JP6406375B2 - Flocculant injection control method, control device, and water treatment system - Google Patents

Flocculant injection control method, control device, and water treatment system Download PDF

Info

Publication number
JP6406375B2
JP6406375B2 JP2017047570A JP2017047570A JP6406375B2 JP 6406375 B2 JP6406375 B2 JP 6406375B2 JP 2017047570 A JP2017047570 A JP 2017047570A JP 2017047570 A JP2017047570 A JP 2017047570A JP 6406375 B2 JP6406375 B2 JP 6406375B2
Authority
JP
Japan
Prior art keywords
flocculant
water
value
cationic polymer
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017047570A
Other languages
Japanese (ja)
Other versions
JP2018149495A (en
Inventor
藤井 昭宏
昭宏 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2017047570A priority Critical patent/JP6406375B2/en
Priority to PCT/JP2017/033544 priority patent/WO2018168021A1/en
Priority to TW106132882A priority patent/TW201838701A/en
Publication of JP2018149495A publication Critical patent/JP2018149495A/en
Application granted granted Critical
Publication of JP6406375B2 publication Critical patent/JP6406375B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/30Control equipment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

本発明は、各種産業排水や工業用水等を凝集処理する際における、カチオン性高分子および無機凝集剤の最適な凝集剤量を決定するための制御方法及び装置に関する。また、本発明は、この制御装置を有する水処理システムに関する。   The present invention relates to a control method and apparatus for determining an optimum amount of a coagulant for a cationic polymer and an inorganic coagulant when coagulating various industrial wastewater and industrial water. Moreover, this invention relates to the water treatment system which has this control apparatus.

各種排水・用水の前処理において、濁質および有機物を除去するために凝集処理が用いられている。凝集処理に用いられる凝集剤としては、塩化鉄やポリ塩化アルミニウムなどの鉄系凝集剤やアルミ系無機凝集剤が用いられることが一般的であるが、カチオン性高分子凝集剤を無機凝集剤と併用する凝集処理も行われる。こうした2種類の薬品を用いることで、凝集フロックの粗大化が生じ後段の固液分離操作が容易になるほか、無機凝集剤の添加量を抑えることによる汚泥発生量の削減が可能となる(特許文献1、2)。   In pretreatment of various wastewater and effluents, agglomeration treatment is used to remove turbidity and organic matter. As the aggregating agent used in the aggregating treatment, iron-based aggregating agents such as iron chloride and polyaluminum chloride and aluminum-based inorganic aggregating agents are generally used. The coagulation treatment used together is also performed. By using these two types of chemicals, the flocs of the flocs are coarsened and the subsequent solid-liquid separation operation becomes easy, and the amount of sludge generated can be reduced by suppressing the amount of inorganic flocculant added (patent) References 1, 2).

凝集剤の添加量は被処理水の水質に応じて適切な量を添加する必要がある。薬品量が不足すれば、被処理水中に含まれる濁質や有機物の除去が不十分となり、処理水質の悪化が起こる。一方、薬品量が過剰であれば薬品が後段へリークし、後段処理での負荷増大や汚染を引き起こす可能性がある。   It is necessary to add an appropriate amount of the flocculant according to the quality of the water to be treated. If the amount of chemical is insufficient, the removal of turbidity and organic substances contained in the water to be treated becomes insufficient, resulting in deterioration of the quality of the treated water. On the other hand, if the amount of the chemical is excessive, the chemical leaks to the subsequent stage, which may cause an increase in load and contamination in the subsequent process.

最適な薬品量を決定するためには、ジャーテストを行うことが一般的であるが、多大な手間を要し、被処理水の水質変動のたびにジャーテストを行うことは、実際の水処理において、変動に即時対応することができず、現実的ではない。凝集剤注入量の自動制御においては、被処理水の特定の水質、例えば、濁度や有機物濃度などに基づく制御が行われている(特許文献3、4)。また、凝集処理水の流動電流計の値を指標として、凝集剤注入量を制御する方法が報告されている(特許文献5)。   In order to determine the optimal chemical amount, it is common to perform a jar test. However, it takes a lot of time and it is necessary to perform a jar test every time the quality of treated water changes. However, it is not realistic because it cannot immediately respond to fluctuations. In the automatic control of the flocculant injection amount, control based on the specific water quality of the water to be treated, such as turbidity and organic substance concentration, is performed (Patent Documents 3 and 4). In addition, a method for controlling the amount of flocculant injected using the value of the flow ammeter of the flocculated water as an index has been reported (Patent Document 5).

凝集反応は一般的に、凝集剤による荷電中和により促進されるため、流動電位(流動電流)およびゼータ電位などを利用した界面動電現象に基づく測定を利用した方が、特定の水質項目に注目した制御に比べ、より広い範囲を対象とした被処理水に対し、制御が適用できるものと期待できる。   Aggregation reactions are generally promoted by charge neutralization with an aggregating agent. Therefore, it is better to use measurements based on electrokinetic phenomena using streaming potential (flowing current) and zeta potential. Compared to the focused control, it can be expected that the control can be applied to the treated water for a wider range.

特許第2938270号Japanese Patent No. 2938270 特許第6028826号Patent No. 6028826 特許第4746385号Japanese Patent No. 4746385 特許第5103747号Japanese Patent No. 5103747 特許第5349378号Patent No. 5349378

特許文献1〜3の制御においては、添加量の制御される薬品は1種に限られ、カチオン性高分子凝集剤と無機凝集剤の2種類の薬品を併用した二剤添加処理においては、各薬品の最適添加量までは算出することができない。   In the control of Patent Documents 1 to 3, the amount of chemicals to be added is limited to one, and in the two-agent addition treatment using two types of chemicals, a cationic polymer flocculant and an inorganic flocculant, It is not possible to calculate the optimal amount of chemicals to be added.

本発明は、被処理水に対し、凝集剤として、カチオン性高分子および無機凝集剤の2種類の薬品を添加する系(二剤添加処理)において、2種類の薬品添加量をそれぞれ適切に制御する方法及び装置を提供することを目的とする。   The present invention appropriately controls the amount of two kinds of chemicals added to the water to be treated in a system in which two kinds of chemicals, a cationic polymer and an inorganic flocculant, are added as coagulants to the water to be treated. It is an object to provide a method and apparatus.

本発明は、次を要旨とする。   The gist of the present invention is as follows.

[1] 被処理水にカチオン性高分子凝集剤及び無機凝集剤を添加し、固液分離を行う水処理システムにおける凝集剤注入制御方法であって、
被処理水、又は凝集剤を添加した凝集処理水の流動電位を測定し、測定された流動電位値に基づき、上記カチオン性高分子凝集剤及び無機凝集剤の添加量を求め、この添加量にてカチオン性高分子凝集剤及び無機凝集剤を添加することを特徴とする凝集剤注入制御方法。
[1] A flocculant injection control method in a water treatment system in which a cationic polymer flocculant and an inorganic flocculant are added to water to be treated to perform solid-liquid separation,
Measure the flow potential of water to be treated or flocculated water to which a flocculant has been added, and determine the addition amount of the cationic polymer flocculant and inorganic flocculant based on the measured flow potential value. And adding a cationic polymer flocculant and an inorganic flocculant.

[2] [1]において、事前試験により凝集処理水の流動電位値の最適値と実際の凝集処理水の流動電位値との差から無機凝集剤の不足濃度Aを求め、
無機凝集剤の添加量をa・Aとし、該カチオン性高分子凝集剤の添加量をb・Aとすることを特徴とする凝集剤注入制御方法。
ただし、a=0.1〜0.9
b=0.001〜0.008
[2] In [1], the insufficient concentration A of the inorganic flocculant is determined from the difference between the optimum value of the flow potential value of the flocculated water and the actual flow potential value of the flocculated water in a preliminary test.
A coagulant injection control method, wherein the addition amount of the inorganic flocculant is a · A, and the addition amount of the cationic polymer flocculant is b · A.
However, a = 0.1-0.9
b = 0.001 to 0.008

[3] [2]において、測定された凝集処理水の流動電位値の誤差を補正するために、凝集処理水の流動電位値の測定前もしくは後に標準溶液の流動電位を測定し、標準溶液の流動電位値に基づいて、実際の凝集処理水の流動電位値を補正して補正値を得、凝集処理水の流動電位値の最適値と補正値との差から、無機凝集剤の不足濃度Aを算出することを特徴とする凝集剤注入制御方法。 [3] In [2], in order to correct the error in the measured flow potential value of the flocculated water, the flow potential of the standard solution is measured before or after the measurement of the flow potential value of the flocculated water. Based on the streaming potential value, the actual streaming potential value of the agglomerated treated water is corrected to obtain a corrected value. From the difference between the optimum value of the streaming potential value of the agglomerated treated water and the corrected value, the insufficient concentration A of the inorganic flocculant A The flocculant injection control method is characterized in that:

[4] [3]において、補正を次式で行うことを特徴とする凝集剤注入制御方法。 [4] The flocculant injection control method according to [3], wherein the correction is performed by the following equation.

E2=E1×(R2/R1)
ただし、E1:凝集処理水の流動電位値(実測値)[mV]
E2:凝集処理水の流動電位値(補正値)[mV]
R1:標準液の流動電位値(事前の机上試験評価時)[mV]
R2:標準液の流動電位値(凝集処理水の流動電位測定前もしくは後)[mV]
E2 = E1 × (R2 / R1)
However, E1: Flow potential value of flocculated water (actual measurement value) [mV]
E2: Flow potential value of flocculated water (correction value) [mV]
R1: Streaming potential value of standard solution (at the time of prior desktop test evaluation) [mV]
R2: Streaming potential value of standard solution (before or after measurement of streaming potential of flocculated water) [mV]

[5] [1]において、凝集処理水の一部を測定容器にサンプリングして流動電位を測定し、
測定された流動電位値が負から0の値を示すまでに必要なカチオン性高分子凝集剤の添加量Bを滴定により計測し、
カチオン性高分子凝集剤の追加添加量をc・Bとし、無機凝集剤の追加添加量をd・Bとすることを特徴とする凝集剤注入制御方法。
ただし、c=0.1〜0.9
d=5〜90
[5] In [1], a part of the flocculated water is sampled in a measurement container to measure the streaming potential,
The amount B of the cationic polymer flocculant necessary until the measured streaming potential value shows a value from negative to 0 is measured by titration.
A method for controlling the injection of a flocculant, characterized in that the additional amount of the cationic polymer flocculant is c · B and the additional amount of the inorganic flocculant is d · B.
However, c = 0.1-0.9
d = 5-90

[6] [1]において、被処理水を測定容器にサンプリングし、
測定された流動電位値が負から0の値を示すまでに必要なカチオン性高分子凝集剤の添加量Cを滴定により計測し、
カチオン性高分子凝集剤の添加量をe・Cとし、無機凝集剤の添加量をf・Cとすることを特徴とする凝集剤注入制御方法。
ただし、e=0.1〜0.9
f=5〜90
[6] In [1], the water to be treated is sampled in a measurement container,
The amount C of the cationic polymer flocculant necessary until the measured streaming potential value shows a value from negative to zero is measured by titration.
A coagulant injection control method, characterized in that the addition amount of the cationic polymer flocculant is e · C, and the addition amount of the inorganic flocculant is f · C.
However, e = 0.1-0.9
f = 5-90

[7] 被処理水にカチオン性高分子凝集剤および無機凝集剤を添加し、固液分離を行う水処理システムにおける凝集剤注入制御装置であって、
被処理水、又は凝集剤を添加した凝集処理水の流動電位を測定する流動電位計と、
該流動電位計の計測値に基づき、上記カチオン性高分子凝集剤及び無機凝集剤の添加量をそれぞれ求める算出手段を有することを特徴とする凝集剤注入制御装置。
[7] A flocculant injection control device in a water treatment system that adds a cationic polymer flocculant and an inorganic flocculant to water to be treated and performs solid-liquid separation,
A flow potential meter for measuring the flow potential of the water to be treated or the agglomerated water added with the flocculant;
A flocculant injection control device comprising a calculating means for obtaining the addition amount of the cationic polymer flocculant and the inorganic flocculant based on the measured value of the flow potential meter.

[8] [7]において、前記算出手段が、事前試験により求めた凝集処理水の流動電位値の最適値と制御流動電位の測定値との差から無機凝集剤の不足濃度Aを求める手段と、
無機凝集剤の添加量をa・Aとし、該カチオン性高分子凝集剤の添加量をb・Aとする手段と
を有することを特徴とする凝集剤注入制御装置。
[8] In [7], the calculation means obtains the insufficient concentration A of the inorganic flocculant from the difference between the optimum value of the flow potential value of the flocculated water obtained by the preliminary test and the measured value of the control flow potential; ,
A flocculant injection control device comprising means for setting the addition amount of the inorganic flocculant as a · A and the addition amount of the cationic polymer flocculant as b · A.

[9] [8]において、前記算出手段は、凝集処理水の流動電位値の測定前もしくは後に標準溶液の流動電位を測定する測定手段と、
標準溶液の流動電位値に基づいて、測定された凝集処理水の流動電位値の補正値を得る手段と、
凝集処理水の流動電位値の最適値と補正値との差から、無機凝集剤の不足濃度Aを算出する手段と
を有することを特徴とする凝集剤注入制御装置。
[9] In [8], the calculation means includes a measurement means for measuring the flow potential of the standard solution before or after measurement of the flow potential value of the flocculated water.
Means for obtaining a correction value of the measured streaming potential value of the coagulated treated water based on the streaming potential value of the standard solution;
A flocculant injection control device comprising: means for calculating an insufficient concentration A of the inorganic flocculant from the difference between the optimum value of the flow potential value of the flocculated water and the correction value.

[10] [7]において、凝集処理水の一部を受け入れる測定容器と、
該測定容器に設けられた前記流動電位計と、該流動電位計の計測値が負から0の値を示すまでに必要なカチオン性高分子凝集剤の添加量を滴定により計測する手段と、
該カチオン性高分子凝集剤の追加添加量をc・Bとして算出し、無機凝集剤の追加添加量をd・Bとして算出する手段と
を備えたことを特徴とする凝集剤注入装置。
ただし、c=0.1〜0.9
d=5〜90
[10] In [7], a measuring container for receiving a part of the coagulated water;
The flow potential meter provided in the measurement container, means for measuring by titration the addition amount of the cationic polymer flocculant required until the measured value of the flow potential meter shows a value from negative to zero;
And a means for calculating the additional amount of the cationic polymer flocculant as c · B and calculating the additional amount of the inorganic flocculant as d · B.
However, c = 0.1-0.9
d = 5-90

[11] [7]において、被処理水の一部を受け入れる測定容器と、
該測定容器に設けられた前記流動電位計と、
該流動電位計の計測値が負から0の値を示すまでに必要な該カチオン性高分子の添加量Cを滴定により計測する手段と、
カチオン性高分子凝集剤の添加量をe・Cとして算出し、無機凝集剤の添加量をf・Cとして算出する手段と
を備えたことを特徴とする凝集剤注入制御装置。
ただし、e=0.1〜0.9
f=5〜90
[11] In [7], a measuring container for receiving a part of the water to be treated;
The flow potential meter provided in the measurement container;
Means for measuring the addition amount C of the cationic polymer required by the titration until the measured value of the rheometer shows a value from negative to zero;
A flocculant injection control apparatus comprising: a means for calculating the addition amount of the cationic polymer flocculant as e · C and calculating the addition amount of the inorganic flocculant as f · C.
However, e = 0.1-0.9
f = 5-90

[12] [7]〜[11]のいずれかにおいて、凝集処理水中の凝集フロック間の空隙における濁度を計測するための、光散乱式微粒子センサ又は光遮断式微粒子センサを備えていることを特徴とする凝集剤注入制御装置。 [12] In any one of [7] to [11], a light scattering fine particle sensor or a light blocking fine particle sensor for measuring turbidity in a gap between the aggregation flocs in the aggregation treated water is provided. A flocculant injection control device.

[13] [7]〜[12]のいずれかに記載の凝集剤注入制御装置を有する水処理システムであって、
凝集処理水を固液分離する固液分離手段を有することを特徴とする水処理システム。
[13] A water treatment system having the flocculant injection control device according to any one of [7] to [12],
A water treatment system comprising solid-liquid separation means for solid-liquid separation of flocculated treated water.

[14] [13]において、被処理水のORP値の測定手段と、被処理水のORP値が300mV以上となるように、被処理水へ酸化剤を添加する添加手段とを有することを特徴とする水処理システム。 [14] In [13], the apparatus has a means for measuring the ORP value of the water to be treated and an adding means for adding an oxidizing agent to the water to be treated so that the ORP value of the water to be treated is 300 mV or more. And water treatment system.

本発明によると、被処理水に対し、カチオン性高分子凝集剤および無機凝集剤の2種類の凝集剤を添加する二剤添加処理において、被処理水の水質変動が起きた場合でも各凝集剤の適切な添加量を算出し、凝集不良による後段処理の汚染を防ぐことができる。   According to the present invention, in the two-component addition process in which two kinds of flocculants, a cationic polymer flocculant and an inorganic flocculant, are added to the water to be treated, each flocculant even when the water quality of the water to be treated varies. Therefore, it is possible to prevent the contamination of the subsequent processing due to the aggregation failure.

本発明の実施の形態に係る凝集剤注入制御装置の構成図である。It is a block diagram of the coagulant | flocculant injection | pouring control apparatus which concerns on embodiment of this invention. 実験結果を示すグラフである。It is a graph which shows an experimental result. 本発明の実施の形態に係る凝集剤注入制御装置の構成図である。It is a block diagram of the coagulant | flocculant injection | pouring control apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る凝集剤注入制御装置の構成図である。It is a block diagram of the coagulant | flocculant injection | pouring control apparatus which concerns on embodiment of this invention. 実験結果を示すグラフである。It is a graph which shows an experimental result. 実験結果を示すグラフである。It is a graph which shows an experimental result. 実験結果を示すグラフである。It is a graph which shows an experimental result.

以下、図面を参照して実施の形態について説明する。   Hereinafter, embodiments will be described with reference to the drawings.

図1は第1の実施の形態に係る制御装置を示す構成図である。原水は原水槽1に導入され、必要があれば、原水槽1に備えられたORP計2及び原水槽薬品注入制御装置4により、ORPが300mV以上になるよう酸化剤が添加される。酸化剤としては、次亜塩素酸塩や二酸化塩素化合物が使用できる。   FIG. 1 is a block diagram showing a control device according to the first embodiment. The raw water is introduced into the raw water tank 1, and if necessary, an oxidant is added by the ORP meter 2 and the raw water tank chemical injection control device 4 provided in the raw water tank 1 so that the ORP becomes 300 mV or more. As the oxidizing agent, hypochlorite or chlorine dioxide compounds can be used.

凝集剤添加前にpHを一定に調整する必要がある場合は、原水槽1にpH計3を設置し、原水槽1の前段にpH調整槽1aを設ける形態を取っても良い。pH調整剤として、水酸化ナトリウム、消石灰、塩酸、硫酸などを用いることができる。   When it is necessary to adjust the pH to a certain level before adding the flocculant, a form in which the pH meter 3 is installed in the raw water tank 1 and the pH adjusting tank 1a is provided in front of the raw water tank 1 may be employed. As a pH adjuster, sodium hydroxide, slaked lime, hydrochloric acid, sulfuric acid and the like can be used.

原水槽1内の原水は次いで、凝集槽5に導入されるが、一部がサンプリングセル6に導入される。サンプリングセル6では、一定体積の原水が封入され、滴定装置7によってカチオン性高分子凝集剤溶液による滴定を行うことで、流動電位計8の計測値が負から0の値を示すまでに必要なカチオン性高分子凝集剤の濃度(添加量)を計測することができる。なお、滴定を行う前に、一定時間原水をサンプリングセル6に通水したのち、サンプリングセル6の原水側に取り付けたバルブ9で流れを一旦停止するストップトフロー方式を採用することが望ましい。   The raw water in the raw water tank 1 is then introduced into the coagulation tank 5, but a part is introduced into the sampling cell 6. In the sampling cell 6, a certain volume of raw water is sealed, and titration with a cationic polymer flocculant solution is performed by the titration device 7, which is necessary until the measured value of the rheometer 8 shows a value from negative to zero. The concentration (addition amount) of the cationic polymer flocculant can be measured. In addition, it is desirable to employ a stopped flow method in which the raw water is passed through the sampling cell 6 for a certain period of time before titration and then the flow is temporarily stopped by a valve 9 attached to the raw water side of the sampling cell 6.

滴定に用いるカチオン性高分子凝集剤は、凝集剤として用いるカチオン性高分子凝集剤と同じものを用いることが望ましい。   The cationic polymer flocculant used for titration is desirably the same as the cationic polymer flocculant used as the flocculant.

また、流動電位計8の測定部およびサンプリングセル6内を定期的に洗浄できるよう、サンプリングセル6に洗浄液を導入できるようにしておくことが望ましい。洗浄液としては、被処理水の水質に応じ、酸、アルカリ、酸化剤の1種または2種以上を使用することが望ましい。   In addition, it is desirable to be able to introduce a cleaning solution into the sampling cell 6 so that the measurement part of the flow potential meter 8 and the inside of the sampling cell 6 can be periodically cleaned. As the cleaning liquid, it is desirable to use one or more of acids, alkalis and oxidizing agents depending on the quality of the water to be treated.

凝集槽5では、カチオン性高分子凝集剤および無機凝集剤の2種類の薬品に加え、凝集処理水のpHを一定に調整するためのpH調整剤が凝集剤注入制御装置10によって添加される。   In the agglomeration tank 5, in addition to two kinds of chemicals, a cationic polymer flocculant and an inorganic flocculant, a pH adjuster for adjusting the pH of the agglomerated water to be constant is added by the flocculant injection control device 10.

用いられるカチオン性高分子凝集剤としては、ポリ(ジアリルジメチルアンモニウムクロリド)、ポリ(メタクリル酸2−ジメチルアミノエチル)、ポリジメチルアミノエチルメタクリレート塩化ベンジル四級塩、ポリエチレンイミン、ポリアリルアミン、ポリビニルアミン、ポリ(メタクリル酸2−ジメチルアミノエチル)、ポリ(2−ビニル−1−メチルピリニジウム)、ジアルキルアミン‐エピクロルヒドリン重縮合物、ポリリジン、キトサン、ジエチルアミノエチルデキストランなどが挙げられる。無機凝集剤としては塩化第二鉄、硫酸第二鉄、ポリ塩化第二鉄、ポリ硫酸第二鉄などの鉄系無機凝集剤や塩化アルミニウム、ポリ塩化アルミニウム、硫酸バンド、水酸化アルミニウム、酸化アルミニウムなどのアルミ系無機凝集剤が挙げられる。2種類以上のカチオン性高分子凝集剤の混合物を凝集剤として用いても良いし、2種類以上の無機凝集剤の混合物を無機凝集剤として用いても良い。   Examples of the cationic polymer flocculant used include poly (diallyldimethylammonium chloride), poly (2-dimethylaminoethyl methacrylate), polydimethylaminoethyl methacrylate benzyl quaternary salt, polyethyleneimine, polyallylamine, polyvinylamine, Poly (2-dimethylaminoethyl methacrylate), poly (2-vinyl-1-methylpyridinium), dialkylamine-epichlorohydrin polycondensate, polylysine, chitosan, diethylaminoethyl dextran and the like can be mentioned. Inorganic flocculants include ferrous chloride, ferric sulfate, polyferric chloride, polyferric sulfate, and other iron-based inorganic flocculants, and aluminum chloride, polyaluminum chloride, sulfate bands, aluminum hydroxide, and aluminum oxide. Aluminum-based inorganic flocculants such as A mixture of two or more kinds of cationic polymer flocculants may be used as the flocculant, and a mixture of two or more kinds of inorganic flocculants may be used as the inorganic flocculant.

カチオン性高分子凝集剤および無機凝集剤の添加量は、前述の滴定により求めたカチオン性高分子凝集剤の濃度より算出される(詳細は後述)。カチオン性高分子凝集剤と無機凝集剤は図示の通り別々の凝集槽5,11に添加しても良いし、図示は省略するが同一の凝集槽に添加しても良い。添加順序については、どちらを先に添加しても良く、同時に添加しても良い。   The addition amount of the cationic polymer flocculant and the inorganic flocculant is calculated from the concentration of the cationic polymer flocculant obtained by the above titration (details will be described later). The cationic polymer flocculant and the inorganic flocculant may be added to the separate flocculation tanks 5 and 11 as shown, or may be added to the same flocculation tank although illustration is omitted. As for the order of addition, either may be added first or at the same time.

pH計12で検出される凝集槽11内のpHが所定pHとなるようにpH調整剤が添加される。   A pH adjuster is added so that the pH in the aggregation tank 11 detected by the pH meter 12 becomes a predetermined pH.

凝集槽5内の凝集処理水は次いで凝集センサ槽13に導入される。凝集センサ槽13は、微粒子センサ14を備えている。微粒子センサ14としては、凝集フロックの空隙の濁度を測定するための、レーザー光を放射するための発光器と、散乱したレーザー光を検出するためのプローブを備えた光散乱式微粒子センサ(例えば特許第3925621号に記載のものなど)又は光遮断式微粒子センサなどを用いることができる。   The agglomerated water in the agglomeration tank 5 is then introduced into the agglomeration sensor tank 13. The aggregation sensor tank 13 includes a fine particle sensor 14. As the fine particle sensor 14, a light scattering fine particle sensor (for example, a light emitting device for emitting laser light for measuring the turbidity of the voids of the aggregation floc and a probe for detecting the scattered laser light (for example, Patent No. 3925621) or a light blocking fine particle sensor can be used.

微粒子センサ14で計測された凝集フロックの空隙の濁度が上昇した場合は、水質変動に対する凝集剤二剤の添加量の不足あるいは過剰、または、カチオン性高分子凝集剤と無機凝集剤の添加量の比率が不適切な場合のいずれかの理由で凝集の不良が生じていると考えられる。   When the turbidity of the flocculation flocs measured by the fine particle sensor 14 is increased, the addition amount of the two coagulants for the water quality fluctuation is insufficient or excessive, or the addition amount of the cationic polymer coagulant and the inorganic coagulant. It is considered that a poor aggregation occurs due to any of the reasons that the ratio is inappropriate.

なお、流動電位計8の計測値に基づく凝集剤添加量の自動調節は、定期的な間隔で実施するよう設定しても良いし、あるいは/かつ、微粒子センサ14で計測した凝集フロックの空隙の濁度の上昇時に実施するよう設定しても良い。   Note that the automatic adjustment of the flocculant addition amount based on the measured value of the flow potential meter 8 may be set to be performed at regular intervals, and / or the voids of the floc floc measured by the fine particle sensor 14 may be set. You may set to carry out at the time of turbidity rise.

凝集センサ槽13内の凝集処理水は処理水ポンプ15を介して、固液分離処理設備へ送水される。固液分離処理としては、膜分離処理、砂ろ過処理、沈殿処理、加圧浮上処理が挙げられる。   The agglomerated treated water in the agglomeration sensor tank 13 is sent to the solid-liquid separation treatment facility via the treated water pump 15. Examples of the solid-liquid separation treatment include membrane separation treatment, sand filtration treatment, precipitation treatment, and pressure flotation treatment.

流動電位計8で求めた滴定値から、カチオン性高分子凝集剤および無機凝集剤の添加量をそれぞれ算出する方法は例えば図2のような結果から求めることができる。   A method for calculating the addition amounts of the cationic polymer flocculant and the inorganic flocculant from the titration values obtained by the flow potential meter 8 can be obtained from the results shown in FIG. 2, for example.

図2はカチオン性高分子凝集剤の添加濃度と流動電位値の関係の一例を示した滴定曲線である。例えば、荷電中和に必要な滴定量(C)は、流動電位値が0mVに達したときのカチオン性高分子凝集剤の添加濃度(ここでは約5mg/L)である。   FIG. 2 is a titration curve showing an example of the relationship between the addition concentration of the cationic polymer flocculant and the streaming potential value. For example, the titer (C) necessary for charge neutralization is the addition concentration of the cationic polymer flocculant (here, about 5 mg / L) when the streaming potential value reaches 0 mV.

無機凝集剤の添加量は、被処理水の水質および使用する無機凝集剤の種類にもよるが、Cより多く、好ましくはCの5〜90倍(すなわちC×5〜C×90)特に10〜50倍の範囲内になるよう調整設定することが望ましい。カチオン性高分子凝集剤の添加量は、被処理水の水質および使用するカチオン性高分子凝集剤の種類にもよるが、Cより少なく、好ましくはCの0.1〜0.9倍(すなわちC×0.1〜C×0.9)特に0.5〜0.9倍の範囲内になるよう調整設定することが望ましい。   The amount of inorganic flocculant added depends on the quality of the water to be treated and the type of inorganic flocculant used, but is more than C, preferably 5 to 90 times C (ie C × 5 to C × 90), especially 10 It is desirable to adjust and set to be within a range of ˜50 times. The amount of the cationic polymer flocculant added depends on the quality of the water to be treated and the type of the cationic polymer flocculant used, but is less than C, preferably 0.1 to 0.9 times C (that is, C.times.0.1 to C.times.0.9) It is desirable to adjust and set to be within a range of 0.5 to 0.9 times.

図3は本発明の別の実施の形態に係る凝集剤注入制御装置の構成の概略図である。   FIG. 3 is a schematic diagram of a configuration of a flocculant injection control device according to another embodiment of the present invention.

図3の制御装置は、図1のフィードフォワード制御をフィードバック制御に変更したものである。すなわち、サンプリングセル6は、凝集センサ槽13からの凝集処理水の一部を受け入れ、測定後の水を凝集センサ槽13に戻すように設置されている。   The control device in FIG. 3 is obtained by changing the feedforward control in FIG. 1 to feedback control. That is, the sampling cell 6 is installed so as to receive a part of the flocculated water from the flocculation sensor tank 13 and return the measured water to the flocculation sensor tank 13.

このサンプリングセル6には流動電位計8が設けられている。前記と同様のカチオン性高分子凝集剤を用いた滴定により、現在の薬品注入量から不足した分の凝集剤量を計測することができる。なお、サンプリングセル6は、凝集槽11からの凝集処理水を導入するように設置されてもよく、固液分離装置の後段に設置して固液分離処理水を導入しても良い。   The sampling cell 6 is provided with a flow potential meter 8. By titration using the same cationic polymer flocculant as described above, the amount of flocculant that is insufficient from the current amount of chemical injection can be measured. The sampling cell 6 may be installed so as to introduce the agglomerated treated water from the agglomeration tank 11, or may be installed at the subsequent stage of the solid-liquid separation device to introduce the solid-liquid separated treated water.

流動電位計8から得られた荷電中和に必要な滴定量(B)から、無機凝集剤の追加添加量は、被処理水の水質および使用する無機凝集剤の種類にもよるが、Bよりも多く、好ましくはBの5〜90倍(すなわちB×5〜B×90)好ましくはBの10〜50倍の範囲内になるよう調整設定することが望ましい。また、カチオン性高分子凝集剤の追加添加量は、被処理水の水質および使用するカチオン性高分子凝集剤の種類にもよるが、Bよりも少なく、好ましくはBの0.1〜0.9倍(すなわちB×0.1〜B×0.9)好ましくはBの0.5〜0.9倍の範囲内になるよう調整設定することが望ましい。   From the titration amount (B) required for charge neutralization obtained from the flow potential meter 8, the additional amount of the inorganic flocculant depends on the quality of the water to be treated and the type of the inorganic flocculant used. It is desirable to adjust and set it within the range of preferably 5 to 90 times B (that is, B × 5 to B × 90), preferably 10 to 50 times B. The additional amount of the cationic polymer flocculant depends on the quality of the water to be treated and the kind of the cationic polymer flocculant used, but is less than B, preferably 0.1 to 0. It is desirable to adjust and set 9 times (that is, B × 0.1 to B × 0.9), preferably 0.5 to 0.9 times B.

なお、被処理水の水質にもよるが、Bの滴定値が、0.1mg/L未満であった場合は、カチオン性高分子凝集剤と無機凝集剤の添加量をそれぞれ5%以下の範囲で削減するよう設定することが望ましい。   Although depending on the quality of the water to be treated, when the titration value of B is less than 0.1 mg / L, the addition amounts of the cationic polymer flocculant and the inorganic flocculant are each within 5% or less. It is desirable to set so as to reduce.

図4はさらに別の実施の形態に係る制御装置を示している。図4の制御装置は、図3の構成からサンプリングセル6での滴定装置を不要としたものであり、凝集処理水の流動電位値の最適値を事前評価により求めておく必要がある。図4では、図3と同様にサンプリングセル6は凝集センサ槽13から凝集処理水を受け入れるように設置されているが、図3の場合と同様に、サンプリングセル6は、凝集槽11から凝集処理水を導入してもよく、固液分離装置の後段に設置して固液分離処理水を導入しても良い。ただし、固液分離処理水を導入する場合は、固液分離処理水の流動電位値の最適値を事前評価により求めておく必要がある。   FIG. 4 shows a control device according to still another embodiment. The control device in FIG. 4 eliminates the titration device in the sampling cell 6 from the configuration in FIG. 3, and it is necessary to obtain the optimum value of the flow potential value of the flocculated water by preliminary evaluation. In FIG. 4, the sampling cell 6 is installed so as to receive the agglomerated water from the agglomeration sensor tank 13 as in FIG. 3, but the sampling cell 6 is agglomerated from the agglomeration tank 11 as in FIG. 3. Water may be introduced, or the solid-liquid separation treated water may be introduced after the solid-liquid separation device. However, when solid-liquid separation treated water is introduced, it is necessary to obtain an optimum value of the flow potential value of the solid-liquid separation treated water by preliminary evaluation.

凝集処理水の流動電位値の最適値は、例えば図5のような結果から最適値を求めることができる。   For example, the optimum value of the flow potential value of the flocculated water can be obtained from the result shown in FIG.

図5は事前の机上試験にて評価した、無機凝集剤添加量と流動電位値、凝集処理水水質の関係を示しており、凝集処理水水質はMFF値で表されている。   FIG. 5 shows the relationship between the inorganic flocculant addition amount, the flow potential value, and the agglomerated water quality evaluated in a prior desktop test, and the agglomerated water quality is represented by the MFF value.

MFF値の測定方法は次の通りである。MF膜を吸引ろ過装置にセットし、−67kPaの減圧下で溶解性高分子物質および微粒子フリーの基準水150mLの透過時間T0を測定した後に、測定試料(150mL)の1回目通水時間T1、2回目通水時間T2を測定する。MFF値=T2/T1である。   The measuring method of the MFF value is as follows. After setting the MF membrane in a suction filtration device and measuring the permeation time T0 of 150 mL of soluble polymer substance and fine particle-free reference water under a reduced pressure of −67 kPa, the first flow time T1 of the measurement sample (150 mL), Measure the second water passage time T2. MFF value = T2 / T1.

MFFの値が良好となったとき、流動電位は特定の値を示しており、この値が凝集処理水の流動電位値の最適値である(ここでは約−300mV)。このような無機凝集剤添加量と流動電位値の相関図を凝集制御装置に記録しておき、実際の凝集処理水の流動電位値が示す無機凝集剤濃度と流動電位値が最適値となる無機凝集剤濃度(ここでは約200mg/L)の差から、無機凝集剤の不足濃度(A)を算出する。   When the value of MFF becomes good, the streaming potential shows a specific value, and this value is the optimum value of the streaming potential value of the coagulated treated water (here, about −300 mV). A correlation diagram between the amount of the inorganic flocculant added and the flow potential value is recorded in the flocculence control device, and the inorganic flocculant concentration and the flow potential value indicated by the actual flow potential value of the flocculated water are optimum values. The insufficient concentration (A) of the inorganic flocculant is calculated from the difference in the flocculant concentration (here, about 200 mg / L).

無機凝集剤の追加添加量は、被処理水の水質および使用する無機凝集剤の種類にもよるが、Aの0.1〜0.9倍(すなわちA×0.1〜A×0.9)好ましくはAの0.2〜0.5倍の範囲内になるよう調整設定することが望ましい。また、カチオン性高分子凝集剤の追加添加量は、被処理水の水質および使用するカチオン性高分子凝集剤の種類にもよるが、Aの0.001〜0.008倍(すなわちA×0.001〜A×0.008)好ましくはAの0.005〜0.008倍の範囲内になるよう調整設定することが望ましい。   The additional amount of the inorganic flocculant is 0.1 to 0.9 times that of A (that is, A × 0.1 to A × 0.9) although it depends on the quality of the water to be treated and the type of the inorganic flocculant used. ) It is desirable to adjust and set it preferably within a range of 0.2 to 0.5 times A. Further, the additional amount of the cationic polymer flocculant is 0.001 to 0.008 times that of A (that is, A × 0) although it depends on the quality of the water to be treated and the type of the cationic polymer flocculant used. 0.001 to A × 0.008) It is desirable to adjust and set it within a range of 0.005 to 0.008 times A.

なお、実際の凝集処理水の流動電位値が凝集処理水の流動電位値の最適値よりも高くなった場合は、カチオン性高分子凝集剤が過剰となっている可能性が高いため、凝集剤添加量の設定値の見直しを行う必要がある。   In addition, when the actual flow potential value of the coagulation treated water is higher than the optimum value of the flow potential value of the coagulation treated water, the cationic polymer flocculant is likely to be excessive. It is necessary to review the set value of the added amount.

図4の構成における流動電位計8のオンライン計測における問題点は、被処理水中に含まれる濁質や有機物、添加した凝集剤などにより流動電位計8の測定部が汚れることで、流動電位値の絶対値が正確に計測できないところにある。測定毎に洗浄を行う方法も考えられるが、洗浄液の消費量は増大すること、洗浄の間は計測が行えないなどの問題が新たに生じる。   The problem with the on-line measurement of the flow potential meter 8 in the configuration of FIG. 4 is that the measurement portion of the flow potential meter 8 is contaminated by turbidity, organic matter, added flocculant, etc. contained in the water to be treated. The absolute value cannot be measured accurately. A method of performing cleaning for each measurement is also conceivable, but new problems arise such as an increase in the consumption of cleaning liquid and inability to perform measurement during cleaning.

この問題を解決するため、標準液の流動電位値を測定し、実測値を補正する手法を以下に示す。標準液としては、電気伝導性を持たせるために低濃度の塩やpH緩衝剤を溶解した溶液に、ポリスチレンラテックス粒子あるいはシリカ粒子などを加えた分散液が使用できる。粒子の大きさは、粒子の沈降が生じないよう、粒子径数百nm以下のコロイド粒子であることが望ましい。   In order to solve this problem, a method of measuring the streaming potential value of the standard solution and correcting the actual measurement value will be described below. As the standard solution, a dispersion in which polystyrene latex particles or silica particles are added to a solution in which a low-concentration salt or a pH buffer is dissolved in order to impart electrical conductivity can be used. The size of the particles is preferably colloidal particles having a particle diameter of several hundred nm or less so as not to cause sedimentation of the particles.

補正のための換算式は以下の通りである。
E2=E1×(R2/R1)
ここで、
E1:凝集処理水の流動電位値(実測値)[mV]
E2:凝集処理水の流動電位値(補正値)[mV]
R1:標準液の流動電位値(事前の机上試験評価時)[mV]
R2:標準液の流動電位値(凝集処理水の流動電位測定前もしくは後)[mV]
The conversion formula for correction is as follows.
E2 = E1 × (R2 / R1)
here,
E1: Flow potential value of coagulated treated water (actual measured value) [mV]
E2: Flow potential value of flocculated water (correction value) [mV]
R1: Streaming potential value of standard solution (at the time of prior desktop test evaluation) [mV]
R2: Streaming potential value of standard solution (before or after measurement of streaming potential of flocculated water) [mV]

<試験方法>
以下の実施例及び比較例で用いた試験被処理水、試薬は以下の通りである。
試験被処理水:工場排水の生物処理水(ORP:100〜200mV)
カチオン性高分子:ポリ(ジアリルジメチルアンモニウムクロリド)
無機凝集剤:塩化第二鉄(38%)
酸化剤:次亜塩素酸ナトリウム
<Test method>
The test water and reagents used in the following examples and comparative examples are as follows.
Test treated water: Biologically treated water from factory wastewater (ORP: 100-200 mV)
Cationic polymer: poly (diallyldimethylammonium chloride)
Inorganic flocculant: ferric chloride (38%)
Oxidizing agent: Sodium hypochlorite

[実施例1]
図1に示した凝集剤注入制御システムの構成にて、原水槽のORPが325±25 mVの範囲に収まるよう、原水槽へ酸化剤を添加し、凝集剤添加量の自動調節値の設定は、
カチオン性高分子:C×0.8[mg/L]
無機凝集剤:C×8[mg/L]
として凝集処理を行った。得られた凝集処理水のMFF値の経時変化を測定した。
[Example 1]
In the configuration of the flocculant injection control system shown in FIG. 1, an oxidizing agent is added to the raw water tank so that the ORP of the raw water tank is within the range of 325 ± 25 mV, and the setting of the automatic adjustment value of the flocculant addition amount is ,
Cationic polymer: C × 0.8 [mg / L]
Inorganic flocculant: C × 8 [mg / L]
The agglomeration treatment was performed. The change with time of the MFF value of the obtained flocculated water was measured.

[比較例1]
図1に示したシステム構成にて、凝集剤添加量の自動調節を行わず、カチオン性高分子の添加量を0.5mg/L、無機凝集剤の添加量を50mg/Lの定量注入とした。その他は実施例1と同様である。
[Comparative Example 1]
In the system configuration shown in FIG. 1, the amount of addition of the cationic polymer was not adjusted automatically, and the addition amount of the cationic polymer was 0.5 mg / L, and the addition amount of the inorganic flocculant was 50 mg / L. . Others are the same as in the first embodiment.

実施例1及び比較例1の結果を図6に示す。時間経過による被処理水の水質変動により滴定量C値も同様に変動しており、比較例1では水質変動とともに凝集処理水質が悪化した。一方、実施例1ではC値を基準として2種類の凝集剤添加量を自動調節することで、凝集処理水質の悪化はほとんど見られず、かつ、変動しなかった。   The results of Example 1 and Comparative Example 1 are shown in FIG. The titer C value also fluctuated in the same manner due to fluctuations in the quality of the water to be treated over time. On the other hand, in Example 1, the amount of the two kinds of flocculant added was automatically adjusted based on the C value, so that the deterioration of the water quality of the agglomeration treatment was hardly seen and did not fluctuate.

[実施例2]
図1に示したシステム構成にて、原水槽のORPが325±25mVの範囲に収まるよう、原水槽へ酸化剤を添加し、凝集剤添加量の自動調節値の設定は、
カチオン性高分子:C×0.2[mg/L]
無機凝集剤:C×30[mg/L]
として凝集処理を行った。
また、システム後段の固液分離処理として膜分離処理(PVDF、孔径0.02μm、運転条件:運転Flux(透過流束)4m/D、逆洗間隔 28 min)を行い、膜間差圧の上昇速度を測定した。
[Example 2]
In the system configuration shown in FIG. 1, an oxidizing agent is added to the raw water tank so that the ORP of the raw water tank is within the range of 325 ± 25 mV, and the setting of the automatic adjustment value of the flocculant addition amount is
Cationic polymer: C × 0.2 [mg / L]
Inorganic flocculant: C × 30 [mg / L]
The agglomeration treatment was performed.
In addition, membrane separation treatment (PVDF, pore diameter 0.02 μm, operation conditions: operation flux (permeation flux) 4 m / D, backwash interval 28 min) is performed as a solid-liquid separation treatment at the latter stage of the system, and the transmembrane pressure difference is increased. The speed was measured.

[比較例2]
図1に示したシステム構成にて、原水槽へ酸化剤を添加せず、凝集処理を行った。その他は実施例2と同様である。
[Comparative Example 2]
In the system configuration shown in FIG. 1, the flocculation treatment was performed without adding an oxidizing agent to the raw water tank. Others are the same as in the second embodiment.

実施例2及び比較例2の結果を表1に示す。実施例2では原水槽へ酸化剤を添加したこ
とにより、C値が比較例2に比べ低下していた。これは、被処理水の酸化による改質によ
るものと思われる。また、差圧上昇速度は実施例2の方が低く、良好な凝集処理水が得られていることが分かった。このことから、流動電位計を用いて二種類の剤の添加量を自動調節しても、原水槽のORPが一定値以上に調節されていないと、凝集制御が十分に行えないことが明らかとなった。
The results of Example 2 and Comparative Example 2 are shown in Table 1. In Example 2, C value was falling compared with the comparative example 2 by adding the oxidizing agent to the raw | natural water tank. This seems to be due to the reforming of the water to be treated by oxidation. In addition, it was found that the differential pressure increase rate was lower in Example 2, and good agglomerated water was obtained. From this, it is clear that even if the addition amount of the two kinds of agents is automatically adjusted using a rheometer, if the ORP of the raw water tank is not adjusted to a certain value or more, the aggregation control cannot be performed sufficiently. became.

Figure 0006406375
Figure 0006406375

[実施例3]
図1に示したシステム構成にて、システム後段の固液分離処理として膜分離処理(PVDF、孔径0.02μm、運転条件:運転Flux2〜4m/D、逆洗間隔 10〜28 min)を行った。また、凝集センサ槽に備えられた光散乱式微粒子センサにより、連続通水中の凝集処理水中の凝集フロックの空隙の濁度(フロック間濁度)と膜間差圧の上昇速度の関係を測定した。
[Example 3]
In the system configuration shown in FIG. 1, a membrane separation process (PVDF, pore diameter 0.02 μm, operation conditions: operation flux 2 to 4 m / D, backwash interval 10 to 28 min) was performed as a solid-liquid separation process at the latter stage of the system. . The relationship between the turbidity of the flocs of the flocs in the flocculent treated water in continuous water flow (turboturbidity between flocs) and the rate of increase in the transmembrane pressure difference was measured using a light scattering fine particle sensor provided in the flocculence sensor tank. .

結果を図7に示す。フロック間濁度が上昇すると差圧上昇速度も高くなり、強い相関が見られることが分かった。フロック間濁度の上昇は、被処理水の水質が急激に変動し、凝集不良の発生が生じたか、あるいは、被処理水の水質が極めて大幅に変動し、流動電位計で測定した値(A、B、Cの値)に対する、2種類の凝集剤の自動添加量の調整設定が不適切となったことが原因と考えられる。   The results are shown in FIG. As the turbidity between flocs increased, the differential pressure increase rate also increased, indicating a strong correlation. The increase in inter-floc turbidity is due to the fact that the quality of the water to be treated fluctuates abruptly and the occurrence of cohesive failure occurs, or the quality of the water to be treated fluctuates extremely greatly and is measured with a flow potentiometer (A , B, and C)), it is considered that the adjustment setting of the automatic addition amount of the two types of flocculants is inappropriate.

従って、フロック間濁度が一定値以上に上昇した際に、流動電位計の計測による凝集剤添加量の自動調節を行うように設定する方法や、2種類の凝集剤の自動添加量の調整設定を新たな値に設定し直す方法が考えられる。このように。凝集センサ槽に備えられた粒子センサにより、凝集不良が生じていないか確認する警報センサとして利用することが可能となる。   Therefore, when the turbidity between flocs rises above a certain value, a method is set to automatically adjust the amount of flocculant added by measuring the flow potential meter, and the adjustment setting of the two types of flocculant added automatically A method of resetting to a new value is conceivable. in this way. The particle sensor provided in the aggregation sensor tank can be used as an alarm sensor for confirming whether or not an aggregation failure has occurred.

1 原水槽
5,11 凝集槽
6 サンプリングセル
13 凝集センサ槽
DESCRIPTION OF SYMBOLS 1 Raw water tank 5,11 Coagulation tank 6 Sampling cell 13 Aggregation sensor tank

Claims (12)

被処理水にカチオン性高分子凝集剤及び無機凝集剤を添加し、固液分離を行う水処理システムにおける凝集剤注入制御方法において、
被処理水、又は凝集剤を添加した凝集処理水の流動電位を測定し、測定された流動電位値に基づき、上記カチオン性高分子凝集剤及び無機凝集剤の添加量を求め、この添加量にてカチオン性高分子凝集剤及び無機凝集剤を添加する凝集剤注入制御方法であって、
事前試験により凝集処理水の流動電位値の最適値と実際の凝集処理水の流動電位値との差から無機凝集剤の不足濃度Aを求め、
無機凝集剤の添加量をa・Aとし、該カチオン性高分子凝集剤の添加量をb・Aとすることを特徴とする凝集剤注入制御方法。
ただし、a=0.1〜0.9
b=0.001〜0.008
In the flocculant injection control method in the water treatment system in which the cationic polymer flocculant and the inorganic flocculant are added to the water to be treated, and solid-liquid separation is performed,
Measure the flow potential of water to be treated or flocculated water to which a flocculant has been added, and determine the addition amount of the cationic polymer flocculant and inorganic flocculant based on the measured flow potential value. A method for controlling the injection of a flocculant comprising adding a cationic polymer flocculant and an inorganic flocculant,
From the difference between the optimum value of the flow potential value of the flocculated water and the actual flow potential value of the flocculated water in the preliminary test, the insufficient concentration A of the inorganic flocculant is obtained,
A coagulant injection control method, wherein the addition amount of the inorganic flocculant is a · A, and the addition amount of the cationic polymer flocculant is b · A.
However, a = 0.1-0.9
b = 0.001 to 0.008
請求項1において、測定された凝集処理水の流動電位値の誤差を補正するために、凝集処理水の流動電位値の測定前もしくは後に標準溶液の流動電位を測定し、標準溶液の流動電位値に基づいて、実際の凝集処理水の流動電位値を補正して補正値を得、凝集処理水の流動電位値の最適値と補正値との差から、無機凝集剤の不足濃度Aを算出することを特徴とする凝集剤注入制御方法。   The flow potential value of the standard solution is measured before or after the measurement of the flow potential value of the flocculated water in order to correct the error of the measured flow potential value of the flocculated water. Based on this, the flow potential value of the actual flocculated water is corrected to obtain a correction value, and the insufficient concentration A of the inorganic flocculating agent is calculated from the difference between the optimum value of the flow potential value of the flocculated water and the correction value. The flocculant injection control method characterized by the above-mentioned. 請求項2において、補正を次式で行うことを特徴とする凝集剤注入制御方法。
E2=E1×(R2/R1)
ただし、E1:凝集処理水の流動電位値(実測値)[mV]
E2:凝集処理水の流動電位値(補正値)[mV]
R1:標準液の流動電位値(事前の机上試験評価時)[mV]
R2:標準液の流動電位値(凝集処理水の流動電位測定前もしくは後)[mV]
The flocculant injection control method according to claim 2, wherein the correction is performed by the following equation.
E2 = E1 × (R2 / R1)
However, E1: Flow potential value of flocculated water (actual measurement value) [mV]
E2: Flow potential value of flocculated water (correction value) [mV]
R1: Streaming potential value of standard solution (at the time of prior desktop test evaluation) [mV]
R2: Streaming potential value of standard solution (before or after measurement of streaming potential of flocculated water) [mV]
被処理水にカチオン性高分子凝集剤及び無機凝集剤を添加し、固液分離を行う水処理システムにおける凝集剤注入制御方法において、
被処理水、又は凝集剤を添加した凝集処理水の流動電位を測定し、測定された流動電位値に基づき、上記カチオン性高分子凝集剤及び無機凝集剤の添加量を求め、この添加量にてカチオン性高分子凝集剤及び無機凝集剤を添加する凝集剤注入制御方法であって、
凝集処理水の一部を測定容器にサンプリングして流動電位を測定し、
測定された流動電位値が負から0の値を示すまでに必要なカチオン性高分子凝集剤の添加量Bを滴定により計測し、
カチオン性高分子凝集剤の追加添加量をc・Bとし、無機凝集剤の追加添加量をd・Bとすることを特徴とする凝集剤注入制御方法。
ただし、c=0.1〜0.9
d=5〜90
In the flocculant injection control method in the water treatment system in which the cationic polymer flocculant and the inorganic flocculant are added to the water to be treated, and solid-liquid separation is performed,
Measure the flow potential of water to be treated or flocculated water to which a flocculant has been added, and determine the addition amount of the cationic polymer flocculant and inorganic flocculant based on the measured flow potential value. A method for controlling the injection of a flocculant comprising adding a cationic polymer flocculant and an inorganic flocculant,
Sampling a part of the flocculated water into a measurement container to measure the streaming potential,
The amount B of the cationic polymer flocculant necessary until the measured streaming potential value shows a value from negative to 0 is measured by titration.
A method for controlling the injection of a flocculant, characterized in that the additional amount of the cationic polymer flocculant is c · B and the additional amount of the inorganic flocculant is d · B.
However, c = 0.1-0.9
d = 5-90
被処理水にカチオン性高分子凝集剤及び無機凝集剤を添加し、固液分離を行う水処理システムにおける凝集剤注入制御方法において、
被処理水、又は凝集剤を添加した凝集処理水の流動電位を測定し、測定された流動電位値に基づき、上記カチオン性高分子凝集剤及び無機凝集剤の添加量を求め、この添加量にてカチオン性高分子凝集剤及び無機凝集剤を添加する凝集剤注入制御方法であって、
被処理水を測定容器にサンプリングし、
測定された流動電位値が負から0の値を示すまでに必要なカチオン性高分子凝集剤の添加量Cを滴定により計測し、
カチオン性高分子凝集剤の添加量をe・Cとし、無機凝集剤の添加量をf・Cとすることを特徴とする凝集剤注入制御方法。
ただし、e=0.1〜0.9
f=5〜90
In the flocculant injection control method in the water treatment system in which the cationic polymer flocculant and the inorganic flocculant are added to the water to be treated, and solid-liquid separation is performed,
Measure the flow potential of water to be treated or flocculated water to which a flocculant has been added, and determine the addition amount of the cationic polymer flocculant and inorganic flocculant based on the measured flow potential value. A method for controlling the injection of a flocculant comprising adding a cationic polymer flocculant and an inorganic flocculant,
Sample the water to be treated into a measurement container
The amount C of the cationic polymer flocculant necessary until the measured streaming potential value shows a value from negative to zero is measured by titration.
A coagulant injection control method, characterized in that the addition amount of the cationic polymer flocculant is e · C, and the addition amount of the inorganic flocculant is f · C.
However, e = 0.1-0.9
f = 5-90
被処理水にカチオン性高分子凝集剤および無機凝集剤を添加し、固液分離を行う水処理システムにおける凝集剤注入制御装置において、
被処理水、又は凝集剤を添加した凝集処理水の流動電位を測定する流動電位計と、
該流動電位計の計測値に基づき、上記カチオン性高分子凝集剤及び無機凝集剤の添加量をそれぞれ求める算出手段を有する凝集剤注入制御装置であって、
前記算出手段が、事前試験により求めた凝集処理水の流動電位値の最適値と制御流動電位の測定値との差から無機凝集剤の不足濃度Aを求める手段と、
無機凝集剤の添加量をa・Aとし、該カチオン性高分子凝集剤の添加量をb・Aとする手段と
を有することを特徴とする凝集剤注入制御装置。
ただし、a=0.1〜0.9
b=0.001〜0.008
In a flocculant injection control device in a water treatment system in which a cationic polymer flocculant and an inorganic flocculant are added to water to be treated, and solid-liquid separation is performed,
A flow potential meter for measuring the flow potential of the water to be treated or the agglomerated water added with the flocculant;
A flocculant injection control device having calculation means for determining the addition amount of the cationic polymer flocculant and the inorganic flocculant based on the measured value of the flow potential meter,
Means for calculating the insufficient concentration A of the inorganic flocculant from the difference between the optimum value of the flow potential value of the flocculated water obtained by the preliminary test and the measured value of the control flow potential;
A flocculant injection control device comprising means for setting the addition amount of the inorganic flocculant as a · A and the addition amount of the cationic polymer flocculant as b · A.
However, a = 0.1-0.9
b = 0.001 to 0.008
請求項6において、前記算出手段は、凝集処理水の流動電位値の測定前もしくは後に標準溶液の流動電位を測定する測定手段と、
標準溶液の流動電位値に基づいて、測定された凝集処理水の流動電位値の補正値を得る手段と、
凝集処理水の流動電位値の最適値と補正値との差から、無機凝集剤の不足濃度Aを算出する手段と
を有することを特徴とする凝集剤注入制御装置。
The calculation means according to claim 6, wherein the calculation means measures the streaming potential of the standard solution before or after the measurement of the streaming potential value of the flocculated water.
Means for obtaining a correction value of the measured streaming potential value of the coagulated treated water based on the streaming potential value of the standard solution;
A flocculant injection control device comprising: means for calculating an insufficient concentration A of the inorganic flocculant from the difference between the optimum value of the flow potential value of the flocculated water and the correction value.
被処理水にカチオン性高分子凝集剤および無機凝集剤を添加し、固液分離を行う水処理システムにおける凝集剤注入制御装置において、
被処理水、又は凝集剤を添加した凝集処理水の流動電位を測定する流動電位計と、
該流動電位計の計測値に基づき、上記カチオン性高分子凝集剤及び無機凝集剤の添加量をそれぞれ求める算出手段を有する凝集剤注入制御装置であって、
凝集処理水の一部を受け入れる測定容器と、
該測定容器に設けられた前記流動電位計と、該流動電位計の計測値が負から0の値を示すまでに必要なカチオン性高分子凝集剤の添加量Bを滴定により計測する手段と、
該カチオン性高分子凝集剤の追加添加量をc・Bとして算出し、無機凝集剤の追加添加量をd・Bとして算出する手段と
を備えたことを特徴とする凝集剤注入装置。
ただし、c=0.1〜0.9
d=5〜90
In a flocculant injection control device in a water treatment system in which a cationic polymer flocculant and an inorganic flocculant are added to water to be treated, and solid-liquid separation is performed,
A flow potential meter for measuring the flow potential of the water to be treated or the agglomerated water added with the flocculant;
A flocculant injection control device having calculation means for determining the addition amount of the cationic polymer flocculant and the inorganic flocculant based on the measured value of the flow potential meter,
A measurement container for receiving a part of the coagulated water,
The flow potential meter provided in the measurement container, means for measuring the addition amount B of the cationic polymer flocculant necessary until the measured value of the flow potential meter shows a value from negative to 0 by titration;
And a means for calculating the additional amount of the cationic polymer flocculant as c · B and calculating the additional amount of the inorganic flocculant as d · B.
However, c = 0.1-0.9
d = 5-90
被処理水にカチオン性高分子凝集剤および無機凝集剤を添加し、固液分離を行う水処理システムにおける凝集剤注入制御装置において、
被処理水、又は凝集剤を添加した凝集処理水の流動電位を測定する流動電位計と、
該流動電位計の計測値に基づき、上記カチオン性高分子凝集剤及び無機凝集剤の添加量をそれぞれ求める算出手段を有する凝集剤注入制御装置であって、
被処理水の一部を受け入れる測定容器と、
該測定容器に設けられた前記流動電位計と、
該流動電位計の計測値が負から0の値を示すまでに必要な該カチオン性高分子凝集剤の添加量Cを滴定により計測する手段と、
カチオン性高分子凝集剤の添加量をe・Cとして算出し、無機凝集剤の添加量をf・Cとして算出する手段と
を備えたことを特徴とする凝集剤注入制御装置。
ただし、e=0.1〜0.9
f=5〜90
In a flocculant injection control device in a water treatment system in which a cationic polymer flocculant and an inorganic flocculant are added to water to be treated, and solid-liquid separation is performed,
A flow potential meter for measuring the flow potential of the water to be treated or the agglomerated water added with the flocculant;
A flocculant injection control device having calculation means for determining the addition amount of the cationic polymer flocculant and the inorganic flocculant based on the measured value of the flow potential meter,
A measuring container for receiving a portion of the water to be treated;
The flow potential meter provided in the measurement container;
Means for measuring by titration the addition amount C of the cationic polymer flocculant required until the measured value of the rheometer shows a value from negative to zero;
A flocculant injection control apparatus comprising: a means for calculating the addition amount of the cationic polymer flocculant as e · C and calculating the addition amount of the inorganic flocculant as f · C.
However, e = 0.1-0.9
f = 5-90
請求項〜9のいずれか1項において、凝集処理水中の凝集フロック間の空隙における濁度を計測するための、光散乱式微粒子センサ又は光遮断式微粒子センサを備えていることを特徴とする凝集剤注入制御装置。 The light scattering fine particle sensor or the light blocking fine particle sensor for measuring turbidity in the gap between the aggregation flocs in the aggregation treatment water is provided in any one of claims 6 to 9. Flocculant injection control device. 請求項〜10のいずれか1項に記載の凝集剤注入制御装置を有する水処理システムであって、
凝集処理水を固液分離する固液分離手段を有することを特徴とする水処理システム。
A water treatment system comprising the flocculant injection control device according to any one of claims 6 to 10,
A water treatment system comprising solid-liquid separation means for solid-liquid separation of flocculated treated water.
請求項11において、被処理水のORP値の測定手段と、被処理水のORP値が300mV以上となるように、被処理水へ酸化剤を添加する添加手段とを有することを特徴とする水処理システム。   12. The water according to claim 11, further comprising: an ORP value measuring means for water to be treated; and an adding means for adding an oxidant to the water to be treated so that the ORP value of the water to be treated is 300 mV or more. Processing system.
JP2017047570A 2017-03-13 2017-03-13 Flocculant injection control method, control device, and water treatment system Active JP6406375B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017047570A JP6406375B2 (en) 2017-03-13 2017-03-13 Flocculant injection control method, control device, and water treatment system
PCT/JP2017/033544 WO2018168021A1 (en) 2017-03-13 2017-09-15 Method for controlling injection of flocculant, control device, and water treatment system
TW106132882A TW201838701A (en) 2017-03-13 2017-09-26 Method for controlling injection of flocculant, control device, and water treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017047570A JP6406375B2 (en) 2017-03-13 2017-03-13 Flocculant injection control method, control device, and water treatment system

Publications (2)

Publication Number Publication Date
JP2018149495A JP2018149495A (en) 2018-09-27
JP6406375B2 true JP6406375B2 (en) 2018-10-17

Family

ID=63523895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017047570A Active JP6406375B2 (en) 2017-03-13 2017-03-13 Flocculant injection control method, control device, and water treatment system

Country Status (3)

Country Link
JP (1) JP6406375B2 (en)
TW (1) TW201838701A (en)
WO (1) WO2018168021A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102497219B1 (en) * 2021-03-29 2023-02-06 부산대학교 산학협력단 Method of remove microplastics

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51164A (en) * 1974-06-21 1976-01-05 Hitachi Plant Eng & Constr Co Jukibutsuhaisuino jokashorihoho
JP3925621B2 (en) * 2001-11-22 2007-06-06 栗田工業株式会社 Water or sludge treatment system
MY150813A (en) * 2008-11-04 2014-02-28 Kurita Water Ind Ltd Filtration apparatus and water treatment equipment
US9682872B2 (en) * 2012-02-21 2017-06-20 Denny Allen CRISWELL Wastewater treatment system
JP5951423B2 (en) * 2012-09-13 2016-07-13 株式会社東芝 Flocculant injection control method and flocculant injection control system
JP6276138B2 (en) * 2014-08-25 2018-02-07 株式会社東芝 Water treatment system, control device, and water treatment method

Also Published As

Publication number Publication date
TW201838701A (en) 2018-11-01
WO2018168021A1 (en) 2018-09-20
JP2018149495A (en) 2018-09-27

Similar Documents

Publication Publication Date Title
US20160137525A1 (en) Process for enhanced total organic carbon removal while maintaining optimum membrane filter performance
JP4277831B2 (en) Aggregation apparatus and aggregation method
JP5364298B2 (en) Dispersant-containing water treatment method
JP6137176B2 (en) Water treatment method
WO2007119479A1 (en) Water treatment method
JP2014054603A (en) Flocculant injection control method and flocculant injection control system
JP2008068199A (en) Flocculation device and flocculation method
JP5401087B2 (en) Flocculant injection control method
JP6406375B2 (en) Flocculant injection control method, control device, and water treatment system
JP6673390B2 (en) Coagulant addition control method, control device and water treatment system
JP2008264723A (en) Method and apparatus for coagulating impurity
JP6565268B2 (en) Method and apparatus for treating inorganic carbon-containing water
JP3731454B2 (en) Method for determining amount of coagulant injection and control device for drug injection
JP6699690B2 (en) Flocculant injection controller
JP6269866B1 (en) PH control method by electric conductivity
JP2012213675A (en) Method of determining addition amount of coagulant and water treatment apparatus
TW201945294A (en) Water treatment method and water treatment apparatus
WO2018173328A1 (en) Service water treatment method
JP2012187467A (en) Membrane separation method and membrane separator
JP2019155283A (en) Chemical addition amount control device and chemical addition amount control method
JP5210948B2 (en) Chemical injection control method for water purification plant
JP6301850B2 (en) Flocculant injection support device and flocculant injection system
KR20140115604A (en) Apparatus and method to control the coagulant concentration by using the surface area of particles, and water-treatment equipment and method having the same
JP4270174B2 (en) Aggregation apparatus and aggregation method
JP2018161632A (en) Water treatment apparatus and water treatment method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180903

R150 Certificate of patent or registration of utility model

Ref document number: 6406375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150