JP6403247B2 - Displacement sensor - Google Patents

Displacement sensor Download PDF

Info

Publication number
JP6403247B2
JP6403247B2 JP2014008498A JP2014008498A JP6403247B2 JP 6403247 B2 JP6403247 B2 JP 6403247B2 JP 2014008498 A JP2014008498 A JP 2014008498A JP 2014008498 A JP2014008498 A JP 2014008498A JP 6403247 B2 JP6403247 B2 JP 6403247B2
Authority
JP
Japan
Prior art keywords
coil
displacement sensor
resistance value
output
oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014008498A
Other languages
Japanese (ja)
Other versions
JP2015137888A (en
Inventor
泰志 中野
泰志 中野
井上 直也
直也 井上
孝一 東城
孝一 東城
加藤 英雄
英雄 加藤
豊 久保山
豊 久保山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabtesco Corp
Original Assignee
Nabtesco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabtesco Corp filed Critical Nabtesco Corp
Priority to JP2014008498A priority Critical patent/JP6403247B2/en
Priority to KR1020150009410A priority patent/KR101744698B1/en
Priority to CN201510030424.7A priority patent/CN104792252B/en
Priority to CN201811104935.9A priority patent/CN109373881A/en
Publication of JP2015137888A publication Critical patent/JP2015137888A/en
Priority to KR1020170067922A priority patent/KR101853012B1/en
Application granted granted Critical
Publication of JP6403247B2 publication Critical patent/JP6403247B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0005Geometrical arrangement of magnetic sensor elements; Apparatus combining different magnetic sensor types
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/007Environmental aspects, e.g. temperature variations, radiation, stray fields
    • G01R33/0082Compensation, e.g. compensating for temperature changes

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)

Description

本発明は、コイルを利用して被測定物の位置の変位を検出する変位センサに関し、特にコイルの抵抗値の温度変化に基づく誤差を補償するものに関する。   The present invention relates to a displacement sensor that uses a coil to detect the displacement of the position of an object to be measured, and more particularly to a sensor that compensates for an error based on a temperature change in the resistance value of a coil.

コイルを利用した変位センサとしては、例えば交流電流が流れているコイルに、被測定物である導電体が近づくと、導電体に渦電流が流れて、交流磁界が発生し、これによりコイルのインピーダンスが変化することを利用した渦電流式変位センサがある。この渦電流式変位センサでは、コイルのインピーダンスが使用環境の温度変化によっても変化するので、これを補償する必要がある。この補償技術の一例が特許文献1に開示されている。   As a displacement sensor using a coil, for example, when a conductor as an object to be measured approaches a coil in which an alternating current flows, an eddy current flows in the conductor and an alternating magnetic field is generated. There is an eddy current type displacement sensor that utilizes the change of. In this eddy current type displacement sensor, since the impedance of the coil also changes due to the temperature change of the usage environment, it is necessary to compensate for this. An example of this compensation technique is disclosed in Patent Document 1.

特許文献1の技術では、発振器からの交流電流をコイルに供給し、コイルから交流磁場を発生させ、被測定物の位置の変位によって大きさの異なる渦電流をコイルに誘導し、渦電流の大きさによって変化するコイルの出力電圧に基づいて被測定物の変位を検出する。このように被測定物の位置の変化に従ってコイルの出力電圧が変化する点を利用した変位センサでは、周囲温度の変化に従ってコイルの出力電圧が変化すると、正確に被測定物の変位を検出できず、温度補償が必要である。所定のサンプリング期間の経過ごとに、交流電流に代えて、直流電流供給手段からコイルに直流電流を供給し、この直流電流によってコイルから出力される直流電圧を直流電圧検出器で検出し、検出された直流電圧に基づいて、コイルの温度変化に基づく抵抗値変化に伴うコイルの出力電圧の変化を補正するために、コイルに供給する交流電流を補正手段によって制御している。   In the technique of Patent Document 1, an alternating current from an oscillator is supplied to a coil, an alternating magnetic field is generated from the coil, eddy currents having different magnitudes are induced in the coil by displacement of the position of the object to be measured, and the magnitude of the eddy current is increased. The displacement of the object to be measured is detected based on the output voltage of the coil that changes depending on the height. As described above, in the displacement sensor using the point that the output voltage of the coil changes according to the change of the position of the object to be measured, if the output voltage of the coil changes according to the change of the ambient temperature, the displacement of the object to be measured cannot be accurately detected. Temperature compensation is necessary. Instead of alternating current, a direct current is supplied from the direct current supply means to the coil every time a predetermined sampling period elapses, and the direct current voltage output from the coil is detected by the direct current voltage detector. Based on the DC voltage, the AC current supplied to the coil is controlled by the correcting means in order to correct the change in the output voltage of the coil accompanying the change in the resistance value based on the temperature change of the coil.

特開昭60−67819号公報JP 60-67819 A

特許文献1の技術によれば、発振器からの交流電流をコイルに供給しなければならないので、コイル以外に発振器を設置する必要があり、回路構成が複雑となる。その上、交流電流と直流電流とを切り換える切換スイッチや切換制御回路が必要であり、益々回路構成が複雑となり、設置スペースが小さい場所に設置するのには不向きである。また、所定のサンプリング期間の経過ごとに直流電流をコイルに供給して温度補償を行っているので、この温度補償の間には、変位の検出を行うことができない。例えば、内燃機関のバルブの変位を検出する場合、継続して変位の検出を行う必要があり、特許文献1の技術を使用することはできない。   According to the technique of Patent Document 1, since an alternating current from an oscillator must be supplied to a coil, it is necessary to install an oscillator in addition to the coil, and the circuit configuration becomes complicated. In addition, a changeover switch and a changeover control circuit for switching between an alternating current and a direct current are necessary, and the circuit configuration becomes more complicated, which is not suitable for installation in a small installation space. Further, since temperature compensation is performed by supplying a direct current to the coil every time a predetermined sampling period elapses, displacement cannot be detected during this temperature compensation. For example, when detecting the displacement of a valve of an internal combustion engine, it is necessary to continuously detect the displacement, and the technique of Patent Document 1 cannot be used.

本発明は、回路構成を簡略化することができる上に温度補償を行いながら継続的に変位を検出することができる変位センサを提供することを目的とする。   It is an object of the present invention to provide a displacement sensor that can simplify the circuit configuration and can continuously detect displacement while performing temperature compensation.

本発明の一態様の変位センサは、継続して発振している自励式発振手段を有している。この自励式発振手段は、コイルとコンデンサとからなる並列共振手段と、増幅手段とを、備えている。コイルは、その抵抗値が温度変化によって変化する。増幅手段は、前記共振手段が出力側に設けられ、前記共振手段の出力が入力側に帰還されている。この自励式発振手段では、コイルに対する被測定物の位置の変化によって前記増幅手段の出力レベルが変化する。増幅手段は、具体的には、前記コイルの抵抗値の温度変化によっても前記増幅手段の出力レベルが変化する。渦電流式変位センサの場合、被測定物のコイルに対する位置の変化に従って、増幅出段の出力レベルが変化する。発振手段の発振方式としては所謂LC発振、例えばコルピッツ型発振、ハートレー型発振、クラップ型発振、コレクタ同調型反結合発振、ベース同調型反結合発振や、これらの変形型と公知の種々のものを使用できる。直流供給手段が、前記増幅手段と直流的に絶縁して前記コイルに継続的に直流信号を供給する。前記コイルの直流抵抗値の温度による変化を、直流抵抗値検出手段が、前記コイルを流れる前記直流信号による電圧降下から検出する。前記直流抵抗値検出手段の出力に基づいて前記増幅手段の出力レベルを制御手段が調整する。例えば具体的には、前記制御手段は、前記抵抗値の温度変化による前記増幅手段の出力レベルの縮小・拡大する変化を補償するように、前記増幅手段の出力レベルを増減させる。 The displacement sensor of one embodiment of the present invention includes self-excited oscillation means that continuously oscillates. This self-excited oscillation means includes a parallel resonance means composed of a coil and a capacitor, and an amplification means. The resistance value of the coil changes with temperature. As for the amplification means, the resonance means is provided on the output side, and the output of the resonance means is fed back to the input side. In this self-excited oscillating means, the output level of the amplifying means changes due to a change in the position of the object to be measured with respect to the coil. Specifically, the output level of the amplifying means also changes with the temperature change of the resistance value of the coil. In the case of the eddy current type displacement sensor, the output level of the amplification output stage changes according to the change in the position of the object to be measured with respect to the coil. As the oscillation method of the oscillation means, so-called LC oscillation, for example, Colpitts oscillation, Hartley oscillation, Clap oscillation, collector tuning anti-coupling oscillation, base tuning anti-coupling oscillation, and various modified types of these are known. Can be used. A direct current supply means galvanically insulates from the amplification means and continuously supplies a direct current signal to the coil. A change in the DC resistance value of the coil due to temperature is detected from a voltage drop caused by the DC signal flowing through the coil . The control means adjusts the output level of the amplifying means based on the output of the DC resistance value detecting means. For example, specifically, the control means increases or decreases the output level of the amplifying means so as to compensate for a reduction or expansion of the output level of the amplifying means due to a temperature change of the resistance value.

上記のように構成した変位センサでは、自励式の発振手段を使用しているので、回路構成を簡略化することができる。更に、継続して発振している自励式発振手段を使用している上に、継続的に直流信号を自励式発振手段のコイルに供給しているので、抵抗値を検出するために自励式発振手段の発振を停止させる必要が無く、継続して変位を検出することができる。   Since the displacement sensor configured as described above uses a self-excited oscillation means, the circuit configuration can be simplified. Furthermore, since the self-excited oscillation means that continuously oscillates is used and the DC signal is continuously supplied to the coil of the self-excited oscillation means, the self-excited oscillation is used to detect the resistance value. It is not necessary to stop the oscillation of the means, and the displacement can be detected continuously.

前記直流供給手段は、前記コイルに定電流を供給する定電流源とすることができる。この場合、前記直流抵抗値検出手段は、前記コイルに発生する直流電圧を検出するフィルタ手段である。 The DC supply means may be a constant current source that supplies a constant current to the coil. In this case, the DC resistance value detecting means is a filter means for detecting a DC voltage generated in the coil.

このように構成すると、直流成分のみがフィルタ手段によって検出され、交流成分の影響を受けずに、抵抗値を検出することができる。   With this configuration, only the DC component is detected by the filter means, and the resistance value can be detected without being affected by the AC component.

上記の態様において、前記増幅手段は、第1乃至第3の電極を有し、第1及び第2の電極間の信号に従って第1及び第3の電極間の導電状態を変化させる能動素子を有するものとできる。この場合、第1及び第2の電極間に設けられた電流調整手段が前記制御手段によって制御される。能動素子としては、例えばバイポーラトランジスタや電界効果トランジスタを使用することができる。   In the above aspect, the amplifying unit includes first to third electrodes and an active element that changes a conductive state between the first and third electrodes in accordance with a signal between the first and second electrodes. I can do it. In this case, the current adjusting means provided between the first and second electrodes is controlled by the control means. For example, a bipolar transistor or a field effect transistor can be used as the active element.

このように構成すると、能動素子の第1及び第3の電極間に流れる電流を制御することにより発振手段の利得を調整することができ、その結果コイルの温度補償を行うことができ、しかも自励式発振手段は安定した発振状態を保つ。   With this configuration, the gain of the oscillating means can be adjusted by controlling the current flowing between the first and third electrodes of the active element. As a result, the temperature compensation of the coil can be performed, and moreover, The excited oscillation means maintains a stable oscillation state.

以上のように、本発明によれば、変位センサの回路構成を簡略化することができる上に温度検出と温度補償しながら、継続的に変位を測定することができる。   As described above, according to the present invention, the circuit configuration of the displacement sensor can be simplified, and the displacement can be continuously measured while detecting the temperature and compensating the temperature.

本発明の1実施形態の変位センサの回路図である。It is a circuit diagram of the displacement sensor of one embodiment of the present invention. 図1の変位センサにおける被測定物とコイルとの関係を示す図である。It is a figure which shows the relationship between the to-be-measured object and a coil in the displacement sensor of FIG. 図1の変位センサのコイルの抵抗値の変化を示す図である。It is a figure which shows the change of the resistance value of the coil of the displacement sensor of FIG.

本発明の一実施形態の変位センサは、例えば渦電流式変位センサで、図1に示すように自励式発振手段、例えばコルピッツ発振回路2を有している。コルピッツ発振回路2は、並列共振手段、例えば並列共振回路4を有し、この並列共振回路4は、コイル6と、直列に接続された2つのコンデンサ8、10とを、並列に接続したもので、所定の周波数で並列共振するように、コイル6、コンデンサ8、10の値が選択されている。さらに、コルピッツ発振回路2は、能動素子、例えばバイポーラトランジスタ、具体的にはNPNトランジスタ12も有している。NPNトランジスタ12は、第1の電極、例えばベースと、第2の電極、例えばエミッタと、第3の電極、例えばコレクタとを有し、図示していないバイアス回路によって適切なバイアスが与えられている。さらに、NPNトランジスタ12は、例えばベース接地回路として動作するように、図示していないコンデンサによって基準電位、例えば接地電位に接続されている。   The displacement sensor of one embodiment of the present invention is, for example, an eddy current displacement sensor, and has self-excited oscillation means, for example, Colpitts oscillation circuit 2 as shown in FIG. The Colpitts oscillation circuit 2 has parallel resonance means, for example, a parallel resonance circuit 4, which is a parallel connection of a coil 6 and two capacitors 8 and 10 connected in series. The values of the coil 6 and the capacitors 8 and 10 are selected so as to resonate in parallel at a predetermined frequency. Further, the Colpitts oscillation circuit 2 also has an active element, for example, a bipolar transistor, specifically, an NPN transistor 12. The NPN transistor 12 has a first electrode, for example, a base, a second electrode, for example, an emitter, and a third electrode, for example, a collector, and is appropriately biased by a bias circuit (not shown). . Further, the NPN transistor 12 is connected to a reference potential, for example, a ground potential by a capacitor (not shown) so as to operate as a base ground circuit, for example.

並列共振回路4の一端は、接地電位に接続され、並列共振回路10の他端は、直流阻止コンデンサ14を介してNPNトランジスタ12のコレクタに接続されている。トランジスタ12のエミッタは、コンデンサ8と10との相互接続点に接続されている。従って、図示していないコンデンサによって高周波的に接続されているベース・コレクタ間に発生した出力の一部がエミッタ側に帰還されている。コレクタは、インピーダンス素子からなる負荷16を介して電源端子、例えば正の電源端子18に接続され、さらに出力端子20に接続されている。また、エミッタは、上述したバイアス回路の一部をなす電流調整手段、例えば可変電流源22を介して接地電位に接続されている。   One end of the parallel resonance circuit 4 is connected to the ground potential, and the other end of the parallel resonance circuit 10 is connected to the collector of the NPN transistor 12 via the DC blocking capacitor 14. The emitter of the transistor 12 is connected to the interconnection point between the capacitors 8 and 10. Therefore, a part of the output generated between the base and the collector connected in high frequency by a capacitor (not shown) is fed back to the emitter side. The collector is connected to a power supply terminal, for example, a positive power supply terminal 18 via a load 16 made of an impedance element, and further connected to an output terminal 20. The emitter is connected to the ground potential via current adjusting means that forms part of the above-described bias circuit, for example, the variable current source 22.

このコルピッツ発振回路2は、並列共振回路10の並列共振周波数によって決まる発振周波数で継続して発振し、出力端子20から、その発振出力が取り出される。図2に示すようにコイル6に対する被測定物、例えば船舶のエンジンのバルブ24の位置が変化すると、例えば接近すると、従来技術に関連して説明したように、コイル6のインピーダンスが変化し、出力端子20に生じる発振出力のレベルが変化する。このレベルの変化を図示しない検出手段によって検出し、バルブ24の変位を検出する。   The Colpitts oscillation circuit 2 continuously oscillates at an oscillation frequency determined by the parallel resonance frequency of the parallel resonance circuit 10, and the oscillation output is taken out from the output terminal 20. As shown in FIG. 2, when the position of an object to be measured with respect to the coil 6, for example, the position of the valve 24 of the marine engine changes, for example, when approaching, the impedance of the coil 6 changes as described in the related art, and the output The level of the oscillation output generated at the terminal 20 changes. This level change is detected by a detection means (not shown), and the displacement of the valve 24 is detected.

図3に示すように、コイル6の抵抗値やバルブ24の固有抵抗値が周囲環境の温度変化に従って変化するので、これを放置すると、出力端子20からの発振出力のレベルが変化し、正確にバルブ24の変位を検出することができない。特に、周囲温度が摂氏零度以下から100度以上の温度に変化する環境下では、この発振出力のレベルが大きく変化する。そこで、この実施形態では、直流供給手段、例えば定電流源26が、コイル6の一端に接続されている。この定電流源26は正の電源端子に一端が接続され、他端がコイル6の一端に接続されている。この定電流源26からの直流信号、例えば直流電流がコイル6を介して接地電位に継続して流れる。この直流電流がNPNトランジスタ12のコレクタに流れることを阻止するため等に直流阻止コンデンサ14が設けられている。   As shown in FIG. 3, since the resistance value of the coil 6 and the specific resistance value of the valve 24 change according to the temperature change in the surrounding environment, if this is left untreated, the level of the oscillation output from the output terminal 20 changes, and it is accurate. The displacement of the valve 24 cannot be detected. In particular, in an environment where the ambient temperature changes from below zero degrees Celsius to above 100 degrees Celsius, the level of this oscillation output changes greatly. Therefore, in this embodiment, a DC supply means, for example, a constant current source 26 is connected to one end of the coil 6. The constant current source 26 has one end connected to the positive power supply terminal and the other end connected to one end of the coil 6. A DC signal from the constant current source 26, for example, a DC current continuously flows to the ground potential via the coil 6. In order to prevent this direct current from flowing to the collector of the NPN transistor 12, a direct current blocking capacitor 14 is provided.

周囲環境の温度変化があると、コイル6の抵抗値が変化し、定電流源26からの直流電流によってコイル6の両端間に発生している直流電圧の値が変化する。この直流電圧を検出するために、抵抗値検出手段、例えばローパスフィルタ30がコイル6の両端間に接続されている。ローパスフィルタ30は、例えば抵抗器32とコンデンサ34とからなるRCローパスフィルタである。ローパスフィルタ30を使用するのは、コルピッツ発振回路2の発振信号を検出することを阻止するためである。このローパスフィルタ30の出力信号は、増幅手段、例えば直流増幅器36によって増幅され、制御手段、例えばマイクロプロセッサ38に供給される。マイクロプロセッサ38では、増幅器36の出力信号をデジタル化し、温度と線形関係を持つように非線形補正し、その補正値を予め定めた基準値と比較し、例えば基準とする温度における補正値と比較し、制御信号を生成する。この制御信号は、NPNトランジスタ12のエミッタに設けた可変電流源22に供給され、NPNトランジスタ12のエミッタから引き出す電流、ひいてはコレクタに吸い込まれる電流を制御する。これによって、出力端子20に生じる発振出力のレベルは周囲温度の影響を受けず、線形性を保ったまま変位計測を行うことができる。例えば、発振出力のレベルが1.2倍になる電流をNPNトランジスタ12に供給すると、バルブ24の測定しようとするストロークの全域で発振出力のレベルもほぼ1.2倍となり、線形関係を保つ。   When the temperature of the surrounding environment changes, the resistance value of the coil 6 changes, and the value of the DC voltage generated across the coil 6 changes due to the DC current from the constant current source 26. In order to detect this DC voltage, resistance value detection means, for example, a low-pass filter 30 is connected between both ends of the coil 6. The low-pass filter 30 is an RC low-pass filter including a resistor 32 and a capacitor 34, for example. The reason why the low-pass filter 30 is used is to prevent the oscillation signal of the Colpitts oscillation circuit 2 from being detected. The output signal of the low-pass filter 30 is amplified by an amplifying means such as a DC amplifier 36 and supplied to a control means such as a microprocessor 38. In the microprocessor 38, the output signal of the amplifier 36 is digitized, nonlinearly corrected so as to have a linear relationship with the temperature, and the corrected value is compared with a predetermined reference value, for example, compared with a corrected value at a reference temperature. Generate a control signal. This control signal is supplied to the variable current source 22 provided at the emitter of the NPN transistor 12, and controls the current drawn from the emitter of the NPN transistor 12, and the current drawn into the collector. As a result, the level of the oscillation output generated at the output terminal 20 is not affected by the ambient temperature, and displacement can be measured while maintaining linearity. For example, when a current that makes the oscillation output level 1.2 times is supplied to the NPN transistor 12, the oscillation output level is also almost 1.2 times over the entire stroke of the valve 24 to be measured, and the linear relationship is maintained.

例えば基準温度よりも周囲環境の温度が高く、コイル6の抵抗値が大きくなっている場合、発振出力レベルが小さくなるので、可変電流源22の電流を大きくし、発振エネルギーを増大することにより、発振出力レベルを大きくする。逆に、基準温度よりも周囲環境の温度が低く、コイルの抵抗値が小さくなって、発振出力レベルが大きくなったときには、可変電流源22の電流を小さくして、発振出力レベルを小さくする。しかも、可変電流源22の電流値と発振出力レベルとの間には、線形関係があり、マイクロコンピュータ可変電流源22の制御が容易になる。   For example, when the temperature of the surrounding environment is higher than the reference temperature and the resistance value of the coil 6 is large, the oscillation output level is small. Therefore, by increasing the current of the variable current source 22 and increasing the oscillation energy, Increase the oscillation output level. Conversely, when the ambient environment temperature is lower than the reference temperature, the coil resistance value decreases, and the oscillation output level increases, the current of the variable current source 22 is decreased to decrease the oscillation output level. In addition, there is a linear relationship between the current value of the variable current source 22 and the oscillation output level, and the control of the microcomputer variable current source 22 is facilitated.

このようにして、周囲環境の温度変化があっても、変位センサの出力レベルに対して温度補償することができる。しかも、この温度補償は、所定の時間ごとに行われるのではなく、継続して行われるので、精密に温度補償を行うことができるし、発振回路2の発振を温度補償のために停止させる必要が無く、継続して変位を検出することができ、精密に変位を検出することができる。例えば、サーミスタ等を使用して温度補償しながら、継続して変位を検出することは可能であるが、その場合、部品点数が増加し、変位センサの構成が複雑になる上に、部品点数が増加した分だけ変位センサの故障率が増加するので、サーミスタ等の使用は望ましくない。また、温度による発振レベルの変化を、発振器の発振レベルを増減させて補正するのでは無く、発振器の出力を掛け算回路に入れ掛け算の一項とし、他項を温度による係数とする事で補正する事もできるが、回路が複雑になる上、コストも上昇する。これに対し、この変位センサでは、可変電流源22を制御することによってエミッタ電流、ひいてはコレクタ電流を変化させているので、発振状態を安定させたまま発振信号の出力レベルを変化させることができるため、回路構成が簡単で、コスト的にも有利である。   In this way, even if there is a temperature change in the surrounding environment, the temperature can be compensated for the output level of the displacement sensor. In addition, since this temperature compensation is not performed every predetermined time but continuously, temperature compensation can be performed precisely, and oscillation of the oscillation circuit 2 needs to be stopped for temperature compensation. The displacement can be continuously detected and the displacement can be detected accurately. For example, it is possible to detect displacement continuously while temperature compensation using a thermistor, etc., but in that case, the number of parts increases, the configuration of the displacement sensor becomes complicated, and the number of parts increases. Since the failure rate of the displacement sensor increases by the increased amount, the use of a thermistor or the like is not desirable. Also, the change in the oscillation level due to temperature is not corrected by increasing / decreasing the oscillation level of the oscillator, but by correcting the change in the output by putting the output of the oscillator into a multiplication circuit and using the other term as a coefficient due to temperature. It can be done, but the circuit becomes complicated and the cost increases. On the other hand, in this displacement sensor, since the emitter current and thus the collector current are changed by controlling the variable current source 22, the output level of the oscillation signal can be changed while the oscillation state is stabilized. The circuit configuration is simple and advantageous in terms of cost.

上記の実施形態では、渦電流式変位センサに本発明を実施したが、他の型式、例えば差動変圧式変位センサに本発明を実施することもできる。上記の実施形態では、バルブ24の変位を検出したが、これに限ったものではなく、他の被測定物の変位を検出するのに、本発明による変位センサを使用することができる。また、上記の実施形態では、コルピッツ発振回路2を使用したが、これに限ったものではなく、公知の自励式発振回路、例えばクラップ発振回路やハートレー発振回路等も使用することができる。また、上記の実施形態では、NPNトランジスタ12を使用したが、PNPトランジスタを使用することもできるし、FETを使用することもできる。またNPNトランジスタ12はベース接地方式で動作させたが、エミッタ接地方式で動作させることもできる。上記の実施形態ではRCローパスフィルタ30を使用したが、演算増幅器と抵抗器及びコンデンサとを使用した能動ローパスフィルタを使用することもできるし、LCローパスフィルタを使用することもできる。上記の実施形態では、可変電流源22を電流調整手段として使用したが、NPNトランジスタのエミッタに抵抗器の一端を接続し、他端を可変電圧源を介して接地するように構成して電流調整手段として使用することもできる。或いはNPNトランジスタ12のエミッタをエミッタ抵抗器を介して接地し、ベース電圧を変化させることによって電流を調整することによって電流調整手段を構成することもできる。上記の実施形態では、マイクロプロセッサ38を用いて直流増幅器36の出力をデジタル化して、可変電流源22を制御したが、直流増幅器36の出力をそのままアナログ方式で構成した線形補正回路に供給し、この線形補正回路の出力をアナログ型式で構成した比較器に供給し、その比較器の出力を可変電流源22に供給するように構成することもできる。   In the above embodiment, the present invention is applied to the eddy current type displacement sensor. However, the present invention can also be applied to other types, for example, a differential transformation type displacement sensor. In the above embodiment, the displacement of the valve 24 is detected. However, the present invention is not limited to this, and the displacement sensor according to the present invention can be used to detect the displacement of another object to be measured. In the above embodiment, the Colpitts oscillation circuit 2 is used. However, the present invention is not limited to this, and a known self-excited oscillation circuit such as a Clap oscillation circuit or a Hartley oscillation circuit can also be used. In the above embodiment, the NPN transistor 12 is used. However, a PNP transistor can be used, and an FET can be used. Further, although the NPN transistor 12 is operated by the grounded base method, it can also be operated by the grounded emitter method. In the above embodiment, the RC low-pass filter 30 is used. However, an active low-pass filter using an operational amplifier, a resistor and a capacitor can be used, and an LC low-pass filter can also be used. In the above embodiment, the variable current source 22 is used as the current adjusting means. However, the current adjustment is performed by connecting one end of the resistor to the emitter of the NPN transistor and grounding the other end through the variable voltage source. It can also be used as a means. Alternatively, the current adjusting means can be configured by adjusting the current by changing the base voltage by grounding the emitter of the NPN transistor 12 through an emitter resistor. In the above embodiment, the output of the DC amplifier 36 is digitized using the microprocessor 38 and the variable current source 22 is controlled. However, the output of the DC amplifier 36 is supplied as it is to a linear correction circuit configured in an analog manner, It is also possible to supply the output of the linear correction circuit to an analog type comparator and supply the output of the comparator to the variable current source 22.

2 コルピッツ発振回路(自励式発振手段)
4 並列共振回路(並列共振手段)
6 コイル
8、10 コンデンサ
26 定電流源(直流供給手段)
30 RCローパスフィルタ(抵抗値検出手段)
38 マイクロプロセッサ(制御手段)
2 Colpitts oscillation circuit (self-excited oscillation means)
4 Parallel resonant circuit (parallel resonant means)
6 Coils 8, 10 Capacitors 26 Constant current source (DC supply means)
30 RC low-pass filter (resistance value detection means)
38 Microprocessor (control means)

Claims (5)

コイルとコンデンサとからなり、前記コイルの抵抗値が温度変化によって変化する並列共振手段と、この並列共振手段が出力側に設けられ、前記並列共振手段の出力側に帰還されている増幅手段とを、含み、前記コイルへの被測定物の位置の変化によって前記増幅手段の出力レベルが変化し、継続して発振している自励式発振手段と、
前記コイルに継続的に直流信号を、前記増幅手段と直流的に絶縁して供給する直流供給手段と、
前記コイルの温度による抵抗値の変化を、前記コイルを流れる前記直流信号による電圧降下から検出する直流抵抗値検出手段と、
前記直流抵抗値検出手段の出力に基づいて前記増幅手段の出力レベルを調整する制御手段とを、
具備する変位センサ。
A parallel resonance means comprising a coil and a capacitor, the resistance value of the coil changing with temperature change, and an amplification means provided on the output side and fed back to the output side of the parallel resonance means. A self-excited oscillating means in which the output level of the amplifying means changes due to a change in the position of the object to be measured with respect to the coil, and oscillates continuously.
DC supply means for continuously supplying a DC signal to the coil in a DC-insulated manner with the amplification means ;
DC resistance value detecting means for detecting a change in resistance value due to the temperature of the coil from a voltage drop caused by the DC signal flowing through the coil;
Control means for adjusting the output level of the amplification means based on the output of the DC resistance value detection means;
Displacement sensor provided.
請求項1記載の変位センサにおいて、前記自励式発振手段は、前記コイルの抵抗値の温度変化によっても前記増幅手段の出力レベルが変化する変位センサ。2. The displacement sensor according to claim 1, wherein the self-excited oscillation means changes the output level of the amplifying means even when the resistance value of the coil changes with temperature. 請求項2記載の変位センサにおいて、前記制御手段は、前記抵抗値の温度変化による前記増幅手段の出力レベルの縮小・拡大する変化を補償するように、前記増幅手段の出力レベルを増減させる変位センサ。3. A displacement sensor according to claim 2, wherein said control means increases or decreases the output level of said amplifying means so as to compensate for a reduction or expansion of the output level of said amplifying means due to a temperature change of said resistance value. . 請求項1乃至3いずれか記載の変位センサにおいて、前記直流供給手段は、前記コイルに定電流を供給する定電流源であり、前記直流抵抗値検出手段は、前記コイルに発生する直流電圧を検出するフィルタ手段である変位センサ。 4. The displacement sensor according to claim 1, wherein the DC supply means is a constant current source that supplies a constant current to the coil, and the DC resistance value detection means detects a DC voltage generated in the coil. Displacement sensor which is a filter means. 請求項1乃至4いずれか記載の変位センサにおいて、前記増幅手段は、第1乃至第3の電極を有し、第1及び第2の電極間の信号に従って第1及び第3の電極間の導電状態を変化させる能動素子を有し、前第1及び第2の電極間に設けられた電流可変手段が前記制御手段によって制御される変位センサ。5. The displacement sensor according to claim 1, wherein the amplifying means includes first to third electrodes, and conductance between the first and third electrodes in accordance with a signal between the first and second electrodes. A displacement sensor having an active element for changing the state, wherein a current varying means provided between the first and second electrodes is controlled by the control means.
JP2014008498A 2014-01-21 2014-01-21 Displacement sensor Active JP6403247B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014008498A JP6403247B2 (en) 2014-01-21 2014-01-21 Displacement sensor
KR1020150009410A KR101744698B1 (en) 2014-01-21 2015-01-20 Displacement sensor
CN201510030424.7A CN104792252B (en) 2014-01-21 2015-01-21 Displacement sensor
CN201811104935.9A CN109373881A (en) 2014-01-21 2015-01-21 Displacement sensor
KR1020170067922A KR101853012B1 (en) 2014-01-21 2017-05-31 Displacement sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014008498A JP6403247B2 (en) 2014-01-21 2014-01-21 Displacement sensor

Publications (2)

Publication Number Publication Date
JP2015137888A JP2015137888A (en) 2015-07-30
JP6403247B2 true JP6403247B2 (en) 2018-10-10

Family

ID=53557257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014008498A Active JP6403247B2 (en) 2014-01-21 2014-01-21 Displacement sensor

Country Status (3)

Country Link
JP (1) JP6403247B2 (en)
KR (2) KR101744698B1 (en)
CN (2) CN109373881A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7260871B2 (en) 2018-10-16 2023-04-19 ナブテスコ株式会社 Displacement sensor
JP7185872B2 (en) 2018-10-16 2022-12-08 ナブテスコ株式会社 Displacement sensor
CN109557858B (en) * 2018-12-10 2020-11-03 中国航发南方工业有限公司 RVDT conversion circuit and electronic controller
CN114440753B (en) * 2022-02-24 2022-11-22 电子科技大学 Non-contact displacement measuring device based on eddy current principle
JP7296025B1 (en) * 2023-03-13 2023-06-21 日立Astemo株式会社 Sensor device and damping force variable suspension system

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5560801A (en) * 1978-10-31 1980-05-08 Toshiba Corp Displacement detector
JPS6067819A (en) * 1983-09-22 1985-04-18 Hitachi Ltd Temperature compensating unit of displacement detector
JPS6114501A (en) * 1984-06-30 1986-01-22 Nippon Kokan Kk <Nkk> Eddy current type range finder
FR2647982B1 (en) * 1989-06-02 1991-09-20 Sgs Thomson Microelectronics METHOD AND DEVICE FOR TEMPERATURE COMPENSATED DETECTION OF THE OSCILLATION OF A RESONANT CIRCUIT
US5066912A (en) * 1990-07-09 1991-11-19 Kwiatkowski Richard F Calibratable non-contact inductive distance measuring device
JPH06102002A (en) * 1992-09-21 1994-04-12 Koyo Seiko Co Ltd Position detector
JPH08271204A (en) * 1995-03-31 1996-10-18 Tokyo Seimitsu Co Ltd Eddy current type displacement sensor
US5541510A (en) * 1995-04-06 1996-07-30 Kaman Instrumentation Corporation Multi-Parameter eddy current measuring system with parameter compensation technical field
JP2001004309A (en) 1999-06-23 2001-01-12 Mitsumi Electric Co Ltd Position sensor circuit
US6828779B2 (en) * 2000-07-24 2004-12-07 Microstrain, Inc. Circuit for compensating for time variation of temperature in an inductive sensor
US6724198B2 (en) * 2000-12-21 2004-04-20 G. Burnell Hohl Inductive sensory apparatus
JP4026405B2 (en) * 2001-06-29 2007-12-26 松下電工株式会社 Position sensor
JP4020366B2 (en) * 2002-03-29 2007-12-12 サンクス株式会社 Detection sensor
JP2004301774A (en) 2003-03-31 2004-10-28 Sunx Ltd Magnetic displacement sensor
CN1333234C (en) * 2003-04-22 2007-08-22 松下电工株式会社 Displacement-detecting device
DE102005062906B4 (en) * 2005-12-29 2008-11-27 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Evaluation and compensation circuit for an inductive displacement sensor
CN101419051A (en) * 2008-12-15 2009-04-29 姚泳 Automatic temperature compensating current vortex flow sensor
JP5331246B2 (en) * 2010-06-10 2013-10-30 パナソニック株式会社 Position sensor
JP6028287B2 (en) * 2011-12-13 2016-11-16 株式会社アミテック Torque sensor
EP2651036B1 (en) * 2012-04-13 2014-09-17 Sick AG Inductive proximity sensor
CN103471641B (en) * 2013-09-03 2015-12-23 中国科学技术大学 A kind of temperature drift auto-correction method of current vortex sensor
CN110174125B (en) * 2019-06-10 2024-06-25 武汉湖滨电器有限公司 Sensor temperature compensation circuit

Also Published As

Publication number Publication date
CN104792252A (en) 2015-07-22
CN109373881A (en) 2019-02-22
JP2015137888A (en) 2015-07-30
KR20150087127A (en) 2015-07-29
KR101853012B1 (en) 2018-04-30
KR20170067167A (en) 2017-06-15
CN104792252B (en) 2019-05-03
KR101744698B1 (en) 2017-06-08

Similar Documents

Publication Publication Date Title
KR101853012B1 (en) Displacement sensor
JP6410740B2 (en) Resonant impedance sensing based on controlled negative impedance
US9995778B1 (en) Sensor apparatus
US8026460B2 (en) Control circuit for thermostatic oven in oven controlled crystal oscillator
US9097558B2 (en) Position sensor
WO2000036427A1 (en) Magnetic sensor and current sensor
US9110118B2 (en) Proximity sensor with health monitoring
US10001388B2 (en) Circuit arrangement and method for controlling a displacement measurement sensor
US10141887B2 (en) Oscillator for detecting temperature of atmosphere
US9110103B2 (en) Temperature compensated proximity sensor
TWI642269B (en) Compensation circuit, compensation method and amplifying circuit
JP2015055543A (en) Magnetic element controller and magnetic element control method
EP3644510B1 (en) Inductive sensor for measurement device
US11075632B2 (en) Dynamic sensor for measurement device
US20140285274A1 (en) Wien-Bridge Oscillator and Circuit Arrangement for Regulating a Detuning
JP2020063962A (en) Displacement sensor
JPH10173437A (en) Lc oscillation circuit and proximity sensor using the same
JP2008241852A (en) Toner density detection device
US20240061053A1 (en) Sensor device
JP4698441B2 (en) Oscillation type proximity sensor and control method of gate current in oscillation type proximity sensor using field effect transistor
JP2006184220A (en) Current detector
JP2007266690A (en) Current drive circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180907

R150 Certificate of patent or registration of utility model

Ref document number: 6403247

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250