JP6407754B2 - Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, lithium ion battery, and method for producing positive electrode active material for lithium ion battery - Google Patents

Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, lithium ion battery, and method for producing positive electrode active material for lithium ion battery Download PDF

Info

Publication number
JP6407754B2
JP6407754B2 JP2015025702A JP2015025702A JP6407754B2 JP 6407754 B2 JP6407754 B2 JP 6407754B2 JP 2015025702 A JP2015025702 A JP 2015025702A JP 2015025702 A JP2015025702 A JP 2015025702A JP 6407754 B2 JP6407754 B2 JP 6407754B2
Authority
JP
Japan
Prior art keywords
positive electrode
lithium ion
active material
electrode active
ion battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015025702A
Other languages
Japanese (ja)
Other versions
JP2016149258A (en
Inventor
友哉 田村
友哉 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2015025702A priority Critical patent/JP6407754B2/en
Priority to PCT/JP2016/051889 priority patent/WO2016129361A1/en
Publication of JP2016149258A publication Critical patent/JP2016149258A/en
Application granted granted Critical
Publication of JP6407754B2 publication Critical patent/JP6407754B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン電池用正極活物質、リチウムイオン電池用正極、リチウムイオン電池、及び、リチウムイオン電池用正極活物質の製造方法に関する。   The present invention relates to a positive electrode active material for lithium ion batteries, a positive electrode for lithium ion batteries, a lithium ion battery, and a method for producing a positive electrode active material for lithium ion batteries.

リチウムイオン電池の正極活物質には、一般にリチウム含有遷移金属酸化物が用いられている。具体的には、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn24)等であり、特性改善(高容量化、サイクル特性、保存特性、内部抵抗低減、レート特性)や安全性を高めるためにこれらを複合化することが進められている。車載用やロードレベリング用といった大型用途におけるリチウムイオン電池には、これまでの携帯電話用やパソコン用とは異なった特性が求められている。 Lithium-containing transition metal oxides are generally used as positive electrode active materials for lithium ion batteries. Specifically, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), etc., improved characteristics (higher capacity, cycle characteristics, storage characteristics, reduced internal resistance) In order to improve the rate characteristics and safety, it is underway to combine them. Lithium ion batteries for large-scale applications such as in-vehicle use and load leveling are required to have different characteristics from those of conventional mobile phones and personal computers.

このようなリチウムイオン電池において求められる電池特性の向上について、従来、種々の研究・開発が行われている。例えば、特許文献1には、Ni,Mn及びCoの1種以上の遷移金属元素とリチウムを含有するリチウム複合酸化物粒子であり、前記リチウム複合酸化物粒子1個の粒子強度が、20〜200MPaの正極活物質が開示されている。そして、これによれば、電池の高出力化で、粒子強度の向上により電極作製時の割れを防ぎ、電子伝導性の低下を防ぐことができると記載されている。   Conventionally, various researches and developments have been made on improving the battery characteristics required for such lithium ion batteries. For example, Patent Document 1 discloses lithium composite oxide particles containing one or more transition metal elements of Ni, Mn, and Co and lithium, and the particle strength of one lithium composite oxide particle is 20 to 200 MPa. A positive electrode active material is disclosed. And according to this, it is described that by increasing the output of the battery, it is possible to prevent cracking during electrode preparation and to prevent a decrease in electronic conductivity by improving the particle strength.

また、特許文献2には、Co、Ni、Mnの群から選ばれる1種の元素とリチウムとを主成分とする単分散の一次粒子の粉体状のリチウム複合酸化物が開示されている。そして、これによれば、正極を一次粒子化することで、プレス時、充放電時の割れを抑制しサイクル特性、負荷特性が向上すると記載されている。   Patent Document 2 discloses a powdered lithium composite oxide of monodispersed primary particles mainly composed of one element selected from the group of Co, Ni, and Mn and lithium. And according to this, it describes that by making the positive electrode primary particles, cracking during pressing and charging / discharging is suppressed and cycle characteristics and load characteristics are improved.

また、特許文献3には、平均直径10〜60nmの空隙を含み、空隙率が0.5〜20%であるリチウム二次電池用正極活物質が開示されている。そして、これによれば、粒子強度を高めて割れを防止して、電解液との熱安定性の向上が可能となると記載されている。   Patent Document 3 discloses a positive electrode active material for a lithium secondary battery including voids having an average diameter of 10 to 60 nm and a porosity of 0.5 to 20%. And according to this, it is described that the particle strength is increased to prevent cracking and the thermal stability with the electrolytic solution can be improved.

特開2007−179917号公報JP 2007-179917 A 特開2004−355824号公報JP 2004-355824 A 特開2012−4109号公報JP 2012-4109 A

上述のように、これまで種々の観点から正極活物質の研究・開発が行われているが、電池特性の向上の点から従来の正極活物質では未だ改良の余地がある。本発明は、電池特性が良好なリチウムイオン電池用正極活物質を提供することを課題とする。   As described above, positive electrode active materials have been researched and developed from various viewpoints, but there is still room for improvement in conventional positive electrode active materials from the viewpoint of improving battery characteristics. This invention makes it a subject to provide the positive electrode active material for lithium ion batteries with favorable battery characteristics.

本発明者は、このような問題を解決するため種々の検討を行った結果、所定の組成のリチウムイオン電池用正極活物質において、平均粒子径D50、粒子強度及び所定の大きさの粒子径に関する粒子内部の平均空隙率をそれぞれ制御することで、電池特性が良好なリチウムイオン電池用正極活物質が得られることを見出した。   As a result of various studies to solve such problems, the inventor of the present invention relates to an average particle diameter D50, a particle strength, and a predetermined particle diameter in a positive electrode active material for a lithium ion battery having a predetermined composition. It has been found that a positive electrode active material for a lithium ion battery with good battery characteristics can be obtained by controlling the average porosity inside the particles.

上記知見を基礎にして完成した本発明は一側面において、組成式:LixNi1-(y+z)MnyCoz2+α(前記式において、0.9≦x≦1.2であり、0<y+z≦0.3であり、−0.1≦α≦0.1である。)で表され、平均粒子径D50が5〜7μmであり、粒子強度が60MPa以上であり、粒子径3μm以上の粒子内部の平均空隙率が5%以下であるリチウムイオン電池用正極活物質である。 The present invention in one aspect been completed on the basis of the above findings, the composition formula: in Li x Ni 1- (y + z ) Mn y Co z O 2 + α ( Formula, 0.9 ≦ x ≦ 1.2 And 0 <y + z ≦ 0.3 and −0.1 ≦ α ≦ 0.1.), The average particle diameter D50 is 5 to 7 μm, and the particle strength is 60 MPa or more. It is a positive electrode active material for a lithium ion battery having an average porosity inside a particle having a particle diameter of 3 μm or more of 5% or less.

本発明のリチウムイオン電池用正極活物質は一実施形態において、二次粒子に占める一次粒子数の比率が40〜75%である。   In one embodiment of the positive electrode active material for a lithium ion battery of the present invention, the ratio of the number of primary particles to the secondary particles is 40 to 75%.

本発明のリチウムイオン電池用正極活物質は別の一実施形態において、比表面積が0.6m2/g以下である。 In another embodiment, the positive electrode active material for a lithium ion battery of the present invention has a specific surface area of 0.6 m 2 / g or less.

本発明は別の一側面において、本発明のリチウムイオン電池用正極活物質を用いたリチウムイオン電池用正極である。   In another aspect, the present invention is a positive electrode for a lithium ion battery using the positive electrode active material for a lithium ion battery of the present invention.

本発明は更に別の一側面において、本発明のリチウムイオン電池用正極を用いたリチウムイオン電池である。   In still another aspect, the present invention is a lithium ion battery using the positive electrode for a lithium ion battery of the present invention.

本発明は更に別の一側面において、リチウム塩を分散させた懸濁液に、Ni、Mn及びCoを含有する金属塩溶液を添加してリチウム金属塩溶液スラリーを得る工程と、前記リチウム金属塩溶液スラリーを乾燥することで、リチウム金属塩の複合体である正極活物質前駆体の粉末を得る工程と、前記正極活物質前駆体の粉末を昇温速度200℃/h以上で焼成する工程と、前記焼成後の粉末を、パルペライザーにより、分級ローター、粉砕ローター共に5000rpm以上の回転速度で解砕する工程を含む本発明のリチウムイオン電池用正極活物質の製造方法である。   According to another aspect of the present invention, a step of adding a metal salt solution containing Ni, Mn and Co to a suspension in which a lithium salt is dispersed to obtain a lithium metal salt solution slurry, and the lithium metal salt A step of obtaining a positive electrode active material precursor powder which is a lithium metal salt composite by drying the solution slurry; and a step of firing the positive electrode active material precursor powder at a temperature rising rate of 200 ° C./h or more. The method for producing a positive electrode active material for a lithium ion battery according to the present invention includes a step of crushing the fired powder with a pulverizer at a rotational speed of 5000 rpm or more for both the classification rotor and the grinding rotor.

本発明のリチウムイオン電池用正極活物質の製造方法は一実施形態において、前記パルペライザーの分級ローター及び粉砕ローターの回転速度が、共に5500〜6500rpmである。   In one embodiment of the method for producing a positive electrode active material for a lithium ion battery according to the present invention, the rotation speeds of the classification rotor and the grinding rotor of the pulverizer are both 5500 to 6500 rpm.

本発明によれば、電池特性が良好なリチウムイオン電池用正極活物質を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the positive electrode active material for lithium ion batteries with a favorable battery characteristic can be provided.

実施例1の粒子表面の電子顕微鏡観察写真である。2 is an electron microscopic observation photograph of the particle surface of Example 1. FIG. 実施例2の粒子表面の電子顕微鏡観察写真である。4 is an electron microscope observation photograph of the particle surface of Example 2. FIG. 比較例1の粒子表面の電子顕微鏡観察写真である。2 is an electron microscope observation photograph of the particle surface of Comparative Example 1. 比較例2の粒子表面の電子顕微鏡観察写真である。6 is an electron microscopic observation photograph of the particle surface of Comparative Example 2.

(リチウムイオン電池用正極活物質の構成)
本発明のリチウムイオン電池用正極活物質は、
組成式:LixNi1-(y+z)MnyCoz2+α(前記式において、0.9≦x≦1.2であり、0<y+z≦0.3であり、−0.1≦α≦0.1である。)で表される。
リチウムイオン電池用正極活物質における全金属に対するリチウムの比率が0.9〜1.2であるが、これは、0.9未満では、安定した結晶構造を保持し難く、1.2超では電池の高容量が確保できなくなるためである。
また、リチウムイオン電池用正極活物質におけるニッケルの組成が0.7以上1.0未満であるため、当該リチウムイオン電池用正極活物質を用いたリチウムイオン電池の容量、出力、安全性の三つがバランスよく向上する。リチウムイオン電池用正極活物質におけるニッケルの組成は好ましくは0.8以上1.0未満、より好ましくは0.9以上1.0未満である。
また、リチウムイオン電池用正極活物質におけるO(酸素)の組成は「O2+α」(−0.1≦α≦0.1)である。ここで、αの値は焼成雰囲気による酸素欠損、又は、吹き込み酸素ガスの導入等で調整することができる。
(Configuration of positive electrode active material for lithium ion battery)
The positive electrode active material for a lithium ion battery of the present invention is
Composition formula: in Li x Ni 1- (y + z ) Mn y Co z O 2 + α ( wherein, a 0.9 ≦ x ≦ 1.2, is 0 <y + z ≦ 0.3, -0 1 ≦ α ≦ 0.1.)
The ratio of lithium to all metals in the positive electrode active material for a lithium ion battery is 0.9 to 1.2. If the ratio is less than 0.9, it is difficult to maintain a stable crystal structure. This is because the high capacity cannot be secured.
Moreover, since the composition of nickel in the positive electrode active material for lithium ion batteries is 0.7 or more and less than 1.0, the capacity, output, and safety of the lithium ion battery using the positive electrode active material for lithium ion batteries are Improve balance. The composition of nickel in the positive electrode active material for a lithium ion battery is preferably 0.8 or more and less than 1.0, more preferably 0.9 or more and less than 1.0.
The composition of O (oxygen) in the positive electrode active material for a lithium ion battery is “O 2 + α ” (−0.1 ≦ α ≦ 0.1). Here, the value of α can be adjusted by oxygen deficiency due to the firing atmosphere, introduction of blown oxygen gas, or the like.

本発明のリチウムイオン電池用正極活物質は、一次粒子が凝集して形成された二次粒子、又は、一次粒子及び二次粒子の混合物で構成されている。これらの一次粒子が凝集して形成された二次粒子、又は、一次粒子及び二次粒子の混合物の平均粒子径D50は5〜7μmである。平均粒子径D50が5〜7μmであれば、ばらつきが抑制された粉体となり、電極組成のばらつきを抑制することができる。このため、リチウムイオン電池に用いたときにレート特性及びサイクル特性等の電池特性が良好となる。
なお、粒子径D50は、日機装株式会社製のマイクロトラックMT3000EX IIで測定した粒度分布における50%径とすることができる。ここで、D50とは、ある粉体の集団の全体積を100%として累積曲線を求めたとき、その累積曲線が50%となる点の粒径を表す。
The positive electrode active material for a lithium ion battery of the present invention is composed of secondary particles formed by aggregation of primary particles, or a mixture of primary particles and secondary particles. The average particle diameter D50 of the secondary particles formed by aggregating these primary particles or the mixture of the primary particles and the secondary particles is 5 to 7 μm. If average particle diameter D50 is 5-7 micrometers, it will become the powder by which the dispersion | variation was suppressed and the dispersion | variation in an electrode composition can be suppressed. For this reason, when used in a lithium ion battery, battery characteristics such as rate characteristics and cycle characteristics are improved.
The particle diameter D50 can be a 50% diameter in the particle size distribution measured with Microtrack MT3000EX II manufactured by Nikkiso Co., Ltd. Here, D50 represents the particle size at which the cumulative curve becomes 50% when the cumulative curve is obtained with the total volume of a certain powder group as 100%.

本発明のリチウムイオン電池用正極活物質は、粒子強度が60MPa以上である。このような構成により、電極作製時のプレスによる粒子の割れ、充放電時の粒子の割れが軽減されることでサイクル時の直流抵抗が低減し、寿命特性が向上する。粒子強度は、好ましくは80MPa以上であり、より好ましくは100MPa以上であり、典型的には、60〜150MPaである。
なお、粒子強度は、例えば、島津製作所製微小圧縮試験機MCT−211にて測定することができる。当該測定は試料台に分散させた粉末サンプルを置き、顕微鏡で平均粒子径D50サイズの二次粒子一粒の中心を狙い、20μmの径の圧子を負荷速度0.532mN/secで押し付け、破断した際の強度をN=10で測定し、その平均値を粒子強度とすることができる。
The positive electrode active material for a lithium ion battery of the present invention has a particle strength of 60 MPa or more. With such a configuration, cracking of particles due to pressing during electrode fabrication and cracking of particles during charging and discharging are reduced, thereby reducing DC resistance during cycling and improving life characteristics. The particle strength is preferably 80 MPa or more, more preferably 100 MPa or more, and typically 60 to 150 MPa.
The particle strength can be measured, for example, with a micro compression tester MCT-211 manufactured by Shimadzu Corporation. The measurement is performed by placing a powder sample dispersed on a sample stage, aiming at the center of one secondary particle having an average particle diameter of D50 with a microscope, pressing an indenter with a diameter of 20 μm at a load speed of 0.532 mN / sec, and breaking. The intensity at that time can be measured at N = 10, and the average value can be used as the particle strength.

本発明のリチウムイオン電池用正極活物質は、粒子径3μm以上の粒子内部の平均空隙率が5%以下である。ここで、粒子径3μm以上の粒子は、一次粒子が凝集した二次粒子であり、このような粒子について、その内部の平均空隙率を5%以下に制御することにより、電極作製時のプレスによる粒子の割れ、充放電時の粒子の割れがより軽減されることでサイクル時の直流抵抗がより低減し、寿命特性がより向上する。粒子径3μm以上の粒子内部の平均空隙率は、好ましくは3%以下であり、より好ましくは1%以下であり、典型的には1〜5%である。
なお、上記平均空隙率は、リチウムイオン電池用正極活物質の粉末に対し、50μm×70μmの観察視野にて撮影した電子顕微鏡による観察写真について、粒子径3μm以上の粒子内部の空隙率を目視で評価することができる。粒子内部の空隙率は、粒子径3μm以上の粒子の面積に対する、当該粒子内部の空隙の面積の割合とする。そして、これらの観察を1つのサンプルに対して10観察視野分行い、それらの平均値を算出し、これを粒子内部の平均空隙率とする。
In the positive electrode active material for a lithium ion battery of the present invention, the average porosity inside the particles having a particle diameter of 3 μm or more is 5% or less. Here, the particles having a particle diameter of 3 μm or more are secondary particles in which primary particles are aggregated, and by controlling the average void ratio inside the particles to 5% or less, it is possible to press the electrodes at the time of electrode preparation. Since the cracking of particles and the cracking of particles during charging and discharging are further reduced, the direct current resistance during cycling is further reduced, and the life characteristics are further improved. The average porosity inside the particles having a particle diameter of 3 μm or more is preferably 3% or less, more preferably 1% or less, and typically 1 to 5%.
In addition, the said average porosity is about the porosity inside a particle | grain with a particle diameter of 3 micrometers or more visually about the observation photograph by the electron microscope image | photographed in the observation visual field of 50 micrometers x 70 micrometers with respect to the powder of the positive electrode active material for lithium ion batteries. Can be evaluated. The porosity inside the particle is the ratio of the area of the void inside the particle to the area of the particle having a particle diameter of 3 μm or more. Then, these observations are performed for 10 observation fields for one sample, the average value thereof is calculated, and this is set as the average porosity inside the particles.

ここで、例えば、特許文献3(特開2012−4109号公報)では、正極活物質において空隙率の制御によって電池特性に影響を与えるという思想が開示されている。しかしながら、特許文献3では、正極活物質全体における空隙率についての思想であり、本発明では粒子径3μm以上の粒子であって、更にその粒子内部についての空隙率の制御が、電池特性の向上に大きな影響を与えることを見出したものである。   Here, for example, Patent Document 3 (Japanese Patent Laid-Open No. 2012-4109) discloses a concept that the battery characteristics are affected by controlling the porosity in the positive electrode active material. However, in Patent Document 3, it is the idea about the porosity in the whole positive electrode active material. In the present invention, particles having a particle diameter of 3 μm or more are further controlled to improve battery characteristics by controlling the porosity inside the particles. It has been found that it has a big influence.

本発明のリチウムイオン電池用正極活物質は、平均粒子径D50を5〜7μmに制御し、且つ、二次粒子に占める一次粒子数の比率が40〜75%に制御されているのが好ましい。このような構成によれば、正極活物質を構成する粒子がより単粒子に近い状態となり、電極作製時のプレスによる粒子の割れ、充放電時の粒子の割れがより軽減されることでサイクル時の直流抵抗がより低減し、寿命特性がより向上する。当該二次粒子に占める一次粒子数の比率は50〜75%に制御されているのがより好ましく、60〜75%に制御されているのがより好ましい。   In the positive electrode active material for a lithium ion battery of the present invention, it is preferable that the average particle diameter D50 is controlled to 5 to 7 μm, and the ratio of the number of primary particles in the secondary particles is controlled to 40 to 75%. According to such a configuration, the particles constituting the positive electrode active material are in a state closer to a single particle, and particle cracking due to pressing during electrode production and particle cracking during charge and discharge are further reduced, thereby reducing the cycle time. The direct current resistance is further reduced, and the life characteristics are further improved. The ratio of the number of primary particles in the secondary particles is more preferably controlled to 50 to 75%, and more preferably 60 to 75%.

上記一次粒子と二次粒子との粒子数の比率は、以下のようにして評価される。まず、サンプルの粉末を樹脂に埋め、50μm×70μmの観察視野にて複数回撮影した電子顕微鏡による観察写真において、ランダムに30個の二次粒子を選ぶ。二次粒子は、例えば図1のSEM像のように、樹脂の部分となる黒色で区切られた灰色をした塊一つと定義する。選んだ二次粒子中に観察される粒界で分けられる1つの塊を一次粒子と定義し、その数を求める。観察面は断面となり2次元での評価となるため、一次粒子の個数は観察される平均個数を3/2乗したものとし、比率は下記式から決定する。
二次粒子に占める一次粒子数の比率={1/(断面観察二次粒子中一次粒子数のN=30平均)3/2}×100(%)
The ratio of the number of primary particles and secondary particles is evaluated as follows. First, 30 secondary particles are selected at random in an observation photograph taken with an electron microscope in which a sample powder is embedded in a resin and photographed multiple times in an observation field of 50 μm × 70 μm. The secondary particles are defined as one gray lump separated by black as a resin portion, for example, as in the SEM image of FIG. One lump divided by the grain boundaries observed in the selected secondary particles is defined as primary particles, and the number is obtained. Since the observation surface becomes a cross-section and is evaluated in two dimensions, the number of primary particles is assumed to be 3/2 of the average number observed, and the ratio is determined from the following equation.
Ratio of the number of primary particles in the secondary particles = {1 / (N = 30 average of the number of primary particles in the cross-section observed secondary particles) 3/2 } × 100 (%)

本発明のリチウムイオン電池用正極活物質は、比表面積が0.6m2/g以下であるのが好ましい。比表面積が0.6m2/gを超えると、表面の抵抗が増加しサイクル特性が悪くなる場合がある。比表面積は好ましくは0.5m2/g以下であり、より好ましくは0.45m2/g以下であり、典型的には0.45〜0.6m2/gである。 The positive electrode active material for a lithium ion battery of the present invention preferably has a specific surface area of 0.6 m 2 / g or less. When the specific surface area exceeds 0.6 m 2 / g, the surface resistance may increase and the cycle characteristics may deteriorate. The specific surface area is preferably not more than 0.5 m 2 / g, more preferably not more than 0.45 m 2 / g, is typically 0.45~0.6m 2 / g.

(リチウムイオン電池用正極及びそれを用いたリチウムイオン電池の構成)
本発明の実施形態に係るリチウムイオン電池用正極は、例えば、上述の構成のリチウムイオン電池用正極活物質と、導電材と、バインダーとを混合して調製した正極合剤をアルミニウム箔等からなる集電体の片面または両面に設けた構造を有している。また、本発明の実施形態に係るリチウムイオン電池は、このような構成のリチウムイオン電池用正極を備えている。
(Configuration of positive electrode for lithium ion battery and lithium ion battery using the same)
The positive electrode for a lithium ion battery according to an embodiment of the present invention comprises, for example, a positive electrode mixture prepared by mixing a positive electrode active material for a lithium ion battery having the above-described configuration, a conductive material, and a binder, such as an aluminum foil. It has a structure provided on one side or both sides of the current collector. Moreover, the lithium ion battery which concerns on embodiment of this invention is equipped with the positive electrode for lithium ion batteries of such a structure.

(リチウムイオン電池用正極活物質の製造方法)
次に、本発明の実施形態に係るリチウムイオン電池用正極活物質の製造方法について詳細に説明する。
まず、金属塩溶液を作製する。当該金属は、Ni、Mn及びCoである。また、金属塩は硫酸塩、塩化物、硝酸塩、酢酸塩等であり、特に硝酸塩が好ましい。これは、焼成原料中に不純物として混入してもそのまま焼成できるため洗浄工程が省けることと、硝酸塩が酸化剤として機能し、焼成原料中の金属の酸化を促進する働きがあるためである。金属塩に含まれる各金属を所望のモル比率となるように調整しておく。これにより、正極活物質中の各金属のモル比率が決定する。
(Method for producing positive electrode active material for lithium ion battery)
Next, the manufacturing method of the positive electrode active material for lithium ion batteries which concerns on embodiment of this invention is demonstrated in detail.
First, a metal salt solution is prepared. The metals are Ni, Mn and Co. The metal salt is sulfate, chloride, nitrate, acetate, etc., and nitrate is particularly preferable. This is because even if it is mixed as an impurity in the firing raw material, it can be fired as it is, so that the washing step can be omitted, and nitrate functions as an oxidant, and promotes the oxidation of the metal in the firing raw material. Each metal contained in the metal salt is adjusted so as to have a desired molar ratio. Thereby, the molar ratio of each metal in the positive electrode active material is determined.

次に、炭酸リチウムを純水に分散させた懸濁液を作製し、その後、上記金属の金属塩溶液を投入して金属炭酸塩溶液スラリーを作製する。このとき、スラリー中に微小粒のリチウム含有炭酸塩が析出する。なお、金属塩として硫酸塩や塩化物等熱処理時にそのリチウム化合物が反応しない場合は飽和炭酸リチウム溶液で洗浄した後、濾別する。硝酸塩や酢酸塩のように、そのリチウム化合物が熱処理中にリチウム原料として反応する場合は洗浄せず、そのまま濾別し、乾燥することにより焼成前駆体として用いることができる。
次に、濾別したリチウム含有炭酸塩を乾燥することにより、リチウム金属塩の複合体(リチウムイオン電池正極材用前駆体)の粉末を得る。
Next, a suspension in which lithium carbonate is dispersed in pure water is prepared, and then the metal salt solution of the metal is added to prepare a metal carbonate solution slurry. At this time, fine particles of lithium-containing carbonate precipitate in the slurry. If the lithium compound does not react during heat treatment such as sulfate or chloride as a metal salt, it is washed with a saturated lithium carbonate solution and then filtered off. When the lithium compound reacts as a lithium raw material during heat treatment, such as nitrate or acetate, it can be used as a calcining precursor without being washed, filtered off as it is, and dried.
Next, the lithium-containing carbonate separated by filtration is dried to obtain a powder of a lithium metal salt complex (a precursor for a lithium ion battery positive electrode material).

次に、所定の大きさの容量を有する焼成容器を準備し、この焼成容器にリチウムイオン電池正極材用前駆体の粉末を充填する。次に、リチウムイオン電池正極材用前駆体の粉末が充填された焼成容器を、焼成炉へ移設し、昇温速度200℃/h以上で焼成することで、正極活物質の表面構造を制御する。このように、焼成時の昇温速度を200℃/h以上に制御することで、正極活物質中の空隙(ポア)が低減し、粒子強度を向上させる。すなわち、硝酸塩等の複合酸化物を前駆体として用いる場合、焼成中のNOx揮発等が原因で粒子中にポアが内包される。焼成中に、前駆体から三元系正極活物質となる際、粒子表面から核が形成される。焼成時の昇温速度が200℃/h未満であると、表面で形成された核によりガス成分の抜けが悪くなるが、本発明では温速度が200℃/h以上であるため、粒子表面での核形成が終了する前にガス発生が起こり、内包されるガスによるポアが軽減される。昇温速度は好ましくは250℃/h以上であり、典型的には200〜300℃/hである。

Next, a firing container having a predetermined capacity is prepared, and this firing container is filled with a precursor powder for a lithium ion battery positive electrode material. Next, the surface structure of the positive electrode active material is controlled by moving the firing container filled with the precursor powder for the lithium ion battery positive electrode material to a firing furnace and firing at a temperature rising rate of 200 ° C./h or more. . Thus, by controlling the rate of temperature increase during firing to 200 ° C./h or more, voids (pores) in the positive electrode active material are reduced, and the particle strength is improved. That is, when a composite oxide such as nitrate is used as a precursor, pores are included in the particles due to NO x volatilization during firing. During firing, nuclei are formed from the surface of the particles when the precursor becomes a ternary positive electrode active material. When the temperature raising rate at firing is lower than 200 ° C. / h, although omission of the gas component is deteriorated by nuclei formed on the surface, since the present invention is heating rate 200 ° C. / h or higher, the particle surface Gas generation occurs before the nucleation is completed, and pores due to the contained gas are reduced. The temperature rising rate is preferably 250 ° C./h or more, and typically 200 to 300 ° C./h.

その後、焼成容器から粉末を取り出し、パルペライザーにより、分級ローター、粉砕ローター共に5000rpm以上の回転速度で解砕することにより正極活物質の粉体を得る。このように、パルペライザーにより、分級ローター、粉砕ローター共に5000rpm以上の回転速度で解砕することで、一次粒子に近い状態の粉体となり、平均粒子径D50、粒子径3μm以上の粒子内部の平均空隙率、二次粒子に占める一次粒子の体積割合を制御することができる。また、これにより、内包されたポアが消失し、さらに粒子強度が強くなる。このため、電極作製時のプレスによる粒子割れ、充放電時の粒子割れが軽減されることでコインセルでの直流抵抗が低減され、サイクル特性が向上する。パルペライザーの分級ローター及び粉砕ローターの回転速度は、共に5500〜6500rpmであるのが好ましく、共に6000〜6500rpmであるのがより好ましい。   Thereafter, the powder is taken out from the firing container, and pulverized by a pulverizer at a rotational speed of 5000 rpm or higher for both the classification rotor and the pulverization rotor to obtain a powder of the positive electrode active material. In this way, both the classification rotor and the grinding rotor are pulverized at a rotational speed of 5000 rpm or more by the pulverizer, so that the powder becomes a state close to primary particles, and the average voids inside the particles having an average particle diameter D50 and a particle diameter of 3 μm or more. The volume ratio of the primary particles to the secondary particles can be controlled. This also eliminates the encapsulated pores and further increases the particle strength. For this reason, the direct current resistance in a coin cell is reduced by reducing the particle crack by the press at the time of electrode preparation, and the particle crack at the time of charging / discharging, and a cycling characteristic improves. The rotation speeds of the classification rotor and the grinding rotor of the pulverizer are both preferably 5500 to 6500 rpm, more preferably 6000 to 6500 rpm.

以下、本発明及びその利点をより良く理解するための実施例を提供するが、本発明はこれらの実施例に限られるものではない。   Examples for better understanding of the present invention and its advantages are provided below, but the present invention is not limited to these examples.

(実施例1〜8)
まず、金属塩に含まれる各金属が表1のモル比率となるように調整した硝酸塩を準備した。次に、炭酸リチウムを純水に懸濁させた後、この金属塩溶液を投入した。
この処理により溶液中に微小粒のリチウム含有炭酸塩が析出したが、この析出物を、フィルタープレスを使用して濾別した。
続いて、析出物を乾燥してリチウム含有炭酸塩(リチウムイオン電池正極材用前駆体)を得た。
次に、焼成容器を準備し、この焼成容器内にリチウム含有炭酸塩を充填した。次に、焼成容器を、大気圧下で、表1に記載の焼成条件にて焼成を行った後、冷却して酸化物を得た。
次に、得られた酸化物を、ホソカワミクロン社製パルペライザーを用いて、分級ローター及び粉砕ローターを表1に記載の解砕回転数に設定して解砕することで、リチウムイオン二次電池正極材の粉末を得た。パルペライザーに投入された原料は、まず回転する粉砕ローターによって砕かれる。その後、砕かれて細かくなった原料の粉末が、分級ローターの隙間を通って回収され、大きく重い原料の粉末は分級ローターを通らず再度回転する粉砕ローターによって解砕される。ここで粉砕ローターの回転速度が速いほど原料は細かく砕かれ、分級ローターの回転速度が速い程細かい粉体しか回収されない。そのため、この2つのローターの回転数の調整は、所望の粒度に解砕された粉体を効率よく回収する条件となる。
(Examples 1-8)
First, nitrates adjusted so that each metal contained in the metal salt had a molar ratio shown in Table 1 were prepared. Next, after suspending lithium carbonate in pure water, this metal salt solution was added.
By this treatment, fine particles of lithium-containing carbonate were precipitated in the solution, and this precipitate was filtered off using a filter press.
Subsequently, the precipitate was dried to obtain a lithium-containing carbonate (a precursor for a lithium ion battery positive electrode material).
Next, a firing container was prepared, and this firing container was filled with a lithium-containing carbonate. Next, after baking the baking container on the baking conditions of Table 1 under atmospheric pressure, it cooled and the oxide was obtained.
Next, the obtained oxide was pulverized by using a pulverizer manufactured by Hosokawa Micron Corporation with the classification rotor and the pulverization rotor set to the pulverization rotation speeds shown in Table 1 to obtain a lithium ion secondary battery positive electrode material. Of powder was obtained. The raw material charged into the pulverizer is first crushed by a rotating crushing rotor. Thereafter, the finely divided raw material powder is collected through the gaps of the classification rotor, and the large and heavy raw material powder is pulverized by the crushing rotor that rotates again without passing through the classification rotor. Here, the higher the rotational speed of the grinding rotor, the finer the raw material, and the faster the rotational speed of the classification rotor, the more fine powder is recovered. Therefore, the adjustment of the rotational speeds of the two rotors is a condition for efficiently recovering the powder crushed to a desired particle size.

(比較例1〜7)
比較例1〜7として、金属塩に含まれる各金属を表1に示すような組成とし、焼成条件及び解砕条件以外は、実施例1〜8と同様の処理を行った。
(Comparative Examples 1-7)
As Comparative Examples 1 to 7, each metal contained in the metal salt had a composition as shown in Table 1, and the same treatment as in Examples 1 to 8 was performed except for the firing conditions and the crushing conditions.

(評価)
−正極材組成の評価−
各正極材中の金属含有量は、誘導結合プラズマ発光分光分析装置(ICP−OES)で測定し、各金属の組成比(モル比)を算出した。各金属の組成比は、表1に記載の通りであることを確認した。また、酸素含有量はLECO法で測定して求めた。
(Evaluation)
-Evaluation of composition of positive electrode material-
The metal content in each positive electrode material was measured with an inductively coupled plasma optical emission spectrometer (ICP-OES), and the composition ratio (molar ratio) of each metal was calculated. It was confirmed that the composition ratio of each metal was as shown in Table 1. Further, the oxygen content was determined by measurement by the LECO method.

−平均粒子径D50の評価−
平均粒子径D50は、日機装株式会社製のマイクロトラックMT3000EX IIで測定した粒度分布における50%径とした。
-Evaluation of average particle diameter D50-
The average particle diameter D50 was a 50% diameter in the particle size distribution measured with Microtrack MT3000EX II manufactured by Nikkiso Co., Ltd.

−粒子強度の評価−
粒子強度は、島津製作所製微小圧縮試験機MCT−211にて測定を行った。測定は試料台に分散させた粉末サンプルを置き、顕微鏡で平均粒子径D50サイズの二次粒子一粒の中心を狙い、20μmの径の圧子を負荷速度0.532mN/secで押し付け、破断した際の強度をN=10で測定し、その平均値を各サンプルの粒子強度とした。
-Evaluation of particle strength-
The particle strength was measured with a micro compression tester MCT-211 manufactured by Shimadzu Corporation. Measurement is performed by placing a powder sample dispersed on a sample stage, aiming at the center of one secondary particle having an average particle diameter of D50 with a microscope, pressing an indenter with a diameter of 20 μm at a load speed of 0.532 mN / sec, and breaking. Was measured at N = 10, and the average value was taken as the particle strength of each sample.

−粒子径3μm以上の粒子内部の平均空隙率の評価−
サンプルの粉末を樹脂に埋め、50μm×70μmの観察視野にて撮影した電子顕微鏡による観察写真について、粒子径3μm以上の粒子内部の空隙率を目視で評価した。粒子内部の空隙率は、粒子径3μm以上の粒子の面積に対する、当該粒子内部の空隙の面積の割合とした。これらの観察を1つのサンプルに対して10観察視野分行い、それらの平均値を算出し、これを粒子内部の平均空隙率とした。
-Evaluation of average porosity inside particles having a particle diameter of 3 μm or more-
A sample powder was embedded in a resin, and an observation photograph taken with an electron microscope taken in an observation field of 50 μm × 70 μm was visually evaluated for porosity inside particles having a particle diameter of 3 μm or more. The void ratio inside the particle was the ratio of the area of the void inside the particle to the area of the particle having a particle diameter of 3 μm or more. These observations were performed for 10 observation fields for one sample, and the average value thereof was calculated, and this was taken as the average porosity inside the particles.

−二次粒子に占める一次粒子数の比率の評価−
一次粒子と二次粒子との粒子数の比率の評価として、まず、サンプルの粉末を樹脂に埋め、50μm×70μmの観察視野にて複数回撮影した電子顕微鏡による観察写真において、ランダムに30個の二次粒子を選ぶ。二次粒子は、例えば図1のSEM像のように、樹脂の部分となる黒色で区切られた灰色をした塊一つと定義する。選んだ二次粒子中に観察される粒界で分けられる1つの塊を一次粒子と定義し、その数を求める。観察面は断面となり2次元での評価となるため、一次粒子の個数は観察される平均個数を3/2乗したものとし、比率は下記式から決定した。
二次粒子に占める一次粒子数の比率={1/(断面観察二次粒子中一次粒子数のN=30平均)3/2}×100(%)
-Evaluation of the ratio of primary particles to secondary particles-
As an evaluation of the ratio of the number of primary particles to secondary particles, first, a sample powder was embedded in a resin, and in an observation photograph taken with an electron microscope taken multiple times in an observation field of 50 μm × 70 μm, 30 particles were randomly selected. Choose secondary particles. The secondary particles are defined as one gray lump separated by black as a resin portion, for example, as in the SEM image of FIG. One lump divided by the grain boundaries observed in the selected secondary particles is defined as primary particles, and the number is obtained. Since the observation surface becomes a cross-section and is evaluated in two dimensions, the number of primary particles is assumed to be 3/2 of the observed average number, and the ratio is determined from the following equation.
Ratio of the number of primary particles in the secondary particles = {1 / (N = 30 average of the number of primary particles in the cross-section observed secondary particles) 3/2 } × 100 (%)

−比表面積の評価−
比表面積の評価は、比表面測定器(Quantachrome社、Monosorb)を使用し、ガラス管に充填・脱気したサンプルを液体窒素下(−196℃)で窒素ガス吸着させ(相対分圧P/P0=0.3)BET法により求めた。
-Evaluation of specific surface area-
The specific surface area was evaluated by using a specific surface measuring device (Quantachrome, Monosorb), and adsorbing the nitrogen gas in the liquid nitrogen (−196 ° C.) with the sample filled and degassed in the glass tube (relative partial pressure P / P 0 = 0.3) Determined by the BET method.

−電池特性(サイクル特性)の評価−
正極活物質と、導電材と、バインダーを90:5:5の割合で秤量し、バインダーを有機溶媒(N−メチルピロリドン)に溶解したものに、正極活物質と導電材とを混合してスラリー化し、Al箔上に塗布して乾燥後にプレスして正極とした。続いて、対極をLiとした評価用の2032型コインセルを作製し、電解液に1M−LiPF6をEC−DMC(1:1)に溶解したものを用いて、室温で1Cの放電電流で得られた初期放電容量と10サイクル後の放電容量とを比較することによってサイクル特性(容量維持率)を測定した。
これらの結果を表1に示す。
-Evaluation of battery characteristics (cycle characteristics)-
A positive electrode active material, a conductive material, and a binder are weighed at a ratio of 90: 5: 5, and the binder is dissolved in an organic solvent (N-methylpyrrolidone). And coated on an Al foil, dried and pressed to obtain a positive electrode. Subsequently, a 2032 type coin cell for evaluation with Li as the counter electrode was prepared, and obtained with 1M-LiPF 6 dissolved in EC-DMC (1: 1) in an electrolytic solution at a discharge current of 1 C at room temperature. The cycle characteristics (capacity retention rate) were measured by comparing the obtained initial discharge capacity with the discharge capacity after 10 cycles.
These results are shown in Table 1.

(評価結果)
実施例1〜8は、いずれも平均粒子径D50が5〜7μmであり、粒子強度が60MPa以上であり、且つ、粒子径3μm以上の粒子内部の平均空隙率が5%以下であり、サイクル特性及び放電容量がいずれも良好であった。
比較例1〜6は、いずれも平均粒子径D50が5〜7μmの範囲外であり、粒子強度が60MPa未満であり、且つ、粒子径3μm以上の粒子内部の平均空隙率が5%超であり、サイクル特性が不良であった。
比較例7は、平均粒子径D50が5〜7μmの範囲外であり、且つ、粒子径3μm以上の粒子内部の平均空隙率が5%超であり、サイクル特性及び放電容量のいずれも不良であった。
(Evaluation results)
In each of Examples 1 to 8, the average particle diameter D50 is 5 to 7 μm, the particle strength is 60 MPa or more, and the average porosity inside the particles having a particle diameter of 3 μm or more is 5% or less. The discharge capacity was good.
In Comparative Examples 1 to 6, the average particle diameter D50 is outside the range of 5 to 7 μm, the particle strength is less than 60 MPa, and the average porosity inside the particles having a particle diameter of 3 μm or more is more than 5%. The cycle characteristics were poor.
In Comparative Example 7, the average particle diameter D50 is outside the range of 5 to 7 μm, the average porosity inside the particles having a particle diameter of 3 μm or more is more than 5%, and both the cycle characteristics and the discharge capacity are poor. It was.

図1に、実施例1の粒子表面の電子顕微鏡観察写真を示す。図2に、実施例2の粒子表面の電子顕微鏡観察写真を示す。図3に、比較例1の粒子表面の電子顕微鏡観察写真を示す。図4に、比較例2の粒子表面の電子顕微鏡観察写真を示す。   In FIG. 1, the electron microscope observation photograph of the particle | grain surface of Example 1 is shown. In FIG. 2, the electron microscope observation photograph of the particle | grain surface of Example 2 is shown. In FIG. 3, the electron microscope observation photograph of the particle | grain surface of the comparative example 1 is shown. In FIG. 4, the electron microscope observation photograph of the particle | grain surface of the comparative example 2 is shown.

Claims (7)

組成式:LixNi1-(y+z)MnyCoz2+α(前記式において、0.9≦x≦1.2であり、0<y+z≦0.3であり、−0.1≦α≦0.1である。)で表され、
平均粒子径D50が5〜7μmであり、
粒子強度が60MPa以上であり、
粒子径3μm以上の粒子内部の平均空隙率が5%以下であるリチウムイオン電池用正極活物質。
Composition formula: in Li x Ni 1- (y + z ) Mn y Co z O 2 + α ( wherein, a 0.9 ≦ x ≦ 1.2, is 0 <y + z ≦ 0.3, -0 .Ltoreq.α ≦ 0.1.)
The average particle diameter D50 is 5-7 μm,
The particle strength is 60 MPa or more,
A positive electrode active material for a lithium ion battery having an average porosity of 5% or less inside particles having a particle diameter of 3 μm or more.
二次粒子に占める一次粒子数の比率が40〜75%である請求項1に記載のリチウムイオン電池用正極活物質。   2. The positive electrode active material for a lithium ion battery according to claim 1, wherein the ratio of the number of primary particles to the secondary particles is 40 to 75%. 比表面積が0.6m2/g以下である請求項1又は2に記載のリチウムイオン電池用正極活物質。 The positive electrode active material for a lithium ion battery according to claim 1, wherein the specific surface area is 0.6 m 2 / g or less. 請求項1〜3のいずれか一項に記載のリチウムイオン電池用正極活物質を用いたリチウムイオン電池用正極。   The positive electrode for lithium ion batteries using the positive electrode active material for lithium ion batteries as described in any one of Claims 1-3. 請求項4に記載のリチウムイオン電池用正極を用いたリチウムイオン電池。   The lithium ion battery using the positive electrode for lithium ion batteries of Claim 4. リチウム塩を分散させた懸濁液に、Ni、Mn及びCoを含有する金属塩溶液を添加してリチウム金属塩溶液スラリーを得る工程と、
前記リチウム金属塩溶液スラリーを乾燥することで、リチウム金属塩の複合体である正極活物質前駆体の粉末を得る工程と、
前記正極活物質前駆体の粉末を昇温速度200℃/h以上で焼成する工程と、
前記焼成後の粉末を、パルペライザーにより、分級ローター、粉砕ローター共に5000rpm以上の回転速度で解砕する工程と、
を含む請求項1〜3のいずれか一項に記載のリチウムイオン電池用正極活物質の製造方法。
Adding a metal salt solution containing Ni, Mn and Co to a suspension in which a lithium salt is dispersed to obtain a lithium metal salt solution slurry;
Drying the lithium metal salt solution slurry to obtain a positive electrode active material precursor powder that is a composite of lithium metal salts; and
Firing the positive electrode active material precursor powder at a heating rate of 200 ° C./h or more;
Crushing the fired powder with a pulverizer at a rotational speed of 5000 rpm or higher for both the classification rotor and the grinding rotor;
The manufacturing method of the positive electrode active material for lithium ion batteries as described in any one of Claims 1-3 containing this.
前記パルペライザーの分級ローター及び粉砕ローターの回転速度が、共に5500〜6500rpmである請求項6に記載のリチウムイオン電池用正極活物質の製造方法。   The method for producing a positive electrode active material for a lithium ion battery according to claim 6, wherein the rotation speeds of the classification rotor and the grinding rotor of the pulverizer are both 5500 to 6500 rpm.
JP2015025702A 2015-02-12 2015-02-12 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, lithium ion battery, and method for producing positive electrode active material for lithium ion battery Active JP6407754B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015025702A JP6407754B2 (en) 2015-02-12 2015-02-12 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, lithium ion battery, and method for producing positive electrode active material for lithium ion battery
PCT/JP2016/051889 WO2016129361A1 (en) 2015-02-12 2016-01-22 Positive-electrode active material for lithium-ion cell, positive electrode for lithium-ion cell, lithium-ion cell, and method for manufacturing positive-electrode active material for lithium-ion cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015025702A JP6407754B2 (en) 2015-02-12 2015-02-12 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, lithium ion battery, and method for producing positive electrode active material for lithium ion battery

Publications (2)

Publication Number Publication Date
JP2016149258A JP2016149258A (en) 2016-08-18
JP6407754B2 true JP6407754B2 (en) 2018-10-17

Family

ID=56615156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015025702A Active JP6407754B2 (en) 2015-02-12 2015-02-12 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, lithium ion battery, and method for producing positive electrode active material for lithium ion battery

Country Status (2)

Country Link
JP (1) JP6407754B2 (en)
WO (1) WO2016129361A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022060207A1 (en) * 2020-09-21 2022-03-24 주식회사 엘지화학 Positive electrode active material manufactured by solid state synthesis, and method for manufacturing same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7113243B2 (en) 2017-08-31 2022-08-05 パナソニックIpマネジメント株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP6495997B1 (en) * 2017-11-20 2019-04-03 住友化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP7137769B2 (en) 2017-12-15 2022-09-15 株式会社Gsユアサ Positive electrode active material for non-aqueous electrolyte secondary battery, transition metal hydroxide precursor, method for producing transition metal hydroxide precursor, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery positive electrode, and non-aqueous electrolyte secondary battery
JP6587044B1 (en) 2017-12-27 2019-10-09 日立金属株式会社 Positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP6994990B2 (en) * 2018-03-13 2022-01-14 住友化学株式会社 Lithium metal composite oxide powder, positive electrode active material for lithium secondary batteries, positive electrodes and lithium secondary batteries
JP2019160573A (en) * 2018-03-13 2019-09-19 住友化学株式会社 Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode, and lithium secondary battery
JP6962838B2 (en) * 2018-03-13 2021-11-05 住友化学株式会社 Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode, and lithium secondary battery
WO2020059471A1 (en) * 2018-09-21 2020-03-26 株式会社田中化学研究所 Positive electrode active material for secondary battery, and method for producing same
JP6669920B1 (en) * 2018-09-21 2020-03-18 株式会社田中化学研究所 Positive electrode active material for secondary battery and method for producing the same
JP6600734B1 (en) * 2018-11-30 2019-10-30 住友化学株式会社 Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode, and lithium secondary battery
JP7198170B2 (en) * 2019-07-30 2022-12-28 Jx金属株式会社 Positive electrode active material for all-solid lithium-ion battery, method for producing positive electrode active material for all-solid-state lithium-ion battery, and all-solid lithium-ion battery
JP7222866B2 (en) * 2019-10-07 2023-02-15 住友化学株式会社 Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode, and lithium secondary battery
JP7264792B2 (en) * 2019-11-12 2023-04-25 Jx金属株式会社 Positive electrode active material for all-solid-state lithium ion battery, positive electrode for all-solid-state lithium-ion battery, all-solid lithium-ion battery, and method for producing positive electrode active material for all-solid-state lithium ion battery
WO2022019273A1 (en) * 2020-07-21 2022-01-27 住友金属鉱山株式会社 Method for producing nickel-containing hydroxide, method for producing positive electrode active material for lithium ion secondary batteries, positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
CN111965204A (en) * 2020-08-14 2020-11-20 厦门厦钨新能源材料股份有限公司 Method for evaluating electrical activity of lithium ion battery anode material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010134156A1 (en) * 2009-05-19 2010-11-25 トヨタ自動車株式会社 Cathode active substance powder material for a lithium ion secondary cell
WO2011086690A1 (en) * 2010-01-15 2011-07-21 トヨタ自動車株式会社 Method for evaluating positive electrode active material
KR101430843B1 (en) * 2010-03-04 2014-08-18 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
KR101309150B1 (en) * 2010-06-13 2013-09-17 삼성에스디아이 주식회사 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR20150030656A (en) * 2012-07-12 2015-03-20 미쓰이금속광업주식회사 Lithium metal complex oxide
JP2016012500A (en) * 2014-06-30 2016-01-21 パナソニック株式会社 Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022060207A1 (en) * 2020-09-21 2022-03-24 주식회사 엘지화학 Positive electrode active material manufactured by solid state synthesis, and method for manufacturing same

Also Published As

Publication number Publication date
JP2016149258A (en) 2016-08-18
WO2016129361A1 (en) 2016-08-18

Similar Documents

Publication Publication Date Title
JP6407754B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, lithium ion battery, and method for producing positive electrode active material for lithium ion battery
JP6574222B2 (en) Lithium nickel cobalt manganese composite oxide positive electrode material having a spherical or similar spherical layer structure, manufacturing method, positive electrode, lithium ion battery, energy storage power plant or portable memory equipment, and use
TWI479726B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
JP5204913B1 (en) Lithium metal composite oxide with layer structure
TWI423504B (en) A positive electrode for a lithium ion battery, a positive electrode for a lithium ion battery, a lithium ion battery, and a method for producing a positive electrode active material for a lithium ion battery
WO2011108389A1 (en) Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
JP5606654B2 (en) Lithium metal composite oxide
JP2018098173A (en) Spherical or pseudo-spherical lithium battery positive electrode material, battery, manufacturing method, and application
JP2015122298A (en) Method for manufacturing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery arranged by use thereof
JP6399737B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6050403B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2016122626A (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP5951518B2 (en) Method for producing lithium metal composite oxide having layer structure
JP5876739B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
WO2012128289A1 (en) Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
JP2014044897A (en) Lithium composite oxide and method for producing the same, positive electrode active material for secondary battery including the lithium composite oxide, positive electrode for secondary battery including the same, and lithium ion secondary battery using the same as positive electrode
TWI453984B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
TWI459619B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
JP6377379B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
TWI520423B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
JP2018006346A (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP6120493B2 (en) Method for producing lithium / manganese composite oxide, method for producing positive electrode for secondary battery containing lithium / manganese composite oxide obtained by the production method, and method for producing lithium ion secondary battery using the same as positive electrode
JP6200932B2 (en) Method for producing lithium metal composite oxide having layer structure
JP2013245114A (en) Production method of lithium-manganese compound oxide, lithium-manganese compound oxide obtained by the production method, positive active material for secondary battery containing the same and lithium ion secondary battery using the same as positive active material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180919

R150 Certificate of patent or registration of utility model

Ref document number: 6407754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250