JP6411145B2 - Near-infrared light-responsive gel material, self-healing material using the gel material, and self-healing method - Google Patents

Near-infrared light-responsive gel material, self-healing material using the gel material, and self-healing method Download PDF

Info

Publication number
JP6411145B2
JP6411145B2 JP2014189219A JP2014189219A JP6411145B2 JP 6411145 B2 JP6411145 B2 JP 6411145B2 JP 2014189219 A JP2014189219 A JP 2014189219A JP 2014189219 A JP2014189219 A JP 2014189219A JP 6411145 B2 JP6411145 B2 JP 6411145B2
Authority
JP
Japan
Prior art keywords
infrared light
liquid crystal
gel
phase
gel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014189219A
Other languages
Japanese (ja)
Other versions
JP2016060811A (en
Inventor
貴広 山本
貴広 山本
能子 武仲
能子 武仲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2014189219A priority Critical patent/JP6411145B2/en
Publication of JP2016060811A publication Critical patent/JP2016060811A/en
Application granted granted Critical
Publication of JP6411145B2 publication Critical patent/JP6411145B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、近赤外光応答性ゲル材料及び該ゲル材料を用いた自己修復性材料並びに自己修復方法に関する。   The present invention relates to a near-infrared light-responsive gel material, a self-healing material using the gel material, and a self-healing method.

現在、全ての産業分野において、環境・エネルギーへの配慮が求められている。CO2排出量や製造エネルギーを低減するためには、部材や機器の耐久性・耐用性を向上させることが効果的である。それも、単に壊れないだけでなく、外観を含めた商品としての価値と寿命を飛躍的に延ばす自己修復材料を開発することが望まれている。 Currently, environmental and energy considerations are required in all industrial fields. In order to reduce CO 2 emissions and manufacturing energy, it is effective to improve the durability and durability of members and equipment. It is also desired to develop a self-healing material that not only breaks but also dramatically extends the value and life of the product including its appearance.

非特許文献1には、液晶材料における液晶相に強引に微粒子を分散して、液晶相中に元々存在する配向欠陥に微粒子を捕捉させることにより、微粒子連続構造体を形成したゲル材料が示されており、このゲル材料によれば、外力を付与することによりゾルとなり、外力の付与を取り除くことによりゲルに復元することになる。
しかしながら、このゲル材料は力学的にゾル−ゲル転移の制御が可能であるものの、微粒子が連続構造体を構築する力は弱く、一旦、力学的にゲル状態が崩壊した場合には、それが、外力が取り除かれてゲル状態に再構築されるためには、比較的長い時間を要する。
Non-Patent Document 1 shows a gel material in which a fine particle continuous structure is formed by forcibly dispersing fine particles in a liquid crystal phase in a liquid crystal material and capturing the fine particles in alignment defects originally present in the liquid crystal phase. According to this gel material, it becomes a sol by applying an external force, and is restored to a gel by removing the application of the external force.
However, although this gel material can control the sol-gel transition dynamically, the force with which the microparticles construct a continuous structure is weak, and once the gel state collapses mechanically, It takes a relatively long time for the external force to be removed and reconstituted into a gel state.

そこで、特許文献1では、液晶材料中に微粒子が分散してなるゲル材料に、光照射に基づく光異性化をもって液晶材料の相構造を液晶相と等方相との間で切り替える光応答性材料を含有させることにより、紫外光照射によるゲルからゾルへの変化、そして、可視光照射によるゾルからゲルへの変化を利用した損傷の自己修復を可能とするゲル材料が提案されている。   Therefore, in Patent Document 1, a photoresponsive material that switches a phase structure of a liquid crystal material between a liquid crystal phase and an isotropic phase by photoisomerization based on light irradiation to a gel material in which fine particles are dispersed in the liquid crystal material. There has been proposed a gel material capable of self-healing damage using a change from gel to sol by irradiation with ultraviolet light and a change from sol to gel by irradiation with visible light.

特開2013−144769号公報JP 2013-144769 A

T.A.Wood, J.S.Lintuvuori, A.B.Schofield, D.Marenduzzo, W.C.K.PoonT, Science,2011,334,79-83.T.A.Wood, J.S.Lintuvuori, A.B.Schofield, D.Marenduzzo, W.C.K.PoonT, Science, 2011, 334, 79-83. Xingchen Ye, Chen Zheng, Jun Chen, Yuzhi Gao, and Christopher B. Murray, Nano Lett. 2013, 13, 765-771.Xingchen Ye, Chen Zheng, Jun Chen, Yuzhi Gao, and Christopher B. Murray, Nano Lett. 2013, 13, 765-771.

特許文献1に記載の自己修復材料によれば、光照射が光応答性材料の光異性化に用いられ、自己修復に、高速な分子形状の変化によって誘起される分子ドミノ効果に基づく液晶材料の相構造転移とそれによるゾル−ゲル転移を利用できることになり、自己修復時間を短縮することができる。しかしながら、使用できる光は、アゾベンゼン化合物等が吸収する紫外光もしくは可視光に限られており、近赤外光は使用できなかった。また、室温での損傷の光修復は難しかった。   According to the self-healing material described in Patent Document 1, light irradiation is used for photoisomerization of a photoresponsive material, and the self-healing of a liquid crystal material based on a molecular domino effect induced by a fast molecular shape change. The phase structure transition and the resulting sol-gel transition can be used, and the self-repair time can be shortened. However, usable light is limited to ultraviolet light or visible light absorbed by the azobenzene compound or the like, and near infrared light cannot be used. Also, photorepair of damage at room temperature was difficult.

本発明は、こうした現状を鑑みてなされたものであって、液晶材料の液晶相から等方相への切り替えに近赤外光を用いることができるとともに、損傷部分の室温での修復が可能なゲル材料を提供することを目的とするものである。   The present invention has been made in view of such a current situation, and near infrared light can be used for switching a liquid crystal material from a liquid crystal phase to an isotropic phase, and a damaged portion can be repaired at room temperature. The object is to provide a gel material.

本発明者らは、上記目的を達成すべく鋭意検討した結果、近赤外光領域に吸収帯を持ち、かつ近赤外光を吸収して発熱する光熱変換作用を示す材料(以下、「近赤外光吸収性材料」という)の光熱変換効果を利用してゲル材料をゲル−ゾル変化させることにより、材料表面に生じた損傷を室温において修復することができ、そして、この近赤外光照射により生じたゾルは、近赤外光照射を止め、冷却されることにより、ゲルへと戻ることができるという知見を得た。
また、さらに検討した結果、近赤外光吸収性材料として、高い効率で光熱変換効果を示すことが知られている金ナノロッドを用いることが好ましいが、製法上、通常はイオン性界面活性剤で保護されている金ナノロッド(非特許文献2等参照)を、液晶材料と微粒子からなるゲル中で会合させることなく均一分散させる必要があることが判明した。
As a result of intensive studies to achieve the above object, the present inventors have found that a material having an absorption band in the near-infrared light region and having a photothermal conversion action that generates heat by absorbing near-infrared light (hereinafter referred to as “near-field”). By using the photothermal conversion effect of the “infrared light-absorbing material” to change the gel material into a gel-sol, damage caused on the surface of the material can be repaired at room temperature. It was found that the sol produced by the irradiation can return to the gel when the near-infrared light irradiation is stopped and cooled.
Further, as a result of further investigation, it is preferable to use a gold nanorod known to exhibit a photothermal conversion effect with high efficiency as the near-infrared light-absorbing material. It has been found that it is necessary to uniformly disperse protected gold nanorods (see Non-Patent Document 2 etc.) without associating them in a gel composed of a liquid crystal material and fine particles.

本発明はこれらの知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。
[1]液晶材料と、
前記液晶材料中に分散し、該液晶材料が等方相に移転したときゾル状態を発現させ、該液晶材料が液晶相に転移したときゲル状態を発揮させる微粒子と、
前記微粒子とともに前記液晶材料中に均一分散し、近赤外光照射に基づく光熱変換効果をもって、該液晶材料の相構造を液晶相と等方相との間で切り替える近赤外光吸収材料、
を含有することを特徴とする近赤外光応答性ゲル材料。
[2]前記近赤外光吸収性材料の光熱交換作用により、前記液晶材料の液晶相から等方相への相構造変化を誘起して、前記ゲル材料をゲル状態からゾル状態へと変化することが可能であることを特徴とする[1]に記載の近赤外光応答性ゲル材料。
[3]前記光応答性材料の光熱変換作用により誘起されるゲル状態からゾル状態への変化を利用することによって、ゲル材料表面に生じた損傷の修復が可能となることを特徴とする[2]に記載の近赤外光応答性ゲル材料。
[4]前記近赤外光吸収材料は、表面が疎水部を有するチオールで保護された金ナノロッドであることを特徴とする[1]〜[3]の近赤外光応答性ゲル材料。
[5]基材と、該基材上に塗布された[1]〜[4]のいずれか記載の近赤外光応答性ゲル材料とからなることを特徴とする、表面の損傷の修復が可能な表面修復材料。
[6][1]〜[4]のいずれかに記載の近赤外光応答性ゲル材料が塗布された基材に近赤外光を照射し、前記近赤外光吸収性材料の光熱交換作用により誘起されるゲル状態からゾル状態への変化を利用することにより、ゲル材料表面に生じた損傷を修復することを特徴とする表面修復方法。
The present invention has been completed based on these findings, and according to the present invention, the following inventions are provided.
[1] a liquid crystal material;
Fine particles that are dispersed in the liquid crystal material, exhibit a sol state when the liquid crystal material is transferred to an isotropic phase, and exhibit a gel state when the liquid crystal material is transferred to a liquid crystal phase;
A near-infrared light-absorbing material that is uniformly dispersed in the liquid crystal material together with the fine particles, and that has a photothermal conversion effect based on near-infrared light irradiation, and switches the phase structure of the liquid crystal material between a liquid crystal phase and an isotropic phase;
A near-infrared light-responsive gel material.
[2] By the photothermal exchange action of the near-infrared light absorbing material, a phase structure change from the liquid crystal phase to the isotropic phase of the liquid crystal material is induced to change the gel material from a gel state to a sol state. The near-infrared light-responsive gel material according to [1], wherein
[3] It is possible to repair damage caused on the surface of the gel material by utilizing the change from the gel state to the sol state induced by the photothermal conversion action of the photoresponsive material [2] ] The near-infrared-light-responsive gel material of description.
[4] The near-infrared light-responsive gel material of [1] to [3], wherein the near-infrared light-absorbing material is a gold nanorod whose surface is protected with a thiol having a hydrophobic portion.
[5] A repair of surface damage, comprising a base material and the near-infrared light-responsive gel material according to any one of [1] to [4] coated on the base material. Possible surface repair material.
[6] The base material coated with the near-infrared light-responsive gel material according to any one of [1] to [4] is irradiated with near-infrared light, and photothermal exchange of the near-infrared light-absorbing material is performed. A surface repair method characterized by repairing damage generated on the surface of a gel material by utilizing a change from a gel state to a sol state induced by an action.

近赤外光は、電化製品のリモコンや赤外線通信などに使用されており、身近にあるため、本発明によれば、ゲル−ゾル変化において光源を準備する必要が無い。また、先行技術では、ゲルからゾルへの変化を起こす際に、紫外光照射のほかに、試料を加温する必要があったが、本発明では加温することなくゲル−ゾル変化が可能である。   Near-infrared light is used for remote control of electronic appliances, infrared communication, and the like, and since it is familiar, according to the present invention, it is not necessary to prepare a light source for gel-sol change. In addition, in the prior art, when the change from gel to sol occurred, it was necessary to heat the sample in addition to ultraviolet light irradiation. However, in the present invention, the gel-sol change is possible without heating. is there.

近赤外吸収材料として金ナノロッドを用いた場合の光熱変換効果を模式的に示す図。The figure which shows typically the photothermal conversion effect at the time of using a gold nanorod as a near-infrared absorption material. 金ナノロッド/微粒子/液晶複合ゲルにおける近赤外光照射によるゲルーゾル光変化を利用した自己修復について模式的に説明する図。The figure which illustrates typically the self-repair using the gel sol light change by near-infrared light irradiation in a gold nanorod / fine particle / liquid crystal composite gel. ゲル試料1の写真。Photo of gel sample 1. (A)ゲル試料1及び(B)ゲル試料4の表面に近赤外光(830nm)を照射した際の、照射部分の温度変化を測定した結果を示す図。The figure which shows the result of having measured the temperature change of the irradiated part at the time of irradiating the near infrared light (830 nm) to the surface of (A) gel sample 1 and (B) gel sample 4. FIG. ゲル試料1について、近赤外光(波長=830nm)照射による液晶の相構造変化を、偏光顕微鏡により観察した写真。The photograph which observed the phase structure change of the liquid crystal by the near infrared light (wavelength = 830 nm) irradiation with the polarization microscope about the gel sample 1. FIG. ゲル試料1が、ゲルからゾル状態へと変化し流動性を示すことを確認した写真。The photograph which confirmed that the gel sample 1 changed from a gel to a sol state, and showed fluidity | liquidity. ゲル試料1の表面に生じた損傷が、近赤外光の照射により修復されることを確認した写真。The photograph which confirmed that the damage which arose on the surface of the gel sample 1 was repaired by irradiation of near-infrared light.

本発明の近赤外光応答性ゲル材料は、液晶材料と、前記液晶材料中に分散し、該液晶材料が等方相に移転したときゾル状態を発現させ、該液晶材料が液晶相に転移したときゲル状態を発揮させる微粒子と、前記微粒子と液晶材料からなる複合材料中に均一分散し、近赤外光照射に基づく光熱変換効果をもって、該液晶材料の相構造を液晶相と等方相との間で切り替える近赤外光吸収材料とを含有することを特徴とするものであって、近赤外光吸収性材料の光熱交換作用により、液晶材料の液晶相から等方相への相構造変化を誘起して、ゲル材料をゲル状態からゾル状態へと変化することが可能である。   The near-infrared light-responsive gel material of the present invention is a liquid crystal material and is dispersed in the liquid crystal material. When the liquid crystal material is transferred to an isotropic phase, a sol state is developed, and the liquid crystal material is transferred to the liquid crystal phase. The liquid crystal material and the isotropic phase have a phase structure of the liquid crystal material uniformly dispersed in the composite material composed of the fine particles and the liquid crystal material, and having a photothermal conversion effect based on near-infrared light irradiation. A near-infrared light absorbing material that switches between the liquid crystal phase and the isotropic phase of the liquid crystal material by the photothermal exchange action of the near-infrared light absorbing material. It is possible to induce a structural change to change the gel material from a gel state to a sol state.

以下、図を用いて、本発明の近赤外光応答性ゲルを用いた自己修復について、説明する。
図1は、近赤外吸収材料として後述する金ナノロッドを用いた場合の光熱変換効果を模式的に示す図であり、金ナノロッドの光熱交換効果により、波長700〜2500nmの近赤外光を照射された金ナノロッドから熱エネルギーが放出されることを示しており、本発明においては、この熱エネルギーが液晶相転移の熱源となる。
Hereinafter, self-repair using the near-infrared light-responsive gel of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram schematically showing a photothermal conversion effect when a gold nanorod, which will be described later, is used as a near-infrared absorbing material. It is shown that thermal energy is released from the gold nanorods formed, and in the present invention, this thermal energy becomes a heat source for liquid crystal phase transition.

図2は、本発明の、金ナノロッド/微粒子/液晶複合ゲルにおける近赤外光照射によるゲルーゾル光変化を利用した自己修復について模式的に説明する図である。
図に示すように、本発明のゲル材料からなる部材の表面の損傷を受けた部分に、近赤外光を照射すると、近赤外光照射部分において、金ナノロッドの光熱交換効果により、液晶相が等方相へと相転移し、ゲル状態からゾル状態への変化が起きる。近赤外光の照射を止めると、照射部分の温度が下がり、等方相が液晶相へと相転移し、ゾル状態がゲル状態へと戻る。
FIG. 2 is a diagram schematically illustrating self-repair using a change in gel-sol light by near-infrared light irradiation in a gold nanorod / fine particle / liquid crystal composite gel of the present invention.
As shown in the figure, when the near-infrared light is irradiated to the damaged part of the surface of the member made of the gel material of the present invention, the liquid crystal phase is caused by the photothermal exchange effect of the gold nanorods in the near-infrared light irradiation part. Phase transitions to the isotropic phase, causing a change from the gel state to the sol state. When the near-infrared light irradiation is stopped, the temperature of the irradiated portion decreases, the isotropic phase transitions to the liquid crystal phase, and the sol state returns to the gel state.

以下、本発明の液晶複合ゲルを構成する材料及び近赤外光について説明する。
〈近赤外光〉
本発明において、近赤外光の波長は、後述する近赤外光吸収性材料の吸収特性により決定されるが、700〜2500nmの範囲にあることが好ましい。さらに、光源の入手容易性の観点からは、800〜1000nmの範囲にあることがより好ましい。
近赤外光の強度は、1mW/cm2以上であることが好ましい。
Hereinafter, the material and near infrared light which comprise the liquid crystal composite gel of this invention are demonstrated.
<Near-infrared light>
In the present invention, the wavelength of near-infrared light is determined by the absorption characteristics of a near-infrared light-absorbing material described later, but is preferably in the range of 700 to 2500 nm. Furthermore, from the viewpoint of easy availability of the light source, it is more preferably in the range of 800 to 1000 nm.
The intensity of near infrared light is preferably 1 mW / cm 2 or more.

〈液晶材料〉
本発明の近赤外光応答性ゲル材料において、液晶材料は、主材料であり、後述する微粒子及び近赤外光吸収性材料と協働して自己修復機能を有する。
本発明における液晶材料は、特に限定されず、液晶分野で知られているものが用いられるが、例えば、液晶材料の骨格構造としては、基本的にビフェニルを初めとして、液晶分野で知られているものが使用される。
<Liquid crystal material>
In the near-infrared light-responsive gel material of the present invention, the liquid crystal material is a main material and has a self-repair function in cooperation with fine particles and a near-infrared light-absorbing material described later.
The liquid crystal material in the present invention is not particularly limited, and those known in the liquid crystal field are used. For example, the skeleton structure of the liquid crystal material is basically known in the liquid crystal field including biphenyl. Things are used.

〈微粒子〉
本発明の近赤外光応答性ゲル材料において、微粒子は、前記液晶材料(相構造)と協働して、当該自己修復性材料のゾル-ゲル状態を可逆的に再現する役割を果たす。部材表面を構成する、例えば被膜などの形態の確保と、部材表面が損傷したときの自己修復とを両立させるためである。
<Fine particles>
In the near-infrared light-responsive gel material of the present invention, the fine particles cooperate with the liquid crystal material (phase structure) to reversibly reproduce the sol-gel state of the self-healing material. This is to achieve both the securing of the form of the member surface, for example, a form such as a film, and the self-repair when the member surface is damaged.

さらに、具体的に説明する。
液晶材料(分散媒)中に、微粒子(分散質)が分散された材料において、微粒子濃度がある一定以上の濃度条件下では、微粒子が液晶中でネットワーク構造を構築し、高粘度のゲル状態(液晶コロイドゲル)を発現する。このゲル状態の発現は、等方相において均一に分散していた微粒子が、液晶材料が等方相から液晶相へと相転移するときに、液晶の配向弾性に基づき、液晶相領域から排出されて等方相領域に凝集し、ネットワーク構造を構築することに基づいている。
その一方、分散媒である液晶材料が液晶相から等方相へと相転移すると、上記とは逆に、微粒子によって構築されたネットワーク構造が崩壊して低粘度のゾル状態が発現する。
このように、微粒子は、液晶材料の相構造に応じて、当該自己修復性材料のゾル-ゲル状態を可逆的に変化させる役割を有する。
Furthermore, it demonstrates concretely.
In a material in which fine particles (dispersoid) are dispersed in a liquid crystal material (dispersion medium), the fine particles build up a network structure in the liquid crystal under a certain concentration condition, and a highly viscous gel state ( Liquid crystal colloidal gel). The expression of this gel state is that fine particles that are uniformly dispersed in the isotropic phase are discharged from the liquid crystal phase region based on the alignment elasticity of the liquid crystal when the liquid crystal material undergoes a phase transition from the isotropic phase to the liquid crystal phase. It is based on agglomeration in the isotropic region and building a network structure.
On the other hand, when the liquid crystal material, which is a dispersion medium, undergoes a phase transition from the liquid crystal phase to the isotropic phase, the network structure constructed by the fine particles collapses and a low-viscosity sol state appears, contrary to the above.
Thus, the fine particles have a role of reversibly changing the sol-gel state of the self-healing material according to the phase structure of the liquid crystal material.

微粒子の材質としては、SiO2、高分子、金属などが用いられる。
また、微粒子の直径については、液晶材料中に分散できる大きさであれば、特に制限はない。ネットワーク構造の構築に微粒子の直径は影響を与えないからである。しかし、微粒子の直径は0.1〜10μm、より好ましくは0.2〜5μmとすることが好ましい。0.1μm以上であれば、密度の面(緻密性等)から好ましいネットワーク構造を構築できる一方、10μmを超えると、粗なネットワーク構造となる傾向があるからである。
さらに、微粒子の表面については、液晶分子が表面に対して垂直に配向するように、化学物質(フッ素系界面活性剤、長鎖アルキルカチオン、レシチン、ポリイミド、シランカップリング剤等)により修飾もしくは物理的(マイクログルーブ構造等)に処理されていることが好ましい。
As the material of the fine particles, SiO 2 , polymer, metal or the like is used.
The diameter of the fine particles is not particularly limited as long as it is a size that can be dispersed in the liquid crystal material. This is because the diameter of the fine particles does not affect the construction of the network structure. However, the diameter of the fine particles is preferably 0.1 to 10 μm, more preferably 0.2 to 5 μm. If it is 0.1 μm or more, a preferable network structure can be constructed from the aspect of density (denseness, etc.), whereas if it exceeds 10 μm, a coarse network structure tends to be formed.
Furthermore, the surface of the fine particles is modified or physically modified with a chemical substance (fluorine surfactant, long chain alkyl cation, lecithin, polyimide, silane coupling agent, etc.) so that the liquid crystal molecules are aligned perpendicular to the surface. It is preferable that the target is processed (such as a micro-groove structure).

微粒子の濃度は、液晶材料に対して、5wt%〜50wt%とされる。5wt%以上とするのは、5wt%未満では、液晶材料と協働してネットワーク構造を十分に構築することができず、これに伴い、十分にゲル化を図ることができないからである。ゲルの強度の観点からは、10wt%以上であることがさらに好まししい。一方、微粒子の濃度の上限については、液晶材料中に分散でき、状況に応じ、液晶材料が液晶相を発現できる限り、特に制限はない。しかし、主成分としての液晶材料に対する微粒子の添加剤としての役割からすれば、微粒子の濃度は、5〜30wt%、より好ましくは20〜30wt%が好ましい。30wt%を超えると、液晶材料の量が相対的に少なくなって、等方相に転移させることにより発現するゾル状態において良好な流動性を低下させる傾向にあるからである。   The concentration of the fine particles is 5 wt% to 50 wt% with respect to the liquid crystal material. The reason why it is 5 wt% or more is that if it is less than 5 wt%, it is impossible to sufficiently build a network structure in cooperation with the liquid crystal material, and accordingly, gelation cannot be sufficiently achieved. From the viewpoint of the strength of the gel, it is more preferably 10 wt% or more. On the other hand, the upper limit of the concentration of fine particles is not particularly limited as long as it can be dispersed in a liquid crystal material and the liquid crystal material can exhibit a liquid crystal phase depending on the situation. However, considering the role of the fine particles as an additive to the liquid crystal material as the main component, the concentration of the fine particles is preferably 5 to 30 wt%, more preferably 20 to 30 wt%. This is because if it exceeds 30 wt%, the amount of the liquid crystal material becomes relatively small, and the good fluidity tends to be lowered in a sol state that is manifested by transition to an isotropic phase.

〈近赤外光吸収性材料〉
本発明の近赤外光応答性ゲル材料において、近赤外光に対して光熱変換効果を示す近赤外光吸収性材料としては、単層カーボンナノチューブ、金ナノ粒子、有機色素などが用いられる。この中で、高い効率で光熱変換効果を示す近赤外光吸収性材料としては、単層カーボンナノチューブと棒状の金ナノ粒子である金ナノロッドが好ましく、特に分散性の観点から、金ナノロッドが好ましい。金ナノロッドは、その表面伝導電子が近赤外光と強く相互作用し、共鳴波長で強い吸収を示すが、発光量子収率が低いため、吸収された光エネルギーは、ほぼ熱に変換され放出される。
<Near-infrared light absorbing material>
In the near-infrared light-responsive gel material of the present invention, single-walled carbon nanotubes, gold nanoparticles, organic dyes, etc. are used as near-infrared light-absorbing materials that exhibit a photothermal conversion effect on near-infrared light. . Among these, as the near-infrared light-absorbing material exhibiting a photothermal conversion effect with high efficiency, single-walled carbon nanotubes and gold nanorods that are rod-shaped gold nanoparticles are preferable, and gold nanorods are particularly preferable from the viewpoint of dispersibility. . Gold nanorods interact strongly with near-infrared light in their surface conduction electrons and exhibit strong absorption at the resonance wavelength. However, because of the low emission quantum yield, the absorbed light energy is almost converted into heat and released. The

金ナノロッドがその光熱変換効果を示すためには、金ナノロッドが媒体中で会合することなく均一分散していることが必要となる。通常、合成終了時の金ナノロッドはその表面がイオン性の界面活性剤に保護されており、水に対しては良好な分散性を示すが、有機溶媒中では強く会合して凝集する。そのため、前記液晶と微粒子とからなるゲル中で、金ナノロッドが光熱変換効果を示すためには、該ゲル中に、金ナノロッドを会合させることなく均一分散させることが必要となる。   In order for gold nanorods to exhibit their photothermal conversion effect, it is necessary that the gold nanorods be uniformly dispersed in the medium without associating. Usually, the gold nanorods at the end of the synthesis are protected by an ionic surfactant and show good dispersibility in water, but strongly associate and aggregate in an organic solvent. Therefore, in order for the gold nanorods to exhibit a photothermal conversion effect in the gel composed of the liquid crystal and fine particles, it is necessary to uniformly disperse the gold nanorods in the gel without associating.

本発明では、金ナノロッドの表面を長鎖アルカンやベンゼン環等の疎水部をもつチオールで保護し、有機溶媒である液晶への分散性を上げることで、金ナノロッドを会合させることなく液晶に分散させた。
これに対し、後述する実施例に示すとおり、表面がイオン性界面活性剤で保護されている金ナノロッドの水分散液に、微粒子/液晶複合ゲルを添加し撹拌したものでは、金ナノロッドは、水相から微粒子/液晶複合ゲルには移動せず、金ナノロッドは微粒子/液晶複合ゲルには分散しない。また、この試料について、水を蒸発させた場合、ペースト状にはなるものの、良好なゲル状態を形成することができない。
以上のことから、本発明においては、金ナノロッドをゲル中に会合させることなく均一分散させる方法として、金ナノロッド表面を、疎水部をもつチオールで保護することが有効であることが分かる。
In the present invention, the surface of the gold nanorod is protected with a thiol having a hydrophobic portion such as a long-chain alkane or a benzene ring, and the dispersibility in the liquid crystal which is an organic solvent is increased, so that the gold nanorod is dispersed in the liquid crystal without associating. I let you.
On the other hand, as shown in the examples to be described later, when the nanoparticle / liquid crystal composite gel is added to an aqueous dispersion of gold nanorods whose surface is protected with an ionic surfactant and stirred, the gold nanorods are water It does not move from the phase to the fine particle / liquid crystal composite gel, and the gold nanorod does not disperse in the fine particle / liquid crystal composite gel. In addition, when water is evaporated for this sample, although it becomes a paste, a good gel state cannot be formed.
From the above, it can be seen that in the present invention, it is effective to protect the gold nanorod surface with a thiol having a hydrophobic portion as a method of uniformly dispersing the gold nanorod without associating it in the gel.

本発明において、疎水部をもつチオールとしては、アルカンチオール、ベンゼンチオール、アルキルベンゼンチオールなどが挙げられる。またジスルフィドでもよいが、モノチオールの方が望ましい。   In the present invention, examples of the thiol having a hydrophobic portion include alkanethiol, benzenethiol, and alkylbenzenethiol. Although disulfide may be used, monothiol is preferable.

本発明において、良好なゲル構造を形成するために、疎水部をもつチオールで保護した金ナノロッドの濃度は、微粒子と液晶の複合ゲルに対して、0.1wt%以上であることが好ましい。   In the present invention, in order to form a good gel structure, the concentration of gold nanorods protected with a thiol having a hydrophobic portion is preferably 0.1 wt% or more with respect to the composite gel of fine particles and liquid crystal.

以下、近赤外光応答性材料として金ナノロッドを用いた自己修復材料を用いた実施例に基づいて、本発明について説明するが、本発明はこの実施例に限定されるものではない。   Hereinafter, the present invention will be described based on examples using self-repairing materials using gold nanorods as near-infrared light-responsive materials, but the present invention is not limited to these examples.

金ナノロッドの調製
金ナノロッドは、非特許文献2に従って合成した。すなわち、成長溶液に結晶核分散液を混合するseed法と呼ばれる方法で合成した。結晶核分散液は、塩化金酸のヘキサデシルトリメチルアンモニウムブロミド(CTAB)水溶液に水素化ホウ素ナトリウムを加え、金を還元することによって得た。また成長溶液は、CTAB水溶液にオレイン酸ナトリウムと硝酸銀、塩化金酸、塩酸、アスコルビン酸を加えて作成した。ここに結晶核分散液を混合し静置することによって、直径21nm、長さ96nm程度の金ナノロッドを得た。この金ナノロッドは、900nm付近に長軸のプラズモンピークを持つ。
合成後、9200rpmで5分間の遠心を2回かけ、溶液中に含まれる余剰なイオン性界面活性剤を洗浄した。そして、洗浄後の金ナノロッド分散液に、等量のクロロホルム溶液を加え、激しく撹拌することで、クロロホルム相、界面活性剤/クロロホルム/水のエマルジョン相、金ナノロッドを含む水相の3相に分けた。ここから金ナノロッドを含む水相を取り出し、水をエバポレーターで完全に除去した。
次にテトラヒドロフランのドデカンチオール溶液1%を加え、3分間超音波をかけてドデカンチオールで表面修飾された金ナノロッドをテトラヒドロフラン溶液中に分散させた
(金ナノロッド試料1)。
また、上記イオン性界面活性剤で表面を保護した金ナノロッドの水分散液(金ナノロッド試料2)と、金ナノロッド試料2から水を蒸発させた粉末(金ナノロッド試料3)も別途調製し、以下の実験に用いた。
Preparation of gold nanorods Gold nanorods were synthesized according to Non-Patent Document 2. That is, it was synthesized by a method called seed method in which the crystal nucleus dispersion was mixed with the growth solution. The crystal nucleus dispersion was obtained by adding sodium borohydride to a hexadecyltrimethylammonium bromide (CTAB) aqueous solution of chloroauric acid to reduce gold. The growth solution was prepared by adding sodium oleate and silver nitrate, chloroauric acid, hydrochloric acid, and ascorbic acid to a CTAB aqueous solution. The crystal nucleus dispersion was mixed and allowed to stand to obtain gold nanorods having a diameter of about 21 nm and a length of about 96 nm. This gold nanorod has a long-axis plasmon peak around 900 nm.
After the synthesis, centrifugation at 9200 rpm for 5 minutes was performed twice to wash away excess ionic surfactant contained in the solution. Then, an equal amount of chloroform solution is added to the gold nanorod dispersion after washing, and the mixture is vigorously stirred to divide into three phases: a chloroform phase, a surfactant / chloroform / water emulsion phase, and an aqueous phase containing gold nanorods. It was. The aqueous phase containing gold nanorods was taken out from this, and water was completely removed by an evaporator.
Next, 1% tetrahydrofuran dodecanethiol solution was added, and the gold nanorods surface-modified with dodecanethiol were dispersed for 3 minutes by ultrasonication to disperse the gold nanorods in the tetrahydrofuran solution (gold nanorod sample 1).
In addition, an aqueous dispersion of gold nanorods (gold nanorod sample 2) whose surface was protected with the ionic surfactant and a powder obtained by evaporating water from the gold nanorod sample 2 (gold nanorod sample 3) were also prepared separately. Used in the experiment.

金ナノロッド、微粒子、液晶の混合物からなるゲルの調製
液晶(1g、4−ヘプチル−4´−シアノビフェニル、液晶相−等方相転移温度=42℃)に、微粒子(0.3g、架橋型ポリスチレン、粒径=3μm)、金ナノロッド試料1(2mL)(金ナノロッド濃度:4.52mg/mL)とトルエン(5mL)を加え、テトラヒドロフランとトルエンを減圧下で、50℃に加熱しながら留去した後、液晶が等方相を示す温度(例えば80℃)に加熱した後、液晶が液晶相を示す温度(例えば、25℃)まで毎分1〜10℃の間の速度で冷却し、実験に使用した(ゲル試料1)。
また、上記組成のうち、金ナノロッド試料2と金ナノロッド試料3をそれぞれ用いたゲル(ゲル試料2とゲル試料3)及び金ナノロッドを含まないゲル(ゲル試料4)も調製して実験に用いた。
Preparation of a gel composed of a mixture of gold nanorods, fine particles and liquid crystal Liquid crystals (1 g, 4-heptyl-4′-cyanobiphenyl, liquid crystal phase-isotropic phase transition temperature = 42 ° C.) and fine particles (0.3 g, cross-linked polystyrene) , Particle size = 3 μm), gold nanorod sample 1 (2 mL) (gold nanorod concentration: 4.52 mg / mL) and toluene (5 mL) were added, and tetrahydrofuran and toluene were distilled off while heating to 50 ° C. under reduced pressure. Then, after heating to a temperature at which the liquid crystal exhibits an isotropic phase (for example, 80 ° C.), the liquid crystal is cooled to a temperature at which the liquid crystal exhibits a liquid crystal phase (for example, 25 ° C.) at a rate of 1-10 ° C. Used (gel sample 1).
In addition, among the above compositions, a gel using the gold nanorod sample 2 and the gold nanorod sample 3 (gel sample 2 and gel sample 3) and a gel not containing the gold nanorod (gel sample 4) were also prepared and used for the experiment. .

微粒子と液晶からなるゲルにおける金ナノロッドの均一分散の確認
上記方法により調製したゲル試料1の写真を図3に示す。
ゲル試料1は均一に着色しており、その色は、金ナノロッドが会合している場合に観察される黒色ではなく、均一分散した場合に観察される紫色であった。
一方、ゲル試料2については、イオン性界面活性剤で保護した金ナノロッドは水相に分散し、ゲル相には分散しなかった。
さらに、ゲル試料3は、イオン性界面活性剤で保護した金ナノロッドがゲル中に分散し、ペースト状の試料になることを目視により確認できたが、良好なゲル状態を形成することができなかった。
これらの結果から、金ナノロッド表面を、疎水部をもつチオールで保護することにより、液晶に均一に分散できるだけでなく、良好なゲル状態も形成できることを確認した。
Confirmation of Uniform Dispersion of Gold Nanorods in Gel Composed of Fine Particles and Liquid Crystal FIG. 3 shows a photograph of gel sample 1 prepared by the above method.
Gel sample 1 was uniformly colored, and the color was not black, which is observed when gold nanorods are associated, but purple, which is observed when uniformly dispersed.
On the other hand, for the gel sample 2, the gold nanorods protected with the ionic surfactant were dispersed in the aqueous phase and not in the gel phase.
Furthermore, although the gel sample 3 was confirmed by visual observation that gold nanorods protected with an ionic surfactant were dispersed in the gel and became a paste-like sample, a good gel state could not be formed. It was.
From these results, it was confirmed that by protecting the gold nanorod surface with a thiol having a hydrophobic portion, not only a uniform dispersion in the liquid crystal but also a good gel state can be formed.

金ナノロッドの光熱変換効果の確認
ゲル試料1及びゲル試料4の表面に、室温において、近赤外光(波長=830nm)を照射し、照射部分の温度変化を、サーモグラフィーを用いて測定した。
その結果、図4に示すとおり、(A)の、金ナノロッドを含有するゲル試料1は、100秒間の近赤外光照射により、照射部分の温度が21.1℃から55.9℃へと上昇した(温度上昇幅:34.8℃)。
一方、(B)の、金ナノロッドを含有していないゲル試料4は、近赤外光照射により、照射部分の温度上昇が21.7℃から26.6℃へと上昇した(温度上昇幅:4.9℃)。
本実施条件において、金ナノロッドを含有するゲル試料1は、金ナノロッドを含有しないゲル試料4に比べて、近赤外光照射時に大きな温度上昇幅が得られており、金ナノロッドが光熱効果を示すことを確認することができた。
Confirmation of photothermal conversion effect of gold nanorod The surface of gel sample 1 and gel sample 4 was irradiated with near-infrared light (wavelength = 830 nm) at room temperature, and the temperature change of the irradiated portion was measured using thermography.
As a result, as shown in FIG. 4, the gel sample 1 containing gold nanorods (A) was irradiated with near-infrared light for 100 seconds, and the temperature of the irradiated portion was changed from 21.1 ° C. to 55.9 ° C. The temperature increased (temperature increase width: 34.8 ° C.).
On the other hand, in the gel sample 4 containing no gold nanorods in (B), the temperature rise of the irradiated portion increased from 21.7 ° C. to 26.6 ° C. by the near infrared light irradiation (temperature rise width: 4.9 ° C).
In this implementation condition, the gel sample 1 containing gold nanorods has a larger temperature rise when irradiated with near infrared light than the gel sample 4 containing no gold nanorods, and the gold nanorods show a photothermal effect. I was able to confirm that.

金ナノロッドの光熱変換効果を利用した液晶相−等方相転移
ゲル試料1について、近赤外光(波長=830nm)照射による液晶の相構造変化を、偏光顕微鏡観察により評価したところ、図5に示すとおり、近赤外光照射による金ナノロッドの光熱変換効果に基づき、照射部分の温度がゲル試料1の調製で用いている液晶の相転移温度(42℃)を超えることにより、照射部分において液晶相から等方相への相転移が誘起されることを確認した。
Regarding the liquid crystal phase-isotropic phase transition gel sample 1 utilizing the photothermal conversion effect of gold nanorods, the phase structure change of the liquid crystal due to irradiation with near infrared light (wavelength = 830 nm) was evaluated by observation with a polarizing microscope. As shown, the temperature of the irradiated part exceeds the phase transition temperature (42 ° C.) of the liquid crystal used in the preparation of the gel sample 1 based on the photothermal conversion effect of the gold nanorods by near-infrared light irradiation. It was confirmed that a phase transition from phase to isotropic phase was induced.

金ナノロッドの光熱変換効果を利用したゲル材料のゲル−ゾル光変化
ゲル試料1について、近赤外光を60秒間照射すると、図6に示すとおり、液晶相において微粒子が3次元ネットワーク構造を形成することにより発現していたゲル状態が、上記金ナノロッドの光熱変換効果によって液晶の相構造が等方相へと変化することにより、3次元ネットワーク構造が崩壊してゾル状態へと変化し、流動性を示すことを確認した。
When the gel-sol light change gel sample 1 of the gel material utilizing the photothermal conversion effect of the gold nanorods is irradiated with near-infrared light for 60 seconds, fine particles form a three-dimensional network structure in the liquid crystal phase as shown in FIG. As a result, the gel state that was expressed by the photothermal conversion effect of the gold nanorods changed the phase structure of the liquid crystal to an isotropic phase, so that the three-dimensional network structure collapsed and changed to a sol state. It was confirmed that

近赤外光を用いた表面損傷の光修復
ゲル試料1の表面に微小な損傷(長さ約0.5cm、幅約0.05cm、深さ約0.3cm)を与えておく。そして、損傷領域に約5分間の近赤外光照射を行うと、図7に示すとおり、上記金ナノロッドの光熱変換効果による光ゾル化が誘起され、流動性を有するゾル状態の試料が損傷部分へと流れ込むことによって損傷部位が修復された。近赤外光照射により誘起されたゾル状態は、近赤外光照射を止め、試料が冷却されることによりゲル状態が復活し、光修復プロセスが完了した。
Surface damage using near-infrared light A minute damage (length: about 0.5 cm, width: about 0.05 cm, depth: about 0.3 cm) is given to the surface of the photorepair gel sample 1. When the damaged region is irradiated with near-infrared light for about 5 minutes, as shown in FIG. 7, photosolation due to the photothermal conversion effect of the gold nanorods is induced, and the sol-like sample having fluidity is damaged. The damaged area was repaired by flowing into The sol state induced by the near-infrared light irradiation stopped the near-infrared light irradiation, and the gel state was restored by cooling the sample, thereby completing the photorepair process.

本発明の近赤外光応答性ゲル材料は、製品や部材等の表面に塗布する塗料やコーティング剤として用いることができ、また、製品や部材の試作に用いる光3D造形用材料としての有用性が考えられる。   The near-infrared light-responsive gel material of the present invention can be used as a paint or coating agent applied to the surface of a product or member, and is useful as an optical 3D modeling material used for trial production of a product or member. Can be considered.

Claims (6)

液晶材料と、
前記液晶材料中に分散し、該液晶材料が等方相に移転したときゾル状態を発現させ、該液晶材料が液晶相に転移したときゲル状態を発揮させる微粒子と、
前記微粒子とともに前記液晶材料中に均一分散し、近赤外光照射に基づく光熱変換効果をもって、該液晶材料の相構造を液晶相と等方相との間で切り替える近赤外光吸収材料、
を含有することを特徴とする近赤外光応答性ゲル材料。
Liquid crystal material,
Fine particles that are dispersed in the liquid crystal material, exhibit a sol state when the liquid crystal material is transferred to an isotropic phase, and exhibit a gel state when the liquid crystal material is transferred to a liquid crystal phase;
A near-infrared light-absorbing material that is uniformly dispersed in the liquid crystal material together with the fine particles, and that has a photothermal conversion effect based on near-infrared light irradiation, and switches the phase structure of the liquid crystal material between a liquid crystal phase and an isotropic phase;
A near-infrared light-responsive gel material.
前記近赤外光吸収性材料の光熱交換作用により、前記液晶材料の液晶相から等方相への相構造変化を誘起して、前記ゲル材料をゲル状態からゾル状態へと変化することが可能であることを特徴とする請求項1に記載の近赤外光応答性ゲル材料。   It is possible to change the gel material from a gel state to a sol state by inducing a phase structure change from the liquid crystal phase to the isotropic phase of the liquid crystal material by the photothermal exchange action of the near infrared light absorbing material. The near-infrared light-responsive gel material according to claim 1, wherein 前記光応答性材料の光熱変換作用により誘起されるゲル状態からゾル状態への変化を利用することによって、ゲル材料表面に生じた損傷の修復が可能となることを特徴とする請求項2に記載の近赤外光応答性ゲル材料。   3. The damage generated on the surface of the gel material can be repaired by utilizing the change from the gel state to the sol state induced by the photothermal conversion action of the photoresponsive material. Near-infrared light-responsive gel material. 前記近赤外光吸収材料は、表面が疎水部を有するチオールで保護された金ナノロッドであることを特徴とする請求項1〜3のいずれか1項に記載の近赤外光応答性ゲル材料。   4. The near-infrared light-responsive gel material according to claim 1, wherein the near-infrared light-absorbing material is a gold nanorod whose surface is protected with a thiol having a hydrophobic portion. . 基材と、該基材上に塗布された請求項1〜4のいずれか1項に記載の近赤外光応答性ゲル材料とからなることを特徴とする、表面の損傷の修復が可能な表面修復材料。   It is possible to repair surface damage, characterized by comprising a base material and the near-infrared light-responsive gel material according to any one of claims 1 to 4 coated on the base material. Surface repair material. 請求項1〜4のいずれか1項に記載の近赤外光応答性ゲル材料が塗布された基材に近赤外光を照射し、前記近赤外光吸収性材料の光熱交換作用により誘起されるゲル状態からゾル状態への変化を利用することにより、ゲル材料表面に生じた損傷を修復することを特徴とする表面修復方法。   A near-infrared light-responsive gel material according to any one of claims 1 to 4 is irradiated with near-infrared light on a substrate coated with the near-infrared light-responsive gel material, and induced by a photothermal exchange action of the near-infrared light-absorbing material. A surface repair method characterized by repairing damage generated on the surface of a gel material by utilizing a change from a gel state to a sol state.
JP2014189219A 2014-09-17 2014-09-17 Near-infrared light-responsive gel material, self-healing material using the gel material, and self-healing method Active JP6411145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014189219A JP6411145B2 (en) 2014-09-17 2014-09-17 Near-infrared light-responsive gel material, self-healing material using the gel material, and self-healing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014189219A JP6411145B2 (en) 2014-09-17 2014-09-17 Near-infrared light-responsive gel material, self-healing material using the gel material, and self-healing method

Publications (2)

Publication Number Publication Date
JP2016060811A JP2016060811A (en) 2016-04-25
JP6411145B2 true JP6411145B2 (en) 2018-10-24

Family

ID=55795786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014189219A Active JP6411145B2 (en) 2014-09-17 2014-09-17 Near-infrared light-responsive gel material, self-healing material using the gel material, and self-healing method

Country Status (1)

Country Link
JP (1) JP6411145B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109796859A (en) * 2019-02-22 2019-05-24 湖北大学 A kind of preparation method and applications of the super-hydrophobic coat with photo-thermal effect
CN115068607B (en) * 2022-06-16 2023-12-29 暨南大学 Phase-transition hydrogel-assisted solid-phase surface light-driven aerogel micro-motor and preparation method and application thereof
CN115212306B (en) * 2022-07-18 2024-04-12 武汉纺织大学 Noble metal-eggshell membrane photo-thermal material and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4383006B2 (en) * 2001-06-15 2009-12-16 株式会社リコー Manufacturing method of liquid crystal display element
JP5264260B2 (en) * 2007-11-29 2013-08-14 国立大学法人九州大学 Preparation method of embedded fine particles
WO2011071167A1 (en) * 2009-12-11 2011-06-16 学校法人東京理科大学 Au-ag core-shell nanorod particles and method for producing same
JP5871268B2 (en) * 2011-05-27 2016-03-01 国立研究開発法人産業技術総合研究所 Self-healing material, method of using self-healing material and gel material
JP5929252B2 (en) * 2012-02-01 2016-06-01 Jnc株式会社 Laminate with self-healing layer and method for producing the same

Also Published As

Publication number Publication date
JP2016060811A (en) 2016-04-25

Similar Documents

Publication Publication Date Title
O'Flaherty et al. Material investigation and optical limiting properties of carbon nanotube and nanoparticle dispersions
Zeng et al. Reshaping formation and luminescence evolution of ZnO quantum dots by laser-induced fragmentation in liquid
Zhu et al. Preparation and thermal conductivity of CuO nanofluid via a wet chemical method
Khatua et al. Plasmonic nanoparticles− liquid crystal composites
Long et al. The WS2 quantum dot: preparation, characterization and its optical limiting effect in polymethylmethacrylate
CN109201438B (en) Composite photon structure material with high color generation, high brightness and low angle dependence and preparation method thereof
Lee et al. Fine golden rings: tunable surface plasmon resonance from assembled nanorods in topological defects of liquid crystals
JP6411145B2 (en) Near-infrared light-responsive gel material, self-healing material using the gel material, and self-healing method
JP2007217258A (en) Carbon nanoparticle dispersion and its production method, and core/shell type carbon nanoparticle and its production method
Zamiri et al. Laser assisted fabrication of ZnO/Ag and ZnO/Au core/shell nanocomposites
Almeida et al. Effect of different surfactants on the shape, growth and photoluminescence behavior of MnWO4 crystals synthesized by the microwave-hydrothermal method
Dong et al. Nonlinear optical responses of α-Fe2O3 nanosheets and application as a saturable absorber in the wide near-infrared region
CN103923620A (en) Preparation method of heat storage composite material based on nanoparticle electromagnetic wave absorption
Zhang et al. Anisotropically enhanced nonlinear optical properties of ensembles of gold nanorods electrospun in polymer nanofiber film
Jin et al. Characterization and nonlinear optical properties of a poly (acrylic acid)–surfactant–multi-walled carbon nanotube complex
Rabinal et al. Electrochemical synthesis and optical properties of organically capped silver nanoparticles
Nasiri et al. Synthesis of Au/Si nanocomposite using laser ablation method
Zheng et al. Encapsulation of graphene oxide/metal hybrids in nanostructured sol–gel silica ORMOSIL matrices and its applications in optical limiting
Wan et al. A library of thermotropic liquid crystals of inorganic nanoparticles and extraordinary performances based on their collective ordering
Rafique et al. Laser nature dependence on enhancement of optical and thermal properties of copper oxide nanofluids
Zheng et al. Construction of a graphene oxide-encapsulated Pt@ TiO2 core/shell ternary composite nanostructure with enhanced optical limiting behavior
Lee et al. Graphene oxide as a Pickering emulsifier for poly (glycidyl methacrylate) composite particles and their suspension rheology under applied electric fields
Torres-Mendieta et al. Fabrication of gold nanoparticles in Therminol VP-1 by laser ablation and fragmentation with fs pulses
Sarisozen et al. Strong coupling of carbon quantum dots in liquid crystals
Singh et al. Chemically functionalized gold nanosphere-blended nematic liquid crystals for photonic applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180926

R150 Certificate of patent or registration of utility model

Ref document number: 6411145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250