JP6401575B2 - Determination method of proper air supply pressure to caisson working room in pneumatic caisson method. - Google Patents

Determination method of proper air supply pressure to caisson working room in pneumatic caisson method. Download PDF

Info

Publication number
JP6401575B2
JP6401575B2 JP2014216465A JP2014216465A JP6401575B2 JP 6401575 B2 JP6401575 B2 JP 6401575B2 JP 2014216465 A JP2014216465 A JP 2014216465A JP 2014216465 A JP2014216465 A JP 2014216465A JP 6401575 B2 JP6401575 B2 JP 6401575B2
Authority
JP
Japan
Prior art keywords
air supply
pressure
supply pressure
casing
caisson
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014216465A
Other languages
Japanese (ja)
Other versions
JP2016084586A5 (en
JP2016084586A (en
Inventor
手塚 広明
広明 手塚
森田 篤
篤 森田
崇寛 山内
崇寛 山内
豊 保立
豊 保立
敦士 川西
敦士 川西
淳 有田
淳 有田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maeda Corp
Original Assignee
Maeda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maeda Corp filed Critical Maeda Corp
Priority to JP2014216465A priority Critical patent/JP6401575B2/en
Publication of JP2016084586A publication Critical patent/JP2016084586A/en
Publication of JP2016084586A5 publication Critical patent/JP2016084586A5/ja
Application granted granted Critical
Publication of JP6401575B2 publication Critical patent/JP6401575B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

本発明は、ニューマチックケーソン工法におけるケーソン作業室への適正送気圧力の決定方法に関するものであり、特に、大深度のニューマチックケーソン工法において、ケーソン作業室内への地下水の流入水位を所定値に維持することが可能な送気圧力を決定するための方法に関するものである。   The present invention relates to a method for determining an appropriate air supply pressure to a caisson work chamber in a pneumatic caisson method, and in particular, in a deep caustic work method, the inflow level of groundwater into the caisson work chamber is set to a predetermined value. It relates to a method for determining the air pressure that can be maintained.

ニューマチックケーソン工法は、筺体の下部にケーソン作業室を設け、このケーソン作業室内に地下水圧に相当する圧縮空気を送り込んで、ケーソン作業室内への地下水の流入を抑制し、ケーソン作業室内で掘削を行いながら、筺体を地盤中に沈設して、地下構造物を構築する工法である。ニューマチックケーソン工法により構築する地下構造物は、橋梁や構造物の基礎、地下調整池、シールドトンネルの立坑、地下鉄やトンネルの本体構造物等である。   In the pneumatic caisson method, a caisson work room is provided at the bottom of the housing, and compressed air equivalent to groundwater pressure is sent into the caisson work room to suppress the inflow of groundwater into the caisson work room, and excavation is performed in the caisson work room. This is a method of constructing an underground structure by submerging the skeleton in the ground. The underground structures constructed by the pneumatic caisson method include bridges and foundations of structures, underground adjustment ponds, shafts of shield tunnels, and subway and tunnel main structures.

具体的には、筒状筐体の下部に設けたケーソン作業室の下端部に、下方へ向かって鋭角状となった刃を設けておき、筒状筐体の自重および載荷によって筒状筐体を地中に沈設する。その後、筒状筐体を増設して、筒状筐体を所望の大きさにしていきながら、筒状筐体を沈設する際の載荷として利用する(例えば、特許文献1参照)。   Specifically, a blade that has an acute angle downward is provided at the lower end of the caisson working chamber provided at the bottom of the cylindrical casing, and the cylindrical casing is formed by its own weight and loading. Sunk into the ground. Thereafter, the cylindrical casing is added and used as a load when the cylindrical casing is sunk while making the cylindrical casing a desired size (see, for example, Patent Document 1).

特開2013−87550号公報JP2013-87550A

上述したように、ニューマチックケーソン工法では、ケーソン作業室内への適正地下水流入量に対する適正送気圧力を把握して、ケーソン作業室内に圧送する空気圧を適切に管理することが必要となる。しかし、適正地下水流入量に対する適正送気圧力を測定する方法は種々考えられるが、特に大深度の地下構造物を構築する際に適した測定方法は確立されていないのが現状である。   As described above, in the pneumatic caisson method, it is necessary to grasp the appropriate air supply pressure with respect to the appropriate amount of inflow of groundwater into the caisson work chamber and appropriately manage the air pressure pumped into the caisson work chamber. However, various methods for measuring the appropriate air supply pressure with respect to the appropriate amount of groundwater inflow are conceivable. However, at present, a measurement method suitable for constructing a deep underground structure has not been established.

例えば、湧水圧試験(JFT)により、孔内水位の変動を測定する方法がある。湧水圧試験では、ボーリング孔内に水位観測用のロッドを挿入し、試験区間を閉塞部材(パッカー)で遮閉する。そして、ロッド内に地下水を流入させた際の孔内水位の上昇速度から地盤の透水係数などを求める。すなわち、湧水圧試験では、ロッド内への送気圧力を変化させることにより孔内水位を変動させ、水位の変動速度(水位低下速度及び水位回復速度)を測定して、調査対象地盤の透水係数などを求めることができる。また、ルジオン試験によっても、同様に、調査対象地盤の透水性を評価することができる。   For example, there is a method of measuring fluctuations in the borehole water level by a spring pressure test (JFT). In the spring pressure test, a rod for water level observation is inserted into the borehole, and the test section is closed with a blocking member (packer). And the hydraulic conductivity of a ground etc. are calculated | required from the rising speed of the water level in a hole when injecting groundwater into a rod. In other words, in the spring pressure test, the water level in the borehole is changed by changing the air supply pressure into the rod, and the water level fluctuation rate (water level lowering rate and water level recovery rate) is measured. And so on. Similarly, the water permeability of the investigation target ground can be evaluated by the lugion test.

上述したように、ニューマチックケーソン工法では、ケーソン作業室内への地下水流入量が適正量となるように送気圧力を設定して、ケーソン作業室内に圧送する空気圧を管理することが必要となる。しかし、適正な地下水流入量に対する送気圧力は、施工場所の土質や透水係数等により一律に決定することができないのが現状である。   As described above, in the pneumatic caisson method, it is necessary to set the air supply pressure so that the amount of groundwater flowing into the caisson work chamber becomes an appropriate amount, and to manage the air pressure pumped into the caisson work chamber. However, the current situation is that the air supply pressure for the appropriate amount of groundwater inflow cannot be determined uniformly depending on the soil quality, hydraulic conductivity, etc. of the construction site.

すなわち、ケーソン作業室の底盤から流入する地下水量が、作業上許容される水量となるように、作業気圧を計画して施工する必要がある。この作業気圧は、平均地下水面から刃口までの深さと土質等に対応した係数とに基づいて定められる。作業圧力は、以下の式(1)により求められる。
=0.0098×m(H+1.0) ・・・ 式(1)
但し、
:作業気圧(MPa)
H:平均水面から刃口までの深さ(メートル)
m:土質等に対応した係数
That is, it is necessary to plan and construct the working air pressure so that the amount of groundwater flowing from the bottom of the caisson work room becomes the amount of water allowed for work. This working air pressure is determined based on the depth from the average underground water surface to the blade edge and the coefficient corresponding to the soil quality and the like. The working pressure is obtained by the following equation (1).
P w = 0.0098 × m (H + 1.0) Formula (1)
However,
P w : Working atmospheric pressure (MPa)
H: Depth (meter) from average water surface to blade edge
m: Coefficient corresponding to soil quality

日本圧気技術協会の指針によると、係数mは下記表1のように定められている。しかし、実際の施工においては、このようにして定めた作業気圧が必ずしも適正なものとはいえない場合がある。すなわち、実施工においては、底盤から少量の地下水の流入を許容した状態で作業を行うことが可能であり、数多くの実績により、計算により求めた作業気圧よりも低い作業気圧であっても、安全かつ適正な作業が可能なことが実証されている。   According to the Japan Pressure Technology Association guidelines, the coefficient m is determined as shown in Table 1 below. However, in actual construction, the working air pressure determined in this way may not always be appropriate. In other words, in the construction work, it is possible to work in a state where a small amount of groundwater is allowed to flow from the bottom, and it is safe even if the working air pressure is lower than the working air pressure obtained by calculation based on many achievements. And it has been demonstrated that proper work is possible.

Figure 0006401575
Figure 0006401575

図5を参照して、土丹における実施工の作業気圧について説明する。図5に示すように、ケーソンの施工対象地盤が土丹である場合に、地盤には自然水圧p’が生じている状態で、作業気圧はp’の0.7倍程度が適切な圧力となる。この状態では、底盤から流入する地下水量が少量であるため、実施工において何ら問題は生じない。   With reference to FIG. 5, the working atmospheric pressure of the construction work in Dotan will be described. As shown in FIG. 5, when the caisson construction target ground is Dotan, the natural pressure p ′ is generated on the ground, and the working pressure is about 0.7 times p ′. Become. In this state, since the amount of groundwater flowing from the bottom is small, no problem occurs in the implementation.

また、上述したように、ケーソン作業室内への地下水流入量は、施工地盤の透水係数に応じて変化する。すなわち、図6に示すように、透水係数が大きければ通気係数が小さくなり、透水係数が小さくなれば通気係数が大きくなる。また、透水係数は飽和度に依存している。したがって、施工地盤の飽和度を適正に管理することにより、作業気圧を所定の計画値よりも低く設定することができる。   In addition, as described above, the amount of groundwater flowing into the caisson work chamber changes according to the hydraulic conductivity of the construction ground. That is, as shown in FIG. 6, the larger the water permeability coefficient, the smaller the air permeability coefficient, and the smaller the water permeability coefficient, the larger the air permeability coefficient. The hydraulic conductivity depends on the degree of saturation. Therefore, the working air pressure can be set lower than the predetermined planned value by appropriately managing the saturation of the construction ground.

本発明は、上述した事情に鑑み提案されたもので、調査対象地盤に対して略鉛直方向に削孔を形成して、ニューマチックケーソン工法の施工状態を再現し、孔内を圧気するとともに調査対象地盤の飽和度を高め、調査対象地盤から孔内に一定量の地下水が流入することを許容した状態で、孔内への地下水流入量を測定し、送気圧力と地下水流入量との関係を求めることが可能なニューマチックケーソン工法におけるケーソン作業室への適正送気圧力の決定方法を提供することを目的とする。   The present invention has been proposed in view of the above-mentioned circumstances, and forms a hole in a substantially vertical direction with respect to the investigation target ground, reproduces the construction state of the pneumatic caisson method, and inspects the inside of the hole with pressure. Measure the groundwater inflow into the hole with the saturation of the target ground increased and allow a certain amount of groundwater to flow into the hole from the surveyed ground, and the relationship between air supply pressure and groundwater inflow It is an object of the present invention to provide a method for determining an appropriate air supply pressure to a caisson working chamber in a pneumatic caisson method capable of obtaining the above.

本発明に係るニューマチックケーソン工法におけるケーソン作業室への適正送気圧力の決定方法(以下、適正送気圧力の決定方法と略記する場合がある)は、上述した目的を達成するために提案されたもので、以下の特徴を有している。すなわち、本発明に係るニューマチックケーソン工法におけるケーソン作業室への適正送気圧力の決定方法は、調査対象地盤に対して略鉛直方向に削孔を形成し、当該削孔内に、上面が閉塞し下面が開放したケーシングを設置するとともに、ケーシングの内部に、流入した地下水を排出するための排水管と、地下水位を計測するための水位計を設置する。 The method for determining the appropriate air supply pressure to the caisson working chamber in the pneumatic caisson method according to the present invention (hereinafter sometimes abbreviated as the method for determining the appropriate air supply pressure) is proposed in order to achieve the above-described object. It has the following characteristics. That is, the method for determining the appropriate air supply pressure to the caisson working chamber in the pneumatic caisson method according to the present invention forms a hole in a substantially vertical direction with respect to the ground to be investigated, and the upper surface is blocked in the hole. In addition to installing a casing with an open bottom surface, a drain pipe for discharging groundwater that flows in and a water level meter for measuring the groundwater level are installed inside the casing.

そして、ケーシング内に所定の送気圧力で送気を行うことにより、ケーシングの下端部まで気体を充満させるとともに、調査対象地盤中に気体を注入して、調査対象地盤を不飽和化する。続いて、調査対象地盤が不飽和化した状態から送気圧力を低下させて、ケーシング内に地下水が流入することを許容した状態で、当該地下水の流入水位が予め定めた所定値となる送気圧力を測定するとともに、排水管内に流入した地下水を排水手段により排水して、当該ケーシング内への地下水流入量を測定することにより、送気圧力と地下水流入量との関係性を求め、当該関係性から求められる送気圧力を、ニューマチックケーソン工法におけるケーソン作業室への適正送気圧力とすることを特徴とするものである。 Then, by supplying air into the casing at a predetermined air supply pressure, the gas is filled up to the lower end portion of the casing, and the gas is injected into the investigation target ground to desaturate the investigation target ground. Subsequently, the air supply pressure is lowered from the state where the investigation target ground is desaturated and the groundwater inflow level is allowed to be a predetermined value in a state in which the groundwater is allowed to flow into the casing. The relationship between the air supply pressure and the amount of groundwater inflow is obtained by measuring the pressure, draining the groundwater flowing into the drainage pipe by the drainage means, and measuring the amount of groundwater inflow into the casing. The air supply pressure required from the property is set to an appropriate air supply pressure to the caisson working chamber in the pneumatic caisson method .

また、上述した適正送気圧力の決定方法において、送気圧力の測定及び地下水流入量の測定は、設計深度に達するまで、所定深度毎に行う。   In the above-described method for determining the appropriate air supply pressure, the measurement of the air supply pressure and the measurement of the inflow amount of groundwater are performed at predetermined depths until the design depth is reached.

本発明に係るニューマチックケーソン工法におけるケーソン作業室への適正送気圧力の決定方法によれば、ケーソン作業室への適正送気圧力を決定する工程において、地盤中に気体を注入して不飽和化することにより、一般的な計画値よりも低い作業気圧を決定することができる。したがって、実施工において、当該工法により決定した作業気圧により作業を行うことにより、作業効率を高めることが可能となる。   According to the method for determining the appropriate air supply pressure to the caisson work chamber in the pneumatic caisson method according to the present invention, in the step of determining the appropriate air supply pressure to the caisson work chamber, the gas is injected into the ground and unsaturated. Therefore, it is possible to determine a working air pressure lower than a general planned value. Therefore, it is possible to increase work efficiency by performing the work at the working air pressure determined by the construction method.

本発明の実施形態に係る適正送気圧力の決定方法に用いる装置の模式図。The schematic diagram of the apparatus used for the determination method of the appropriate air supply pressure which concerns on embodiment of this invention. 本発明の実施形態に係る適正送気圧力の決定方法の手順を示すフローチャート。The flowchart which shows the procedure of the determination method of the appropriate air supply pressure which concerns on embodiment of this invention. 本発明の実施形態に係る適正送気圧力の決定方法における送気圧力及び流入地下水量の変化を示す説明図。Explanatory drawing which shows the change of the air supply pressure in the determination method of the appropriate air supply pressure which concerns on embodiment of this invention, and inflow groundwater amount. 本発明の実施形態に係る適正送気圧力の決定方法において、所定深度における測定手順を示す模式図。The schematic diagram which shows the measurement procedure in predetermined depth in the determination method of the appropriate air supply pressure which concerns on embodiment of this invention. 実施工における作業気圧の説明図。Explanatory drawing of the working | atmospheric pressure in an implementation construction. 飽和度と透水係数及び透気係数との関係を示す説明図。Explanatory drawing which shows the relationship between a saturation, a water permeability coefficient, and a gas permeability coefficient.

以下、図面を参照して、本発明の実施形態を説明する。図1〜図4は本発明の実施形態に係るニューマチックケーソン工法におけるケーソン作業室への適正送気圧力の決定方法を説明するものであり、図1は装置の模式図、図2は適正送気圧力の決定方法の手順を示すフローチャート、図3は送気圧力及び流入地下水量の変化を示す説明図、図4は所定深度における測定手順を示す模式図である。また、図5は実施工における作業気圧の説明図、図6は飽和度と透水係数及び透気係数との関係を示す説明図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 to 4 illustrate a method for determining an appropriate air supply pressure to the caisson working chamber in the pneumatic caisson method according to the embodiment of the present invention. FIG. 1 is a schematic diagram of the apparatus, and FIG. FIG. 3 is a flowchart showing a procedure of a method for determining the air pressure, FIG. 3 is an explanatory diagram showing changes in the air supply pressure and the amount of inflow groundwater, and FIG. 4 is a schematic diagram showing a measurement procedure at a predetermined depth. FIG. 5 is an explanatory diagram of the working air pressure in the work, and FIG. 6 is an explanatory diagram showing the relationship between the degree of saturation, the water permeability coefficient, and the air permeability coefficient.

<適正送気圧力の決定方法に用いる装置>
本発明の実施形態に係る適正送気圧力の決定方法で用いる装置は、図1に示すように、削孔内に設置したケーシング10と、ケーシング10内に所定圧力で気体を送気するための送気管20及び送気ポンプ30(例えばコンプレッサー)と、ケーシング10内に流入した地下水を排出するための排水管40及び排水ポンプ50(例えば水中ポンプ)と、ケーシング10内の水位を測定するための水位計60とを備えている。送気ポンプ30は、ケーシング10内に所定圧力で気体を送気することができれば、どのようなポンプを使用してもよい。同様に、排水ポンプ50は、ケーシング10内から排水を行うことができれば、どのようなポンプを使用してもよい。
<Apparatus used for determining appropriate air supply pressure>
As shown in FIG. 1, an apparatus used in a method for determining an appropriate air supply pressure according to an embodiment of the present invention is a casing 10 installed in a drilling hole, and for supplying gas at a predetermined pressure into the casing 10. An air pipe 20 and an air pump 30 (for example, a compressor), a drain pipe 40 and a drain pump 50 (for example, a submersible pump) for discharging groundwater flowing into the casing 10, and a water level in the casing 10 are measured. A water level gauge 60 is provided. As long as the air supply pump 30 can supply gas into the casing 10 at a predetermined pressure, any pump may be used. Similarly, any drainage pump 50 may be used as long as drainage can be performed from the inside of the casing 10.

ケーシング10は、調査対象地盤に対して略鉛直方向に形成した削孔内に設置する円筒状の部材であり、例えば、180mm程度の直径を有している。なお、ケーシング10は円筒状に限られず、筒状であればどのような形状であってもよく、また、調査対象地盤の土質等に応じて適宜直径を調節することができる。   The casing 10 is a cylindrical member installed in a drilling hole formed in a substantially vertical direction with respect to the investigation target ground, and has a diameter of about 180 mm, for example. The casing 10 is not limited to a cylindrical shape, and may have any shape as long as it has a cylindrical shape, and the diameter can be appropriately adjusted according to the soil quality of the investigation target ground.

このケーシング10は、上面が閉塞しており、この閉塞部には、ケーシング10内に送気を行うための送気管20と、ケーシング10内から地下水を排出するための排水管40とが取り付けられている。したがって、送気ポンプ30を駆動すると、送気管20を介してケーシング10内に送気を行うことができ、排水ポンプ50を駆動すると、排水管40を介してケーシング10内に流入した地下水を排出することができる。一方、ケーシング10の下面は開放しており、調査対象地盤中から地下水の流入を許容するとともに、調査対象地盤中に気体を注入することができる。   The casing 10 has a closed upper surface, and an air supply pipe 20 for supplying air into the casing 10 and a drain pipe 40 for discharging groundwater from the casing 10 are attached to the closed portion. ing. Accordingly, when the air supply pump 30 is driven, air can be supplied into the casing 10 via the air supply pipe 20, and when the drainage pump 50 is driven, the groundwater flowing into the casing 10 via the drainage pipe 40 is discharged. can do. On the other hand, the lower surface of the casing 10 is open, allowing inflow of groundwater from the investigation target ground and injecting gas into the investigation target ground.

本発明では、上述した装置を用いて、ケーソン作業室への適正送気圧力を決定する。具体的には、ケーシング10内に所定の送気圧力で送気を行うことにより、ケーシング10の下端部まで気体を充満させるとともに、調査対象地盤中に気体を注入して、調査対象地盤を不飽和化する。そして、調査対象地盤が不飽和化した状態から送気圧力を低下させて、ケーシング10内に地下水が流入することを許容した状態で、当該地下水の流入水位が予め定めた所定値となる送気圧力を測定するとともに、排水管40内に流入した地下水を排水ポンプ50により排水して、当該ケーシング10内への地下水流入量を測定し、送気圧力と地下水流入量との関係を求める。また、送気圧力の測定及び地下水流入量の測定は、設計深度に達するまで、所定深度毎に行う。   In the present invention, an appropriate air supply pressure to the caisson working chamber is determined using the above-described apparatus. Specifically, by supplying air into the casing 10 with a predetermined air supply pressure, the gas is filled up to the lower end of the casing 10, and the gas is injected into the investigation target ground, so that the investigation target ground is unaffected. Saturate. Then, the air supply pressure is reduced from the state where the investigation target ground is desaturated, and the groundwater inflow level is allowed to be a predetermined value in a state in which the groundwater is allowed to flow into the casing 10. While measuring a pressure, the groundwater which flowed in in the drain pipe 40 is drained with the drainage pump 50, the amount of groundwater inflow into the said casing 10 is measured, and the relationship between an air supply pressure and groundwater inflow is calculated | required. Further, the measurement of the air supply pressure and the measurement of the inflow amount of groundwater are performed at predetermined depths until the design depth is reached.

図1において、H1は自然水位であり、H3は気圧Pでケーシング10内に圧気を行った際の平衡水位である。この状態で、排水ポンプ50により、流量Qで排水を行うことにより、ケーシング10の下部から僅かに地下水の流入を許容した制御水位(孔内水位)H2とする。ケーシング10の下部には水位計60が設置されており、この水位計60によりケーシング10内の水位を計測し、当該計測値に基づいて排水ポンプ50を制御することにより、制御水位H2を保つことができる。また、図1において、排水管40の下端(制御水位H2の下面)がケーソンの刃先位置に相当し、制御水位H2の上面がケーソン作業室の下端部位置に相当する。 In FIG. 1, H 1 is a natural water level, and H 3 is an equilibrium water level when pressurized air is applied to the casing 10 at the atmospheric pressure P. In this state, drainage is performed at a flow rate Q by the drainage pump 50 to obtain a control water level (in-hole water level) H 2 that allows slight inflow of groundwater from the lower part of the casing 10. The lower portion of the casing 10 is installed water gauge 60, the water level in the casing 10 is measured by the water level gauge 60, by controlling the drain pump 50 based on the measured value, maintain a controlled water level H 2 be able to. In FIG. 1, the lower end of the drain pipe 40 (the lower surface of the control water level H 2 ) corresponds to the cutting edge position of the caisson, and the upper surface of the control water level H 2 corresponds to the lower end position of the caisson working chamber.

<適正送気圧力の決定方法の手順>
次に、図2〜図4を参照して、本実施形態における適正送気圧力の決定方法の手順を説明する。ケーソン作業室への適正送気圧力を決定するには、図2に示すように、調査対象地盤に対して、所定の深度まで掘削を行ってケーシング10を設置し(S1−1)、排水ポンプ50(水中ポンプ)、水位計60、加圧設備(送気ポンプ)等を設置し(S1−2)、調査対象地盤の間隙水圧を測定する(S1−3)。
<Procedure for determining the appropriate air supply pressure>
Next, with reference to FIG. 2 to FIG. 4, a procedure of a method for determining an appropriate air supply pressure in the present embodiment will be described. In order to determine the appropriate air supply pressure to the caisson working room, as shown in FIG. 2, the casing 10 is installed by excavating the investigation target ground to a predetermined depth (S1-1), and the drainage pump 50 (submersible pump), water level gauge 60, pressurization equipment (air supply pump), etc. are installed (S1-2), and the pore water pressure of the investigation ground is measured (S1-3).

続いて、「飽和ケース」として、所定圧力Pまで加圧し(S2−1)、孔内の地下水を強制排水して(S2−2)、孔内水位を一定に制御し(S2−3)、その排水量を測定する(S2−4)。この「飽和ケース」では、図2に示すように、圧力Pを順次上昇させて、P=0.7H、0.8H、0.9H、1.0Hの順に加圧するとともに、各圧力において、水位一定制御(S2−3)及び排水量測定(S2−4)を実施する。ここで、Hは試験深度における自然水位(間隙水圧)である(「不飽和ケースにおいて同様」)。   Subsequently, as a “saturation case”, the pressure is increased to a predetermined pressure P (S2-1), the groundwater in the hole is forcibly drained (S2-2), and the water level in the hole is controlled to be constant (S2-3). The amount of drainage is measured (S2-4). In this “saturation case”, as shown in FIG. 2, the pressure P is sequentially increased and pressurized in the order of P = 0.7H, 0.8H, 0.9H, 1.0H, and at each pressure, Constant control (S2-3) and drainage measurement (S2-4) are performed. Here, H is the natural water level (pore water pressure) at the test depth (“same in the unsaturated case”).

具体的には、圧力P=0.7Hに上昇させたら、強制排水(S2−2)、水位一定制御(S2−3)及び排水量測定(S2−4)を実施する。続いて、圧力P=0.8Hに上昇させたら、水位一定制御(S2−3)及び排水量測定(S2−4)を実施し、圧力P=0.9H、圧力P=1.0Hにおいても同様に水位一定制御(S2−3)及び排水量測定(S2−4)を実施する。なお、圧力P=0.7Hにおいて強制排水(S2−2)が終了しているため、圧力P=0.8H、圧力P=0.9H、圧力P=1.0Hにおいて、孔内は強制排水(S2−2)された状態となっている。   Specifically, when the pressure P is increased to 0.7H, forced drainage (S2-2), constant water level control (S2-3), and drainage measurement (S2-4) are performed. Subsequently, when the pressure P is increased to 0.8H, the water level constant control (S2-3) and the drainage amount measurement (S2-4) are performed, and the same applies to the pressure P = 0.9H and the pressure P = 1.0H. Then, water level constant control (S2-3) and drainage measurement (S2-4) are performed. In addition, since forced drainage (S2-2) is complete | finished in pressure P = 0.7H, in pressure P = 0.8H, pressure P = 0.9H, and pressure P = 1.0H, the inside of a hole is forced drainage. (S2-2).

なお、「飽和ケース」を実施せず(省略して)、諸設備の設置(S1−2)を行った後に、ただちに「不飽和ケース」を実施してもよい。この場合には、「不飽和ケース」におけるすべての工程(圧力P=0.9H、圧力P=0.8H、圧力P=0.7Hにおける排水量測定等)が終了した後に、間隙水圧測定(S1−3)を実施する。   The “saturation case” may not be performed (omitted), and the “unsaturation case” may be performed immediately after the installation of various facilities (S1-2). In this case, after all the steps in the “unsaturated case” (pressure measurement of pressure P = 0.9H, pressure P = 0.8H, pressure measurement of pressure P = 0.7H, etc.) are completed, pore water pressure measurement (S1 -3).

続いて、「不飽和ケース」として、圧力P≧1.0Hの状態を所定時間保持し(S3−1)、所定圧力Pまで減圧しながら(S3−2)、孔内水位を一定に制御し(S3−3)、その排水量を測定する(S3−4)。工程(S3−1)において圧力P≧1.0Hの状態を所定時間保持するのは、エアーブロー気味の状態を作り出すためである。この「不飽和ケース」においても、圧力Pを順次降下させて、P=0.9H、0.8H、0.7の順に減圧するとともに、各圧力において、水位一定制御(S3−3)及び排水量測定(S3−4)を実施する。   Subsequently, as an “unsaturated case”, the pressure P ≧ 1.0H is maintained for a predetermined time (S3-1), and the water level in the hole is controlled to be constant while reducing the pressure to the predetermined pressure P (S3-2). (S3-3), the amount of drainage is measured (S3-4). The reason why the state of pressure P ≧ 1.0H is maintained for a predetermined time in the step (S3-1) is to create an air blowy state. Also in this “unsaturated case”, the pressure P is gradually decreased and the pressure is reduced in the order of P = 0.9H, 0.8H, 0.7, and at each pressure, the water level constant control (S3-3) and the amount of drainage are reduced. Measurement (S3-4) is performed.

このような工程を行うことにより、図3に示すように、調査対象地盤の不飽和化により透水係数が低下し、飽和時と比較して同一の圧力Pであっても流量Qが低下する。そして、同様の工程を設定深度毎に実施して、調査対象地盤における適正送気圧力を決定する。   By performing such a process, as shown in FIG. 3, the hydraulic conductivity decreases due to the desaturation of the investigation target ground, and the flow rate Q decreases even at the same pressure P compared to when saturated. And the same process is implemented for every setting depth, and the appropriate air supply pressure in the investigation object ground is determined.

図4は、上述した工程におけるケーシング10内の水位の変化を示したもので、図4(a)が工程(S1−1〜S1−3)に相当し、図4(b)が工程(S2−1)に相当し、図4(c)が工程(S3−1)に相当し、図4(d)が工程(S3−2〜S3−4)に相当する。図4(c)に示す状態では、ケーシング10内の圧力を上昇させて、ケーシング10内に気体を充満させ、ケーシング10の下端から調査対象地盤中にエアーブローを行い、調査対象地盤中を不飽和化する。   FIG. 4 shows a change in the water level in the casing 10 in the above-described process. FIG. 4 (a) corresponds to the process (S1-1 to S1-3), and FIG. 4 (b) illustrates the process (S2). -1), FIG. 4C corresponds to the step (S3-1), and FIG. 4D corresponds to the steps (S3-2 to S3-4). In the state shown in FIG. 4C, the pressure in the casing 10 is increased, the gas in the casing 10 is filled, air is blown from the lower end of the casing 10 into the investigation target ground, and the investigation target ground is not filled. Saturate.

<送気圧力>
本実施形態では、孔内の圧力P=0.7、圧力P=0.8、圧力P=0.9において、図4(d)に示す状態を作り出し、その状態における排水量を測定する。なお、孔内の圧力は、図2に示す例に限られず、調査対象地盤の土質等に応じて、例えば、圧力P=0.75、圧力P=0.85、圧力P=0.95等、適宜変更して実施することができる。
<Air supply pressure>
In the present embodiment, the state shown in FIG. 4D is created at the pressure P = 0.7, the pressure P = 0.8, and the pressure P = 0.9 in the hole, and the amount of drainage in that state is measured. In addition, the pressure in a hole is not restricted to the example shown in FIG. 2, According to the soil etc. of the investigation ground, for example, pressure P = 0.75, pressure P = 0.85, pressure P = 0.95 etc. However, it can be implemented with appropriate changes.

そして、すべての圧力における試験が終了したら、試験結果である圧力と流量との関係から、実際に施工可能な排出流量Qに対応する送気圧力Pを求める。なお、実際に施工可能な排出流量Qに対応する送気圧力Pと、試験結果である圧力及び流量との関係は必ずしも一致している必要はなく、調査対象地盤の状態に応じて適宜設定することができる。   When the tests at all the pressures are completed, the air supply pressure P corresponding to the discharge flow rate Q that can be actually constructed is obtained from the relationship between the pressure and the flow rate that are the test results. It should be noted that the relationship between the air supply pressure P corresponding to the discharge flow rate Q that can actually be constructed and the pressure and flow rate that are the test results do not necessarily coincide with each other, and is set as appropriate according to the state of the investigation target ground. be able to.

図4(d)に示す例では、孔内水位が自然水位の0.7倍程度となるように、送気圧力P及び排出流量Qを設定している。この状態では、調査対象地盤(ケーソンを沈設する地盤)が不飽和状態となっているため、一般的な計画値よりも作業気圧を低く設定しても、ケーソン内に僅かな地下水の流入を許容した状態とすることができ、安全かつ適切な作業を行うことが可能となる。   In the example shown in FIG. 4D, the air supply pressure P and the discharge flow rate Q are set so that the water level in the hole is about 0.7 times the natural water level. In this state, the investigation target ground (the ground where the caisson is set) is unsaturated, so even if the working air pressure is set lower than the general planned value, a slight amount of groundwater can flow into the caisson. Thus, it is possible to perform safe and appropriate work.

10 ケーシング
20 送気管
30 送気ポンプ
40 排水管
50 排水ポンプ
60 水位計
10 Casing 20 Air Pipe 30 Air Pump 40 Drain Pipe 50 Drain Pump 60 Water Level Meter

Claims (2)

調査対象地盤に対して略鉛直方向に削孔を形成し、当該削孔内に、上面が閉塞し下面が開放したケーシングを設置し、
前記ケーシングの内部に、流入した地下水を排出するための排水管と、地下水位を計測するための水位計を設置し、
前記ケーシング内に所定の送気圧力で送気を行うことにより、前記ケーシングの下端部まで気体を充満させるとともに、前記調査対象地盤中に気体を注入して、前記調査対象地盤を不飽和化し、
前記調査対象地盤が不飽和化した状態から送気圧力を低下させて、前記ケーシング内に地下水が流入することを許容した状態で、当該地下水の流入水位が予め定めた所定値となる送気圧力を測定し、
前記排水管内に流入した地下水を排水手段により排水して、当該ケーシング内への地下水流入量を測定し、
前記送気圧力と前記地下水流入量との関係性を求め、当該関係性から求められる送気圧力を、ニューマチックケーソン工法におけるケーソン作業室への適正送気圧力とする、
ことを特徴とするニューマチックケーソン工法におけるケーソン作業室への適正送気圧力の決定方法。
A hole is formed in a substantially vertical direction with respect to the investigation target ground, and a casing in which the upper surface is closed and the lower surface is opened is installed in the hole.
Inside the casing, a drain pipe for discharging the inflowing ground water and a water level meter for measuring the ground water level are installed,
By supplying air at a predetermined air supply pressure in the casing, gas is filled up to the lower end of the casing, and gas is injected into the investigation target ground, and the investigation target ground is desaturated,
The air supply pressure at which the inflow level of the groundwater becomes a predetermined value in a state where the air supply pressure is lowered from the state where the investigation target ground is desaturated and the groundwater is allowed to flow into the casing. Measure and
Drain the groundwater flowing into the drainage pipe by drainage means, measure the amount of groundwater inflow into the casing,
Obtaining the relationship between the air supply pressure and the amount of inflow of groundwater, the air supply pressure obtained from the relationship, as the appropriate air supply pressure to the caisson work room in the pneumatic caisson method,
A method for determining an appropriate air supply pressure to the caisson work chamber in the pneumatic caisson method.
前記送気圧力の測定及び前記地下水流入量の測定は、設計深度に達するまで、所定深度毎に行うことを特徴とする請求項1に記載のニューマチックケーソン工法におけるケーソン作業室への適正送気圧力の決定方法。   The measurement of the air supply pressure and the measurement of the inflow amount of the groundwater are performed at predetermined depths until the design depth is reached, and the appropriate air supply to the caisson work room in the pneumatic caisson method according to claim 1, How pressure is determined.
JP2014216465A 2014-10-23 2014-10-23 Determination method of proper air supply pressure to caisson working room in pneumatic caisson method. Active JP6401575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014216465A JP6401575B2 (en) 2014-10-23 2014-10-23 Determination method of proper air supply pressure to caisson working room in pneumatic caisson method.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014216465A JP6401575B2 (en) 2014-10-23 2014-10-23 Determination method of proper air supply pressure to caisson working room in pneumatic caisson method.

Publications (3)

Publication Number Publication Date
JP2016084586A JP2016084586A (en) 2016-05-19
JP2016084586A5 JP2016084586A5 (en) 2017-10-12
JP6401575B2 true JP6401575B2 (en) 2018-10-10

Family

ID=55971940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014216465A Active JP6401575B2 (en) 2014-10-23 2014-10-23 Determination method of proper air supply pressure to caisson working room in pneumatic caisson method.

Country Status (1)

Country Link
JP (1) JP6401575B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114837207A (en) * 2022-05-13 2022-08-02 北京城建集团有限责任公司 Foundation pit dewatering structure and method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850215A (en) * 1981-09-21 1983-03-24 Katsumi Kitanaka Permeability test at site
JP3388144B2 (en) * 1997-07-29 2003-03-17 ライト工業株式会社 Drilling member for permeability test and permeability test method using the same
JP3800509B2 (en) * 2001-11-21 2006-07-26 清水建設株式会社 Ground saturation measurement method and liquefaction prevention method
JP2005282130A (en) * 2004-03-30 2005-10-13 Ohbayashi Corp Ground excavation method
JP4844924B2 (en) * 2006-01-27 2011-12-28 日本国土開発株式会社 In-situ permeability test method
JP5132506B2 (en) * 2008-09-26 2013-01-30 大豊建設株式会社 Air leakage prevention device and air leakage prevention method in pneumatic caisson method
DE102009020517B3 (en) * 2009-05-08 2010-10-21 Herrenknecht Ag Method of constructing an underground structure
JP5368174B2 (en) * 2009-06-05 2013-12-18 大成建設株式会社 Caisson installation method and water level meter for caisson
JP2013194362A (en) * 2012-03-15 2013-09-30 Maeda Corp Ground improvement method for liquefaction countermeasure
JP5944730B2 (en) * 2012-04-24 2016-07-05 東亜建設工業株式会社 Construction management method for residual soil saturation

Also Published As

Publication number Publication date
JP2016084586A (en) 2016-05-19

Similar Documents

Publication Publication Date Title
CN107389898B (en) Visual simulation experiment device and method for consolidation grouting diffusion rule of flowing water quicksand stratum
CN106013049B (en) Karst area foundation pile engineering construction method
CN105888607A (en) Ground exploration drilling and grouting method
CN109269955B (en) In-situ testing device and method for permeability of coal stratum
JP6929179B2 (en) Hydraulic characterization method
CN104297129A (en) Hydrogeologic testing method based on water injection free vibration method
CN108489892A (en) Seabed Shield Tunneling experimental rig and method under the conditions of a kind of seepage flow
CN106120797A (en) Hydrous fluids continuous steel frame aqueduct pier foundation grouting construction method
JP6401575B2 (en) Determination method of proper air supply pressure to caisson working room in pneumatic caisson method.
Xu et al. Field pumping experiments and numerical simulations of shield tunnel dewatering under the Yangtze River
Nielsen et al. Dynamic behaviour of mono bucket foundations subjected to combined transient loading
CN109707362B (en) Fixed-point fracturing method for residual oil in longitudinal single sand body of mining and submerging old well reservoir
JP6474101B2 (en) Piping phenomenon evaluation method and piping phenomenon evaluation apparatus
KR101460029B1 (en) Method for connectivity test between vertical formations while drilling
CN115627746A (en) Confined water stratum foundation pit anti-surging safety assessment method based on in-situ test
CN111677513B (en) Water burst sand bursting disturbance deep unconsolidated formation ground grouting pore-forming method
JP6348002B2 (en) Determination method of proper air supply pressure to caisson working room in pneumatic caisson method.
JP4803531B2 (en) Evaluation method of water permeability
JP2017002677A (en) Ground improvement chemical injection method
JP3862595B2 (en) Measurement method of water permeability anisotropy of ground
JP2005083124A (en) Spring water quantity estimating method, permeability coefficient estimating method and tunnel excavating method
Sparrevik et al. Novel monitoring solutions solving geotechnical problems and offshore installation challenges
CN104762953B (en) Pier cap foundation grouting construction technology
CN217480219U (en) Multi-purpose pumping well structure in multilayer groundwater system
JP2626456B2 (en) Rock permeability test equipment

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170830

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180907

R150 Certificate of patent or registration of utility model

Ref document number: 6401575

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150