JP6403469B2 - Continuous heating furnace and temperature measurement method - Google Patents

Continuous heating furnace and temperature measurement method Download PDF

Info

Publication number
JP6403469B2
JP6403469B2 JP2014143447A JP2014143447A JP6403469B2 JP 6403469 B2 JP6403469 B2 JP 6403469B2 JP 2014143447 A JP2014143447 A JP 2014143447A JP 2014143447 A JP2014143447 A JP 2014143447A JP 6403469 B2 JP6403469 B2 JP 6403469B2
Authority
JP
Japan
Prior art keywords
temperature
receiving surface
furnace chamber
radiation thermometer
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014143447A
Other languages
Japanese (ja)
Other versions
JP2016020810A (en
Inventor
洋幸 武田
洋幸 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Thermo Systems Co Ltd
Original Assignee
Koyo Thermo Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Thermo Systems Co Ltd filed Critical Koyo Thermo Systems Co Ltd
Priority to JP2014143447A priority Critical patent/JP6403469B2/en
Publication of JP2016020810A publication Critical patent/JP2016020810A/en
Application granted granted Critical
Publication of JP6403469B2 publication Critical patent/JP6403469B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

この発明は、加熱炉内にそれぞれの間に間隔を設けて搬入及び搬出される複数の処理物を所定の温度に加熱する連続式加熱炉及び連続式加熱炉における温度測定方法に関し、特に加熱処理中の処理物の温度を正確に測定できる連続式加熱炉及び連続式加熱炉における温度測定方法に関する。   The present invention relates to a continuous heating furnace and a temperature measurement method in a continuous heating furnace that heats a plurality of workpieces that are carried in and out to the heating furnace to a predetermined temperature with a space between them. The present invention relates to a continuous heating furnace capable of accurately measuring the temperature of a processed material therein and a temperature measurement method in the continuous heating furnace.

連続式加熱炉は、例えばウォーキングビーム方式の搬送手段を備え、未処理の処理物を搬入口から炉内に搬入して所定の温度に加熱処理した後の処理物を搬出口から外部に搬出する工程を繰り返し行う。連続式加熱炉では、炉内に配置されたヒータの駆動を制御して処理物を所定の温度まで加熱するために、炉内の温度及び処理物の搬入出のタクトタイムを制御する必要がある。このため、処理物に熱電対を装着し、炉の搬入口から搬出口まで処理物を搬送する間の温度プロファイルを測定している。   The continuous heating furnace includes, for example, a walking beam type conveying means, and carries an unprocessed processed material into the furnace from the carry-in port and heat-processes it to a predetermined temperature, and carries the processed product to the outside from the carry-out port. Repeat the process. In a continuous heating furnace, it is necessary to control the temperature in the furnace and the tact time of loading / unloading the processed material in order to heat the processed material to a predetermined temperature by controlling the driving of the heater disposed in the furnace. . For this reason, a thermocouple is attached to the processing object, and a temperature profile is measured while the processing object is conveyed from the furnace inlet to the outlet.

ところが、太陽電池に用いられるシリコンウェハ等の軽量の処理物は昇温速度が早く、熱電対を装着するための治具の質量が温度の測定結果に影響を与え、処理物の温度を正確に測定することができない。   However, lightweight processing objects such as silicon wafers used in solar cells have a high rate of temperature increase, and the mass of the jig for mounting the thermocouple affects the temperature measurement results, so that the temperature of the processing object can be accurately determined. It cannot be measured.

そこで、放射温度計を用いて炉内の処理物の温度を測定することが提案されている(例えば、特許文献1参照。)。炉内における処理物の搬送経路の一部に向けて放射温度計を設置することで、固定された測定位置で処理物の温度を測定でき、熱電対及び治具を必要とすることがなく、処理物の温度を正確に測定できるとされている。   Then, measuring the temperature of the processed material in a furnace using a radiation thermometer is proposed (for example, refer patent document 1). By installing a radiation thermometer toward a part of the conveyance path of the processed material in the furnace, the temperature of the processed material can be measured at a fixed measurement position, without the need for a thermocouple and jig, It is said that the temperature of the processed material can be accurately measured.

特開2010−66132号公報JP 2010-66132 A

しかし、連続式加熱炉における処理物の温度測定に放射温度計を適用した場合、処理物の温度を正確に測定できない問題がある。つまり、測定位置を固定した状態で炉内に設置された放射温度計は、処理済の処理物が測定位置を通過した後、未処理の処理物が測定位置に達するまでの間に、炉内の壁面の温度を測定することになる。一般的に、炉内の壁面に使用される断熱材やセラミックボードの放射率は処理物の放射率よりも高い。このため、処理物の温度と壁面の温度とが近接している場合、放射温度計による搬出直前の処理物からの測定温度と壁面からの測定温度との差が明確にならず、処理物のピーク温度を正確に確定できない。   However, when a radiation thermometer is applied to the temperature measurement of the processed material in the continuous heating furnace, there is a problem that the temperature of the processed material cannot be measured accurately. In other words, the radiation thermometer installed in the furnace in a state where the measurement position is fixed is the same as that in the furnace after the processed material passes through the measurement position and the untreated material reaches the measurement position. The temperature of the wall surface will be measured. Generally, the emissivity of the heat insulating material and ceramic board used for the wall surface in the furnace is higher than the emissivity of the processed material. For this reason, when the temperature of the processed object and the temperature of the wall surface are close to each other, the difference between the measured temperature from the processed object immediately before being taken out by the radiation thermometer and the measured temperature from the wall surface is not clear, and the processed object The peak temperature cannot be determined accurately.

この発明の目的は、炉内で放射温度計の受光面が対向する壁面を放射率が低い材料で構成することにより、放射温度計の測定温度から処理物のピーク温度を正確に確定することができる連続式加熱炉及び温度測定方法を提供することである。   The object of the present invention is to accurately determine the peak temperature of the processed material from the measured temperature of the radiation thermometer by configuring the wall surface facing the light receiving surface of the radiation thermometer in the furnace with a material having a low emissivity. It is to provide a continuous heating furnace and a temperature measurement method that can be used.

この発明の連続式加熱炉は、炉室、ヒータ、搬送機構、放射温度計を備えている。炉室は、壁面で包囲された空間であり、処理物の搬入口及び搬出口を備えている。搬送機構は、搬入口及び搬出口を経由する搬送経路に沿って、未処理の処理物を炉室内に搬入し、所定時間が経過した後に処理済の処理物を炉室外に搬出する工程を繰り返し実行する。ヒータは、炉室内を加熱する。放射温度計は、受光面が炉室内における搬送経路の一部である測定位置に対向するように固定的に配置される。壁面の少なくとも受光面に対向する対向部分は、処理物よりも放射率が恒常的に低い低放射率材料、例えば鏡面処理されたシリコンで構成されている。   The continuous heating furnace of the present invention includes a furnace chamber, a heater, a transport mechanism, and a radiation thermometer. The furnace chamber is a space surrounded by wall surfaces, and includes a carry-in port and a carry-out port for processed objects. The transport mechanism repeats the process of transporting unprocessed processed material into the furnace chamber along the transport path that passes through the transport inlet and outlet, and transporting the processed processed material out of the furnace chamber after a predetermined time has elapsed. Run. The heater heats the furnace chamber. The radiation thermometer is fixedly arranged so that the light receiving surface faces a measurement position that is a part of the conveyance path in the furnace chamber. At least a portion of the wall facing the light receiving surface is made of a low emissivity material whose emissivity is constantly lower than that of the processed material, for example, mirror-treated silicon.

放射温度計は、処理物の加熱処理中であって炉室内に処理物が搬入されている状態では処理物の表面温度を測定し、処理物の加熱処理が終了して炉室内から処理物が搬出された状態では壁面の温度を測定する。放射温度計は、測定対象から放射される赤外線量に応じて測定対象の温度を測定するため、同一温度であっても放射率の低い物体の測定温度は放射率の高い物体の測定温度よりも低くなる。加熱処理の開始から終了までの放射温度計の測定温度は、受光面が処理物に対向している間に処理物の温度上昇に伴って上昇し、処理物がピーク温度となった後に処理物の後端が測定位置を通過して受光面が壁面に対向した時に急激に低下する。したがって、放射温度計の測定温度プロファイルが急激に低下する直前の測定温度が、処理物のピーク温度となる。   The radiation thermometer measures the surface temperature of the processed material when the processed material is being heated and is being carried into the furnace chamber. The wall temperature is measured in the unloaded state. The radiation thermometer measures the temperature of the measurement object according to the amount of infrared rays emitted from the measurement object, so the measurement temperature of an object with low emissivity is higher than the measurement temperature of an object with high emissivity even at the same temperature. Lower. The measurement temperature of the radiation thermometer from the start to the end of the heat treatment rises with the temperature rise of the treatment object while the light receiving surface faces the treatment object, and the treatment object reaches the peak temperature. When the rear end passes through the measurement position and the light receiving surface faces the wall surface, it rapidly decreases. Therefore, the measured temperature immediately before the measured temperature profile of the radiation thermometer rapidly decreases becomes the peak temperature of the processed object.

この構成において、放射温度計の受光面に、外部から壁面を貫通して炉室内の測定位置に対向する部分に達する遮光筒を備えることが好ましい。放射温度計を炉室外に配置することができる。   In this configuration, it is preferable that the light receiving surface of the radiation thermometer is provided with a light shielding cylinder that penetrates the wall surface from the outside and reaches a portion facing the measurement position in the furnace chamber. A radiation thermometer can be placed outside the furnace chamber.

この発明の温度測定方法は、連続式加熱炉の炉室を構成する壁面において、少なくとも処理物を挟んで放射温度計と反対側における放射温度計の受光面に対向する部分を、処理物よりも放射率が恒常的に低い材料で構成し、処理物の加熱処理の開始から終了までの間における放射温度計の測定温度プロファイルにおいて急激に低下する直前の温度を処理物のピーク温度とする。   In the temperature measurement method of the present invention, at least the portion of the wall surface constituting the furnace chamber of the continuous heating furnace that faces the light receiving surface of the radiation thermometer on the side opposite to the radiation thermometer across the treatment object is more than the treatment object. The temperature immediately before a rapid decrease in the measured temperature profile of the radiation thermometer from the start to the end of the heat treatment of the processed material is defined as the peak temperature of the processed material.

本発明によれば、放射温度計の測定温度から処理物のピーク温度を正確に確定することができる。   According to the present invention, the peak temperature of the processed product can be accurately determined from the measured temperature of the radiation thermometer.

(A)は本発明の実施形態に係る連続式加熱炉の概略を示す側面部分断面図、(B)は(A)におけるX−X部の断面図である。(A) is a side fragmentary sectional view which shows the outline of the continuous heating furnace which concerns on embodiment of this invention, (B) is sectional drawing of the XX part in (A). (A)〜(D)は、同連続式加熱炉における加熱処理開始から終了までの間における温度測定方法の一例を示す図である。(A)-(D) are figures which show an example of the temperature measurement method between the heat processing start in the continuous heating furnace to completion | finish. 同連続式加熱炉における放射温度計の測定温度プロファイルの一例である。It is an example of the measurement temperature profile of the radiation thermometer in the same continuous heating furnace.

以下に、この発明の実施形態に係る連続式加熱炉及び温度測定方法について、図面を参照しつつ説明する。   Hereinafter, a continuous heating furnace and a temperature measuring method according to an embodiment of the present invention will be described with reference to the drawings.

図1(A)及び(B)に示すように、この発明の実施形態に係る連続式加熱炉10は、6面を壁面11〜16で包囲された炉室1を備えている。壁面11〜16は、セラミックボード等の断熱材料を素材とする。前側の壁面11には搬入口2が形成されており、後側の壁面12には搬出口3が形成されている。搬入口2及び搬出口3は、互いに対向している。   As shown to FIG. 1 (A) and (B), the continuous heating furnace 10 which concerns on embodiment of this invention is equipped with the furnace chamber 1 by which six surfaces were enclosed by the wall surfaces 11-16. The wall surfaces 11 to 16 are made of a heat insulating material such as a ceramic board. A carry-in port 2 is formed in the front wall surface 11, and a carry-out port 3 is formed in the rear wall surface 12. The carry-in port 2 and the carry-out port 3 face each other.

搬入口2から炉室1内を経由して搬出口3に至る処理物100の搬送経路に沿って、ウォーキングビーム4が配置されている。ウォーキングビーム4は、矩形平板形状を呈する処理物100における搬送方向に平行な2つの側端部近傍のそれぞれに裏面側から当接するように2列に配置され、処理物100をその主面を水平にして搬送する。ウォーキングビーム4は、この発明の搬送機構に相当するが、これに限るものではなく、処理物100を搬送経路に沿って搬送できることを条件に、ローラハース等の他の構成とすることもできる。   A walking beam 4 is disposed along the transfer path of the processed material 100 from the carry-in entrance 2 through the furnace chamber 1 to the carry-out exit 3. The walking beams 4 are arranged in two rows so as to come into contact with the vicinity of two side end portions parallel to the transport direction in the processing object 100 having a rectangular flat plate shape from the back surface side, and the processing object 100 is horizontally disposed on its main surface. Then transport. The walking beam 4 corresponds to the transport mechanism of the present invention, but is not limited to this, and may have another configuration such as a roller hearth on condition that the processed material 100 can be transported along the transport path.

炉室1の上部には、一例として5本のランプヒータ5が配置されている。また、炉室1の下面を構成する壁面16の上部にはボトムヒータ6及び底板17が設置されている。ランプヒータ5及びボトムヒータ6は、この発明のヒータに相当し、炉室1内に搬入された処理物100を加熱する。なお、ヒータは、ランプヒータ5とボトムヒータ6との組み合わせに限るものではない。   As an example, five lamp heaters 5 are disposed in the upper portion of the furnace chamber 1. A bottom heater 6 and a bottom plate 17 are installed on the upper surface of the wall surface 16 constituting the lower surface of the furnace chamber 1. The lamp heater 5 and the bottom heater 6 correspond to the heaters of the present invention, and heat the workpiece 100 carried into the furnace chamber 1. The heater is not limited to the combination of the lamp heater 5 and the bottom heater 6.

炉室1の上面を構成する上側の壁面15には、遮光筒7が垂直に貫通している。遮光筒7は、例えばセラミックチューブで構成されており、周面において少なくとも赤外線を遮蔽する。壁面15の上面には、放射温度計8が取り付けられている。放射温度計8は、受光面8Aが遮光筒7の真上に位置するように固定されている。遮光筒7は、上下の開放端を受光面8Aと後述する測定位置P1との間に位置させ、長手方向を鉛直方向に沿って配置されている。放射温度計8の受光面8Aは、遮光筒7の内部を経由して炉室1内において鉛直下方に位置する部材の表面から照射された赤外線を受光する。放射温度計8は、受光面における赤外線の受光量(赤外線量)に基づいて温度を測定する。   The light shielding cylinder 7 penetrates vertically through the upper wall surface 15 constituting the upper surface of the furnace chamber 1. The light shielding cylinder 7 is made of, for example, a ceramic tube and shields at least infrared rays on the peripheral surface. A radiation thermometer 8 is attached to the upper surface of the wall surface 15. The radiation thermometer 8 is fixed so that the light receiving surface 8 </ b> A is positioned directly above the light shielding cylinder 7. The light shielding cylinder 7 is arranged with its upper and lower open ends positioned between the light receiving surface 8A and a measurement position P1, which will be described later, and the longitudinal direction along the vertical direction. The light receiving surface 8 </ b> A of the radiation thermometer 8 receives infrared rays irradiated from the surface of a member positioned vertically below in the furnace chamber 1 through the inside of the light shielding cylinder 7. The radiation thermometer 8 measures the temperature based on the amount of infrared light received (infrared amount) on the light receiving surface.

底板17の上面において放射温度計8の受光面8Aに対向する部分には、対向部材9が配置されている。したがって、放射温度計8の受光面8Aは、搬送経路の一部である測定位置P1を経て対向部材9の上面における対向位置P2に対向する。放射温度計8は、測定位置P1にある処理物100の表面から放射された赤外線、又は対向部材9の上面における対向位置P2から放射された赤外線を受光し、赤外線量に基づいて温度を測定する。   On the upper surface of the bottom plate 17, a facing member 9 is disposed at a portion facing the light receiving surface 8 </ b> A of the radiation thermometer 8. Therefore, the light receiving surface 8A of the radiation thermometer 8 faces the facing position P2 on the upper surface of the facing member 9 through the measurement position P1 that is a part of the transport path. The radiation thermometer 8 receives infrared rays emitted from the surface of the workpiece 100 at the measurement position P1 or infrared rays emitted from the opposite position P2 on the upper surface of the opposite member 9, and measures the temperature based on the amount of infrared rays. .

対向部材9は、例えばシリコンの鏡面加工品で構成されている。鏡面加工されたシリコンの赤外線放射率は、処理物100の表面の赤外線放射率よりも十分に低い。また、シリコンは、酸化し難い。このため、対向位置P2は、処理物100の表面よりも十分に低い赤外線放射率を恒常的に維持する。   The facing member 9 is made of, for example, a mirror-finished product made of silicon. The infrared emissivity of the mirror-finished silicon is sufficiently lower than the infrared emissivity of the surface of the processed object 100. Silicon is difficult to oxidize. For this reason, the opposed position P <b> 2 constantly maintains an infrared emissivity sufficiently lower than the surface of the processed object 100.

なお、底板17をシリコンの鏡面加工品で構成し、底板17の全体を対向部材9としてもよい。   The bottom plate 17 may be made of a mirror-finished product made of silicon, and the entire bottom plate 17 may be the opposing member 9.

図2(A)に示すように、連続式加熱炉10における処理物100の加熱処理時には、ランプヒータ5及びボトムヒータ6を駆動して炉室1内を所定温度に昇温した状態で、放射温度計8による温度測定を開始する。このとき、測定位置P1に処理物100が存在しないため、放射温度計8は対向部材9上の対向位置P2の温度を測定することになる。   As shown in FIG. 2 (A), during the heat treatment of the workpiece 100 in the continuous heating furnace 10, the lamp heater 5 and the bottom heater 6 are driven to raise the temperature inside the furnace chamber 1 to a predetermined temperature. Temperature measurement by the total 8 is started. At this time, since the processed object 100 does not exist at the measurement position P1, the radiation thermometer 8 measures the temperature of the facing position P2 on the facing member 9.

炉室1の内部に処理物100の搬送路を挟んで上下にランプヒータ5及びボトムヒータ6を配置しているため、特にボトムヒータ6によって処理物100の下側の温度を一定にでき、加熱不足を解消できる。   Since the lamp heater 5 and the bottom heater 6 are arranged above and below the inside of the furnace chamber 1 with the conveyance path of the processed object 100 interposed therebetween, the bottom heater 6 can keep the temperature below the processed object 100 constant, and the heating is insufficient. Can be resolved.

図2(B)に示すように、第1の処理物100が炉室1内に搬入され、処理物100の前端が測定位置P1に達すると、放射温度計8は処理物100の温度測定を開始することになる。処理物100の温度は、炉室1内に搬入された直後には炉室1内の温度よりも低いが、図2(C)に示すように、炉室1内の搬送経路を搬出口3に向かって搬送されていく間に徐々に上昇する。   As shown in FIG. 2B, when the first processed object 100 is carried into the furnace chamber 1 and the front end of the processed object 100 reaches the measurement position P1, the radiation thermometer 8 measures the temperature of the processed object 100. Will start. The temperature of the processed material 100 is lower than the temperature in the furnace chamber 1 immediately after being carried into the furnace chamber 1, but as shown in FIG. It gradually rises while being transported toward

図2(D)に示すように、第1の処理物100の後端が測定位置P1に達すると、次の処理物100の前端が測定位置P1に達するまで、放射温度計8は対向部材9の対向位置P2の温度を測定する。   As shown in FIG. 2D, when the rear end of the first processed object 100 reaches the measurement position P1, the radiation thermometer 8 is opposed to the opposing member 9 until the front end of the next processed object 100 reaches the measurement position P1. The temperature at the opposite position P2 is measured.

図3中に破線で示すように、対向部材9のない従来の連続式加熱炉では、時間T1から時間T2までを除く間には、放射温度計8は断熱部材の底板17から放射される赤外線量を測定する。底板17の赤外線放射率は、処理物100の赤外線放射率よりも高い。このため、処理物100の温度と底板17の温度とが等しい状態では、底板17の赤外線放射量は処理物100の赤外線の放射量より多く、放射温度計8による底板17の測定温度は処理物100の測定温度よりも高くなる。この結果、放射温度計8の測定温度が、時間T2以後に処理物100のピーク温度よりも高くなり、処理物100のピーク温度を正確に測定できない。   As shown by a broken line in FIG. 3, in a conventional continuous heating furnace without the facing member 9, the radiation thermometer 8 emits infrared rays radiated from the bottom plate 17 of the heat insulating member during a period from time T1 to time T2. Measure the amount. The infrared emissivity of the bottom plate 17 is higher than the infrared emissivity of the processed object 100. For this reason, in the state where the temperature of the processed material 100 and the temperature of the bottom plate 17 are equal, the infrared radiation amount of the bottom plate 17 is larger than the infrared radiation amount of the processed material 100, and the measured temperature of the bottom plate 17 by the radiation thermometer 8 is the processed material. It becomes higher than the measurement temperature of 100. As a result, the measurement temperature of the radiation thermometer 8 becomes higher than the peak temperature of the treatment object 100 after time T2, and the peak temperature of the treatment object 100 cannot be measured accurately.

これに対して、図3中に実線で示すように、連続式加熱炉10では、放射温度計8の測定温度プロファイルは、時間T1で処理物100の前端が測定位置P1に達した時に、対向部材9上の対向位置P2の温度から十分に加熱されていない処理物100の温度まで低下する。この後、時間T2で処理物100の後端が測定位置P1を通過するまで、処理物100の温度上昇に伴って放射温度計8の測定温度プロファイルも上昇する。時間T2で処理物100の後端が測定位置P1を通過すると、放射温度計8の測定温度プロファイルは急激に低下する。   On the other hand, as shown by a solid line in FIG. 3, in the continuous heating furnace 10, the measured temperature profile of the radiation thermometer 8 is opposite when the front end of the workpiece 100 reaches the measurement position P1 at time T1. The temperature decreases from the temperature at the facing position P2 on the member 9 to the temperature of the processed object 100 that is not sufficiently heated. Thereafter, the measurement temperature profile of the radiation thermometer 8 increases with the temperature rise of the treatment object 100 until the rear end of the treatment object 100 passes the measurement position P1 at time T2. When the rear end of the workpiece 100 passes through the measurement position P1 at time T2, the measurement temperature profile of the radiation thermometer 8 rapidly decreases.

時間T1から時間T2までを除く間には、放射温度計8は対向部材9から放射される赤外線量を測定する。対向部材9の赤外線放射率は、処理物100の赤外線放射率よりも十分に小さい。このため、処理物100の温度と対向部材9の温度とが等しい状態では、対向部材9の赤外線放射量は処理物100の赤外線の放射量より少なく、放射温度計8による対向部材9の測定温度は処理物100の測定温度よりも低くなる。この結果、処理物100のピーク温度を正確に測定することができる。   While excluding from time T1 to time T2, the radiation thermometer 8 measures the amount of infrared rays emitted from the opposing member 9. The infrared emissivity of the facing member 9 is sufficiently smaller than the infrared emissivity of the processed object 100. For this reason, when the temperature of the processed object 100 and the temperature of the opposing member 9 are equal, the infrared radiation amount of the opposing member 9 is smaller than the infrared radiation amount of the processed object 100, and the temperature measured by the radiation thermometer 8 is the opposing member 9. Becomes lower than the measured temperature of the processed object 100. As a result, the peak temperature of the processed product 100 can be accurately measured.

なお、対向部材9は必須ではない。放射温度計8の受光面8Aが対向する壁面の一部に、処理物100の表面よりも十分に低い赤外線放射率を恒常的に維持する部材を配置することもできる。また、上記の実施形態では、鉛直方向を測定方向とする放射温度計8を前提としたが、水平方向を測定方向とする放射温度計を用いる場合にもこの発明を同様に適用することができる。この場合には、炉室1の側面を構成する壁面13又は14の一方の外側に放射温度計8を配置し、受光面8Aが対向する壁面14又は13の内側に対向部材9を配置するか、又は受光面8Aが対向する壁面14又は13の内側の全面を対向部材9とする。さらに、測定方向が鉛直方向又は水平方向から傾斜した放射温度計8を用いる場合であっても、処理物の搬送炉を挟んで受光面8Aに対向する位置に対向部材9を配置することで、この発明を同様に適用できる。   The opposing member 9 is not essential. A member that constantly maintains an infrared emissivity sufficiently lower than the surface of the object to be processed 100 may be disposed on a part of the wall surface facing the light receiving surface 8A of the radiation thermometer 8. In the above embodiment, the radiation thermometer 8 whose measurement direction is the vertical direction is assumed. However, the present invention can be similarly applied to the case where a radiation thermometer whose measurement direction is the horizontal direction is used. . In this case, is the radiation thermometer 8 disposed on one outer side of the wall surface 13 or 14 constituting the side surface of the furnace chamber 1 and the opposing member 9 is disposed on the inner side of the wall surface 14 or 13 facing the light receiving surface 8A? Alternatively, the entire inner surface of the wall surface 14 or 13 facing the light receiving surface 8 </ b> A is defined as the facing member 9. Furthermore, even when the radiation thermometer 8 whose measurement direction is inclined from the vertical direction or the horizontal direction is used, by disposing the facing member 9 at a position facing the light receiving surface 8A across the processing furnace, The present invention can be similarly applied.

上述の実施形態の説明は、すべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The above description of the embodiment is to be considered in all respects as illustrative and not restrictive. The scope of the present invention is shown not by the above embodiments but by the claims. Furthermore, the scope of the present invention is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.

1−炉室
2−搬入口
3−搬出口
4−ウォーキングビーム(搬送機構)
5−ランプヒータ
6−ボトムヒータ
7−遮光筒
8−放射温度計
9−対向部材
10−連続式加熱炉
11〜16−壁面
1-furnace room 2-carry-in entrance 3-carry-out exit 4-walking beam (conveyance mechanism)
5-lamp heater 6-bottom heater 7-light-shielding cylinder 8-radiation thermometer 9-opposing member 10-continuous heating furnace 11-16-wall surface

Claims (6)

壁面で包囲された空間であって処理物の搬入口及び搬出口を有する炉室と、
前記搬入口及び前記搬出口を経由する搬送経路に沿って、未処理の処理物を前記炉室内に搬入し、所定時間が経過した後に処理済の処理物を前記炉室外に搬出する工程を繰り返し実行する搬送機構と、
前記炉室内を加熱するヒータと、
受光面が前記炉室内における前記搬送経路の一部である測定位置に対向するように固定的に配置され、前記受光面における赤外線受光量に応じた温度を測定する放射温度計と、を備え、
前記壁面の少なくとも受光面に対向する対向部分を、処理物よりも赤外線放射率が恒常的に低い低放射率材料で構成し
前記処理物は、前記搬送機構によって搬送されつつ前記放射温度計により前記測定位置にて温度が測定されるとき、前記受光面と前記対向部分との間に配置される、連続加熱炉。
A furnace chamber that is a space surrounded by a wall surface and has an inlet and an outlet for a processed material;
Repeating the process of carrying in an untreated processed material into the furnace chamber along a conveying path passing through the carrying-in port and the carrying-out port, and carrying out the treated material out of the furnace chamber after a predetermined time has elapsed. A transport mechanism to perform;
A heater for heating the furnace chamber;
A radiation thermometer that is fixedly disposed so as to face a measurement position that is a part of the transport path in the furnace chamber, and that measures a temperature according to the amount of infrared rays received on the light receiving surface;
The opposite part of the wall facing the light receiving surface is made of a low emissivity material whose infrared emissivity is constantly lower than that of the processed material ,
The treated product, when the temperature is measured at the measurement position by the radiation thermometer while being conveyed by the conveying mechanism, wherein arranged between the receiving surface and the opposing portion, a continuous heating furnace.
前記受光面と前記測定位置との間に両端が位置する遮光筒であって、周面において少なくとも赤外線を遮蔽する遮光筒を更に備え、  A light-shielding cylinder having both ends positioned between the light-receiving surface and the measurement position, further comprising a light-shielding cylinder that shields at least infrared rays on the peripheral surface;
前記ヒータは、前記炉室内において前記処理物に対する前記受光面側に配置された第1ヒータを含む、請求項1に記載の連続式加熱炉。  The continuous heater according to claim 1, wherein the heater includes a first heater disposed on the light receiving surface side with respect to the processing object in the furnace chamber.
前記ヒータは、  The heater is
前記炉室内において前記処理物に対する前記受光面側に配置された第1ヒータと、  A first heater disposed on the light receiving surface side with respect to the processing object in the furnace chamber;
前記炉室内において前記処理物に対する前記受光面と反対側に配置された第2ヒータと、  A second heater disposed on the opposite side of the light receiving surface with respect to the processing object in the furnace chamber;
を含む、請求項1または2に記載の連続式加熱炉。The continuous heating furnace of Claim 1 or 2 containing these.
前記炉室内で前記受光面に対向する位置に、低放射率材料で構成した対向部材を備えた請求項1〜3の何れかに記載の連続式加熱炉。 The continuous heating furnace in any one of Claims 1-3 provided with the opposing member comprised with the low emissivity material in the position facing the said light-receiving surface in the said furnace chamber. 前記対向部材は、鏡面加工したシリコンである請求項に記載の連続式加熱炉。 The continuous heating furnace according to claim 4 , wherein the facing member is mirror-finished silicon. 受光面が炉室内における処理物の測定位置に対向するように放射温度計を固定的に配置するとともに、前記炉室を構成する壁面において前記受光面が前記測定位置を挟んで対向する部分に、処理物よりも赤外線放射率が恒常的に低い部材を配置し、
前記処理物を搬送しつつ、前記放射温度計により前記測定位置にて前記処理物の温度を測定するとき、前記処理物を前記受光面と前記対向する部分との間に配置し、
処理物の加熱処理の開始から終了までの間における放射温度計の測定温度プロファイルにおいて急激に低下する直前の温度を処理物のピーク温度とする、
連続式加熱炉の温度測定方法。
A radiation thermometer is fixedly disposed so that the light receiving surface faces the measurement position of the processed material in the furnace chamber, and the portion of the wall surface constituting the furnace chamber that faces the light receiving surface across the measurement position, Arrange a member whose infrared emissivity is constantly lower than the processed material,
When measuring the temperature of the processing object at the measurement position by the radiation thermometer while conveying the processing object, the processing object is disposed between the light receiving surface and the facing part,
The temperature immediately before the sudden decrease in the measured temperature profile of the radiation thermometer between the start and end of the heat treatment of the treatment is the peak temperature of the treatment.
Temperature measurement method for continuous heating furnace.
JP2014143447A 2014-07-11 2014-07-11 Continuous heating furnace and temperature measurement method Active JP6403469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014143447A JP6403469B2 (en) 2014-07-11 2014-07-11 Continuous heating furnace and temperature measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014143447A JP6403469B2 (en) 2014-07-11 2014-07-11 Continuous heating furnace and temperature measurement method

Publications (2)

Publication Number Publication Date
JP2016020810A JP2016020810A (en) 2016-02-04
JP6403469B2 true JP6403469B2 (en) 2018-10-10

Family

ID=55265732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014143447A Active JP6403469B2 (en) 2014-07-11 2014-07-11 Continuous heating furnace and temperature measurement method

Country Status (1)

Country Link
JP (1) JP6403469B2 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4826188A (en) * 1971-08-09 1973-04-05
JPS5151383A (en) * 1974-10-30 1976-05-06 Nippon Steel Corp HABAHOKOONDOSOKUTE ISOCHI
JPS5876127U (en) * 1981-11-19 1983-05-23 株式会社チノ− Temperature measuring device for objects inside the heating furnace
JPS5912853U (en) * 1982-07-14 1984-01-26 川崎製鉄株式会社 Cylindrical shield for measuring the surface temperature of steel materials in a heating furnace
JPS6038655Y2 (en) * 1982-07-14 1985-11-19 川崎製鉄株式会社 Surface temperature measuring device for steel materials in a horizontally moving continuous heating furnace
JPS6082286U (en) * 1983-11-10 1985-06-07 川崎製鉄株式会社 Low temperature material detection device
JPH04218736A (en) * 1990-12-19 1992-08-10 Hitachi Ltd Means for measuring radiation rate of substrate of substrate treatment device
JPH0820191B2 (en) * 1991-02-14 1996-03-04 日本碍子株式会社 Temperature measurement method in continuous furnace
DE102004049789A1 (en) * 2004-10-12 2006-04-13 BEGO Bremer Goldschlägerei Wilh. Herbst GmbH & Co. KG Device for non-contact measurement of the temperature in a melting furnace
JP5293022B2 (en) * 2008-09-11 2013-09-18 新日鐵住金株式会社 Temperature control method in continuous annealing furnace and continuous annealing furnace
EP2365307B1 (en) * 2009-05-12 2012-07-18 LayTec Aktiengesellschaft Method for calibrating a pyrometer, method for determining the temperature of a semiconducting wafer and system for determining the temperature of a semiconducting wafer
JP5540767B2 (en) * 2010-02-25 2014-07-02 Jfeスチール株式会社 Method and apparatus for measuring length of hot long material

Also Published As

Publication number Publication date
JP2016020810A (en) 2016-02-04

Similar Documents

Publication Publication Date Title
US8521013B2 (en) Temperature sensing device and heating device
KR101380138B1 (en) Chamber type drying apparatus for glass using ir steel heater
WO1992021147A1 (en) Pyrometer temperature measurement of plural wafers stacked in a processing chamber
KR101983326B1 (en) Substrate treatment method and substrate treatment apparatus
TW201735107A (en) Substrate processing apparatus and adjustment method of substrate processing apparatus
JP4024764B2 (en) Light irradiation heat treatment method and light irradiation heat treatment apparatus
JP6548895B2 (en) Heater unit and carburizing furnace
JP6403469B2 (en) Continuous heating furnace and temperature measurement method
KR101708481B1 (en) Infrared ray drying apparatus
EP2253012A2 (en) Optical cavity furnace for semiconductor wafer processing
KR102247259B1 (en) Gas removal method, gas removal chamber and semiconductor processing equipment
TW201930801A (en) Heat treatment furnace
JP6584254B2 (en) Drying method and drying apparatus
JP5447221B2 (en) Heat treatment apparatus and heat treatment method
JP4271614B2 (en) Baking apparatus and article baking method
JP4397546B2 (en) Continuous heat treatment furnace and workpiece heat treatment temperature control method in continuous heat treatment furnace
JP2009092301A (en) Heat treatment furnace
TW202032077A (en) Walking beam continuous furnace and method for operating a walking beam continuous furnace
JP2012233649A (en) Continuous heat treatment furnace
WO2014109241A1 (en) Heating device for hot stamping
JP2016176627A (en) Heating device
JP6348663B2 (en) Baking method of coated printing plate
JP2014020762A (en) Heat treatment apparatus
JP6824772B2 (en) Drying device and manufacturing method of dried body
JP2015068635A (en) Thermal treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180911

R150 Certificate of patent or registration of utility model

Ref document number: 6403469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250