution of organic substances from the boron-selective ion exchange resin becomes a problem, and there is also a problem that it is difficult to satisfy the required concentration of total organic carbon (TOC) although the required concentration of boron can be satisfied.

そこで、ホウ素を高圧型逆浸透膜装置によって除去する方法が提案されている(例えば、特許文献1参照。)。高圧型逆浸透膜装置においては、薬品再生が行われないため、薬品使用量の増大や処理水のTOC濃度上昇の懸念は解消される。   Therefore, a method of removing boron with a high-pressure reverse osmosis membrane device has been proposed (see, for example, Patent Document 1). In the high-pressure type reverse osmosis membrane device, since chemical regeneration is not performed, the concern about an increase in the amount of chemical used and an increase in the TOC concentration of treated water is solved.

ところが、逆浸透膜装置は、長期間使用していると、膜面に、フミン等の有機物、硬度成分、シリカ成分、粒子状物質が付着してスケールが生成したり、膜面での菌の増殖によるバイオファウリングが生じたりする。スケール生成やバイオファウリングは、被処理水の水質によって複合的に起こることが多い。スケール生成やバイオファウリングが起こった場合には、処理水量の低下や処理水質の悪化につながるため、逆浸透膜装置の洗浄が定期的に行われて、スケール成分やバイオファウリングが除去される。逆浸透膜装置の洗浄に際しては、洗浄対象物質の性質に応じて、最適な洗浄剤が選択されるが、酸性水溶液や塩基性水溶液を単独で用いるか、又は併用するのが一般的である。   However, when the reverse osmosis membrane device is used for a long period of time, organic matter such as humin, hardness component, silica component, particulate matter adheres to the membrane surface, and scale is generated, or bacteria on the membrane surface Biofouling may occur due to proliferation. Scale generation and biofouling often occur in a complex manner depending on the quality of the water to be treated. When scale generation or bio-fouling occurs, the amount of treated water decreases and the quality of treated water deteriorates, so the reverse osmosis membrane device is regularly cleaned to remove scale components and bio-fouling. . When cleaning the reverse osmosis membrane device, an optimum cleaning agent is selected according to the properties of the substance to be cleaned, but an acidic aqueous solution or a basic aqueous solution is generally used alone or in combination.

また、性能低下の生じた逆浸透膜に熱水を通水して、逆浸透膜モジュールの性能を回復させる方法も提案されている(例えば、特許文献2参照。)。この方法では、NaCl等の塩除去率が低下した酢酸セルロース系の逆浸透膜に熱水を通水することで、塩除去率を回復させている。   In addition, a method for restoring the performance of the reverse osmosis membrane module by passing hot water through the reverse osmosis membrane in which performance degradation has occurred has been proposed (for example, see Patent Document 2). In this method, the salt removal rate is recovered by passing hot water through a cellulose acetate reverse osmosis membrane having a reduced salt removal rate such as NaCl.

特開2015−196113号公報JP2015-196113A 特開昭52−4481号公報JP 52-4481 A

しかしながら、上記した従来の方法では、半導体製造工程や液晶ディスプレイ製造工程において使用される、ホウ素濃度の極めて低い超純水の製造に使用される逆浸透膜装置においては、ホウ素の除去率を十分に回復することはできない。   However, in the conventional method described above, in the reverse osmosis membrane apparatus used in the production of ultrapure water having an extremely low boron concentration used in the semiconductor manufacturing process and the liquid crystal display manufacturing process, the boron removal rate is sufficiently high. It cannot be recovered.

すなわち、本発明者らは、逆浸透膜装置におけるホウ素の除去率の向上を目的として研究を進めた結果、通水初期に80%以上と高いホウ素除去率を得られていても、逆浸透膜装置を長期間継続使用した際のホウ素除去率の低下が、他の塩の除去率の低下や処理水量の低下と比べて、著しく早い段階で起こることが判明した。このホウ素除去率の低下は、スケールの生成やバイオファウリングよりも早期に起こる。   That is, the present inventors have conducted research for the purpose of improving the removal rate of boron in the reverse osmosis membrane device, and as a result, even if a high boron removal rate of 80% or more is obtained at the initial stage of water flow, It has been found that the decrease in the boron removal rate when the apparatus is continuously used for a long period of time occurs at an extremely early stage as compared with the decrease in the removal rate of other salts and the amount of treated water. This decrease in boron removal rate occurs earlier than scale generation and biofouling.

また、スケールの生成やバイオファウリングの発生した逆浸透膜装置を、上記洗浄剤を用いて洗浄すると、処理水量やホウ素以外の塩の除去率は回復するものの、ホウ素除去率はかえって低下する場合があることもわかった。このように、洗浄剤による洗浄では、逆浸透膜装置においてホウ素の高除去率を維持することが困難であることが分かった。   In addition, when a reverse osmosis membrane device that has generated scale or biofouling is washed with the above cleaning agent, the amount of treated water and the removal rate of salts other than boron are recovered, but the boron removal rate is reduced. I also found that there is. Thus, it has been found that it is difficult to maintain a high boron removal rate in the reverse osmosis membrane device by cleaning with a cleaning agent.

本発明は、上記した課題を解決するためになされたものであって、簡易な方法で、ホウ素の除去率を回復することのできる逆浸透膜装置の再生方法を提供することを目的とする。
また、本発明は、簡易な方法で、逆浸透膜装置のホウ素の除去率を回復させて、ホウ素濃度の著しく低減された超純水を得ることができる超純水製造方法及び超純水製造システムを提供することを目的とする。
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method for regenerating a reverse osmosis membrane device that can recover the boron removal rate by a simple method.
The present invention also provides an ultrapure water production method and ultrapure water production capable of recovering the boron removal rate of the reverse osmosis membrane device by a simple method and obtaining ultrapure water having a significantly reduced boron concentration. The purpose is to provide a system.

本発明の逆浸透膜装置の再生方法は、被処理水中のホウ素を除去して超純水を製造する逆浸透膜装置において、ホウ素除去率が通水初期に比べて10%以上低下した逆浸透膜装置の再生方法であって、前記逆浸透膜装置に、70℃〜95℃の熱水を通水させる熱水通水工程を有することを特徴とする。   The reverse osmosis membrane apparatus regeneration method of the present invention is a reverse osmosis membrane apparatus for producing ultrapure water by removing boron in water to be treated. A method for regenerating a membrane device, characterized by comprising a hot water flow step for passing hot water of 70 ° C to 95 ° C through the reverse osmosis membrane device.

本発明の逆浸透膜装置の再生方法において、前記ホウ素除去率が低下した逆浸透膜装置に、塩基性水溶液及び酸性水溶液から選ばれる1種以上を通液させる洗浄工程を行った後、前記熱水通水工程を行うことが好ましい。   In the method for regenerating a reverse osmosis membrane device of the present invention, after performing a washing step of passing at least one selected from a basic aqueous solution and an acidic aqueous solution through the reverse osmosis membrane device having a reduced boron removal rate, the heat It is preferable to perform a water flow process.

本発明の逆浸透膜装置の再生方法において、前記洗浄工程は、1時間〜12時間、行うことが好ましい。また、前記熱水通水工程は、1時間〜100時間、行うことが好ましい。   In the method for regenerating a reverse osmosis membrane device of the present invention, the washing step is preferably performed for 1 hour to 12 hours. Moreover, it is preferable to perform the said hot water flow process for 1 hour-100 hours.

本発明の逆浸透膜装置の再生方法において、前記塩基性水溶液は、水酸化ナトリウム及び水酸化カリウムから選ばれる1種以上を含む水溶液であることが好ましい。   In the method for regenerating a reverse osmosis membrane device of the present invention, the basic aqueous solution is preferably an aqueous solution containing one or more selected from sodium hydroxide and potassium hydroxide.

本発明の逆浸透膜装置の再生方法において、前記熱水通水工程後の前記逆浸透膜装置におけるホウ素除去率が通水初期の値の100%に対して95%以上であることが好ましい。また、前記逆浸透膜装置は、高圧型の逆浸透膜装置であることが好ましい。   In the method for regenerating a reverse osmosis membrane device of the present invention, the boron removal rate in the reverse osmosis membrane device after the hot water flow step is preferably 95% or more with respect to 100% of the initial value of water flow. The reverse osmosis membrane device is preferably a high-pressure type reverse osmosis membrane device.

本発明の逆浸透膜装置の再生方法において、前記逆浸透膜装置は、ポリアミド系複合膜からなる逆浸透膜を有することが好ましい。   In the method for regenerating a reverse osmosis membrane device of the present invention, the reverse osmosis membrane device preferably has a reverse osmosis membrane made of a polyamide-based composite membrane.

本発明の超純水製造方法は、被処理水中のホウ素を除去して超純水を製造する超純水製造方法であって、上記逆浸透膜装置の再生方法によって逆浸透膜装置を再生する再生工程と、前記再生工程後の逆浸透膜装置に被処理水を通水して、ホウ素の除去された透過水を得る逆浸透膜処理工程とを有することを特徴とする。   The ultrapure water production method of the present invention is an ultrapure water production method for producing ultrapure water by removing boron in the water to be treated, and the reverse osmosis membrane device is regenerated by the regeneration method of the reverse osmosis membrane device. It comprises a regeneration step and a reverse osmosis membrane treatment step of passing treated water through the reverse osmosis membrane device after the regeneration step to obtain permeated water from which boron has been removed.

本発明の超純水製造方法において、前記透過水を、非再生型混床式イオン交換樹脂装置で処理して、ホウ素濃度が50ng/L以下の超純水を得ることが好ましい。   In the ultrapure water production method of the present invention, it is preferable that the permeated water is treated with a non-regenerative mixed bed ion exchange resin apparatus to obtain ultrapure water having a boron concentration of 50 ng / L or less.

本発明の超純水製造システムは、被処理水中のホウ素を除去して超純水を得る超純水製造システムであって、前記超純水製造システムは、前記ホウ素を除去する逆浸透膜装置と、前記逆浸透膜装置におけるホウ素除去率を測定するホウ素除去率測定装置と、前記ホウ素除去率測定装置におけるホウ素除去率測定値が通水初期に比べて10%以上低下したときに、前記逆浸透膜装置に熱水を通水する熱水供給装置とを有することを特徴とする。   The ultrapure water production system of the present invention is an ultrapure water production system that obtains ultrapure water by removing boron in the water to be treated, and the ultrapure water production system removes the boron. And a boron removal rate measuring device for measuring the boron removal rate in the reverse osmosis membrane device, and when the boron removal rate measurement value in the boron removal rate measuring device is reduced by 10% or more compared to the initial stage of water flow, the reverse It has a hot water supply device for passing hot water through the osmotic membrane device.

なお、本明細書において、逆浸透膜装置のホウ素除去率は、当該逆浸透膜装置に、温度25℃、pH4〜8.2、導電率50μS/cm〜300μS/cm、ホウ素濃度10μg/L〜200μg/Lのホウ素含有水を、水回収率60%〜90%、運転圧力1.5MPa〜50MPaで通水した際のホウ素の除去率として測定することができる。   In the present specification, the boron removal rate of the reverse osmosis membrane device is the same as that of the reverse osmosis membrane device at a temperature of 25 ° C., pH 4 to 8.2, conductivity 50 μS / cm to 300 μS / cm, boron concentration 10 μg / L to 200 μg / L of boron-containing water can be measured as a boron removal rate when water is passed at a water recovery rate of 60% to 90% and an operating pressure of 1.5 MPa to 50 MPa.

本発明の逆浸透膜装置の再生方法によれば、簡易な方法で、逆浸透膜装置のホウ素の除去率を回復することができる。
本発明の超純水製造方法及び超純水製造システムによれば、簡易な方法で、逆浸透膜装置のホウ素の除去率を回復することができるため、ホウ素濃度の著しく低減された超純水を得ることができる。
According to the method for regenerating a reverse osmosis membrane device of the present invention, the boron removal rate of the reverse osmosis membrane device can be recovered by a simple method.
According to the ultrapure water production method and the ultrapure water production system of the present invention, the boron removal rate of the reverse osmosis membrane device can be recovered by a simple method, so that the ultrapure water with a significantly reduced boron concentration is obtained. Can be obtained.

実施形態の超純水製造システムを概略的に表わす図である。It is a figure which represents roughly the ultrapure water manufacturing system of embodiment. 逆浸透膜装置において被処理水の処理を継続した際の、シリカ、ホウ素、ナトリウムの除去率及び運転圧力の経時変化を表わすグラフである。It is a graph showing the time-dependent change of the removal rate of silica, boron, sodium, and an operating pressure when the process of to-be-processed water is continued in a reverse osmosis membrane apparatus.

(第1の実施形態)
本実施形態の逆浸透膜装置の再生方法は、ホウ素の除去に使用される逆浸透膜装置の再生方法である。本実施形態の逆浸透膜装置の再生方法は、ホウ素除去率が、通水初期に比べて10%以上低下した逆浸透膜装置に、70℃〜95℃の熱水を通水させる熱水通水工程を有する。
(First embodiment)
The regeneration method of the reverse osmosis membrane device of this embodiment is a regeneration method of the reverse osmosis membrane device used for removing boron. The method for regenerating a reverse osmosis membrane device according to the present embodiment uses hot water flow for passing hot water of 70 ° C. to 95 ° C. through a reverse osmosis membrane device in which the boron removal rate has decreased by 10% or more compared to the initial stage of water flow. It has a water process.

例えば、逆浸透膜装置の通水初期のホウ素除去率が80%の場合、ホウ素除去率が10%低下して70%になると、逆浸透膜装置の処理水中のホウ素濃度は5割増加してしまう。逆浸透膜装置を超純水製造システムに適用する場合には、逆浸透膜装置ホウ素除去率が10%以上で低下した場合、逆浸透膜装置の下流側に配置される非再生型混床式イオン交換樹脂や、電気脱イオン装置でのホウ素の除去が十分でなくなり、超純水製造システム末端における水質が悪化してしまう。そのため、例えば、逆浸透膜装置の後段にホウ素選択性イオン交換樹脂を設置して、ホウ素を除去する方法が採られることがある。これに対し、本発明の再生方法を行うことで、逆浸透膜装置の下流側でのホウ素除去負荷を低減することができるため、非再生型混床式イオン交換樹脂や、電気脱イオン装置において十分なホウ素除去率を得て、ホウ素選択性イオン交換樹脂を省略することもできる。   For example, when the boron removal rate of the reverse osmosis membrane device at the initial stage of water flow is 80%, the boron concentration in the treated water of the reverse osmosis membrane device increases by 50% when the boron removal rate decreases by 10% to 70%. End up. When applying a reverse osmosis membrane device to an ultrapure water production system, if the reverse osmosis membrane device boron removal rate is reduced by 10% or more, a non-regenerative mixed bed type disposed downstream of the reverse osmosis membrane device Removal of boron by ion exchange resin or electrodeionization equipment is not sufficient, and the water quality at the end of the ultrapure water production system is deteriorated. Therefore, for example, a method of removing boron by installing a boron-selective ion exchange resin downstream of the reverse osmosis membrane device may be employed. On the other hand, since the boron removal load on the downstream side of the reverse osmosis membrane device can be reduced by performing the regeneration method of the present invention, in the non-regenerative mixed bed ion exchange resin and the electrodeionization device A sufficient boron removal rate can be obtained and the boron selective ion exchange resin can be omitted.

本実施形態において、再生対象となる逆浸透膜装置は、例えば、加圧下で処理対象水を脱塩処理して、塩類を濃縮した濃縮水と塩類の除去された透過水(処理水)に分離する逆浸透膜を有する。逆浸透膜として、一般的に、三酢酸セルロース系非対称膜や、ポリアミド系、ポリビニルアルコール系の複合膜等が用いられる。本実施形態の再生方法では、上記のうち、ポリアミド系の逆浸透膜を再生対象とすることが好ましい。膜形状は、シート平膜、スパイラル膜、管状膜、中空糸膜等であるが、これらに限定されない。   In this embodiment, the reverse osmosis membrane device to be regenerated is, for example, desalted under pressure to be treated, and separated into concentrated water obtained by concentrating salts and permeated water (treated water) from which salts have been removed. A reverse osmosis membrane. As the reverse osmosis membrane, a cellulose triacetate asymmetric membrane, a polyamide-based, polyvinyl alcohol-based composite membrane, or the like is generally used. In the regeneration method of the present embodiment, among the above, it is preferable to use a polyamide-based reverse osmosis membrane as a regeneration target. The membrane shape is a sheet flat membrane, a spiral membrane, a tubular membrane, a hollow fiber membrane or the like, but is not limited thereto.

なかでも、本実施形態の再生方法によって優れたホウ素の除去率の向上効果が得られるため、逆浸透膜は、ポリアミド系の複合膜であることが好ましく、架橋全芳香族ポリアミド系の複合膜であることがより好ましい。膜形状は、平膜又はスパイラル膜であることが好ましい。   Among these, the reverse osmosis membrane is preferably a polyamide-based composite membrane, and a cross-linked wholly aromatic polyamide-based composite membrane because an excellent effect of improving the boron removal rate can be obtained by the regeneration method of the present embodiment. More preferably. The film shape is preferably a flat film or a spiral film.

逆浸透膜装置のホウ素(B)除去率は、逆浸透膜装置への通水初期(未使用時)において、例えば、80%以上であることが好ましく、83%以上であることがより好ましい。   The boron (B) removal rate of the reverse osmosis membrane device is, for example, preferably 80% or more and more preferably 83% or more at the initial stage of water passage (when not used) to the reverse osmosis membrane device.

また、逆浸透膜装置における塩の除去率は、逆浸透膜装置への通水初期において、例えばNaClの除去率として95%以上であることが好ましく、99.5%以上であることがより好ましい。NaClの除去率は、例えば、当該逆浸透膜装置に、25℃、pH=7、NaCl濃度0.2質量%の給水を水回収率80%、運転圧力1.5MPaで通水した際のNaCl除去率として計測することができる。   Further, the salt removal rate in the reverse osmosis membrane device is preferably 95% or more, more preferably 99.5% or more, for example, as the NaCl removal rate in the initial stage of water flow to the reverse osmosis membrane device. . The removal rate of NaCl is, for example, NaCl when water is supplied to the reverse osmosis membrane device at 25 ° C., pH = 7, NaCl concentration 0.2 mass% at a water recovery rate of 80% and an operating pressure of 1.5 MPa. The removal rate can be measured.

また、逆浸透膜装置としては、超低圧型、低圧型、高圧型の逆浸透膜装置を用いることができる。ホウ素の除去率の向上の点からは、高圧型の逆浸透膜装置であることが好ましい。   As the reverse osmosis membrane device, an ultra-low pressure type, low pressure type, or high pressure type reverse osmosis membrane device can be used. From the viewpoint of improving the removal rate of boron, a high-pressure type reverse osmosis membrane device is preferable.

ここで、超低圧型の逆浸透膜装置は、運転圧力が、0.4MPa〜0.8MPaであり、好ましくは0.6MPa〜0.7MPaである。低圧型の逆浸透膜装置は、運転圧力が0.8MPaを超え1.5MPa未満であり、好ましくは1MPa〜1.5MPaである。高圧型の逆浸透膜装置は、運転圧力が1.5MPaを超え8MPa以下であり、好ましくは3.0MPaを超え6MPa以下である。なお、上記超低圧型、低圧型、高圧型の逆浸透膜装置の運転圧力は、各逆浸透膜装置の製造時の設計圧力であり、実際には、上記範囲以外の圧力で給水されて運転されることもある。   Here, the ultra-low pressure type reverse osmosis membrane device has an operating pressure of 0.4 MPa to 0.8 MPa, preferably 0.6 MPa to 0.7 MPa. The low pressure type reverse osmosis membrane device has an operating pressure of more than 0.8 MPa and less than 1.5 MPa, preferably 1 MPa to 1.5 MPa. The high pressure type reverse osmosis membrane device has an operating pressure of more than 1.5 MPa and 8 MPa or less, preferably more than 3.0 MPa and 6 MPa or less. The operating pressure of the ultra-low pressure type, low pressure type, and high pressure type reverse osmosis membrane devices is the design pressure at the time of manufacturing each reverse osmosis membrane device, and actually operated with water supplied at a pressure outside the above range. Sometimes it is done.

この逆浸透膜装置は、例えば、超純水の製造に使用される。この場合、例えば、上記の形状に形成した逆浸透膜を内蔵した逆浸透膜装置が、超純水製造システムに組み込まれる。   This reverse osmosis membrane device is used, for example, for the production of ultrapure water. In this case, for example, a reverse osmosis membrane device incorporating a reverse osmosis membrane formed in the above shape is incorporated into an ultrapure water production system.

超純水製造システムによって被処理水の処理を長期間続けていると、逆浸透膜装置におけるホウ素の除去率が低下してくる。また、その後さらに、処理を続けていくと、逆浸透膜の表面に付着物が付着して、透過水量が減少し、処理水水質の低下につながる。このときの付着物は、例えば、フミン等の有機物、硬度成分、シリカ成分、粒子状物質などからなるスケール成分や、菌の増殖によるバイオファウリングである。   If the treated water is treated for a long time by the ultrapure water production system, the removal rate of boron in the reverse osmosis membrane device decreases. Further, if the treatment is continued thereafter, deposits adhere to the surface of the reverse osmosis membrane, the amount of permeated water is reduced, and the quality of the treated water is lowered. The deposits at this time are, for example, scale components composed of organic substances such as humin, hardness components, silica components, particulate materials, and biofouling due to the growth of bacteria.

本実施形態の逆浸透膜装置の再生方法では、ホウ素の除去率が低下したとき、具体的には、逆浸透膜装置におけるホウ素の除去率が通水初期に比べて10%以上低下したときに、逆浸透膜装置に熱水を通水する(熱水通水工程)。   In the regeneration method of the reverse osmosis membrane device of the present embodiment, when the boron removal rate is lowered, specifically, when the boron removal rate in the reverse osmosis membrane device is reduced by 10% or more compared to the initial stage of water flow. Then, hot water is passed through the reverse osmosis membrane device (hot water passing step).

熱水通水工程は、例えば、逆浸透膜装置におけるホウ素除去率を測定して、上記のように、ホウ素除去率が低下したときに行ってもよく、予備試験などによって、あらかじめホウ素除去率が低下するまでの通水時間又は通水量を確認しておき、その結果に基づいて、定期的に行ってもよい。前者の場合、ホウ素除去率は、ホウ素濃度のオンラインモニタを使用し、逆浸透膜装置の供給水及び透過水中のホウ素濃度を測定して、これらの測定値から算出することができる。後者の場合には、このようなホウ素濃度のオンラインモニタは不要であり、例えば、通水開始(被処理水の処理の開始)か10カ月後に、熱水通水工程を行うことができる。   The hot water flow process may be performed, for example, when the boron removal rate in the reverse osmosis membrane device is measured and the boron removal rate is reduced as described above. You may confirm regularly the water flow time or water flow until it falls, and based on the result, you may carry out regularly. In the former case, the boron removal rate can be calculated from these measured values by measuring the boron concentration in the feed water and permeated water of the reverse osmosis membrane device using an online monitor of the boron concentration. In the latter case, such online monitoring of the boron concentration is not necessary, and for example, the hot water flow process can be performed 10 months after the start of water flow (start of treatment of treated water).

上記熱水の温度は、70℃〜95℃であることが好ましく、80℃〜90℃程度がさらに好ましい。逆浸透膜装置における熱水通水時の運転圧力は、好ましくは0.1MPa〜1MPa、より好ましくは0.2MPa〜0.5MPaであり、熱水通水時間(熱水と逆浸透膜の接触時間)は、1時間〜100時間が適切である。また、熱水は、逆浸透膜の供給側と濃縮側の何れから通水してもよい。   The temperature of the hot water is preferably 70 ° C to 95 ° C, and more preferably about 80 ° C to 90 ° C. The operating pressure during hot water flow in the reverse osmosis membrane device is preferably 0.1 MPa to 1 MPa, more preferably 0.2 MPa to 0.5 MPa, and hot water flow time (contact between hot water and reverse osmosis membrane). The time is suitably from 1 hour to 100 hours. Further, the hot water may be passed from either the supply side or the concentration side of the reverse osmosis membrane.

熱水通水時間は、温度によって適宜変更することができる。例えば、熱水の温度が70℃の場合、50時間〜100時間程度、80℃の場合は10時間〜30時間程度、90℃の場合は、1時間〜5時間程度が好ましい。この範囲であれば、耐熱性の逆浸透膜装置でなくても、劣化なく再生することが可能である。   The hot water flow time can be appropriately changed depending on the temperature. For example, when the temperature of hot water is 70 ° C, about 50 hours to 100 hours, when it is 80 ° C, about 10 hours to 30 hours, and when it is 90 ° C, about 1 hour to 5 hours are preferable. If it is this range, even if it is not a heat resistant reverse osmosis membrane apparatus, it can reproduce | regenerate without deterioration.

熱水は、純水又は超純水、具体的には、抵抗率が18MΩ・cm以上、全有機炭素(TOC)濃度が1μgC/L以下の超純水を加熱して用いることが好ましい。   The hot water is preferably pure water or ultrapure water, specifically heated ultrapure water having a resistivity of 18 MΩ · cm or more and a total organic carbon (TOC) concentration of 1 μgC / L or less.

上記温度及び時間での熱水通水工程によって、再生対象の逆浸透膜装置のホウ素の除去率は通水初期(未使用時)の値の100%に対して、90%〜100%程度、より好ましくは、95%〜100%にまで回復する。例えば、通水初期のホウ素除去率が83%である場合、熱水通水工程によって、83%×90%〜100%=75%〜83%程度にまで回復する。これ以上の長時間による熱水通水工程は、作業性の低下を招いたり、逆浸透膜装置の性能に影響を与えるおそれがある。熱水の通水により再生された逆浸透膜装置は、再度被処理水の処理に用いることができる。   By the hot water flow process at the above temperature and time, the boron removal rate of the reverse osmosis membrane device to be regenerated is about 90% to 100% with respect to 100% of the initial value of water flow (when not used), More preferably, it recovers to 95% to 100%. For example, when the boron removal rate at the initial stage of water flow is 83%, it is recovered to about 83% × 90% to 100% = 75% to 83% by the hot water flow step. The hot water flow process for a longer time than this may cause a decrease in workability or affect the performance of the reverse osmosis membrane device. The reverse osmosis membrane device regenerated by passing hot water can be used again for the treatment of water to be treated.

また、本実施形態の逆浸透膜装置の再生方法は、逆浸透膜装置のホウ素の除去率が、例えば、通水初期に比べて10%低下した後、さらに被処理水の処理を続けて、スケール生成やバイオファウリングが生じた後に、洗浄剤による洗浄工程を行うこともできる。   Moreover, in the regeneration method of the reverse osmosis membrane device of the present embodiment, after the boron removal rate of the reverse osmosis membrane device is reduced by, for example, 10% compared to the initial stage of water flow, the treatment of water to be treated is further continued. After scale generation or biofouling has occurred, a cleaning step with a cleaning agent can be performed.

また、被処理水の処理と熱水通水工程をそれぞれ何度か繰り返して、透過水量が低下したときに、熱水通水工程と洗浄工程を併用して再生してもよい。この場合、例えば、通水開始から10カ月後に、熱水通水工程を行い、通水開始から20カ月後のときに、熱水通水工程と洗浄工程を併用する方法がある。なお、この熱水通水工程と洗浄工程を併用した再生の間隔は、逆浸透膜装置の性能低下の度合いによって変更することが可能である。これにより、透過水量とホウ素除去率をより安定的に維持することができる。また、上記の期間での、熱水通水工程と洗浄工程の繰り返しにより、透過水量とホウ素除去率をさらに安定的に維持することができる。   In addition, the treatment of the water to be treated and the hot water flow process may be repeated several times, and when the amount of permeated water decreases, the hot water flow process and the washing process may be combined and regenerated. In this case, for example, there is a method in which the hot water flow process is performed 10 months after the start of water flow, and the hot water flow process and the washing process are used together 20 months after the start of water flow. Note that the regeneration interval in which the hot water flow process and the washing process are used together can be changed depending on the degree of performance degradation of the reverse osmosis membrane device. Thereby, the amount of permeated water and the boron removal rate can be maintained more stably. Further, the permeated water amount and the boron removal rate can be more stably maintained by repeating the hot water flow process and the washing process in the above period.

洗浄工程は、逆浸透膜装置に塩基性水溶液又は酸性水溶液を通液して行う。これにより、膜面のスケール生成やバイオファウリングを除去して、透過水量を回復させるとともに、ホウ素以外の塩の除去率を回復させることができる。ところが、洗浄工程のみでは、逆浸透膜装置のホウ素除去率は回復されないため、洗浄工程後に熱水通水工程を行う。   The washing step is performed by passing a basic aqueous solution or an acidic aqueous solution through the reverse osmosis membrane device. Thereby, scale generation and biofouling on the membrane surface can be removed, the amount of permeated water can be recovered, and the removal rate of salts other than boron can be recovered. However, since the boron removal rate of the reverse osmosis membrane device is not recovered only by the cleaning process, the hot water flow process is performed after the cleaning process.

この洗浄工程に用いられる塩基性水溶液は、好ましくはpH9〜12、より好ましくはpH10〜11である。このような塩基性水溶液としては、水酸化ナトリウム水溶液、水酸化カリウム水溶液、及び水酸化ナトリウムと水酸化カリウムの混合水溶液等が挙げられる。塩基性水溶液の濃度は、上記好ましいpHとなるように調整される。これらの塩基性水溶液に、ドデシル硫酸ナトリウム、ドデシルベンゼン硫酸ナトリウム等の、界面活性剤やキレート剤などが添加されて用いられてもよい。塩基性水溶液の温度は調節せずに室温、例えば10℃〜25℃程度であればよい。塩基性水溶液に添加される界面活性剤又はキレート剤等の量は、塩基性水溶液と界面活性剤又はキレート剤との合計に対して、0.1質量%〜1質量%程度が好ましい。   The basic aqueous solution used in this washing step is preferably pH 9-12, more preferably pH 10-11. Examples of such basic aqueous solutions include sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, and mixed aqueous solution of sodium hydroxide and potassium hydroxide. The concentration of the basic aqueous solution is adjusted to achieve the above-mentioned preferable pH. A surfactant or chelating agent such as sodium dodecyl sulfate or sodium dodecyl benzene sulfate may be added to these basic aqueous solutions. The temperature of the basic aqueous solution may be room temperature, for example, about 10 ° C to 25 ° C without adjusting. The amount of the surfactant or chelating agent added to the basic aqueous solution is preferably about 0.1% by mass to 1% by mass with respect to the total of the basic aqueous solution and the surfactant or chelating agent.

また、洗浄工程に用いられる酸性水溶液は、好ましくはpH1.5〜5、より好ましくはpH2〜4である。このような酸性水溶液としては、塩酸、希硫酸、希硝酸等が挙げられる。酸水溶液の濃度は、上記好ましいpHとなるように調整される。酸性水溶液の温度は調節せずに室温、例えば10℃〜25℃程度であればよい。また、酸性水溶液に、クエン酸、シュウ酸等の、界面活性剤やキレート剤等が添加されて洗浄工程に用いられてもよい。酸性水溶液に添加される界面活性剤又はキレート剤等の好ましい量は塩基性水溶液の場合と同様である。   The acidic aqueous solution used in the washing step is preferably pH 1.5-5, more preferably pH 2-4. Examples of such an acidic aqueous solution include hydrochloric acid, dilute sulfuric acid, dilute nitric acid and the like. The concentration of the acid aqueous solution is adjusted to be the above-mentioned preferable pH. The temperature of acidic aqueous solution should just be room temperature, for example, about 10 to 25 degreeC, without adjusting. Further, a surfactant or chelating agent such as citric acid or oxalic acid may be added to the acidic aqueous solution and used in the washing step. The preferred amount of the surfactant or chelating agent added to the acidic aqueous solution is the same as in the case of the basic aqueous solution.

上記洗浄工程は、塩基性水溶液を用いる場合には1回あたり1時間〜12時間程度、より好ましくは2時間〜5時間程度行われる。酸性水溶液を用いる場合には1回あたり1時間〜12時間程度、より好ましくは2時間〜5時間程度行われる。塩基性水溶液による洗浄工程と、酸性水溶液による洗浄工程は何れか一方のみを行ってもよいが、除去対象物質の種類に応じて両者を交互に行ってもよいし、それぞれ2回以上行ってもよい。また、洗浄工程時の運転圧力は、好ましくは0.1MPa〜1MPa、より好ましくは0.2MPa〜0.5MPaである。   When the basic aqueous solution is used, the washing step is performed for about 1 to 12 hours, more preferably about 2 to 5 hours per time. When an acidic aqueous solution is used, it is performed for about 1 hour to 12 hours, more preferably about 2 hours to 5 hours per time. Only one of the washing step with the basic aqueous solution and the washing step with the acidic aqueous solution may be performed, but both may be performed alternately according to the type of the substance to be removed, or each may be performed twice or more. Good. The operating pressure during the washing step is preferably 0.1 MPa to 1 MPa, more preferably 0.2 MPa to 0.5 MPa.

上記温度及び時間での洗浄剤の通液によって、通水差圧と再生対象の逆浸透膜装置のホウ素以外の塩の除去率は未使用時の値の100%に対して90%〜100%程度、好ましくは95%〜100%にまで回復する。これ以上の長時間による洗浄工程は、作業性の低下を招いたり、逆浸透膜装置の性能に影響を与えるおそれがある。ここで、通水差圧は逆浸透膜の二次側圧力(透過水圧力)と一次側圧力(運転圧力=(供給水圧力+濃縮水圧力)/2))の差で算出することができる。   Depending on the flow rate of the cleaning agent at the above temperature and time, the water removal differential pressure and the removal rate of salts other than boron in the reverse osmosis membrane device to be regenerated are 90% to 100% with respect to 100% of the unused value. Recover to a degree, preferably 95% to 100%. The cleaning process for a longer time than this may cause a decrease in workability and may affect the performance of the reverse osmosis membrane device. Here, the water flow differential pressure can be calculated by the difference between the secondary pressure (permeated water pressure) and the primary pressure (operating pressure = (supply water pressure + concentrated water pressure) / 2) of the reverse osmosis membrane. .

なお、洗浄工程は、通水初期からの通水差圧の上昇率が、好ましくは5%〜25%、より好ましくは11%〜18%となったときに行うことができる。また、洗浄工程は、逆浸透膜装置の透過水量の通水初期からの低下率が好ましくは5%〜20%、より好ましくは10%〜15%となったときに行ってもよい。   In addition, a washing | cleaning process can be performed when the rate of increase of the water flow differential pressure from the initial stage of water flow is preferably 5% to 25%, more preferably 11% to 18%. Moreover, you may perform a washing | cleaning process, when the decreasing rate from the water flow initial stage of the amount of permeation of a reverse osmosis membrane apparatus becomes 5%-20% preferably, More preferably, it becomes 10%-15%.

洗浄工程を行う場合、洗浄工程と、熱水通水工程は、それぞれ、2回〜5回交互に繰り返しても、本実施形態の再生方法によるホウ素除去率の向上効果を得ることができる。また、洗浄工程と熱水通水工程はいずれを先に行ってもよいが、ホウ素除去率の回復が大きいため、洗浄工程と熱水通水工程をそれぞれ1回ずつ併用する際には、洗浄工程を先に行い、熱水通水工程を後に行うのが好ましい。また、上記したように、洗浄工程と、熱水通水工程をそれぞれ複数回行う場合には、熱水通水工程を行ってホウ素の除去率を回復させながら、必要に応じて、洗浄工程と熱水通水工程をこの順に併用する再生工程を、熱水通水工程のみの間隔よりも長間隔で行うことが好ましい。   In the case of performing the cleaning process, the effect of improving the boron removal rate by the regeneration method of the present embodiment can be obtained even if the cleaning process and the hot water flow process are alternately repeated twice to five times. In addition, either the washing step or the hot water flow step may be performed first, but since the recovery of the boron removal rate is large, the washing step and the hot water flow step are performed together once each. Preferably, the process is performed first and the hot water flow process is performed later. In addition, as described above, when performing the washing step and the hot water flow step a plurality of times, performing the hot water flow step and recovering the boron removal rate, the cleaning step and It is preferable to perform the regeneration process using the hot water flow process in this order at longer intervals than only the hot water flow process.

以上説明した本実施形態の逆浸透膜の再生方法によれば、逆浸透膜装置に熱水が通水されて、逆浸透膜装置が再生される。これにより、ホウ素の除去率を回復させることができる。特許文献2では、熱水の通水により、逆浸透膜モジュールの性能が回復されるのは、拡径した逆浸透膜が熱により縮径するためとしている。本実施形態の逆浸透膜の再生方法においては、ホウ素除去率のみが低下した逆浸透膜装置が、熱水通水工程を経て回復するのであり、上記メカニズムのみによるものとも限られないと考えられる。   According to the reverse osmosis membrane regeneration method of the present embodiment described above, hot water is passed through the reverse osmosis membrane device to regenerate the reverse osmosis membrane device. Thereby, the removal rate of boron can be recovered. In Patent Document 2, the performance of the reverse osmosis membrane module is restored by the passage of hot water because the expanded reverse osmosis membrane is contracted by heat. In the reverse osmosis membrane regeneration method of the present embodiment, the reverse osmosis membrane device in which only the boron removal rate is reduced is recovered through the hot water flow process, and is not limited to the above mechanism alone. .

た本実施形態の逆浸透膜の再生方法によれば、例えば、通水初期(未使用時)のホウ素除去率が80%〜85%程度で、2年間、所定のタイミングで上記洗浄工程を行いながら継続使用して、ホウ素除去率が70%にまで低下した逆浸透膜装置のホウ素除去率を、本実施形態の逆浸透膜の再生方法によれば、通水初期とほぼ同程度の78%〜85%にまで向上させることができる。   According to the reverse osmosis membrane regeneration method of the present embodiment, for example, the above-described cleaning process is performed at a predetermined timing for 2 years when the boron removal rate at the initial stage of water flow (when not used) is about 80% to 85%. However, according to the reverse osmosis membrane regeneration method of the present embodiment, the boron removal rate of the reverse osmosis membrane device in which the boron removal rate is reduced to 70% by continuous use is 78%, which is almost the same as the initial stage of water flow. It can be improved to -85%.

(第2の実施形態)
図1は、本実施形態の再生対象となる逆浸透膜装置が装備された超純水製造システムの一例を概略的に表わすブロック図である。図1に示す超純水製造システム1は、前処理部10と、一次純水製造部20と、二次純水製造部30を備えている。
(Second Embodiment)
FIG. 1 is a block diagram schematically showing an example of an ultrapure water production system equipped with a reverse osmosis membrane device to be regenerated in the present embodiment. The ultrapure water production system 1 shown in FIG. 1 includes a pretreatment unit 10, a primary pure water production unit 20, and a secondary pure water production unit 30.

超純水製造システム1において、被処理水としては、市水、井水、工業用水等の原水が用いられる。また、被処理水としては、超純水の使用場所で使用され、回収され、その後必要に応じて薬品除去処理等の施された使用済み回収水が用いられてもよい。   In the ultrapure water production system 1, raw water such as city water, well water, and industrial water is used as water to be treated. In addition, as the water to be treated, used recovered water that is used and collected at a place where ultrapure water is used and then subjected to chemical removal treatment or the like as necessary may be used.

前処理部10は、原水を除濁して前処理水を得るものである。前処理部10は、例えば、凝集沈澱装置や砂ろ過装置、精密ろ過装置等を備える。前処理部10で生成された前処理水は、一次純水製造部20に送られる。   The pretreatment unit 10 removes raw water to obtain pretreatment water. The pretreatment unit 10 includes, for example, a coagulation sedimentation device, a sand filtration device, a microfiltration device, and the like. The pretreated water generated in the pretreatment unit 10 is sent to the primary pure water production unit 20.

一次純水製造部20は、前処理部10で得られた前処理水中のイオン成分及び非イオン成分を除去して一次純水を得るものである。一次純水製造部20は、逆浸透膜装置(RO)21、脱気装置(DG)22、紫外線酸化装置(TOC−UV)23、混床式イオン交換樹脂装置(MB)24を備えている。   The primary pure water production unit 20 removes ionic components and nonionic components from the pretreated water obtained by the pretreatment unit 10 to obtain primary pure water. The primary pure water production unit 20 includes a reverse osmosis membrane device (RO) 21, a deaeration device (DG) 22, an ultraviolet oxidation device (TOC-UV) 23, and a mixed bed type ion exchange resin device (MB) 24. .

上記構成の一次純水製造部20は、その前段側に備えられる逆浸透膜装置21でほとんどの脱塩を行う構成である。一般的に、このような前段逆浸透膜装置型の一次純水製造部20では、比較的不純物濃度の高い前処理水が逆浸透膜装置21に供給されるため、逆浸透膜の表面に付着物が付着しやすい環境にある。なお、逆浸透膜装置21は、一次純水製造部20の前段側に配置される態様に限られず、一次純水製造部20のいずれの位置に配置されていてもよい。   The primary pure water production unit 20 having the above-described configuration is configured to perform most of desalting with the reverse osmosis membrane device 21 provided on the preceding stage side. In general, in such a primary pure water production unit 20 of the preceding stage reverse osmosis membrane device type, pretreated water having a relatively high impurity concentration is supplied to the reverse osmosis membrane device 21, so that it is attached to the surface of the reverse osmosis membrane. The environment is easy for kimono to adhere to. Note that the reverse osmosis membrane device 21 is not limited to a mode in which the reverse osmosis membrane device 21 is disposed on the upstream side of the primary pure water production unit 20, and may be disposed in any position of the primary pure water production unit 20.

逆浸透膜装置21は、逆浸透膜モジュールを複数並列に装填した逆浸透膜ベッセルを並列に接続して構成される。   The reverse osmosis membrane device 21 is configured by connecting in parallel a reverse osmosis membrane vessel in which a plurality of reverse osmosis membrane modules are loaded in parallel.

逆浸透膜装置21には、逆浸透膜装置21に熱水を供給する熱水供給装置211と、逆浸透膜装置21に洗浄剤を供給する洗浄剤供給装置212とが接続されている。また、一次純水製造部20には、逆浸透膜装置21におけるホウ素除去率を測定するホウ素除去率測定装置213が備えられている。ホウ素除去率測定装置213は、例えば、逆浸透膜装置21の被処理水と透過水中のホウ素濃度を測定するホウ素濃度測定装置213aと、ホウ素濃度測定装置213aにおける被処理水及び透過水のホウ素濃度の測定値からホウ素除去率を算出する演算部213bとを備える。ホウ素濃度測定装置213aとしては、例えば、Sievers社のボロンモニター等が使用される。   Connected to the reverse osmosis membrane device 21 are a hot water supply device 211 that supplies hot water to the reverse osmosis membrane device 21 and a cleaning agent supply device 212 that supplies a cleaning agent to the reverse osmosis membrane device 21. The primary pure water production unit 20 is provided with a boron removal rate measuring device 213 that measures the boron removal rate in the reverse osmosis membrane device 21. The boron removal rate measuring device 213 includes, for example, a boron concentration measuring device 213a that measures the boron concentration in the treated water and the permeated water of the reverse osmosis membrane device 21, and the boron concentration of the treated water and the permeated water in the boron concentration measuring device 213a. And a calculation unit 213b that calculates a boron removal rate from the measured value. As the boron concentration measuring device 213a, for example, a boron monitor manufactured by Sievers is used.

脱気装置22は、溶存ガスを除去する装置であり、真空脱気装置、膜式脱気装置等である。紫外線酸化装置23は、被処理水に紫外線を照射して被処理水中の有機物を分解除去する装置である。混床式イオン交換樹脂装置24は、陽イオン交換樹脂と陰イオン交換樹脂を混合した混床式イオン交換樹脂を備えた再生式のイオン交換樹脂装置である。   The degassing device 22 is a device that removes dissolved gas, such as a vacuum degassing device or a membrane degassing device. The ultraviolet oxidation device 23 is a device that decomposes and removes organic substances in the water to be treated by irradiating the water to be treated with ultraviolet rays. The mixed bed ion exchange resin device 24 is a regenerative ion exchange resin device including a mixed bed ion exchange resin in which a cation exchange resin and an anion exchange resin are mixed.

また、一次純水製造部20は上記以外にも、陽イオン交換樹脂装置や陰イオン交換樹脂装置、電気脱イオン装置(EDI)、粒子状不純物を除去する精密ろ過装置(MF)等を適宜選択して備えていてもよい。一次純水製造部20の後段には、一次純水を貯留するタンク(TK)40が配置されている。一次純水はタンク40に貯留された後、二次純水製造部30に供給される。   In addition to the above, the primary pure water production unit 20 appropriately selects a cation exchange resin device, an anion exchange resin device, an electrodeionization device (EDI), a microfiltration device (MF) for removing particulate impurities, and the like. You may be prepared. A tank (TK) 40 for storing primary pure water is disposed at the subsequent stage of the primary pure water production unit 20. The primary pure water is stored in the tank 40 and then supplied to the secondary pure water production unit 30.

二次純水製造部30は、一次純水中の微量残存不純物を除去して、高純度の超純水を得るものである。二次純水製造部30は、タンク(TK)40の下流に接続され、一次純水の水温を調節する熱交換器(図示せず)、有機物を分解する紫外線酸化装置(TOC−UV)21、溶存ガスを除去する脱気膜装置32、イオン成分を除去する非再生型混床式イオン交換樹脂装置(Polisher)33、微粒子状不純物を除去する限外ろ過装置(UF)34等を備えている。二次純水製造部30で製造された超純水は使用場所(ユースポイント、POU)50に送られる。   The secondary pure water production unit 30 removes trace residual impurities in the primary pure water to obtain high purity ultrapure water. The secondary pure water production unit 30 is connected downstream of the tank (TK) 40, a heat exchanger (not shown) for adjusting the temperature of the primary pure water, and an ultraviolet oxidation device (TOC-UV) 21 for decomposing organic substances. A degassing membrane device 32 for removing dissolved gas, a non-regenerative mixed bed ion exchange resin device (Polisher) 33 for removing ionic components, an ultrafiltration device (UF) 34 for removing particulate impurities, and the like. Yes. The ultrapure water produced by the secondary pure water production unit 30 is sent to a place of use (use point, POU) 50.

本実施形態の超純水製造システム1においては、ホウ素除去率測定装置213により測定されるホウ素除去率が通水初期から10%以上低下したときに、逆浸透膜装置21への被処理水の通水が停止されて、熱水供給装置211が逆浸透膜装置21に熱水を供給する。供給された熱水は、逆浸透膜装置21内を通流した後に、排出される(熱水通水工程)。この過程で、逆浸透膜装置21の再生が行われる。熱水通水工程における好ましい条件などは、上記した第1の実施形態と同様である。   In the ultrapure water production system 1 of the present embodiment, when the boron removal rate measured by the boron removal rate measuring device 213 is reduced by 10% or more from the initial stage of water flow, the water to be treated to the reverse osmosis membrane device 21 is treated. Water flow is stopped, and the hot water supply device 211 supplies hot water to the reverse osmosis membrane device 21. The supplied hot water is discharged after flowing through the reverse osmosis membrane device 21 (hot water flow step). In this process, the reverse osmosis membrane device 21 is regenerated. The preferable conditions in the hot water flow process are the same as those in the first embodiment.

本実施形態の超純水製造システム1において、例えば、逆浸透膜装置21において、スケールの生成やバイオファウリングが生じた際に、洗浄工程を行うことが好ましい。洗浄工程では、逆浸透膜装置21への被処理水の通水が停止されて、洗浄剤供給装置212が逆浸透膜装置21に洗浄剤を供給する。供給された洗浄剤は、逆浸透膜装置21内を通流した後に、排出される(洗浄工程)。この過程で、逆浸透膜装置21におけるスケール成分やバイオファウリングが除去されて、洗浄が行われる。洗浄工程における好ましい条件などは、上記した第1の実施形態と同様である。   In the ultrapure water production system 1 according to the present embodiment, for example, in the reverse osmosis membrane device 21, it is preferable to perform a cleaning process when scale generation or biofouling occurs. In the cleaning process, the flow of the water to be treated to the reverse osmosis membrane device 21 is stopped, and the cleaning agent supply device 212 supplies the cleaning agent to the reverse osmosis membrane device 21. The supplied cleaning agent is discharged after flowing through the reverse osmosis membrane device 21 (cleaning step). In this process, the scale component and bio-fouling in the reverse osmosis membrane device 21 are removed, and cleaning is performed. Preferred conditions in the cleaning step are the same as those in the first embodiment.

このように、必要に応じて洗浄工程を行い、さらに熱水通水工程を行った後、逆浸透膜装置21に被処理水が通水されて、超純水製造システム1により超純水が製造される。このとき、逆浸透膜装置21は、熱水通水工程によってホウ素の除去率が回復されているため、ホウ素濃度の著しく低減された超純水を得ることができる。   As described above, the cleaning process is performed as necessary, and the hot water flow process is performed. Then, the water to be treated is passed through the reverse osmosis membrane device 21, and ultrapure water is supplied by the ultrapure water production system 1. Manufactured. At this time, the reverse osmosis membrane device 21 can obtain ultrapure water with a significantly reduced boron concentration because the boron removal rate has been recovered by the hot water flow process.

上記熱水通水工程と、洗浄工程は、それぞれ2回以上行ってもよい。この場合、熱水通水工程と、洗浄工程は交互に行ってもよく、何れかを連続して行ってもよく、また、各工程間で、被処理水の処理を行ってもよい。これらは、被処理水の水質や、ホウ素除去率の低下の度合い、スケールの生成やバイオファウリングによる処理水水質の低下の度合いなどによって、適宜選択することができる。   You may perform the said hot water flow process and a washing | cleaning process twice or more, respectively. In this case, the hot water flow process and the cleaning process may be performed alternately, or any of them may be performed continuously, and the water to be treated may be treated between the processes. These can be selected as appropriate depending on the quality of the water to be treated, the degree of decrease in the boron removal rate, the degree of reduction in the quality of treated water due to scale generation and biofouling, and the like.

なお、上記熱水通水工程と、洗浄工程は、図示しない制御装置が、超純水製造システム1全体の動作を統括的に制御して行うことができる。   In addition, the said hot water flow process and a washing | cleaning process can be performed by the control apparatus which is not shown in figure controlling the operation | movement of the ultrapure water manufacturing system 1 whole.

以上に説明した本実施形態の超純水製造方法及び超純水製造システムによれば、簡易な方法で、逆浸透膜装置のホウ素の除去率を回復することができるため、ホウ素濃度の著しく低減された超純水を得ることができる。   According to the ultrapure water production method and ultrapure water production system of the present embodiment described above, the boron removal rate of the reverse osmosis membrane device can be recovered by a simple method, so that the boron concentration is significantly reduced. Can be obtained.

次に、本発明の実施例について説明する。本発明は以下の実施例に限定されない。
(実施例1)
逆浸透膜装置として、高圧型逆浸透膜モジュール(東レ社製、製品名:TM820、1本、架橋全芳香族ポリアミド系複合膜、通水初期のホウ素除去率:83%)を用いた。この高圧型逆浸透膜モジュールにポンプを用いて被処理水(厚木市水を前処理したもの。導電率180μS/cm、pH=7.4、25℃)を供給して、超純水(抵抗率18.2MΩ・cm、TOC濃度0.1μgC/L)を10カ月間製造した。逆浸透膜装置の透過水の水質は、pHが5.3であった。逆浸透膜装置の透過水流量が1m/h(透過水圧力:0.02MPa)となるように、ポンプ圧力を設定した。これにより、通水開始初期の逆浸透膜モジュールへの供給水圧力と濃縮水圧力の平均(一次側圧力)は、1.92MPaであった。
Next, examples of the present invention will be described. The present invention is not limited to the following examples.
Example 1
As the reverse osmosis membrane device, a high-pressure type reverse osmosis membrane module (manufactured by Toray Industries, Inc., product name: TM820, one, cross-linked wholly aromatic polyamide composite membrane, boron removal rate at the beginning of water flow: 83%) was used. This high-pressure type reverse osmosis membrane module is supplied with water to be treated (pretreated with water from Atsugi City, conductivity 180 μS / cm, pH = 7.4, 25 ° C.), and ultrapure water (resistance (18.2 MΩ · cm, TOC concentration 0.1 μg C / L) for 10 months. The water quality of the permeated water of the reverse osmosis membrane device was pH 5.3. The pump pressure was set so that the permeate flow rate of the reverse osmosis membrane device was 1 m 3 / h (permeate pressure: 0.02 MPa). Thereby, the average (primary side pressure) of the supply water pressure and concentrated water pressure to the reverse osmosis membrane module at the beginning of water flow was 1.92 MPa.

この超純水製造の過程で、熱水通水工程を行った。熱水通水工程の間は被処理水の通水は停止した。また、超純水製造の過程で、高圧型逆浸透膜モジュールの処理水流量を測定し、また、被処理水及び透過水中のホウ素濃度を測定し、ホウ素除去率を算出した。ホウ素濃度は、Sievers社 ボロンモニターによって測定した。   In the process of producing ultrapure water, a hot water flow process was performed. During the hot water flow process, the flow of treated water was stopped. Further, in the process of producing ultrapure water, the treated water flow rate of the high-pressure reverse osmosis membrane module was measured, and the boron concentration in the treated water and the permeated water was measured to calculate the boron removal rate. The boron concentration was measured by a Sieves boron monitor.

熱水通水工程の条件は次のとおりである。
熱水温度…80℃
熱水水質…比抵抗率18.2MΩ・cm、TOC濃度0.1μgC/Lの超純水を加熱したもの
運転圧力…0.3MPa
給液時間…20時間
通水流量…0.5m/h
The conditions of the hot water flow process are as follows.
Hot water temperature: 80 ° C
Hot water quality: Heated ultrapure water with a specific resistivity of 18.2 MΩ · cm and a TOC concentration of 0.1 μg C / L Operating pressure: 0.3 MPa
Supply time ... 20 hours Water flow rate ... 0.5 m 3 / h

被処理水の通水開始時、再生前、熱水通水工程後の、高圧型逆浸透膜モジュールにおける運転圧力、ホウ素除去率、TOC除去率及び塩除去率の変化を表1に示す。   Table 1 shows changes in operating pressure, boron removal rate, TOC removal rate, and salt removal rate in the high-pressure type reverse osmosis membrane module at the start of passing water to be treated, before regeneration, and after the hot water flow step.

Figure 0006415509
Figure 0006415509

(実施例2)
実施例1と同様の逆浸透膜モジュールと同様の逆浸透膜装置を用いて、実施例1と同様に36カ月間超純水を製造した。この超純水製造の過程で、塩基性水溶液による洗浄工程、酸性水溶液による洗浄工程、熱水通水工程を順に行った。各洗浄工程及び熱水通水工程の間は被処理水の通水は停止した。塩基性水溶液による洗浄工程は、塩基性水溶液に界面活性剤を添加した薬剤を用いた。
(Example 2)
Using a reverse osmosis membrane device similar to the reverse osmosis membrane module as in Example 1, 36 months ultrapure water was produced in the same manner as in Example 1. In the process of producing ultrapure water, a washing step with a basic aqueous solution, a washing step with an acidic aqueous solution, and a hot water flow step were sequentially performed. During each washing process and hot water flow process, the flow of treated water was stopped. In the washing step with the basic aqueous solution, a chemical obtained by adding a surfactant to the basic aqueous solution was used.

各洗浄工程及び熱水通水工程の条件は次のとおりである。
(塩基性水溶液による洗浄工程)
薬剤…ノムライトRC750、濃度1質量%
温度…25℃
運転圧力…0.3MPa
給液時間…2時間
薬剤量…50Lを循環運転
The conditions of each washing process and hot water flow process are as follows.
(Washing process with basic aqueous solution)
Drug: Nomlite RC750, concentration 1% by mass
Temperature: 25 ° C
Operating pressure: 0.3 MPa
Liquid supply time… 2 hours Drug amount… 50L circulation operation

(酸性水溶液による洗浄工程)
薬剤…ノムライトRC900K、濃度5質量%
温度…25℃
運転圧力…0.3MPa
給液時間…2時間
薬剤量…50Lを循環運転
(Washing process with acidic aqueous solution)
Drug: Nomlite RC900K, concentration 5% by mass
Temperature: 25 ° C
Operating pressure: 0.3 MPa
Liquid supply time… 2 hours Drug amount… 50L circulation operation

(熱水通水工程)
熱水温度…80℃
熱水水質…比抵抗率18.2MΩ・cm、TOC濃度0.1μgC/Lの超純水を加熱したもの
運転圧力…0.3MPa
給液時間…20時間
通水流量…0.5m/h
(Hot water flow process)
Hot water temperature: 80 ° C
Hot water quality: Heated ultrapure water with a specific resistivity of 18.2 MΩ · cm and a TOC concentration of 0.1 μg C / L Operating pressure: 0.3 MPa
Supply time ... 20 hours Water flow rate ... 0.5 m 3 / h

被処理水の通水開始時(通水初期)、再生前、各洗浄工程後、熱水通水工程後の、高圧型逆浸透膜モジュールにおける運転圧力、ホウ素除去率、TOC除去率及び塩除去率の変化を表2に示す。   Operating pressure, boron removal rate, TOC removal rate, and salt removal in the high-pressure reverse osmosis membrane module at the start of running the treated water (initial flow), before regeneration, after each washing process, and after the hot water flow process The change in rate is shown in Table 2.

Figure 0006415509
Figure 0006415509

(実施例3)
実施例2において、水酸化ナトリウムによる洗浄工程と塩酸による洗浄工程の順序を逆にして、塩酸による洗浄工程、水酸化ナトリウムによる洗浄工程、熱水通水工程を順に行った。これ以外の条件は実施例2と同様にした。
(Example 3)
In Example 2, the order of the washing step with sodium hydroxide and the washing step with hydrochloric acid was reversed, and the washing step with hydrochloric acid, the washing step with sodium hydroxide, and the hot water flow step were performed in this order. The other conditions were the same as in Example 2.

被処理水の通水開始時(通水初期)、再生前、各洗浄工程後、熱水通水工程後の、高圧型逆浸透膜モジュールにおける運転圧力、ホウ素除去率、TOC除去率及び塩除去率を表3に示す。   Operating pressure, boron removal rate, TOC removal rate, and salt removal in the high-pressure reverse osmosis membrane module at the start of running the treated water (initial flow), before regeneration, after each washing process, and after the hot water flow process The rates are shown in Table 3.

Figure 0006415509
Figure 0006415509

(実施例4)
実施例2において、水酸化ナトリウムによる洗浄工程と塩酸による洗浄工程を行わず、直接、熱水通水工程を行った。これ以外の条件は実施例2と同様にした。被処理水の通水開始時(通水初期)、再生前、熱水通水工程後の、高圧型逆浸透膜モジュールにおける運転圧力、ホウ素除去率、TOC除去率及び塩除去率を表4に示す。
Example 4
In Example 2, the washing process with sodium hydroxide and the washing process with hydrochloric acid were not performed, and the hot water flow process was directly performed. The other conditions were the same as in Example 2. Table 4 shows the operating pressure, boron removal rate, TOC removal rate, and salt removal rate in the high-pressure reverse osmosis membrane module at the beginning of the treatment water flow (initial flow), before regeneration, and after the hot water flow step. Show.

Figure 0006415509
Figure 0006415509

表1〜4より、ホウ素除去率が通水初期より10%以上低下した逆浸透膜装置を、上記実施形態の方法で再生させることで、ホウ素除去率が通水初期と同等まで回復することが分かる。   From Tables 1 to 4, it is possible to recover the boron removal rate to the same level as in the initial stage of water flow by regenerating the reverse osmosis membrane device in which the boron removal rate has decreased by 10% or more from the initial level of water flow by the method of the above embodiment. I understand.

実施例1と同様の高圧型逆浸透膜モジュールと同様の逆浸透膜装置を用いて、実施例1と同様に超純水を製造した。超純水製造の過程における、被処理水及び透過水のホウ素濃度、シリカ濃度、ナトリウム濃度を測定して、逆浸透膜装置のホウ素除去率、シリカ除去率、ナトリウム除去率を測定した。また、高圧型逆浸透膜モジュールにおける運転圧力の変化を測定した。結果を、図2のグラフに示す。ホウ素除去率はSievers社 ボロンモニターによる値を用いて算出した。シリカ除去率、ナトリウム除去率は、高周波誘導プラズマ(ICP)発光分光法によって求めた値を用いて算出した。一次側圧力は、ブルドン管式圧力計によって逆浸透膜モジュールへの供給水圧力と濃縮水圧力を測定し、これらの値を用いて上記同様その平均値として算出した。   Ultrapure water was produced in the same manner as in Example 1 using the same reverse osmosis membrane device as the high pressure type reverse osmosis membrane module as in Example 1. In the process of producing ultrapure water, the boron concentration, silica concentration, and sodium concentration of treated water and permeated water were measured, and the boron removal rate, silica removal rate, and sodium removal rate of the reverse osmosis membrane device were measured. Moreover, the change of the operating pressure in a high pressure type reverse osmosis membrane module was measured. The results are shown in the graph of FIG. The boron removal rate was calculated using a value obtained by a Sieves boron monitor. The silica removal rate and sodium removal rate were calculated using values obtained by high frequency induction plasma (ICP) emission spectroscopy. The primary side pressure was calculated as an average value of the same as above by measuring the pressure of water supplied to the reverse osmosis membrane module and the pressure of concentrated water using a Bourdon tube pressure gauge.

図2より、熱水通水工程を行わない場合、ホウ素除去率の低下が、シリカやナトリウムなど、ホウ素以外の塩の除去率の低下や運転圧力(一次側圧力)の低下と比べて、著しく早い段階で起こることが分かる。   From FIG. 2, when the hot water flow process is not performed, the decrease in boron removal rate is markedly lower than the decrease in removal rate of salts other than boron, such as silica and sodium, and the decrease in operating pressure (primary side pressure). You can see that it happens early.

1…超純水製造システム、10…前処理部、20…一次純水製造部、21…逆浸透膜装置(RO)、22…脱気装置(DG)、23…紫外線酸化装置(TOC−UV)、24…混床式イオン交換樹脂装置(MB)、30…二次純水製造部、31…紫外線酸化装置(TOC−UV)、32…脱気膜装置(MDG)、33…非再生型混床式イオン交換樹脂装置(Polisher)、34…限外ろ過装置(UF)、40…タンク(TK)、50…ユースポイント(POU)、211…熱水供給装置、212…洗浄剤供給装置、213…ホウ素除去率測定装置、213a…ホウ素濃度測定装置、213b…演算部。   DESCRIPTION OF SYMBOLS 1 ... Ultrapure water production system, 10 ... Pretreatment part, 20 ... Primary pure water production part, 21 ... Reverse osmosis membrane apparatus (RO), 22 ... Deaeration apparatus (DG), 23 ... Ultraviolet oxidation apparatus (TOC-UV) ), 24 ... Mixed-bed ion exchange resin device (MB), 30 ... Secondary pure water production section, 31 ... Ultraviolet oxidation device (TOC-UV), 32 ... Degassing membrane device (MDG), 33 ... Non-regenerative type Mixed bed type ion exchange resin device (Polisher), 34 ... Ultrafiltration device (UF), 40 ... Tank (TK), 50 ... Use point (POU), 211 ... Hot water supply device, 212 ... Cleaning agent supply device, 213... Boron removal rate measuring device, 213a... Boron concentration measuring device, 213b.

Claims (10)

被処理水中のホウ素を除去して超純水を製造する逆浸透膜装置において、
ホウ素除去率が通水初期より10%以上低下した逆浸透膜装置の再生方法であって、
前記逆浸透膜装置はポリアミド系複合膜からなる逆浸透膜を有し、前記逆浸透膜装置に、70℃〜95℃の熱水を通水させる熱水通水工程を有することを特徴とする逆浸透膜装置の再生方法。
In the reverse osmosis membrane device for producing ultrapure water by removing boron in the treated water,
A method for regenerating a reverse osmosis membrane device in which the boron removal rate is reduced by 10% or more from the initial stage of water flow,
The reverse osmosis membrane device has a reverse osmosis membrane made of a polyamide-based composite membrane, and has a hot water flow process in which hot water of 70 ° C. to 95 ° C. is passed through the reverse osmosis membrane device. A method for regenerating a reverse osmosis membrane device.
前記ホウ素除去率が低下した逆浸透膜装置に、塩基性水溶液及び酸性水溶液から選ばれる1種以上を通液させる洗浄工程を行った後、
前記熱水通水工程を行うことを特徴とする請求項1記載の逆浸透膜装置の再生方法。
After performing a washing step of passing one or more kinds selected from a basic aqueous solution and an acidic aqueous solution through the reverse osmosis membrane device having a reduced boron removal rate,
The method for regenerating a reverse osmosis membrane device according to claim 1, wherein the hot water flow step is performed.
前記洗浄工程は、1時間〜12時間、行うことを特徴とする請求項1又は2記載の逆浸透膜装置の再生方法。   The method for regenerating a reverse osmosis membrane device according to claim 1 or 2, wherein the washing step is performed for 1 hour to 12 hours. 前記熱水通水工程は、1時間〜100時間、行うことを特徴とする請求項1乃至3のいずれか1項記載の逆浸透膜装置の再生方法。   The method for regenerating a reverse osmosis membrane device according to any one of claims 1 to 3, wherein the hot water flow step is performed for 1 hour to 100 hours. 前記塩基性水溶液は、水酸化ナトリウム及び水酸化カリウムから選ばれる1種以上を含む水溶液であることを特徴とする請求項2乃至4のいずれか1項記載の逆浸透膜の再生方法。   The method for regenerating a reverse osmosis membrane according to any one of claims 2 to 4, wherein the basic aqueous solution is an aqueous solution containing at least one selected from sodium hydroxide and potassium hydroxide. 前記熱水通水工程後の前記逆浸透膜装置におけるホウ素除去率が通水初期の値の100%に対して95%以上であることを特徴とする請求項1乃至5のいずれか1項記載の逆浸透膜装置の再生方法。   The boron removal rate in the reverse osmosis membrane device after the hot water flow step is 95% or more with respect to 100% of the initial value of the flow of water. Method of reverse osmosis membrane device. 前記逆浸透膜装置は、高圧型の逆浸透膜装置であることを特徴とする請求項1乃至6のいずれか1項記載の逆浸透膜装置の再生方法。   The method for regenerating a reverse osmosis membrane device according to any one of claims 1 to 6, wherein the reverse osmosis membrane device is a high-pressure type reverse osmosis membrane device. 被処理水中のホウ素を除去して超純水を製造する超純水製造方法であって、
請求項1乃至7のいずれか1項記載の逆浸透膜装置の再生方法によって逆浸透膜装置を再生する再生工程と、
前記再生工程後の逆浸透膜装置に被処理水を通水して、ホウ素の除去された透過水を得る逆浸透膜処理工程と
を有することを特徴とする超純水製造方法。
An ultrapure water production method for producing ultrapure water by removing boron in water to be treated,
A regeneration step of regenerating the reverse osmosis membrane device by the method of regenerating a reverse osmosis membrane device according to any one of claims 1 to 7,
And a reverse osmosis membrane treatment step in which the treated water is passed through the reverse osmosis membrane device after the regeneration step to obtain permeated water from which boron has been removed.
前記透過水を、非再生型混床式イオン交換樹脂装置で処理して、ホウ素濃度が50ng/L以下の超純水を得ることを特徴とする請求項9記載の超純水製造方法。   The method for producing ultrapure water according to claim 9, wherein the permeated water is treated with a non-regenerative mixed bed ion exchange resin apparatus to obtain ultrapure water having a boron concentration of 50 ng / L or less. 被処理水中のホウ素を除去して超純水を得る超純水製造システムであって、
前記超純水製造システムは、
ポリアミド系複合膜からなる逆浸透膜を有し、前記ホウ素を除去する逆浸透膜装置と、
前記逆浸透膜装置におけるホウ素除去率を測定するホウ素除去率測定装置と、
前記ホウ素除去率測定装置におけるホウ素除去率測定装置が通水初期より10%以上低下したときに、前記逆浸透膜装置に熱水を通水する熱水供給装置と
を有することを特徴とする超純水製造システム。
An ultrapure water production system that obtains ultrapure water by removing boron in water to be treated,
The ultrapure water production system is
A reverse osmosis membrane device having a reverse osmosis membrane made of a polyamide-based composite membrane and removing the boron;
A boron removal rate measuring device for measuring a boron removal rate in the reverse osmosis membrane device;
And a hot water supply device for passing hot water through the reverse osmosis membrane device when the boron removal rate measurement device in the boron removal rate measurement device is lowered by 10% or more from the initial stage of water flow. Pure water production system.
JP2016196634A 2016-10-04 2016-10-04 Reverse osmosis membrane regeneration method Active JP6415509B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016196634A JP6415509B2 (en) 2016-10-04 2016-10-04 Reverse osmosis membrane regeneration method
KR1020170125261A KR102398703B1 (en) 2016-10-04 2017-09-27 Method for Recycling Reverse Osmosis Membrane, Process for Producing Ultra Pure Water, and System for Manufacturing Ultra Pure Water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016196634A JP6415509B2 (en) 2016-10-04 2016-10-04 Reverse osmosis membrane regeneration method

Publications (2)

Publication Number Publication Date
JP2018058018A JP2018058018A (en) 2018-04-12
JP6415509B2 true JP6415509B2 (en) 2018-10-31

Family

ID=61908029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016196634A Active JP6415509B2 (en) 2016-10-04 2016-10-04 Reverse osmosis membrane regeneration method

Country Status (2)

Country Link
JP (1) JP6415509B2 (en)
KR (1) KR102398703B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7454330B2 (en) * 2018-06-20 2024-03-22 オルガノ株式会社 Boron removal method in treated water, boron removal system, ultrapure water production system, and boron concentration measurement method
JP7352125B2 (en) * 2018-10-26 2023-09-28 東洋紡エムシー株式会社 Membrane separation equipment and membrane separation method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3426072B2 (en) * 1996-01-17 2003-07-14 オルガノ株式会社 Ultrapure water production equipment
JP3885840B2 (en) * 1997-10-31 2007-02-28 栗田工業株式会社 Pure water production equipment
JPH11333266A (en) * 1998-05-28 1999-12-07 Mitsubishi Rayon Eng Co Ltd Automatic chemical washing/hot water disinfection type reverse osmosis membrane separation device
JP4045658B2 (en) * 1998-08-06 2008-02-13 栗田工業株式会社 Pure water production method
JP5239228B2 (en) * 2007-07-02 2013-07-17 東レ株式会社 Manufacturing method of composite semipermeable membrane
JP2009056406A (en) * 2007-08-31 2009-03-19 Kurita Water Ind Ltd Method of improving rejection rate of permeable membrane, permeable membrane having improved rejection rate, and permeable membrane apparatus
JP2011147894A (en) * 2010-01-22 2011-08-04 Hitachi Ltd Seawater desalination apparatus

Also Published As

Publication number Publication date
JP2018058018A (en) 2018-04-12
KR102398703B1 (en) 2022-05-16
KR20180037586A (en) 2018-04-12

Similar Documents

Publication Publication Date Title
JP5433633B2 (en) Seawater desalination system using forward osmosis membrane
JP5177538B2 (en) Pure water production method and pure water production system
TWI616404B (en) Method and device for processing boron-containing water
JP6415509B2 (en) Reverse osmosis membrane regeneration method
WO2016205726A1 (en) Ceramic membrane system for silica removal and related methods
JP6458302B2 (en) Reverse osmosis membrane cleaning method and reverse osmosis membrane cleaning device
JP5584321B1 (en) Operation method of medical purified water production equipment
JP2018030065A (en) Ultrapure water production system and method
JP5024158B2 (en) Membrane filtration method
JP2010042324A (en) Pure water producing apparatus and pure water producing method
JP2007090249A (en) Method for cleaning membrane deaerator
JP2002085941A (en) Fresh water making process and fresh water maker
KR101806144B1 (en) Desalination system using controlled forward osmosis and reverse osmosis
CN212832953U (en) Concentration system
JP3267468B2 (en) Operating method of reverse osmosis membrane device
CN117677431A (en) Membrane with controlled porosity for in-line filtration
WO2021125002A1 (en) Concentration system
JP2006122787A (en) Seawater desalting method
JP2017148698A (en) Cleansing method for ultrapure water production system
JP2009274021A (en) Cleaning method of hollow fiber membrane module and hollow fiber membrane filter device
Ghomshe Cleaning strategy of fouled reverse osmosis membrane: direct osmosis at high salinities (DO-HS) as on-line technique without interruption of RO operation
JPH11662A (en) Demineralization apparatus and method for boiler water
JP2006130496A (en) Water treatment device and its operating method
JP7318755B1 (en) Operation method of desalting equipment
JP2014039908A (en) Water recovery method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181002

R150 Certificate of patent or registration of utility model

Ref document number: 6415509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250