JP6404035B2 - Injection molding machine screw - Google Patents

Injection molding machine screw Download PDF

Info

Publication number
JP6404035B2
JP6404035B2 JP2014170866A JP2014170866A JP6404035B2 JP 6404035 B2 JP6404035 B2 JP 6404035B2 JP 2014170866 A JP2014170866 A JP 2014170866A JP 2014170866 A JP2014170866 A JP 2014170866A JP 6404035 B2 JP6404035 B2 JP 6404035B2
Authority
JP
Japan
Prior art keywords
flights
screw
groove width
compression
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014170866A
Other languages
Japanese (ja)
Other versions
JP2016043623A (en
Inventor
柴田 和之
和之 柴田
憲亮 守谷
憲亮 守谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Machinery and Metal Co Ltd
Original Assignee
Toyo Machinery and Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Machinery and Metal Co Ltd filed Critical Toyo Machinery and Metal Co Ltd
Priority to JP2014170866A priority Critical patent/JP6404035B2/en
Publication of JP2016043623A publication Critical patent/JP2016043623A/en
Application granted granted Critical
Publication of JP6404035B2 publication Critical patent/JP6404035B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Description

本発明は、射出成形機のスクリュに係り、特に、繊維強化プラスチック材料の可塑化及び混練に適したスクリュの構造に関する。   The present invention relates to a screw of an injection molding machine, and more particularly to a screw structure suitable for plasticizing and kneading a fiber-reinforced plastic material.

射出成形機のスクリュは、周面にフライト(ねじ山)が形成された棒状の部材であって、加熱シリンダ内で回転駆動することにより、成形材料の可塑化及び混練を行うものである。なお、スクリュを用いて成形材料の可塑化及び混練と金型内への溶融樹脂の射出とを行うスクリュ式射出成形機においては、スクリュが加熱シリンダ内に回転可能かつ前後進可能に収納され、スクリュを用いて成形材料の可塑化及び混練のみを行い、金型内への溶融樹脂の射出を別機構にて行うプリプラ式射出成形機においては、スクリュが加熱シリンダ内に回転可能にのみ収納される。なお、スクリュ式射出成形機及びプリプラ式射出成形機の全体的な構成については、公知に属する事項でありかつ本発明の要旨でもないので説明を省略する。   A screw of an injection molding machine is a rod-like member having a flight (thread) formed on a peripheral surface thereof, and plasticizes and kneads a molding material by being driven to rotate in a heating cylinder. In addition, in the screw type injection molding machine that performs plasticizing and kneading of the molding material and injection of the molten resin into the mold using the screw, the screw is stored in the heating cylinder so as to be able to rotate and move forward and backward, In a pre-plastic injection molding machine that uses a screw to plasticize and knead the molding material only and injects the molten resin into the mold using a separate mechanism, the screw is stored only in a heating cylinder so that it can rotate. The In addition, about the whole structure of a screw type injection molding machine and a pre-plastic type injection molding machine, since it is a matter which is well-known and is not the summary of this invention, description is abbreviate | omitted.

図3に示すように、従来知られている標準的なスクリュ100は、フライト101の形成領域が原料樹脂の受け入れ側から順に供給部102、圧縮部103及び計量部104に分割されている。供給部102は、外部から供給される原料樹脂を加熱しながら前方に移送する領域であり、圧縮部103は、供給部102から移送されてくる原料樹脂に圧縮力を付与し、原料樹脂を加熱シリンダから与えられる熱、並びに、スクリュの回転に伴って発生する剪断熱及び摩擦熱により可塑化する領域である。また、計量部104は、圧縮部103から移送されてくる溶融樹脂を、加熱シリンダの先端に設けられた射出ノズルより金型のキャビティ内に射出可能な状態にまで可塑化及び混練する領域である。   As shown in FIG. 3, a conventionally known standard screw 100 has a flight 101 formation region divided into a supply unit 102, a compression unit 103, and a metering unit 104 in order from the material resin receiving side. The supply unit 102 is a region where the raw material resin supplied from the outside is heated and transferred forward, and the compression unit 103 applies compressive force to the raw material resin transferred from the supply unit 102 and heats the raw material resin. This is a region that is plasticized by heat applied from the cylinder and shearing heat and frictional heat generated as the screw rotates. The metering unit 104 is an area for plasticizing and kneading the molten resin transferred from the compression unit 103 to a state where it can be injected into the mold cavity from the injection nozzle provided at the tip of the heating cylinder. .

供給部102、圧縮部103及び計量部104は、各部におけるフライト101のリードピッチp1、p2、p3、溝深さd1、d2、d3、及び溝幅s1、s2、s3を調整することにより形成される。図3のスクリュ100は、供給部102におけるフライトピッチp1と、圧縮部103におけるフライトピッチp2と、計量部104におけるフライトピッチp3が等しく形成されている(p1=p2=p3)。また、このスクリュ100は、供給部102におけるフライト101間の溝幅s1と、圧縮部103におけるフライト101間の溝幅s2と、計量部104におけるフライト101間の溝幅s3が等しく形成されている(s1=s2=s3)。そして、本例のスクリュ100は、供給部102におけるフライト101間の溝深さd1を、圧縮部103及び計量部104におけるフライト101間の溝深さd2、d3よりも大きくすると共に、供給部102内における各フライト101間の溝深さd1については一定にしている。また、計量部104におけるフライト101間の溝深さd3については、供給部102及び圧縮部103におけるフライト101間の溝深さd1、d2よりも小さくすると共に、計量部104内における各フライト101間の溝深さd3については一定にしている。さらに、圧縮部103におけるフライト101間の溝深さd2については、供給部102におけるフライト101間の溝深さd1から計量部104におけるフライト101間の溝深さd3まで滑らかに連続するように、供給部102側から計量部104側に至るに従って順次小さくなるように形成されている(特許文献1の図2参照。)。   The supply unit 102, the compression unit 103, and the measurement unit 104 are formed by adjusting the lead pitches p1, p2, and p3, the groove depths d1, d2, and d3, and the groove widths s1, s2, and s3 of the flight 101 in each unit. The In the screw 100 of FIG. 3, the flight pitch p1 in the supply unit 102, the flight pitch p2 in the compression unit 103, and the flight pitch p3 in the measuring unit 104 are formed to be equal (p1 = p2 = p3). Further, in the screw 100, the groove width s1 between the flights 101 in the supply unit 102, the groove width s2 between the flights 101 in the compression unit 103, and the groove width s3 between the flights 101 in the measuring unit 104 are formed equally. (S1 = s2 = s3). The screw 100 of the present example makes the groove depth d1 between the flights 101 in the supply unit 102 larger than the groove depths d2 and d3 between the flights 101 in the compression unit 103 and the weighing unit 104, and also supplies the supply unit 102. The groove depth d1 between the flights 101 is constant. Further, the groove depth d3 between the flights 101 in the measuring unit 104 is made smaller than the groove depths d1 and d2 between the flights 101 in the supply unit 102 and the compression unit 103, and between the flights 101 in the measuring unit 104. The groove depth d3 is constant. Further, the groove depth d2 between the flights 101 in the compression unit 103 is continuously continuous from the groove depth d1 between the flights 101 in the supply unit 102 to the groove depth d3 between the flights 101 in the measuring unit 104. It forms so that it may become small sequentially as it goes to the measurement part 104 side from the supply part 102 side (refer FIG. 2 of patent document 1).

図3のスクリュ100は、供給部102におけるフライト101間の溝深さd1が大きく形成されているので、外部から供給される原料樹脂を容易かつ確実に受け入れることができる。また、圧縮部103においては、供給部102側から計量部104側に至るに従って順次フライト101間の溝深さd2が小さくなっているので、該部を通過する間に供給部102から送られてくる原料に徐々に圧縮力が付与され、スクリュ100の回転に伴う原料樹脂の剪断発熱及び摩擦発熱が増加して、原料樹脂の溶融が促進される。さらに、計量部104においては、フライト101間の溝深さd3が小さくなっているので、該部を通過する間に圧縮部103から送られてくる溶融樹脂が、射出可能な程度まで十分に可塑化及び混練される。   The screw 100 of FIG. 3 has a large groove depth d1 between the flights 101 in the supply unit 102, and therefore can easily and reliably receive the raw material resin supplied from the outside. Further, in the compression unit 103, the groove depth d2 between the flights 101 is sequentially reduced from the supply unit 102 side to the measuring unit 104 side, so that it is sent from the supply unit 102 while passing through the unit. A compressive force is gradually applied to the coming raw material, shear heat generation and frictional heat generation of the raw material resin accompanying rotation of the screw 100 increase, and melting of the raw material resin is promoted. Furthermore, since the groove depth d3 between the flights 101 is small in the measuring section 104, the molten resin sent from the compression section 103 while passing through the section is sufficiently plasticized to the extent that it can be injected. And kneaded.

ところで、樹脂材料中にガラス繊維、カーボン繊維、天然繊維等の繊維材料を混練した繊維強化プラスチック材料の射出成形においては、図4に示すように、成形品中に含まれる繊維材料の繊維長が長いほど、成形品の弾性率、引張強度及び衝撃強度が高まる。また、成形品中で繊維材料が一方向に配向せず、各方向に均一に分散しているほど、成形品の均質性が高まる。このため、成形品中に繊維長が大きい繊維材料を均一に分散させるべく、長さ方向に繊維材料が配列された円柱形の樹脂ペレットを原料樹脂として加熱シリンダ内に供給する技術や、リールから引き出された長尺の繊維材料を加熱シリンダ内に連続的に供給する技術が従来提案されている(特許文献2のFig.1参照。)。   Incidentally, in the injection molding of a fiber reinforced plastic material in which a fiber material such as glass fiber, carbon fiber or natural fiber is kneaded in a resin material, as shown in FIG. 4, the fiber length of the fiber material contained in the molded product is as follows. The longer the modulus, the higher the tensile strength and impact strength of the molded product. In addition, the homogeneity of the molded product increases as the fiber material is not oriented in one direction in the molded product and is uniformly dispersed in each direction. For this reason, in order to uniformly disperse a fiber material having a long fiber length in a molded product, a technology for supplying cylindrical resin pellets in which fiber materials are arranged in the length direction into a heating cylinder as a raw resin, or from a reel Conventionally, a technique for continuously supplying a drawn long fiber material into a heating cylinder has been proposed (see FIG. 1 of Patent Document 2).

特開平11−188764号公報Japanese Patent Laid-Open No. 11-188864 米国特許出願公開第2010/0317769A1号明細書US Patent Application Publication No. 2010 / 0317769A1

しかしながら、従来のスクリュは、先端側に至るほど溝深さを小さくすることによって加熱シリンダ内を流れる原料に圧縮力を付与する構成であるので、溝深さが小さい部分を流れる原料に大きな剪断力や摩擦力が作用する。このため、従来の射出成形機においては、加熱シリンダ中に繊維長が大きい繊維材料を供給したとしても、可塑化及び混練中に原料中の繊維材料が剪断力や摩擦力により破断されて短くなりやすい。また、樹脂材料中で繊維材料が一方向に配向されやすいので、成形品中に長い繊維材料を均一に分散させることが困難で、高強度かつ均質な繊維強化プラスチック成形品を成形し難い。   However, since the conventional screw is configured to apply a compressive force to the raw material flowing in the heating cylinder by reducing the groove depth toward the tip side, a large shear force is applied to the raw material flowing through the portion where the groove depth is small. And frictional force acts. For this reason, in a conventional injection molding machine, even if a fiber material having a long fiber length is supplied into the heating cylinder, the fiber material in the raw material is broken and shortened by shearing force and frictional force during plasticization and kneading. Cheap. Further, since the fiber material is easily oriented in one direction in the resin material, it is difficult to uniformly disperse the long fiber material in the molded product, and it is difficult to form a high-strength and homogeneous fiber-reinforced plastic molded product.

本発明は、このような従来技術の実情に鑑みてなされたものであり、その目的は、繊維強化プラスチック成形品を成形する射出成形機に好適なスクリュを提供することにある。   The present invention has been made in view of such a state of the prior art, and an object thereof is to provide a screw suitable for an injection molding machine for molding a fiber-reinforced plastic molded product.

本発明は、このような技術的課題を解決するため、周面に形成されたフライトにより、原料樹脂の受け入れ側から先端に至る間に供給部、圧縮部及び計量部がこの順に形成された射出成形機用のスクリュにおいて、前記供給部の始端から前記計量部の終端に至るまで、前記フライトのリードピッチ及び前記フライト間の溝深さは一定であり、かつ前記供給部における前記フライト間の溝幅と、前記圧縮部における前記フライト間の溝幅と、前記計量部における前記フライト間の溝幅とが異なることを特徴とする。 In order to solve such a technical problem, the present invention provides an injection in which a supply part, a compression part, and a metering part are formed in this order from the receiving side of the raw material resin to the tip by a flight formed on the peripheral surface. In a screw for a molding machine, the lead pitch of the flight and the groove depth between the flights are constant from the start end of the supply unit to the end of the measuring unit, and the groove between the flights in the supply unit The width , the groove width between the flights in the compression part, and the groove width between the flights in the weighing part are different .

本構成のスクリュは、先端側に至るほど溝幅を小さくすることによって加熱シリンダ内を流れる原料に圧縮力を付与する構成であるので、先端側においても大きな溝深さを確保できる。よって、加熱シリンダ内の原料層が薄くならず、樹脂材料中の繊維材料に過大な剪断力や摩擦力が作用することを防止できるので、加熱シリンダ内での繊維材料の破断を抑制できる。また、加熱シリンダ内の原料層が薄くならないことから、原料層内における繊維材料の多方向への分散性を高めることができる。このようなことから、本構成のスクリュを備えた射出成形機は、高強度かつ均質な繊維強化プラスチック成形品を成形することができる。   Since the screw of this configuration is configured to apply a compressive force to the raw material flowing in the heating cylinder by reducing the groove width toward the tip side, a large groove depth can be ensured also on the tip side. Therefore, since the raw material layer in the heating cylinder is not thinned and it is possible to prevent an excessive shearing force or frictional force from acting on the fiber material in the resin material, the breakage of the fiber material in the heating cylinder can be suppressed. Moreover, since the raw material layer in the heating cylinder is not thinned, the dispersibility of the fiber material in the raw material layer in multiple directions can be improved. For this reason, the injection molding machine equipped with the screw of this configuration can mold a high-strength and homogeneous fiber-reinforced plastic molded product.

また本発明は、前記構成のスクリュにおいて、前記供給部における前記フライト間の溝幅は、前記圧縮部及び前記計量部における前記フライト間の溝幅よりも大きくかつ一定であり、前記計量部における前記フライト間の溝幅は、前記供給部及び前記圧縮部における前記フライト間の溝幅よりも小さくかつ一定であり、前記圧縮部における前記フライト間の溝幅は、前記供給部側から前記計量部側に至るに従って順次小さくなることを特徴とする。   In the screw having the above-described configuration, the groove width between the flights in the supply unit is larger and constant than the groove width between the flights in the compression unit and the measurement unit, The groove width between flights is smaller and constant than the groove width between the flights in the supply section and the compression section, and the groove width between flights in the compression section is from the supply section side to the weighing section side. It is characterized in that it gradually decreases as it reaches.

本構成のスクリュは、供給部におけるフライト間の溝幅を他の部分におけるフライト間の溝幅よりも大きくかつ一定にしたので、外部からのペレット状の原料の受け入れと圧縮部側への移送を容易かつ確実に行うことができる。また、本構成のスクリュは、圧縮部におけるフライト間の溝幅を供給部側から計量部側に至るに従って順次小さくするので、該部を通過する間に原料に順次圧縮力を付与することができて、原料を可塑化することができる。さらに、本構成のスクリュは、計量部におけるフライト間の溝幅を他の部分におけるフライト間の溝幅よりも小さくかつ一定にしたので、圧縮部から移送される溶融原料をさらに可塑化して、十分に可塑化及び混練することができる。   In the screw of this configuration, the groove width between flights in the supply unit is made larger and constant than the groove width between flights in other parts, so that the pellet-shaped raw material is received from the outside and transferred to the compression unit side. It can be done easily and reliably. In addition, the screw of this configuration sequentially decreases the groove width between flights in the compression section from the supply section side to the measurement section side, so that a compressive force can be sequentially applied to the raw material while passing through the section. Thus, the raw material can be plasticized. Furthermore, the screw of this configuration has a groove width between flights in the measuring section that is smaller and constant than a groove width between flights in other parts. Can be plasticized and kneaded.

また本発明は、前記構成のスクリュにおいて、前記圧縮部の始端から終端に至るまでの体積圧縮率が1.5〜3となるように、前記圧縮部における前記フライト間の溝幅を調整したことを特徴とする。   In the screw of the above configuration, the groove width between the flights in the compression section is adjusted so that the volume compression ratio from the start end to the end of the compression section is 1.5 to 3. It is characterized by.

従来知られている標準的なスクリュは、圧縮部の始端から終端に至るまでの体積圧縮率が2〜3となるように、圧縮部におけるフライトが形成されている。これに対して、本構成のスクリュは、圧縮部における体積圧縮率が1.5〜3であり、従来知られている標準的なスクリュに比べて体積圧縮率が低めになっている。よって、原料中の繊維材料に作用する剪断力や摩擦力を低減することができ、混練中における繊維材料の破断を抑制できて、繊維長が大きな繊維材料を樹脂材料中に分散させることができる。   In a conventionally known standard screw, the flight in the compression section is formed so that the volume compression ratio from the start end to the end of the compression section is 2-3. On the other hand, the screw of this configuration has a volume compression ratio of 1.5 to 3 in the compression portion, and the volume compression ratio is lower than that of a conventionally known standard screw. Therefore, the shearing force and frictional force acting on the fiber material in the raw material can be reduced, the breakage of the fiber material during kneading can be suppressed, and the fiber material having a large fiber length can be dispersed in the resin material. .

本発明のスクリュは、原料樹脂の受け入れ側から先端側まで、フライトのリードピッチ及びフライト間の溝深さが一定で、フライト間の溝幅のみが変化するので、可塑化・混練中の原料に過大な剪断力や摩擦力が作用せず、かつ樹脂材料中における繊維材料の分散性を高めることができる。よって、高強度かつ均質な繊維強化プラスチック成形品を成形することができる。   The screw of the present invention has constant flight lead pitch and flight groove depth from the raw material resin receiving side to the tip side, and only the groove width between flights changes. Excessive shearing force or frictional force does not act, and the dispersibility of the fiber material in the resin material can be improved. Therefore, a high-strength and homogeneous fiber-reinforced plastic molded product can be molded.

実施形態に係るスクリュの要部側面図である。It is a principal part side view of the screw which concerns on embodiment. 実施形態に係るスクリュの効果を従来知られている標準的なスクリュと比較して示す表図である。It is a table | surface figure which shows the effect of the screw which concerns on embodiment compared with the standard screw known conventionally. 従来知られている標準的なスクリュの要部側面図である。It is a principal part side view of the standard screw known conventionally. 繊維強化プラスチック成形品中に含まれる繊維材料の繊維長と繊維強化プラスチック成形品の弾性率、引張強度及び衝撃強度との関係を示すグラフ図である。It is a graph which shows the relationship between the fiber length of the fiber material contained in a fiber reinforced plastic molding, and the elasticity modulus, tensile strength, and impact strength of a fiber reinforced plastic molding.

以下、本発明に係る射出成形機用のスクリュの実施の形態について説明する。   Hereinafter, an embodiment of a screw for an injection molding machine according to the present invention will be described.

実施の形態に係るスクリュ1は、図1に示すように、従来知られている標準的なスクリュ100(図3参照)と同様に、原料樹脂の受け入れ側から順に供給部2、圧縮部3及び計量部4が形成されている。各部の機能は、従来知られている標準的なスクリュ100と同じである。   As shown in FIG. 1, the screw 1 according to the embodiment is similar to a conventionally known standard screw 100 (see FIG. 3), in order from the material resin receiving side, the supply unit 2, the compression unit 3, and A measuring unit 4 is formed. The function of each part is the same as the standard screw 100 known conventionally.

実施の形態に係るスクリュ1は、従来知られている標準的なスクリュ100が、フライト101間の溝深さdを調整することによって、供給部102、圧縮部103及び計量部104を形成しているのに対して、フライト5間の溝幅を調整することによって、供給部2、圧縮部3及び計量部4を形成している。   In the screw 1 according to the embodiment, a conventionally known standard screw 100 forms a supply unit 102, a compression unit 103, and a measuring unit 104 by adjusting the groove depth d between the flights 101. On the other hand, the supply part 2, the compression part 3, and the measurement part 4 are formed by adjusting the groove width between the flights 5.

即ち、実施の形態に係るスクリュ1は、供給部2におけるフライトピッチp1と、圧縮部3におけるフライトピッチp2と、計量部4におけるフライトピッチp3が等しく形成されている(p1=p2=p3)。また、このスクリュ1は、供給部2におけるフライト5間の溝深さd1と、圧縮部3におけるフライト5間の溝深さd2と、計量部4におけるフライト5間の溝深さd3が等しく形成されている(d1=d2=d3)。そして、このスクリュ1は、供給部2におけるフライト5間の溝幅s1を、圧縮部3及び計量部4におけるフライト5間の溝幅s2、s3よりも大きくすると共に、供給部2内における各フライト5間の溝幅s1については一定にしている。また、計量部4におけるフライト5間の溝幅s3については、供給部2及び圧縮部3におけるフライト5間の溝幅s1、s2よりも小さくすると共に、計量部4内における各フライト5間の溝幅s3については一定にしている。さらに、圧縮部3におけるフライト5間の溝幅s2については、供給部2におけるフライト5間の溝幅s1から計量部4におけるフライト5間の溝幅s3まで滑らかに連続するように、供給部2側から計量部4側に至るに従って順次小さくなるように形成されている。   That is, in the screw 1 according to the embodiment, the flight pitch p1 in the supply unit 2, the flight pitch p2 in the compression unit 3, and the flight pitch p3 in the measuring unit 4 are formed equally (p1 = p2 = p3). Further, the screw 1 is formed such that the groove depth d1 between the flights 5 in the supply unit 2, the groove depth d2 between the flights 5 in the compression unit 3, and the groove depth d3 between the flights 5 in the measuring unit 4 are equal. (D1 = d2 = d3). And this screw 1 makes groove width s1 between the flights 5 in the supply part 2 larger than groove widths s2 and s3 between the flights 5 in the compression part 3 and the measurement part 4, and each flight in the supply part 2 The groove width s1 between 5 is constant. In addition, the groove width s3 between the flights 5 in the measuring unit 4 is made smaller than the groove widths s1 and s2 between the flights 5 in the supply unit 2 and the compression unit 3, and the grooves between the flights 5 in the measuring unit 4 The width s3 is constant. Further, as for the groove width s2 between the flights 5 in the compression unit 3, the supply unit 2 is smoothly continuous from the groove width s1 between the flights 5 in the supply unit 2 to the groove width s3 between the flights 5 in the weighing unit 4. It forms so that it may become small sequentially as it goes to the measurement part 4 side from the side.

また、実施の形態に係るスクリュ1は、圧縮部3の始端から終端に至るまでの体積圧縮率が1.5〜3となるように、圧縮部3におけるフライト間の溝幅s2が調整されている。従来知られている標準的なスクリュでは、圧縮部における体積圧縮率が2〜3に調整されるので、実施の形態に係るスクリュ1は、従来知られている標準的なスクリュに比べて、原料樹脂中の繊維材料に作用する剪断力及び摩擦力を低減できて、成形品中に繊維長が大きな繊維材料を残すことが可能になる。   Further, in the screw 1 according to the embodiment, the groove width s2 between flights in the compression unit 3 is adjusted so that the volume compression rate from the start end to the end of the compression unit 3 is 1.5 to 3. Yes. In the conventionally known standard screw, the volume compressibility in the compression portion is adjusted to 2 to 3, so that the screw 1 according to the embodiment is a raw material as compared with the conventionally known standard screw. The shearing force and frictional force acting on the fiber material in the resin can be reduced, and a fiber material having a large fiber length can be left in the molded article.

さらに、実施の形態に係るスクリュ1は、供給部2と圧縮部3と計量部4の山数比を、従来知られている標準的なスクリュと同等の5:3:2に調整した。実験によると、供給部2と圧縮部3と計量部4の山数比をこの比率にすることにより、繊維強化プラスチック製品の良品を効率よく成形できた。   Furthermore, screw 1 which concerns on embodiment adjusted the number ratio of the supply part 2, the compression part 3, and the measurement part 4 to 5: 3: 2 equivalent to the standard screw known conventionally. According to the experiment, a good product of the fiber reinforced plastic product could be efficiently molded by setting the ratio of the number of the supply unit 2, the compression unit 3 and the measuring unit 4 to this ratio.

実施の形態に係るスクリュ1は、供給部2におけるフライト5間の溝幅s1を他の部分よりも大きく形成したので、外部からの原料樹脂の受け入れが容易かつ確実に行われる。また、圧縮部3においては、供給部2側から計量部4側に至るに従って順次フライト5間の溝幅s2を小さくしたので、該部を通過する間に供給部2から送られてくる原料に徐々に圧縮力が付与され、スクリュ1の回転に伴う原料樹脂の剪断発熱及び摩擦発熱が増加して、原料樹脂の溶融が促進される。さらに、計量部4においては、フライト5間の溝幅s3が他の部分よりも小さくしたので、該部を通過する間に圧縮部3から送られてくる溶融樹脂が、射出可能な程度まで十分に可塑化及び混練される。   In the screw 1 according to the embodiment, the groove width s1 between the flights 5 in the supply unit 2 is formed to be larger than that of other portions, so that the raw material resin can be easily and reliably received from the outside. Moreover, in the compression part 3, since the groove width s2 between the flights 5 was sequentially reduced from the supply part 2 side to the measuring part 4 side, the raw material sent from the supply part 2 while passing through the part was used. A compressive force is gradually applied, and the shearing heat generation and frictional heat generation of the raw material resin accompanying the rotation of the screw 1 are increased, and the melting of the raw material resin is promoted. Further, in the measuring section 4, the groove width s3 between the flights 5 is made smaller than the other sections, so that the molten resin sent from the compression section 3 while passing through the section is sufficiently large to be injectable. Plasticized and kneaded.

実施の形態に係るスクリュ1は、上述したように、先端側に至るほど溝幅を小さくすることによって加熱シリンダ内を流れる原料に圧縮力を付与する構成であるので、先端側においても大きな溝深さを確保できる。よって、加熱シリンダ内の原料層が薄くならず、樹脂材料中の繊維材料に過大な剪断力や摩擦力が作用することを防止できるので、加熱シリンダ内での繊維材料の破断を抑制できる。また、加熱シリンダ内の原料層が薄くならないことから、原料層内における繊維材料の分散性を高めることができる。このようなことから、本構成のスクリュを備えた射出成形機は、高強度かつ均質な繊維強化プラスチック成形品を成形することが可能になる。   As described above, the screw 1 according to the embodiment is configured to apply a compressive force to the raw material flowing in the heating cylinder by reducing the groove width toward the tip side, so that a large groove depth is also provided on the tip side. Can be secured. Therefore, since the raw material layer in the heating cylinder is not thinned and it is possible to prevent an excessive shearing force or frictional force from acting on the fiber material in the resin material, the breakage of the fiber material in the heating cylinder can be suppressed. Moreover, since the raw material layer in the heating cylinder does not become thin, the dispersibility of the fiber material in the raw material layer can be improved. For this reason, the injection molding machine equipped with the screw having this configuration can form a high-strength and homogeneous fiber-reinforced plastic molded product.

図2に、実施の形態に係るスクリュ1を備えたスクリュ式射出成形機で作製した繊維強化プラスチック成形品Aと、従来知られている標準的なスクリュ100を備えたスクリュ式射出成形機で作製した繊維強化プラスチック成形品Bについて、各成形品中に含まれる繊維材料の平均繊維長と、各成形品中における繊維材料の分散度とを比較して示す。試料の作成に際しては、原料として、ガラス繊維の束にポリプロピレン樹脂を均一に含浸させ10mmの長さに切断した長繊維複合ペレットを用い、直径が15mmで厚さが5mmの円板形の試料を作製した。試料作成時の加熱シリンダの加熱条件及びスクリュの回転条件については、定法に従った。   FIG. 2 shows a fiber-reinforced plastic molded product A produced by a screw-type injection molding machine equipped with a screw 1 according to the embodiment and a screw-type injection molding machine equipped with a conventionally known standard screw 100. For the fiber reinforced plastic molded product B, the average fiber length of the fiber material contained in each molded product is compared with the degree of dispersion of the fiber material in each molded product. In the preparation of the sample, a disk-shaped sample having a diameter of 15 mm and a thickness of 5 mm was used as a raw material, using a long fiber composite pellet that was uniformly impregnated with polypropylene resin in a bundle of glass fibers and cut to a length of 10 mm. Produced. The heating conditions of the heating cylinder and the rotation conditions of the screw at the time of sample preparation were in accordance with the usual method.

図2から明らかなように、従来知られている標準的なスクリュ100を備えたスクリュ式射出成形機で作製した繊維強化プラスチック成形品Bは、それに含まれる繊維材料の平均繊維長が2.3mmであるのに対して、実施の形態に係るスクリュ1を備えたスクリュ式射出成形機で作製した繊維強化プラスチック成形品Aは、それに含まれる繊維材料の平均繊維長が5.8mmであった。このことから、繊維強化プラスチック成形品Aは、繊維強化プラスチック成形品Bに比べて、成形品の弾性率、引張強度及び衝撃強度が格段に改善されているものと推定される(図4参照)。また、目視によって繊維強化プラスチック成形品A中における繊維材料の分散度と、繊維強化プラスチック成形品B中における繊維材料の分散度とを比較したところ、繊維強化プラスチック成形品A中には、繊維材料がほぼ均一に分散しており、良(○)と判定されたのに対し、繊維強化プラスチック成形品B中には、繊維材料の分散にやや偏りが見られ、やや不可(△)と判定された。   As is apparent from FIG. 2, the fiber reinforced plastic molded product B produced by a screw type injection molding machine equipped with a conventionally known standard screw 100 has an average fiber length of 2.3 mm of the fiber material contained therein. On the other hand, in the fiber reinforced plastic molded product A produced by the screw type injection molding machine provided with the screw 1 according to the embodiment, the average fiber length of the fiber material contained therein was 5.8 mm. From this, it is presumed that the fiber reinforced plastic molded product A has significantly improved elastic modulus, tensile strength and impact strength of the molded product compared to the fiber reinforced plastic molded product B (see FIG. 4). . Further, when the degree of dispersion of the fiber material in the fiber reinforced plastic molded product A was visually compared with the degree of dispersion of the fiber material in the fiber reinforced plastic molded product B, the fiber reinforced plastic molded product A contained a fiber material. Is almost uniformly dispersed and determined to be good (◯), whereas in the fiber reinforced plastic molded product B, there is a slight bias in the dispersion of the fiber material, and it is determined to be slightly impossible (Δ). It was.

本発明は、スクリュ式射出成形機及びプリプラ式射出成形機の双方に適用できる。   The present invention can be applied to both a screw type injection molding machine and a pre-plastic type injection molding machine.

1 スクリュ
2 供給部
3 圧縮部
4 計量部
5 フライト
p1 供給部のフライトピッチ
p2 圧縮部のフライトピッチ
p3 計量部のフライトピッチ
d1 供給部の溝深さ
d2 圧縮部の溝深さ
d3 計量部の溝深さ
s1 供給部の溝幅
s2 圧縮部の溝幅
s3 計量部の溝幅
DESCRIPTION OF SYMBOLS 1 Screw 2 Supply part 3 Compression part 4 Measurement part 5 Flight p1 Supply part flight pitch p2 Compression part flight pitch p3 Measurement part flight pitch d1 Supply part groove depth d2 Compression part groove depth d3 Measurement part groove Depth s1 groove width of supply section s2 groove width of compression section s3 groove width of measuring section

Claims (3)

周面に形成されたフライトにより、原料樹脂の受け入れ側から先端に至る間に供給部、圧縮部及び計量部がこの順に形成された射出成形機用のスクリュにおいて、
前記供給部の始端から前記計量部の終端に至るまで、前記フライトのリードピッチ及び前記フライト間の溝深さは一定であり、かつ前記供給部における前記フライト間の溝幅と、前記圧縮部における前記フライト間の溝幅と、前記計量部における前記フライト間の溝幅とが異なることを特徴とするスクリュ。
In the screw for the injection molding machine in which the supply part, the compression part and the measuring part are formed in this order between the raw resin receiving side and the tip by the flight formed on the peripheral surface,
From the beginning of the supply portion up to the end of the metering portion, groove depth between the flight lead pitch and the flight and the groove width between the flights in constant and, and the supply unit, in the compression unit screw, characterized in that the groove width between the flights, and the groove width between the flights in the metering section different.
前記供給部における前記フライト間の溝幅は、前記圧縮部及び前記計量部における前記フライト間の溝幅よりも大きくかつ一定であり、
前記計量部における前記フライト間の溝幅は、前記供給部及び前記圧縮部における前記フライト間の溝幅よりも小さくかつ一定であり、
前記圧縮部における前記フライト間の溝幅は、前記供給部側から前記計量部側に至るに従って順次小さくなることを特徴とする請求項1に記載のスクリュ。
The groove width between the flights in the supply unit is larger and constant than the groove width between the flights in the compression unit and the weighing unit,
The groove width between the flights in the weighing unit is smaller and constant than the groove width between the flights in the supply unit and the compression unit,
2. The screw according to claim 1, wherein a groove width between the flights in the compression unit is gradually reduced from the supply unit side to the measurement unit side.
前記圧縮部の始端から終端に至るまでの体積圧縮率が1.5〜3となるように、前記圧縮部における前記フライト間の溝幅を調整したことを特徴とする請求項1及び請求項2のいずれか1項に記載のスクリュ。
The groove width between the flights in the compression section is adjusted so that the volume compression ratio from the start end to the end of the compression section is 1.5-3. The screw according to any one of the above.
JP2014170866A 2014-08-25 2014-08-25 Injection molding machine screw Active JP6404035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014170866A JP6404035B2 (en) 2014-08-25 2014-08-25 Injection molding machine screw

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014170866A JP6404035B2 (en) 2014-08-25 2014-08-25 Injection molding machine screw

Publications (2)

Publication Number Publication Date
JP2016043623A JP2016043623A (en) 2016-04-04
JP6404035B2 true JP6404035B2 (en) 2018-10-10

Family

ID=55634652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014170866A Active JP6404035B2 (en) 2014-08-25 2014-08-25 Injection molding machine screw

Country Status (1)

Country Link
JP (1) JP6404035B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112019015212A2 (en) 2017-06-01 2020-03-24 Wenger Manufacturing Inc. SPECIFIC HIGH ENERGY EXTRUSION SCREW ASSEMBLY
KR101844192B1 (en) * 2017-11-08 2018-03-30 주상규 Screw for Injection molding Apparatus and extrusion molding Apparatus
CN116635206A (en) * 2020-11-09 2023-08-22 波米尼橡胶及塑料有限责任公司 Screw and twin screw assembly for use in an elastomeric mixture extruder and related methods for extruding an elastomeric mixture
EP4086061A1 (en) * 2021-05-06 2022-11-09 Tyco Electronics Austria GmbH Screw for plastifying and conveying molding material in an injection molding device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3755293B2 (en) * 1997-05-22 2006-03-15 日立金属株式会社 Screw for plasticizing apparatus of fiber reinforced thermoplastic resin and plasticizing apparatus
JP4100326B2 (en) * 2003-10-29 2008-06-11 宇部興産機械株式会社 Plasticizer for injection molding machine
JP5752404B2 (en) * 2010-12-20 2015-07-22 東洋機械金属株式会社 Injection molding machine

Also Published As

Publication number Publication date
JP2016043623A (en) 2016-04-04

Similar Documents

Publication Publication Date Title
JP6404035B2 (en) Injection molding machine screw
JP6126719B2 (en) Injection molding method and reinforcing fiber opening method
JP5940741B1 (en) Injection molding method, injection molding machine, and reinforcing fiber opening method
JP6933951B2 (en) Fiber reinforced thermoplastic resin kneading method and plasticizing equipment
WO2015181858A1 (en) Injection molding method, screw, and injection molding machine
JP6789084B2 (en) Screws for injection molding machines and injection molding machines that inject molten resin in which thermoplastic resin and reinforcing fibers are mixed and melted.
JP2004291409A (en) In-line screw type plasticizing injection equipment
JP4146509B1 (en) Injection molding machine and injection molding method using the same
JP5913251B2 (en) Fiber-reinforced resin injection molding apparatus and injection molding method
TWI648143B (en) Method for forming resin molded article containing reinforced fiber
JP5752404B2 (en) Injection molding machine
JP6504192B2 (en) Method of manufacturing fiber reinforced resin molded article
JP4272502B2 (en) Injection molding method
JP6319774B2 (en) Flow path switching device for plasticizing injection device
JP6301666B2 (en) Manufacturing method of fiber reinforced resin molded product
JP4813584B2 (en) Plasticizing screw for injection molding machine
JP2005131855A (en) Plasticator of injection molding machine
JP2011224801A (en) Injection molding machine
CN111132805B (en) Method for kneading fiber-reinforced thermoplastic resin, plasticizing device, and extruder
JP6875959B2 (en) Manufacturing method of injection molding equipment and reinforced resin molded product
JP5397599B2 (en) Injection machine for injection molding machine
JP2013086455A (en) Injection molding machine and method of manufacturing resin molded article
JP2017225984A (en) Metal melting screw, screw type metal melting machine and screw type metal injection forming machine
JP2014184733A (en) Injection molding machine
JP6069470B1 (en) Injection device, injection molding machine and injection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180912

R150 Certificate of patent or registration of utility model

Ref document number: 6404035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150