JP6397742B2 - 導電性粒子、導電材料及び接続構造体 - Google Patents

導電性粒子、導電材料及び接続構造体 Download PDF

Info

Publication number
JP6397742B2
JP6397742B2 JP2014241542A JP2014241542A JP6397742B2 JP 6397742 B2 JP6397742 B2 JP 6397742B2 JP 2014241542 A JP2014241542 A JP 2014241542A JP 2014241542 A JP2014241542 A JP 2014241542A JP 6397742 B2 JP6397742 B2 JP 6397742B2
Authority
JP
Japan
Prior art keywords
conductive layer
conductive
particles
nickel
containing nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014241542A
Other languages
English (en)
Other versions
JP2015130328A (ja
Inventor
昌男 笹平
昌男 笹平
茂雄 真原
茂雄 真原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2014241542A priority Critical patent/JP6397742B2/ja
Publication of JP2015130328A publication Critical patent/JP2015130328A/ja
Application granted granted Critical
Publication of JP6397742B2 publication Critical patent/JP6397742B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は、基材粒子の表面上にニッケルを含む導電層が配置されている導電性粒子に関する。また、本発明は、上記導電性粒子を用いた導電材料及び接続構造体に関する。
異方性導電ペースト及び異方性導電フィルム等の異方性導電材料が広く知られている。これらの異方性導電材料では、バインダー樹脂中に導電性粒子が分散されている。
上記異方性導電材料は、各種の接続構造体を得るために、例えば、フレキシブルプリント基板とガラス基板との接続(FOG(Film on Glass))、半導体チップとフレキシブルプリント基板との接続(COF(Chip on Film))、半導体チップとガラス基板との接続(COG(Chip on Glass))、並びにフレキシブルプリント基板とガラスエポキシ基板との接続(FOB(Film on Board))等に使用されている。
上記異方性導電材料により、例えば、半導体チップの電極とガラス基板の電極とを電気的に接続する際には、ガラス基板上に、導電性粒子を含む異方性導電材料を配置する。次に、半導体チップを積層して、加熱及び加圧する。これにより、異方性導電材料を硬化させて、導電性粒子を介して電極間を電気的に接続して接続構造体を得る。
上記導電性粒子の一例として、下記の特許文献1には、基材粒子と、該基材粒子の表面を被覆する導電性金属層とを有する導電性粒子が開示されている。上記導電性金属層を構成する金属の具体例としては、ニッケル、ニッケル合金(Ni−Au、Ni−Pd、Ni−Pd−Au、Ni−Ag、Ni−P、Ni−B、Ni−Zn、Ni−Sn、Ni−W、Ni−Co、Ni−Ti);銅、銅合金(CuとFe、Co、Ni、Zn、Sn、In、Ga、Tl、Zr、W、Mo、Rh、Ru、Ir、Ag、Au、Bi、Al、Mn、Mg,P、Bからなる群から選択される少なくとも1種の金属元素との合金、好ましくはAg、Ni、Sn、Znとの合金);銀、銀合金(AgとFe、Co、Ni、Zn、Sn、In、Ga、Tl、Zr、W、Mo、Rh、Ru、Ir、Au、Bi、Al、Mn、Mg、P、Bからなる群から選択される少なくとも1種の金属元素との合金、好ましくはAg−Ni、Ag−Sn、Ag−Zn);錫、錫合金(たとえばSn−Ag、Sn−Cu,Sn−Cu−Ag,Sn−Zn、Sn−Sb、Sn−Bi−Ag、Sn−Bi−In、Sn−Au、Sn−Pb等)が挙げられている。
下記の特許文献2には、樹脂粒子の表面上に、金属被覆層が形成されており、上記金属被覆層が、還元剤としてホウ素化合物及び次亜リン酸化合物を用いた無電解ニッケルめっき工程により形成されている導電性粒子が開示されている。特許文献2では、上記金属被覆層が、ニッケル、ホウ素及びリン以外に、ニッケルと共に共析する他の金属を含有していてもよいことが記載されている。上記ニッケルと共に共析する他の金属としては、コバルト、銅、亜鉛、鉄、マンガン、クロム、バナジウム、モリブデン、パラジウム、錫、タングステン及びレニウムが挙げられる。
特開2013−125649号公報 特開2008−41671号公報
特許文献1,2に記載のような従来の導電性粒子が酸の存在下に晒されると、ニッケルを含む導電層の腐食が生じることがある。また、従来の導電性粒子を用いて電極間を接続して接続構造体を得た場合には、接続構造体が酸の存在下に晒されたときに、電極間の接続抵抗が上昇することがある。
本発明の目的は、酸の存在下で、ニッケルを含む導電層の腐食が生じ難い導電性粒子を提供することである。
また、本発明の目的は、電極間を電気的に接続した場合に、高温下での電極間の接続信頼性を高めることができる導電性粒子を提供することである。
また、本発明の限定的な目的は、複数の導電性粒子が凝集するのを抑制でき、更に電極間の接続に用いた場合に電極間の接続抵抗を低くすることができる導電性粒子を提供することである。
また、本発明は、上記導電性粒子を用いた導電材料及び接続構造体を提供することも目的とする。
本発明の広い局面によれば、基材粒子と、前記基材粒子の表面上に配置されており、かつニッケルを含む導電層とを備え、前記ニッケルを含む導電層の融点が300℃以上であり、前記ニッケルを含む導電層が、ニッケルと錫とを含む合金層であり、前記ニッケルを含む導電層の全体100重量%中、錫の平均含有量が5重量%以上、50重量%以下である、導電性粒子が提供される。
本発明に係る導電性粒子のある特定の局面では、10%圧縮したときの圧縮弾性率が3000N/mm以上、20000N/mm以下である。
本発明に係る導電性粒子のある特定の局面では、前記ニッケルを含む導電層の内表面から外側に向かって厚み1/10の領域において、錫の平均含有量が10重量%以下である。
本発明に係る導電性粒子のある特定の局面では、前記ニッケルを含む導電層の内表面から外側に向かって厚み1/2の領域における錫の平均含有量が、前記ニッケルを含む導電層の外表面から内側に向かって厚み1/2の領域における錫の平均含有量よりも少ない。
本発明に係る導電性粒子のある特定の局面では、前記ニッケルを含む導電層の内表面から外側に向かって厚み1/2の領域における錫の平均含有量が、前記ニッケルを含む導電層の外表面から内側に向かって厚み1/2の領域における錫の平均含有量よりも10重量%以上少ない。
本発明に係る導電性粒子のある特定の局面では、前記ニッケルを含む導電層が外表面に突起を有する。
本発明に係る導電性粒子のある特定の局面では、前記導電性粒子は、前記ニッケルを含む導電層の外表面上に配置された絶縁性物質をさらに備える。
本発明の広い局面によれば、上述した導電性粒子と、バインダー樹脂とを含む、導電材料が提供される。
本発明の広い局面によれば、第1の接続対象部材と、第2の接続対象部材と、前記第1の接続対象部材と、前記第2の接続対象部材とを接続している接続部とを備え、前記接続部が、上述した導電性粒子により形成されているか、又は前記導電性粒子とバインダー樹脂とを含む導電材料により形成されている、接続構造体が提供される。
本発明に係る導電性粒子では、基材粒子の表面上に、ニッケルを含む導電層が配置されており、上記ニッケルを含む導電層の融点が300℃以上であり、上記ニッケルを含む導電層が、ニッケルと錫とを含む合金層であり、上記ニッケルを含む導電層の全体100重量%中、錫の平均含有量が5重量%以上、50重量%以下であるので、酸の存在下で、ニッケルを含む導電層の腐食を生じ難くすることができる。
図1は、本発明の第1の実施形態に係る導電性粒子を示す断面図である。 図2は、本発明の第2の実施形態に係る導電性粒子を示す断面図である。 図3は、本発明の第3の実施形態に係る導電性粒子を示す断面図である。 図4(a)及び(b)は、ニッケルを含む導電層において、錫の平均含有量を求める各領域を説明するための模式図である。 図5は、本発明の第1の実施形態に係る導電性粒子を用いた接続構造体を模式的に示す正面断面図である。
以下、本発明の詳細を説明する。
(導電性粒子)
本発明に係る導電性粒子は、基材粒子と、該基材粒子の表面上に配置されており、かつニッケルを含む導電層とを備える。
本発明に係る導電性粒子では、上記ニッケルを含む導電層の融点が300℃以上である。このため、上記ニッケルを含む導電層は、一般にはんだと呼ばれ、融点が低いはんだ層とは異なる。上記ニッケルを含む導電層の融点の上限は特に限定されない。上記ニッケルを含む導電層の融点は3000℃以下であってもよく、2000℃以下であってもよく、1000℃以下であってもよい。上記ニッケルを含む導電層の融点は400℃以上であってもよく、500℃以上であってもよい。
また、本発明に係る導電性粒子では、上記ニッケルを含む導電層は、ニッケルと錫とを含む合金層である。本発明に係る導電性粒子では、上記ニッケルを含む導電層の全体100重量%中、錫の平均含有量が5重量%以上、50重量%以下である。
本発明に係る導電性粒子における上述した構成の採用により、酸の存在下で、ニッケルを含む導電層の腐食を生じ難くすることができる。導電性粒子が酸の存在下に晒されても、ニッケルを含む導電層の腐食が生じ難いことから、導電性粒子の性能を高く維持することができる。
また、本発明に係る導電性粒子により電極間を電気的に接続して接続構造体を得た場合に、電極間の接続前の導電性粒子が酸の存在下に晒されていたり又は接続構造体が酸の存在下に晒されたりしても、接続抵抗を低く維持することができる。特に、導電性粒子を電極間の電気的な接続に用いる場合に、導電性粒子は一般的に圧縮される。導電性粒子が圧縮されることによって、導電層に割れが生じることがある。導電層に割れが生じたとしても、導電層における腐食が抑えられる結果、接続抵抗を効果的に低く維持できる。
さらに、本発明に係る導電性粒子における上述した構成の採用によって、複数の導電性粒子が凝集するのを抑制できる。複数の導電性粒子が凝集するのを抑制できる結果、電極間の短絡を効果的に防ぐことができる。
接続抵抗をより一層低くし、電極間の接続信頼性をより一層高める観点からは、上記導電性粒子を10%圧縮したときの第1の圧縮弾性率(10%K値)は、好ましくは3000N/mm以上、より好ましくは5000N/mm以上、更に好ましくは6000N/mm以上、好ましくは20000N/mm以下、より好ましくは10000N/mm以下、更に好ましくは8000N/mm以下である。
上記導電性粒子における上記圧縮弾性率(10%K値)は、以下のようにして測定できる。
微小圧縮試験機を用いて、円柱(直径50μm、ダイヤモンド製)の平滑圧子端面で、25℃、最大試験荷重90mNを30秒かけて負荷する条件下で導電性粒子を圧縮する。このときの荷重値(N)及び圧縮変位(mm)を測定する。得られた測定値から、上記圧縮弾性率を下記式により求めることができる。上記微小圧縮試験機として、例えば、フィッシャー社製「フィッシャースコープH−100」等が用いられる。
K値(N/mm)=(3/21/2)・F・S−3/2・R−1/2
F:導電性粒子が10%圧縮変形したときの荷重値(N)
S:導電性粒子が10%圧縮変形したときの圧縮変位(mm)
R:導電性粒子の半径(mm)
上記圧縮弾性率は、導電性粒子の硬さを普遍的かつ定量的に表す。上記圧縮弾性率の使用により、導電性粒子の硬さを定量的かつ一義的に表すことができる。
以下、図面を参照しつつ、本発明を具体的に説明する。
図1は、本発明の第1の実施形態に係る導電性粒子を示す断面図である。
図1に示す導電性粒子1は、基材粒子2と、ニッケルを含む導電層3とを有する。導電層3は、基材粒子2の表面上に配置されている。第1の実施形態では、導電層3は、基材粒子2の表面に接している。導電性粒子1は、基材粒子2の表面が導電層3により被覆された被覆粒子である。
導電性粒子1では、ニッケルを含む導電層3は、単層の導電層である。導電性粒子1では、ニッケルを含む導電層3は、ニッケルと錫とを含む合金層である。ニッケルを含む導電層3の全体100重量%中、錫の平均含有量が5重量%以上、50重量%以下である。
基材粒子とニッケルを含む導電層との密着性をより一層高め、電極間の接続信頼性をより一層高める観点からは、ニッケルを含む導電層3の内表面から外側に向かって厚み1/10の領域(R1)において、錫の平均含有量が10重量%以下であることが好ましい。上記領域(R1)は、図4(a)において、ニッケルを含む導電層3の破線L1よりも内側の領域である。上記領域(R1)において、錫の平均含有量は好ましくは5重量%以上、より好ましくは8重量%以上、好ましくは9重量%以下である。
基材粒子とニッケルを含む導電層との密着性をより一層高め、電極間の接続信頼性をより一層高める観点からは、ニッケルを含む導電層3の内表面から外側に向かって厚み1/2の領域(R2)において、錫の平均含有量は好ましくは12重量%以上、より好ましくは20重量%以上、好ましくは40重量%以下、より好ましくは35重量%以下である。上記領域(R2)は、図4(b)において、ニッケルを含む導電層3の破線L2よりも内側の領域である。
導電性粒子の酸による腐食をより一層抑える観点からは、ニッケルを含む導電層3の外表面から内側に向かって厚み1/2の領域(R3)において、錫の平均含有量は好ましくは20重量%以上、より好ましくは25重量%以上、好ましくは48重量%以下、より好ましくは45重量%以下である。上記領域(R3)は、図4(b)において、ニッケルを含む導電層3の破線L2よりも外側の領域である。
基材粒子とニッケルを含む導電層との密着性をより一層高め、電極間の接続信頼性をより一層高め、かつ導電性粒子の酸による腐食をより一層抑える観点からは、上記領域(R2)における錫の平均含有量は上記領域(R3)における錫の平均含有量よりも、少ないことが好ましく、10重量%以上少ないことがより好ましく、20重量%以上少ないことが更に好ましい。
ニッケル導電層3の上記領域(R1)、(R2)及び(R3)における好ましい錫の平均含有量は、本発明に係る導電性粒子におけるニッケル導電層における領域(R1)、(R2)及び(R3)における好ましい錫の平均含有量である。
導電性粒子1は、後述する導電性粒子11,21とは異なり、芯物質を有さない。導電性粒子1は表面に突起を有さない。導電性粒子1は球状である。導電層3は外表面に突起を有さない。このように、本発明に係る導電性粒子は導電性の表面に突起を有していなくてもよく、球状であってもよい。また、導電性粒子1は、後述する導電性粒子11,21とは異なり、絶縁性物質を有さない。但し、導電性粒子1は、導電層3の外表面上に配置された絶縁性物質を有していてもよい。この場合に、導電層3と絶縁性物質との間に、ニッケルを含まない導電層が配置されていてもよい。
導電性粒子1では、基材粒子2とニッケルを含む導電層3とが接している。基材粒子とニッケルを含む導電層との間には、ニッケルを含まない導電層が配置されていてもよく、ニッケルを含む導電層の外表面上に、ニッケルを含まない導電層が配置されていてもよい。
図2は、本発明の第2の実施形態に係る導電性粒子を示す断面図である。
図2に示す導電性粒子11は、基材粒子2と、ニッケルを含む導電層12と、複数の芯物質13と、複数の絶縁性物質14とを有する。導電層12は、基材粒子2の表面上に基材粒子2に接するように配置されている。
導電性粒子11では、ニッケルを含む導電層12は、単層の導電層である。導電性粒子11では、ニッケルを含む導電層12は、ニッケルと錫とを含む合金層である。ニッケルを含む導電層12の全体100重量%中、錫の平均含有量が10重量%以上、50重量%以下である。
導電性粒子11は導電性の表面に、複数の突起11aを有する。導電層12は外表面に、複数の突起12aを有する。複数の芯物質13が、基材粒子2の表面上に配置されている。複数の芯物質13は導電層12内に埋め込まれている。芯物質13は、突起11a,12aの内側に配置されている。導電層12は、複数の芯物質13を被覆している。複数の芯物質13により導電層12の外表面が***されており、突起11a,12aが形成されている。
導電性粒子11は、導電層12の外表面上に配置された絶縁性物質14を有する。導電層12の外表面の少なくとも一部の領域が、絶縁性物質14により被覆されている。絶縁性物質14は絶縁性を有する材料により形成されており、絶縁性粒子である。このように、本発明に係る導電性粒子は、導電層の外表面上に配置された絶縁性物質を有していてもよい。但し、本発明に係る導電性粒子は、絶縁性物質を必ずしも有していなくてもよい。
図3は、本発明の第3の実施形態に係る導電性粒子を示す断面図である。
図3に示す導電性粒子21は、基材粒子2と、ニッケルを含む導電層22と、複数の芯物質13と、複数の絶縁性物質14とを有する。ニッケルを含む導電層22は全体で、基材粒子2側に第1の導電層22Aと、基材粒子2側とは反対側に第2の導電層22Bとを有する。
導電性粒子11と導電性粒子21とでは、導電層のみが異なっている。すなわち、導電性粒子11では、1層構造の導電層が形成されているのに対し、導電性粒子21では、2層構造の第1の導電層22A及び第2の導電層22Bが形成されている。第1の導電層22Aと第2の導電層22Bとは別の導電層として形成されている。
第1の導電層22Aは、基材粒子2の表面上に配置されている。基材粒子2と第2の導電層22Bとの間に、第1の導電層22Aが配置されている。第1の導電層22Aは、基材粒子2に接している。第2の導電層22Bは、第1の導電層22Aに接している。従って、基材粒子2の表面上に第1の導電層22Aが配置されており、第1の導電層22Aの表面上に第2の導電層22Bが配置されている。導電性粒子21は導電性の表面に、複数の突起21aを有する。導電層22は外表面に突起22aを有する。第1の導電層22Aは外表面に、突起22Aaを有する。第2の導電層22Bは外表面に、複数の突起22Baを有する。
導電性粒子21では、ニッケルを含む導電層22は、2層の導電層である。導電性粒子21では、ニッケルを含む導電層22は、ニッケルと錫とを含む合金層である。従って、第1の導電層22A及び第2の導電層22Bはそれぞれ、ニッケルと錫とを含む合金層である。ニッケルを含む導電層22の全体100重量%中、錫の平均含有量が5重量%以上、50重量%以下である。
従来の導電性粒子では、導電層の外表面の磁性が高いことがある。また、ニッケルとボロン又はニッケルとリンとを含む導電層の表面の磁性は高いことから、電極間を電気的に接続した場合に、磁性により凝集した導電性粒子の影響で、横方向に隣接する電極間が接続されやすい傾向がある。本発明に係る導電性粒子では、上記導電層が錫を含むので、上記導電層の外表面の磁性がかなり低くなる。このため、複数の導電性粒子が凝集するのを抑制できる。従って、電極間を電気的に接続した場合に、凝集した導電性粒子により横方向に隣接する電極間が接続されるのを抑制できる。すなわち、隣り合う電極間の短絡をより一層防止できる。
以下、導電性粒子の他の詳細について説明する。
[基材粒子]
上記基材粒子としては、樹脂粒子、金属粒子を除く無機粒子、有機無機ハイブリッド粒子及び金属粒子等が挙げられる。上記基材粒子は、コアと、該コアの表面上に配置されたシェルとを備えるコアシェル粒子であってもよい。上記コアが有機コアであってもよい。上記シェルが無機シェルであってもよい。なかでも、金属粒子を除く基材粒子が好ましく、樹脂粒子、金属粒子を除く無機粒子又は有機無機ハイブリッド粒子がより好ましい。
上記基材粒子は、樹脂により形成された樹脂粒子であることが好ましい。上記導電性粒子を用いて電極間を接続する際には、上記導電性粒子を電極間に配置した後、圧着することにより上記導電性粒子を圧縮させる。上記基材粒子が樹脂粒子であると、上記圧着の際に上記導電性粒子が変形しやすく、導電性粒子と電極との接触面積が大きくなる。このため、電極間の導通信頼性が高くなる。
上記樹脂粒子を形成するための樹脂として、種々の有機物が好適に用いられる。上記樹脂粒子を形成するための樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリイソブチレン、ポリブタジエン等のポリオレフィン樹脂;ポリメチルメタクリレート及びポリメチルアクリレート等のアクリル樹脂;ポリアルキレンテレフタレート、ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、及び、エチレン性不飽和基を有する種々の重合性単量体を1種もしくは2種以上重合させて得られる重合体等が挙げられる。基材粒子の硬度を好適な範囲に容易に制御できるので、上記樹脂粒子を形成するための樹脂は、エチレン性不飽和基を複数有する重合性単量体を1種又は2種以上重合させた重合体であることが好ましい。
上記樹脂粒子を、エチレン性不飽和基を有する単量体を重合させて得る場合、上記エチレン性不飽和基を有する単量体としては、非架橋性の単量体と架橋性の単量体とが挙げられる。
上記非架橋性の単量体としては、例えば、スチレン、α−メチルスチレン等のスチレン系単量体;(メタ)アクリル酸、マレイン酸、無水マレイン酸等のカルボキシル基含有単量体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート類;2−ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、グリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート類;(メタ)アクリロニトリル等のニトリル含有単量体;メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル等のビニルエーテル類;酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル等の酸ビニルエステル類;エチレン、プロピレン、イソプレン、ブタジエン等の不飽和炭化水素;トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート、塩化ビニル、フッ化ビニル、クロルスチレン等のハロゲン含有単量体等が挙げられる。
上記架橋性の単量体としては、例えば、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート等の多官能(メタ)アクリレート類;トリアリル(イソ)シアヌレート、トリアリルトリメリテート、ジビニルベンゼン、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル、γ−(メタ)アクリロキシプロピルトリメトキシシラン、トリメトキシシリルスチレン、ビニルトリメトキシシラン等のシラン含有単量体等が挙げられる。
上記エチレン性不飽和基を有する重合性単量体を、公知の方法により重合させることで、上記樹脂粒子を得ることができる。この方法としては、例えば、ラジカル重合開始剤の存在下で懸濁重合する方法、並びに非架橋の種粒子を用いてラジカル重合開始剤とともに単量体を膨潤させて重合する方法等が挙げられる。
上記基材粒子が金属を除く無機粒子又は有機無機ハイブリッド粒子である場合には、基材粒子を形成するための無機物としては、シリカ及びカーボンブラック等が挙げられる。上記無機物は、金属ではないことが好ましい。上記シリカにより形成された粒子としては特に限定されないが、例えば、加水分解性のアルコキシシリル基を2つ以上有するケイ素化合物を加水分解して架橋重合体粒子を形成した後に、必要に応じて焼成を行うことにより得られる粒子が挙げられる。上記有機無機ハイブリッド粒子としては、例えば、架橋したアルコキシシリルポリマーとアクリル樹脂とにより形成された有機無機ハイブリッド粒子等が挙げられる。
上記基材粒子が金属粒子である場合に、該金属粒子の材料である金属としては、銀、銅、ニッケル、ケイ素、金及びチタン等が挙げられる。但し、上記基材粒子は金属粒子ではないことが好ましく、銅粒子ではないことが好ましい。
上記基材粒子の粒子径は、好ましくは0.1μm以上、より好ましくは1μm以上、更に好ましくは1.5μm以上、特に好ましくは2μm以上、好ましくは1000μm以下、より好ましくは500μm以下、より一層好ましくは300μm以下、更に好ましくは50μm以下、更に一層好ましくは30μm以下、特に好ましくは5μm以下、最も好ましくは3μm以下である。上記基材粒子の粒子径が上記下限以上であると、導電性粒子と電極との接触面積が大きくなるため、電極間の導通信頼性がより一層高くなり、導電性粒子を介して接続された電極間の接続抵抗がより一層低くなる。さらに基材粒子の表面に導電層を無電解めっきにより形成する際に凝集し難くなり、凝集した導電性粒子が形成されにくくなる。上記基材粒子の粒子径が上記上限以下であると、導電性粒子が充分に圧縮されやすく、電極間の接続抵抗がより一層低くなり、更に電極間の間隔が小さくなる。
上記基材粒子の粒子径は、基材粒子が真球状である場合には、直径を示し、基材粒子が真球状ではない場合には、最大径を示す。
上記基材粒子の粒子径は、2μm以上、5μm以下であることが特に好ましい。上記基材粒子の粒子径が2〜5μmの範囲内であると、電極間の間隔が小さくなり、かつ導電層の厚みを厚くしても、小さい導電性粒子が得られる。
[導電層]
本発明に係る導電性粒子は、基材粒子の表面上に配置されたニッケルを含む導電層を備える。このニッケルを含む導電層は、ニッケルと錫とを含む。ニッケルを含む導電層の全体100重量%中、錫の平均含有量が5重量%以上、50重量%以下である。このニッケルを含む導電層を、以下の[導電層]の欄において、ニッケルを含む導電層を導電層Xと記載することがある。上記ニッケルを含む導電層Xには、ニッケルを含まない導電層は含まれず、かつニッケルを含まない導電層部分は含まれない。
導電性を効果的に高める観点からは、上記導電層Xの全体100重量%中、ニッケルの平均含有量は多いほどよい。従って、上記導電層Xの全体100重量%中、ニッケルの平均含有量は好ましくは50重量%以上、より好ましくは65重量%以上、より一層好ましくは70重量%以上、更に好ましくは75重量%以上、更に一層好ましくは80重量%以上、特に好ましくは85重量%以上、最も好ましくは90重量%以上である。上記導電層Xの全体100重量%中、ニッケルの平均含有量は好ましくは95重量%以下、より好ましくは90重量%以下、更に好ましくは85重量%以下、特に好ましくは80重量%以下である。ニッケルの平均含有量が上記下限以上であると、電極間の接続抵抗がより一層低くなる。また、電極や導電層の表面における酸化被膜が少ない場合には、ニッケルの平均含有量が多いほど電極間の接続抵抗が低くなる傾向がある。
酸の存在下での導電層の腐食をより一層生じ難くする観点からは、上記導電層Xの全体100重量%中、錫の平均含有量は好ましくは5重量%以上、より好ましくは10重量%以上、更に好ましくは15重量%以上、特に好ましくは20重量%以上、好ましくは50重量%以下、より好ましくは45重量%以下である。
また、上記導電層Xの全体100重量%中、錫の平均含有量が50重量%よりも多い場合は、導電層が脆くなる傾向がある。よって、導電層Xの全体100重量%中、錫の平均含有量が50重量%よりも多い場合は、酸の存在下での導電層の腐食が生じやすくなり、酸の存在下に晒された後の接続抵抗が高くなる。
上記導電層Xにおけるニッケル及び錫の各平均含有量の測定方法は、既知の種々の分析法を用いることができ、特に限定されない。この測定方法として、吸光分析法又はスペクトル分析法等が挙げられる。上記吸光分析法では、フレーム吸光光度計及び電気加熱炉吸光光度計等を用いることができる。上記スペクトル分析法としては、プラズマ発光分析法及びプラズマイオン源質量分析法等が挙げられる。
上記導電層Xにおけるニッケル及び錫の各平均含有量を測定する際には、ICP発光分析装置を用いることが好ましい。ICP発光分析装置の市販品としては、HORIBA社製のICP発光分析装置等が挙げられる。
上記導電層Xの厚み方向の各領域におけるニッケル及び錫の各平均含有量を測定する際には、FE−TEM装置を用いることが好ましい。上記FE−TEM装置の市販品としては、日本電子社製「JEM−2010」等が挙げられる。
上記導電層Xの全体の厚みは、好ましくは0.005μm以上、より好ましくは0.01μm以上、更に好ましくは0.05μm以上、好ましくは1μm以下、より好ましくは0.3μm以下である。上記導電層Xの全体の厚みが上記下限以上及び上記上限以下であると、充分な導電性が得られ、かつ導電性粒子が硬くなりすぎずに、電極間の接続の際に導電性粒子が充分に変形する。
上記導電層Xの全体の厚みは、0.05μm以上、0.3μm以下であることが特に好ましい。さらに、上記基材粒子の粒子径が2μm以上、5μm以下であり、かつ、上記導電層Xの全体の厚みが0.05μm以上、0.3μm以下であることが特に好ましい。この場合には、導電性粒子を大きな電流が流れる用途により好適に用いることができる。さらに、導電性粒子を圧縮して電極間を接続した場合に、電極が損傷するのをより一層抑制できる。
上記導電層Xの厚みは、例えば透過型電子顕微鏡(TEM)を用いて、導電性粒子の断面を観察することにより測定できる。
上記導電層Xは、ニッケルに加えて、リン又はボロンを含んでいてもよい。また、上記導電層Xは、ニッケル及び錫以外の金属を含んでいてもよい。上記導電層Xにおけるニッケル及び錫以外の金属としては、例えば、金、銀、銅、白金、亜鉛、鉄、鉛、アルミニウム、コバルト、インジウム、パラジウム、クロム、シーボーギウム、チタン、アンチモン、ビスマス、タリウム、ゲルマニウム、カドミウム、ケイ素、タングステン及びモリブデン等が挙げられる。これらの金属は、1種のみが用いられてもよく、2種以上が併用されてもよい。上記導電層Xにおいて、複数の金属が含まれる場合に、複数の金属は合金化していてもよい。
上記基材粒子の表面上に導電層を形成する方法は特に限定されない。導電層を形成する方法としては、例えば、無電解めっきによる方法、電気めっきによる方法、物理的蒸着による方法、並びに金属粉末もしくは金属粉末とバインダーとを含むペーストを基材粒子又は他の導電層の表面にコーティングする方法等が挙げられる。なかでも、導電層の形成が簡便であるので、無電解めっきによる方法が好ましい。上記物理的蒸着による方法としては、真空蒸着、イオンプレーティング及びイオンスパッタリング等の方法が挙げられる。
上記導電性粒子の粒子径は、好ましくは0.5μm以上、より好ましくは1μm以上、好ましくは100μm以下、より好ましくは20μm以下、更に好ましくは5μm以下、特に好ましくは3μm以下である。導電性粒子の粒子径が上記下限以上及び上限以下であると、導電性粒子を用いて電極間を接続した場合に、導電性粒子と電極との接触面積が充分に大きくなり、かつ導電層を形成する際に凝集した導電性粒子が形成されにくくなる。また、導電性粒子を介して接続された電極間の間隔が大きくなりすぎず、かつ導電層が基材粒子の表面から剥離し難くなる。
上記導電性粒子の粒子径は、導電性粒子が真球状である場合には、直径を示し、導電性粒子が真球状ではない場合には、最大径を示す。
上記導電層Xは、1つの層により形成されていてもよく、複数の層により形成されていてもよい。すなわち、上記導電層Xは、2層以上の積層構造を有していてもよい。上記導電性粒子は、上記導電層X以外に、最外層などとして、金層、ニッケル層、パラジウム層、銅層又は錫と銀とを含む合金層を備えていてもよい。
上記導電層Xの各領域におけるニッケル及び錫の各含有量及び各平均含有量を制御する方法としては、例えば、無電解ニッケルめっきにより導電層Xを形成する際に、ニッケルめっき液のpHを制御する方法、無電解ニッケルめっきにより導電層Xを形成する際に、ボロン含有還元剤又はリン含有還元剤の濃度を調整する方法、ニッケルめっき液中の錫濃度を調整する方法並びにニッケルめっき液中のニッケル濃度を調整する方法等が挙げられる。
無電解めっきにより形成する方法では、一般的に、触媒化工程と、無電解めっき工程とが行われる。以下、無電解めっきにより、樹脂粒子の表面に、ニッケルと錫とを含む合金めっき層を形成する方法の一例を説明する。
上記触媒化工程では、無電解めっきによりめっき層を形成するための起点となる触媒を、樹脂粒子の表面に形成させる。
上記触媒を樹脂粒子の表面に形成させる方法としては、例えば、塩化パラジウムと塩化錫とを含む溶液に、樹脂粒子を添加した後、酸溶液又はアルカリ溶液により樹脂粒子の表面を活性化させて、樹脂粒子の表面にパラジウムを析出させる方法、並びに硫酸パラジウムとアミノピリジンとを含有する溶液に、樹脂粒子を添加した後、還元剤を含む溶液により樹脂粒子の表面を活性化させて、樹脂粒子の表面にパラジウムを析出させる方法等が挙げられる。上記還元剤として、ボロン含有還元剤又はリン含有還元剤が用いられる。また、上記還元剤として、ボロン含有還元剤又はリン含有還元剤を用いることで、ボロン又はリンを含む導電層Xを形成できる。
上記無電解めっき工程では、ニッケル含有化合物、上記ボロン含有還元剤又は上記リン含有還元剤、錯化剤及び錫含有化合物を含むニッケルめっき浴が好適に用いられる。ニッケルめっき浴中に樹脂粒子を浸漬することにより、触媒が表面に形成された樹脂粒子の表面に、ニッケルを析出させることができ、ニッケルと錫とを含む導電層Xを形成できる。また、ニッケルを析出させる際に、錫を共析させることで、ニッケルと錫とを含む合金めっき層を形成することができる。
上記ニッケル含有化合物としては、硫酸ニッケル及び塩化ニッケル等が挙げられる。上記ニッケル含有化合物は、ニッケル塩であることが好ましい。
上記リン含有還元剤としては、次亜リン酸ナトリウム等が挙げられる。上記ボロン含有還元剤としては、ジメチルアミンボラン、水素化ホウ素ナトリウム及び水素化ホウ素カリウム等が挙げられる。
上記錫含有化合物としては、錫酸ナトリウム三水和物、錫酸カリウム三水和物、硫酸錫(II)、塩化錫(IV)五水和物、及び塩化錫(II)二水和物等が挙げられる。
上記錯化剤は、酢酸ナトリウム、プロピオン酸ナトリウム等のモノカルボン酸系錯化剤;マロン酸ニナトリウム等のジカルボン酸系錯化剤;コハク酸ニナトリウム等のトリカルボン酸系錯化剤;乳酸、DL−リンゴ酸、ロシェル塩、クエン酸ナトリウム、グルコン酸ナトリウム等のヒドロキシ酸系錯化剤;グリシン、EDTA等のアミノ酸系錯化剤;エチレンジアミン等のアミン系錯化剤;マレイン酸等の有機酸系錯化剤;並びにこれらの塩等が挙げられる。ここで挙げた錯化剤からなる群より選択される少なくとも1種の錯化剤を用いることが好ましい。
[芯物質]
上記導電性粒子は導電性の表面に突起を有することが好ましい。上記導電層は外表面に突起を有することが好ましい。上記突起は複数であることが好ましい。上記導電性粒子により接続される電極の表面には、酸化被膜が形成されていることが多い。さらに、上記導電性粒子の導電層の表面には、酸化被膜が形成されていることが多い。上記突起を有する導電性粒子の使用により、電極間に導電性粒子を配置した後、圧着させることにより、突起により酸化被膜が効果的に排除される。このため、電極と導電性粒子とをより一層確実に接触させることができ、電極間の接続抵抗を低くすることができる。さらに、上記導電性粒子が表面に絶縁性物質を有する場合、又は導電性粒子がバインダー樹脂中に分散されて導電材料として用いられる場合に、導電性粒子の突起によって、導電性粒子と電極との間の樹脂を効果的に排除できる。このため、電極間の導通信頼性を高めることができる。
上記芯物質が上記導電層中に埋め込まれていることによって、上記導電層が外表面に複数の突起を有するようにすることが容易である。但し、導電性粒子及び導電層の外表面に突起を形成するために、芯物質を必ずしも用いなくてもよく、芯物質を用いないことが好ましく、上記導電性粒子は、上記導電層の外表面を***させるための芯物質を有さないことが好ましい。但し、上記導電性粒子は、上記導電層の外表面を***させている芯物質を有していてもよい。上記芯物質が用いられる場合に、上記芯物質は、上記導電層の内側又は内部に配置されることが好ましい。
上記突起を形成する方法としては、基材粒子の表面に芯物質を付着させた後、無電解めっきにより導電層を形成する方法、基材粒子の表面に無電解めっきにより導電層を形成した後、芯物質を付着させ、更に無電解めっきにより導電層を形成する方法、並びに基材粒子の表面に無電解めっきにより導電層を形成する途中段階で芯物質を添加する方法等が挙げられる。上記突起を形成する他の方法としては、基材粒子の表面上に、第1の導電層を形成した後、該第1の導電層上に芯物質を配置し、次に第2の導電層を形成する方法、並びに基材粒子の表面上に導電層を形成する途中段階で、芯物質を添加する方法等が挙げられる。
上記芯物質の材料としては、導電性物質及び非導電性物質が挙げられる。上記導電性物質としては、例えば、金属、金属の酸化物、黒鉛等の導電性非金属及び導電性ポリマー等が挙げられる。上記導電性ポリマーとしては、ポリアセチレン等が挙げられる。上記非導電性物質としては、シリカ、アルミナ、チタン酸バリウム及びジルコニア等が挙げられる。なかでも、導電性を高めることができ、更に接続抵抗を効果的に低くすることができるので、金属が好ましい。上記芯物質は金属粒子であることが好ましい。上記芯物質の材料である金属としては、上記導電材料の材料として挙げた金属を適宜使用可能である。
上記芯物質の形状は特に限定されない。芯物質の形状は塊状であることが好ましい。芯物質としては、例えば、粒子状の塊、複数の微小粒子が凝集した凝集塊、及び不定形の塊等が挙げられる。
上記芯物質の平均径(平均粒子径)は、好ましくは0.001μm以上、より好ましくは0.05μm以上、好ましくは0.9μm以下、より好ましくは0.2μm以下である。上記芯物質の平均径が上記下限以上及び上記上限以下であると、電極間の接続抵抗が効果的に低くなる。
上記芯物質の「平均径(平均粒子径)」は、数平均径(数平均粒子径)を示す。芯物質の平均径は、任意の芯物質50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求められる。
上記導電性粒子1個当たりの上記の突起の数は、好ましくは3個以上、より好ましくは5個以上である。上記突起の数の上限は特に限定されない。上記突起の数の上限は導電性粒子の粒子径等を考慮して適宜選択できる。
複数の上記突起の平均高さは、好ましくは0.001μm以上、より好ましくは0.05μm以上、好ましくは0.9μm以下、より好ましくは0.2μm以下である。上記突起の平均高さが上記下限以上及び上記上限以下であると、電極間の接続抵抗が効果的に低くなる。
[絶縁性物質]
上記導電性粒子は、上記導電層の表面上に配置された絶縁性物質を備えることが好ましい。この場合には、導電性粒子を電極間の接続に用いると、隣接する電極間の短絡をより一層防止できる。具体的には、複数の導電性粒子が接触したときに、複数の電極間に絶縁性物質が存在するので、上下の電極間ではなく横方向に隣り合う電極間の短絡を防止できる。なお、電極間の接続の際に、2つの電極で導電性粒子を加圧することにより、導電性粒子の導電層と電極との間の絶縁性物質を容易に排除できる。上記導電性粒子が導電層の外表面に複数の突起を有する場合には、導電性粒子の導電層と電極との間の絶縁性物質をより一層容易に排除できる。
電極間の圧着時に上記絶縁性物質をより一層容易に排除できることから、上記絶縁性物質は、絶縁性粒子であることが好ましい。
上記絶縁性物質の材料である絶縁性樹脂の具体例としては、ポリオレフィン類、(メタ)アクリレート重合体、(メタ)アクリレート共重合体、ブロックポリマー、熱可塑性樹脂、熱可塑性樹脂の架橋物、熱硬化性樹脂及び水溶性樹脂等が挙げられる。
上記ポリオレフィン類としては、ポリエチレン、エチレン−酢酸ビニル共重合体及びエチレン−アクリル酸エステル共重合体等が挙げられる。上記(メタ)アクリレート重合体としては、ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート及びポリブチル(メタ)アクリレート等が挙げられる。上記ブロックポリマーとしては、ポリスチレン、スチレン−アクリル酸エステル共重合体、SB型スチレン−ブタジエンブロック共重合体、及びSBS型スチレン−ブタジエンブロック共重合体、並びにこれらの水素添加物等が挙げられる。上記熱可塑性樹脂としては、ビニル重合体及びビニル共重合体等が挙げられる。上記熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂及びメラミン樹脂等が挙げられる。上記水溶性樹脂としては、ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミド、ポリビニルピロリドン、ポリエチレンオキシド及びメチルセルロース等が挙げられる。なかでも、水溶性樹脂が好ましく、ポリビニルアルコールがより好ましい。
上記導電層の外表面上に絶縁性物質を配置する方法としては、化学的方法、及び物理的もしくは機械的方法等が挙げられる。上記化学的方法としては、例えば、界面重合法、粒子存在下での懸濁重合法及び乳化重合法等が挙げられる。上記物理的もしくは機械的方法としては、スプレードライ、ハイブリダイゼーション、静電付着法、噴霧法、ディッピング及び真空蒸着による方法等が挙げられる。なかでも、絶縁性物質が脱離し難いことから、上記導電層の表面に、化学結合を介して上記絶縁性物質を配置する方法が好ましい。
上記導電層の外表面、及び絶縁性粒子の表面はそれぞれ、反応性官能基を有する化合物によって被覆されていてもよい。導電層の外表面と絶縁性粒子の表面とは、直接化学結合していなくてもよく、反応性官能基を有する化合物によって間接的に化学結合していてもよい。導電層の外表面にカルボキシル基を導入した後、該カルボキシル基がポリエチレンイミンなどの高分子電解質を介して絶縁性粒子の表面の官能基と化学結合していても構わない。
上記絶縁性物質の平均径(平均粒子径)は、導電性粒子の粒子径及び導電性粒子の用途等によって適宜選択できる。上記絶縁性物質の平均径(平均粒子径)は好ましくは0.005μm以上、より好ましくは0.01μm以上、好ましくは1μm以下、より好ましくは0.5μm以下である。上記絶縁性物質の平均径が上記下限以上であると、導電性粒子がバインダー樹脂中に分散されたときに、複数の導電性粒子における導電層同士が接触し難くなる。上記絶縁性粒子の平均径が上記上限以下であると、電極間の接続の際に、電極と導電性粒子との間の絶縁性物質を排除するために、圧力を高くしすぎる必要がなくなり、高温に加熱する必要もなくなる。
上記絶縁性物質の「平均径(平均粒子径)」は、数平均径(数平均粒子径)を示す。絶縁性物質の平均径は、粒度分布測定装置等を用いて求められる。
(導電材料)
本発明に係る導電材料は、上述した導電性粒子と、バインダー樹脂とを含む。上記導電性粒子は、バインダー樹脂中に分散され、導電材料として用いられることが好ましい。上記導電材料は、異方性導電材料であることが好ましい。上記導電性粒子及び上記導電材料はそれぞれ、電極間の電気的な接続に用いられることが好ましい。上記導電材料は、回路接続用材料であることが好ましい。
上記バインダー樹脂は特に限定されない。上記バインダー樹脂として、公知の絶縁性の樹脂が用いられる。
上記バインダー樹脂としては、例えば、ビニル樹脂、熱可塑性樹脂、硬化性樹脂、熱可塑性ブロック共重合体及びエラストマー等が挙げられる。上記バインダー樹脂は1種のみが用いられてもよく、2種以上が併用されてもよい。
上記ビニル樹脂としては、例えば、酢酸ビニル樹脂、アクリル樹脂及びスチレン樹脂等が挙げられる。上記熱可塑性樹脂としては、例えば、ポリオレフィン樹脂、エチレン−酢酸ビニル共重合体及びポリアミド樹脂等が挙げられる。上記硬化性樹脂としては、例えば、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂及び不飽和ポリエステル樹脂等が挙げられる。なお、上記硬化性樹脂は、常温硬化型樹脂、熱硬化型樹脂、光硬化型樹脂又は湿気硬化型樹脂であってもよい。上記硬化性樹脂は、硬化剤と併用されてもよい。上記熱可塑性ブロック共重合体としては、例えば、スチレン−ブタジエン−スチレンブロック共重合体、スチレン−イソプレン−スチレンブロック共重合体、スチレン−ブタジエン−スチレンブロック共重合体の水素添加物、及びスチレン−イソプレン−スチレンブロック共重合体の水素添加物等が挙げられる。上記エラストマーとしては、例えば、スチレン−ブタジエン共重合ゴム、及びアクリロニトリル−スチレンブロック共重合ゴム等が挙げられる。
上記導電材料及び上記バインダー樹脂は、熱可塑性成分又は熱硬化性成分を含むことが好ましい。上記導電材料及び上記バインダー樹脂は、熱可塑性成分を含んでいてもよく、熱硬化性成分を含んでいてもよい。上記導電材料及び上記バインダー樹脂は、熱硬化性成分を含むことが好ましい。上記熱硬化性成分は、加熱により硬化可能な硬化性化合物と熱硬化剤とを含むことが好ましい。上記熱硬化剤は、熱カチオン硬化開始剤であることが好ましい。上記加熱により硬化可能な硬化性化合物と上記熱硬化剤とは、上記バインダー樹脂が硬化するように適宜の配合比で用いられる。上記バインダー樹脂が熱カチオン硬化開始剤を含むと、硬化物中に酸が含まれやすい。しかし、本発明に係る導電性粒子の使用により、電極間の接続抵抗を低く維持することができる。
上記導電材料は、上記導電性粒子及び上記バインダー樹脂の他に、例えば、充填剤、増量剤、軟化剤、可塑剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。
上記導電材料は、導電ペースト及び導電フィルム等として使用され得る。上記導電材料が、導電フィルムである場合には、導電性粒子を含む導電フィルムに、導電性粒子を含まないフィルムが積層されていてもよい。上記導電ペーストは、異方性導電ペーストであることが好ましい。上記導電フィルムは、異方性導電フィルムであることが好ましい。
上記導電材料100重量%中、上記バインダー樹脂の含有量は好ましくは10重量%以上、より好ましくは30重量%以上、更に好ましくは50重量%以上、特に好ましくは70重量%以上、好ましくは99.99重量%以下、より好ましくは99.9重量%以下である。上記バインダー樹脂の含有量が上記下限以上及び上記上限以下であると、電極間に導電性粒子が効率的に配置され、導電材料により接続された接続対象部材の接続信頼性がより一層高くなる。
上記導電材料100重量%中、上記導電性粒子の含有量は好ましくは0.01重量%以上、より好ましくは0.1重量%以上、好ましくは80重量%以下、より好ましくは60重量%以下、更に好ましくは40重量%以下、特に好ましくは20重量%以下、更に好ましくは10重量%以下である。上記導電性粒子の含有量が上記下限以上及び上記上限以下であると、電極間の導通信頼性がより一層高くなる。
(接続構造体)
上記導電性粒子を用いて、又は上記導電性粒子とバインダー樹脂とを含む導電材料を用いて、接続対象部材を接続することにより、接続構造体を得ることができる。
上記接続構造体は、第1の接続対象部材と、第2の接続対象部材と、第1,第2の接続対象部材を接続している接続部とを備え、該接続部が本発明の導電性粒子により形成されているか、又は該導電性粒子とバインダー樹脂とを含む導電材料により形成されている接続構造体であることが好ましい。導電性粒子が用いられた場合には、接続部自体が導電性粒子である。すなわち、第1,第2の接続対象部材が導電性粒子により接続される。
図5に、本発明の第1の実施形態に係る導電性粒子を用いた接続構造体を模式的に正面断面図で示す。
図5に示す接続構造体51は、第1の接続対象部材52と、第2の接続対象部材53と、第1,第2の接続対象部材52,53を接続している接続部54とを備える。接続部54は、導電性粒子1を含む導電材料を硬化させることにより形成されている。なお、図5では、導電性粒子1は、図示の便宜上、略図的に示されている。導電性粒子1にかえて、導電性粒子11,21等を用いてもよい。
第1の接続対象部材52は表面(上面)に、複数の第1の電極52aを有する。第2の接続対象部材53は表面(下面)に、複数の第2の電極53aを有する。第1の電極52aと第2の電極53aとが、1つ又は複数の導電性粒子1により電気的に接続されている。従って、第1,第2の接続対象部材52,53が導電性粒子1により電気的に接続されている。
上記接続構造体の製造方法は特に限定されない。上記接続構造体の製造方法の一例としては、上記第1の接続対象部材と上記第2の接続対象部材との間に上記導電材料を配置し、積層体を得た後、該積層体を加熱及び加圧する方法等が挙げられる。上記加圧の圧力は9.8×10〜4.9×10Pa程度である。上記加熱の温度は、120〜220℃程度である。
上記接続対象部材としては、具体的には、半導体チップ、コンデンサ及びダイオード等の電子部品、並びにプリント基板、フレキシブルプリント基板、ガラスエポキシ基板及びガラス基板等の回路基板などの電子部品等が挙げられる。上記接続対象部材は電子部品であることが好ましい。上記導電性粒子は、電子部品における電極の電気的な接続に用いられることが好ましい。
上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、銀電極、モリブデン電極及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。
以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。
(実施例1)
粒子径が3.0μmであるジビニルベンゼン共重合体樹脂粒子(基材粒子A、積水化学工業社製「ミクロパールSP−203」)を用意した。パラジウム触媒液を5重量%含むアルカリ溶液100重量部に、上記樹脂粒子10重量部を、超音波分散器を用いて分散させた後、溶液をろ過することにより、樹脂粒子を取り出した。次いで、樹脂粒子をジメチルアミンボラン1重量%溶液100重量部に添加し、樹脂粒子の表面を活性化させた。表面が活性化された樹脂粒子を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、懸濁液を得た。
また、前期工程用ニッケルめっき液として、硫酸ニッケル150g/L、錫酸ナトリウム三水和物25g/L、次亜リン酸ナトリウム150g/L、及びグルコン酸ナトリウム50g/Lの混合液を、水酸化ナトリウムにてpH10に調整しためっき液を用意した。このめっき液150mlを20ml/分の添加速度で定量ポンプを通して懸濁液に滴下した。反応温度は、60℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解めっき前期工程を行った。
次に、後期工程用ニッケルめっき液として、硫酸ニッケル100g/L、錫酸ナトリウム三水和物50g/L、次亜リン酸ナトリウム150g/L、及びグルコン酸ナトリウム50g/Lの混合液を、水酸化ナトリウムにてpH8.0に調整しためっき液を用意した。このめっき液350mlを10ml/分の添加速度で定量ポンプを通して懸濁液に滴下した。反応温度は、80℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解めっき後期工程を行った。
その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、樹脂粒子の表面にニッケル−錫導電層(厚み108nm)が配置された導電性粒子を得た。
(実施例2)
前期工程用ニッケルめっき液として、硫酸ニッケル100g/L、錫酸ナトリウム三水和物80g/L、次亜リン酸ナトリウム150g/L、及びグルコン酸ナトリウム50g/Lの混合液を、水酸化ナトリウムにてpH10に調整しためっき液を用意した。このめっき液150mlを20ml/分の添加速度で定量ポンプを通して懸濁液に滴下した。反応温度は、60℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解めっき前期工程を行った。
次に、後期工程用ニッケルめっき液として、硫酸ニッケル100g/L、錫酸ナトリウム三水和物100g/L、次亜リン酸ナトリウム150g/L、及びグルコン酸ナトリウム50g/Lの混合液を、水酸化ナトリウムにてpH8.0に調整しためっき液を用意した。このめっき液350mlを10ml/分の添加速度で定量ポンプを通して懸濁液に滴下した。反応温度は、80℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解めっき後期工程を行った。
その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、樹脂粒子の表面にニッケル−錫導電層(厚み105nm)が配置された導電性粒子を得た。
上記のめっき方法で導電層を形成したこと以外は実施例1と同様にして、導電性粒子を得た。
(実施例3)
前期工程用ニッケルめっき液として、硫酸ニッケル80g/L、錫酸ナトリウム三水和物100g/L、次亜リン酸ナトリウム150g/L、及びグルコン酸ナトリウム50g/Lの混合液を、水酸化ナトリウムにてpH8.0に調整したためっき液を用意した。このめっき液50mlを20ml/分の添加速度で定量ポンプを通して懸濁液に滴下した。反応温度は、80℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解めっき前期工程を行った。
次に、後期工程用ニッケルめっき液として、硫酸ニッケル80g/L、錫酸ナトリウム三水和物100g/L、次亜リン酸ナトリウム150g/L、及びグルコン酸ナトリウム50g/Lの混合液を、水酸化ナトリウムにてpH8.0に調整しためっき液を用意した。このめっき液450mlを10ml/分の添加速度で定量ポンプを通して懸濁液に滴下した。反応温度は、80℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解めっき後期工程を行った。
その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、樹脂粒子の表面にニッケル−錫導電層(厚み108nm)が配置された導電性粒子を得た。
上記のめっき方法で導電層を形成したこと以外は実施例1と同様にして、導電性粒子を得た。
(実施例4)
前期工程用ニッケルめっき液として、硫酸ニッケル80g/L、錫酸ナトリウム三水和物100g/L、次亜リン酸ナトリウム150g/L、及びグルコン酸ナトリウム50g/Lの混合液を、水酸化ナトリウムにてpH8.0に調整しためっき液を用意した。このめっき液150mlを20ml/分の添加速度で定量ポンプを通して懸濁液に滴下した。反応温度は、80℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解めっき前期工程を行った。
次に、後期工程用ニッケルめっき液として、硫酸ニッケル100g/L、錫酸ナトリウム三水和物50g/L、次亜リン酸ナトリウム150g/L、及びグルコン酸ナトリウム50g/Lの混合液を、水酸化ナトリウムにてpH8.0に調整し及び。このめっき液350mlを10ml/分の添加速度で定量ポンプを通して懸濁液に滴下した。反応温度は、80℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解めっき後期工程を行った。
その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、樹脂粒子の表面にニッケル−錫導電層(厚み105nm)が配置された導電性粒子を得た。
上記のめっき方法で導電層を形成したこと以外は実施例1と同様にして、導電性粒子を得た。
(実施例5)
前期工程用ニッケルめっき液として、硫酸ニッケル150g/L、錫酸ナトリウム三水和物25g/L、次亜リン酸ナトリウム150g/L、及びグルコン酸ナトリウム50g/Lの混合液を、水酸化ナトリウムにてpH10に調整しためっき液を用意した。このめっき液300mlを20ml/分の添加速度で定量ポンプを通して懸濁液に滴下した。反応温度は、60℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解めっき前期工程を行った。
次に、後期工程用ニッケルめっき液として、硫酸ニッケル100g/L、錫酸ナトリウム三水和物50g/L、次亜リン酸ナトリウム150g/L、及びグルコン酸ナトリウム50g/Lの混合液を、水酸化ナトリウムにてpH8.0に調整しためっき液を用意した。このめっき液700mlを10ml/分の添加速度で定量ポンプを通して懸濁液に滴下した。反応温度は、80℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解めっき後期工程を行った。
その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、樹脂粒子の表面にニッケル−錫導電層(厚み201nm)が配置された導電性粒子を得た。
上記のめっき方法で導電層を形成したこと以外は実施例1と同様にして、導電性粒子を得た。
(実施例6)
前期工程用ニッケルめっき液として、硫酸ニッケル150g/L、錫酸ナトリウム三水和物25g/L、次亜リン酸ナトリウム150g/L、及びグルコン酸ナトリウム50g/Lの混合液を、水酸化ナトリウムにてpH10に調整しためっき液を用意した。このめっき液75mlを20ml/分の添加速度で定量ポンプを通して懸濁液に滴下した。反応温度は、60℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解めっき前期工程を行った。
次に、後期工程用ニッケルめっき液として、硫酸ニッケル100g/L、錫酸ナトリウム三水和物50g/L、次亜リン酸ナトリウム150g/L、及びグルコン酸ナトリウム50g/Lの混合液を、水酸化ナトリウムにてpH8.0に調整しためっき液を用意した。このめっき液175mlを10ml/分の添加速度で定量ポンプを通して懸濁液に滴下した。反応温度は、80℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解めっき後期工程を行った。
その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、樹脂粒子の表面にニッケル−錫導電層(厚み53nm)が配置された導電性粒子を得た。
上記のめっき方法で導電層を形成したこと以外は実施例1と同様にして、導電性粒子を得た。
(実施例7)
前期工程用ニッケルめっき液として、硫酸ニッケル150g/L、錫酸ナトリウム三水和物25g/L、ジメチルアミンボラン100g/L、及びグルコン酸ナトリウム50g/Lの混合液を、水酸化ナトリウムにてpH7に調整しためっき液を用意した。このめっき液150mlを20ml/分の添加速度で定量ポンプを通して懸濁液に滴下した。反応温度は、60℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解めっき前期工程を行った。
次に、後期工程用ニッケルめっき液として、硫酸ニッケル100g/L、錫酸ナトリウム三水和物50g/L、ジメチルアミンボラン120g/L、及びグルコン酸ナトリウム50g/Lの混合液を、水酸化ナトリウムにてpH8.0に調整しためっき液を用意した。このめっき液350mlを10ml/分の添加速度で定量ポンプを通して懸濁液に滴下した。反応温度は、80℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解めっき後期工程を行った。
その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、樹脂粒子の表面にニッケル−錫導電層(厚み108nm)が配置された導電性粒子を得た。
上記のめっき方法で導電層を形成したこと以外は実施例1と同様にして、導電性粒子を得た。
(実施例8)
前期工程用ニッケルめっき液として、硫酸ニッケル150g/L、錫酸ナトリウム三水和物6g/L、次亜リン酸ナトリウム150g/L、及びグルコン酸ナトリウム20g/Lの混合液を、水酸化ナトリウムにてpH10に調整しためっき液を用意した。このめっき液150mlを20ml/分の添加速度で定量ポンプを通して懸濁液に滴下した。反応温度は、60℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解めっき前期工程を行った。
次に、後期工程用ニッケルめっき液として、硫酸ニッケル100g/L、錫酸ナトリウム三水和物8g/L、次亜リン酸ナトリウム150g/L、及びグルコン酸ナトリウム20g/Lの混合液を、水酸化ナトリウムにてpH8.0に調整しためっき液を用意した。このめっき液350mlを10ml/分の添加速度で定量ポンプを通して懸濁液に滴下した。反応温度は、80℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解めっき後期工程を行った。
その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、樹脂粒子の表面にニッケル−錫導電層(厚み105nm)が配置された導電性粒子を得た。
上記のめっき方法で導電層を形成したこと以外は実施例1と同様にして、導電性粒子を得た。
(実施例9)
実施例1と同様の基材粒子を用意した。パラジウム触媒液を5重量%含むアルカリ溶液100重量部に、上記樹脂粒子10重量部を、超音波分散器を用いて分散させた後、溶液をろ過することにより、樹脂粒子を取り出した。次いで、樹脂粒子をジメチルアミンボラン1重量%溶液100重量部に添加し、樹脂粒子の表面を活性化させた。表面が活性化された樹脂粒子を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、懸濁液を得た。次に、金属ニッケル粒子スラリー(平均粒子径100nm)1gを3分間かけて上記分散液に添加し、芯物質が付着された基材粒子を得た。芯物質が付着された基材粒子を蒸留水500重量部に加え、分散させることにより、懸濁液を得た。基材粒子を上記芯物質が付着された基材粒子に変更したこと以外は実施例1と同様にして、樹脂粒子の表面にニッケル−錫導電層(厚み109nm)が配置されており、ニッケル−錫導電層の外表面上に複合Ni突起が配置された導電性粒子を得た。
(実施例10)
ニッケル粒子スラリー(平均粒子径100nm)をアルミナ粒子スラリー(平均粒子径100nm)に変更したこと以外は実施例9と同様にして、樹脂粒子の表面にニッケル−錫導電層(厚み108nm)が配置されており、ニッケル−錫導電層の外表面上に複合Al突起が配置された導電性粒子を得た。
(実施例11)
パラジウム触媒液5重量%を含むアルカリ溶液100重量部に、上記基材粒子A10重量部を、超音波分散器を用いて分散させた後、溶液をろ過することにより、基材粒子Aを取り出した。次いで、基材粒子Aをジメチルアミンボラン1重量%溶液100重量部に添加し、基材粒子Aの表面を活性化させた。表面が活性化された基材粒子Aを十分に水洗した後、蒸留水500重量部に加え、分散させることにより、懸濁液(A)を得た。
前期工程用ニッケルめっき液として、硫酸ニッケル150g/L、錫酸ナトリウム三水和物25g/L、次亜リン酸ナトリウム150g/L、及びグルコン酸ナトリウム50g/Lの混合液を、水酸化ナトリウムにてpH10に調整しためっき液を用意した。
また、突起形成用めっき液として、次亜リン酸ナトリウム200g/L、及び水酸化ナトリウム10g/Lを含む突起形成用めっき液(pH10.0)を用意した。
分散状態の懸濁液(A)に上記前期工程用ニッケルめっき液と突起形成用めっき液とを徐々に滴下し、突起形成を行った。前期工程用ニッケルめっき液150mlを20ml/分の添加速度で定量ポンプを通して懸濁液(A)に滴下した。反応温度は、60℃に設定した。上記前期工程用ニッケルめっき液の滴下と同時に、突起形成用めっき液を滴下した。突起形成用めっき液の滴下速度は2ml/分、滴下時間は50分間とした。突起形成用めっき液の滴下中は、発生したNi突起核を超音波攪拌により分散しながらニッケルめっきを行った。
その後、導電層を狙いの厚みにするために、後期工程用ニッケルめっき液として、硫酸ニッケル100g/L、錫酸ナトリウム三水和物100g/L、次亜リン酸ナトリウム150g/L、及びグルコン酸ナトリウム50g/Lの混合液を、水酸化ナトリウムにてpH8.0に調整しためっき液を用意した。このめっき液350mlを10ml/分の添加速度で定量ポンプを通して懸濁液に滴下した。反応温度は、80℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解めっき後期工程を行った。
その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、樹脂粒子の表面にニッケル−錫導電層(厚み108nm)が配置されており、ニッケル−錫導電層の外表面に析出突起が配置された導電性粒子を得た。
上記のめっき方法で導電層を形成したこと以外は実施例9と同様にして、導電性粒子を得た。
(実施例12)
基材粒子Aを、基材粒子Aと粒子径のみが異なり、粒子径が2.5μmである基材粒子Bに変更したこと以外は実施例9と同様にして、導電性粒子を得た。このようにして、樹脂粒子の表面にニッケル−錫導電層(厚み108nm)が配置されており、ニッケル−錫導電層の外表面に複合Ni突起が配置された導電性粒子を得た。
(実施例13)
基材粒子Aを、基材粒子Aと粒子径のみが異なり、粒子径が10.0μmである基材粒子Cに変更したこと以外は実施例9と同様にして、導電性粒子を得た。このようにして、樹脂粒子の表面にニッケル−錫導電層(厚み108nm)が配置されており、ニッケル−錫導電層の外表面に複合Ni突起が配置された導電性粒子を得た。
(実施例14)
粒子径が2.5μmであるジビニルベンゼン共重合体樹脂粒子(積水化学工業社製「ミクロパールSP−202」)の表面を、ゾルゲル反応による縮合反応を用いてシリカシェル(厚み250nm)により被覆したコアシェル型の有機無機ハイブリッド粒子(基材粒子D)を得た。上記基材粒子Aを上記基材粒子Dに変更したこと以外は実施例9と同様にして、導電性粒子を得た。このようにして、樹脂粒子の表面にニッケル−錫導電層(厚み108nm)が配置されており、ニッケル−錫導電層の外表面に複合Ni突起が配置された導電性粒子を得た。
(実施例15)
攪拌機及び温度計が取り付けられた500mLの反応容器内に、0.13重量%のアンモニア水溶液300gを入れた。次に、反応容器内のアンモニア水溶液中に、メチルトリメトキシシラン4.1gと、ビニルトリメトキシシラン19.2gと、シリコーンアルコキシオリゴマー(信越化学工業社製「X−41−1053」)0.7gとの混合物をゆっくりと添加した。撹拌しながら、加水分解及び縮合反応を進行させた後、25重量%アンモニア水溶液2.4mLを添加した後、アンモニア水溶液中から粒子を単離して、得られた粒子を酸素分圧10−17atm、350℃で2時間焼成して、粒子径が3.0μmの有機無機ハイブリッド粒子(基材粒子E)を得た。上記基材粒子Aを上記基材粒子Eに変更したこと以外は実施例9と同様にして、樹脂粒子の表面にニッケル−錫導電層(厚み109nm)が配置されており、ニッケル−錫導電層の外表面に複合Ni突起が配置された導電性粒子を得た。
(実施例16)
4ツ口セパラブルカバー、攪拌翼、三方コック、冷却管及び温度プローブが取り付けられた1000mLのセパラブルフラスコに、メタクリル酸メチル100mmolと、N,N,N−トリメチル−N−2−メタクリロイルオキシエチルアンモニウムクロライド1mmolと、2,2’−アゾビス(2−アミジノプロパン)二塩酸塩1mmolとを含むモノマー組成物を固形分率が5重量%となるようにイオン交換水に秤取した後、200rpmで攪拌し、窒素雰囲気下70℃で24時間重合を行った。反応終了後、凍結乾燥して、表面にアンモニウム基を有し、平均粒子径220nm及びCV値10%の絶縁性粒子を得た。
絶縁性粒子を超音波照射下でイオン交換水に分散させ、絶縁性粒子の10重量%水分散液を得た。
実施例9で得られた導電性粒子10gをイオン交換水500mLに分散させ、絶縁性粒子の水分散液4gを添加し、室温で6時間攪拌した。0.3μmのメッシュフィルターでろ過した後、更にメタノールで洗浄し、乾燥し、絶縁性粒子が付着した導電性粒子を得た。
走査型電子顕微鏡(SEM)により観察したところ、導電性粒子の表面に絶縁性粒子による被覆層が1層のみ形成されていた。画像解析により導電性粒子の中心より2.5μmの面積に対する絶縁性粒子の被覆面積(即ち絶縁性粒子の粒子径の投影面積)を算出したところ、被覆率は40%であった。
(比較例1)
前期工程用ニッケルめっき液として、硫酸ニッケル200g/L、錫酸ナトリウム三水和物15g/L、次亜リン酸ナトリウム150g/L、及びグルコン酸ナトリウム50g/L、の混合液を、水酸化ナトリウムにてpH10に調整しためっき液を用意した。このめっき液150mlを20ml/分の添加速度で定量ポンプを通して懸濁液に滴下した。反応温度は、60℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解めっき前期工程を行った。
次に、後期工程用ニッケルめっき液として、硫酸ニッケル250g/L、錫酸ナトリウム三水和物15g/L、次亜リン酸ナトリウム150g/L、及びグルコン酸ナトリウム50g/Lの混合液を、水酸化ナトリウムにてpH10に調整しためっき液を用意した。このめっき液350mlを10ml/分の添加速度で定量ポンプを通して懸濁液に滴下した。反応温度は、80℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解めっき後期工程を行った。
その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、樹脂粒子の表面にニッケル−錫導電層(厚み107nm)が配置された導電性粒子を得た。
上記のめっき方法で導電層を形成したこと以外は実施例1と同様にして、導電性粒子を得た。
(比較例2)
前期工程用ニッケルめっき液として、硫酸ニッケル50g/L、錫酸ナトリウム三水和物150g/L、次亜リン酸ナトリウム150g/L、及びグルコン酸ナトリウム50g/L、の混合液を、水酸化ナトリウムにてpH8.0に調整しためっき液を用意した。このめっき液50mlを10ml/分の添加速度で定量ポンプを通して懸濁液に滴下した。反応温度は、80℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解めっき前期工程を行った。
次に、後期工程用ニッケルめっき液として、硫酸ニッケル50g/L、錫酸ナトリウム三水和物150g/L、次亜リン酸ナトリウム150g/L、及びグルコン酸ナトリウム50g/Lの混合液を、水酸化ナトリウムにてpH8.0に調整しためっき液を用意した。このめっき液450mlを5ml/分の添加速度で定量ポンプを通して懸濁液に滴下した。反応温度は、80℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解めっき後期工程を行った。
その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、樹脂粒子の表面にニッケル−錫導電層(厚み107nm)が配置された導電性粒子を得た。
上記のめっき方法で導電層を形成したこと以外は実施例1と同様にして、導電性粒子を得た。
(比較例3)
前期工程用ニッケルめっき液として、硫酸ニッケル5g/L、錫酸ナトリウム三水和物150g/L、次亜リン酸ナトリウム20g/L、及びグルコン酸ナトリウム50g/L、塩化チタン100g/Lの混合液を、水酸化ナトリウムにてpH8.0に調整しためっき液を用意した。このめっき液50mlを10ml/分の添加速度で定量ポンプを通して懸濁液に滴下した。反応温度は、80℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解めっき前期工程を行った。
次に、後期工程用ニッケルめっき液として、硫酸ニッケル5g/L、錫酸ナトリウム三水和物150g/L、次亜リン酸ナトリウム30g/L、グルコン酸ナトリウム50g/L、及び塩化チタン100g/Lの混合液を、水酸化ナトリウムにてpH8.0に調整しためっき液を用意した。このめっき液450mlを5ml/分の添加速度で定量ポンプを通して懸濁液に滴下した。反応温度は、80℃に設定した。その後pHが安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解めっき後期工程を行った。
その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、樹脂粒子の表面にニッケル−錫導電層(厚み107nm)が配置された導電性粒子を得た。
上記のめっき方法で導電層を形成したこと以外は実施例1と同様にして、導電性粒子を得た。
(評価)
(1)ニッケルを含む導電層の全体におけるニッケル及び錫の平均含有量
60%硝酸5mLと37%塩酸10mLとの混合液に、導電性粒子5gを加え、導電層を完全に溶解させ、溶液を得た。得られた溶液を用いて、ニッケル及び錫の含有量をICP−MS分析器(日立製作所社製)により分析した。なお、ニッケル及び錫以外の含有量は、リン又はボロンであった。
(2)ニッケルを含む導電層の厚み方向におけるニッケル及び錫の平均含有量
ニッケルを含む導電層の厚み方向における、ニッケル及び錫の含有量の分布を測定した。
集束イオンビームを用いて、得られた導電性粒子の薄膜切片を作製した。透過型電子顕微鏡FE−TEM(日本電子社製「JEM−2010FEF」)を用いて、エネルギー分散型X線分析装置(EDS)により、ニッケルを含む導電層の厚み方向におけるニッケル及び錫の各含有量を測定した。この結果から、ニッケルを含む導電層の内表面から外側に向かって厚み1/10の上記領域(R1)(内表面側の厚み10%の領域)、ニッケルを含む導電層の内表面から外側に向かって厚み1/2の上記領域(R2)(内表面側の厚み50%の領域)及びニッケルを含む導電層の外表面から内側に向かって厚み1/2の上記領域(R3)(外表面側の厚み50%の領域)におけるニッケル及び錫の各平均含有量を求めた。なお、ニッケル及び錫以外の含有量は、リン又はボロンであった。
(3)導電粒子の導電層の融点
得られた導電性粒子の導電層の融点を、示差走査熱量計(ヤマト科学社製「DSC−6300」)を用いて測定した。
(4)導電性粒子の10%K値
得られた導電性粒子の10%K値を、上述した方法により、微小圧縮試験機(フィッシャー社製「フィッシャースコープH−100」)を用いて測定した。
(5)初期の接続抵抗A
接続構造体の作製:
熱硬化性化合物であるエポキシ化合物(ナガセケムテックス社製「EP−3300P」)20重量部と、熱硬化性化合物であるエポキシ化合物(DIC社製「EPICLONHP−4032D」)15重量部と、熱硬化剤である熱カチオン発生剤(三新化学社製 サンエイド「SI−60」)5重量部と、フィラーであるシリカ(平均粒子径0.25μm)20重量部とを配合し、さらに得られた導電性粒子を配合物100重量%中での含有量が10重量%となるように添加した後、遊星式攪拌機を用いて2000rpmで5分間攪拌することにより、異方性導電ペーストを得た。
L/Sが20μm/20μmのAl−Ti4%電極パターン(Al−Ti4%電極厚み1μm)を上面に有するガラス基板を用意した。また、L/Sが20μm/20μmの金電極パターン(金電極厚み20μm)を下面に有する半導体チップを用意した。
上記ガラス基板の上面に、作製直後の異方性導電ペーストを厚さ20μmとなるように塗工し、異方性導電材料層を形成した。次に、異方性導電材料層の上面に上記半導体チップを、電極同士が対向するように積層した。その後、異方性導電材料層の温度が170℃となるようにヘッドの温度を調整しながら、半導体チップの上面に加圧加熱ヘッドを載せ、2.5MPaの圧力をかけて、異方性導電材料層を170℃で硬化させ、接続構造体を得た。
接続抵抗の測定:
得られた接続構造体の対向する電極間の接続抵抗Aを4端子法により測定した。また、初期の接続抵抗Aを下記の基準で判定した。
[初期の接続抵抗Aの評価基準]
○○○:接続抵抗Aが2.0Ω以下
○○:接続抵抗Aが2.0Ωを超え、3.0Ω以下
○:接続抵抗Aが3.0Ωを超え、5.0Ω以下
△:接続抵抗Aが5.0Ωを超え、10Ω以下
×:接続抵抗Aが10Ωを超える
(6)酸の存在下に晒された後の接続抵抗B
上記(5)初期の接続抵抗Aの評価で得られた接続構造体を85℃及び湿度85%の恒温恒湿槽で、100時間放置した。接続構造体を上記条件で放置したことによって、バインダー樹脂中に浸入した水とバインダー樹脂中に含まれる酸の反応によって、接続構造体における電極間の接続部分が酸の存在下に一定期間晒された。放置後の接続構造体において、接続構造体の対向する電極間の接続抵抗を4端子法により測定した。また、酸の存在下に晒された後の接続抵抗を下記の基準で判定した。
[酸の存在下に晒された後の接続抵抗Bの評価基準]
○○○:接続抵抗Bが接続抵抗Aの1倍未満
○○:接続抵抗Bが接続抵抗Aの1倍以上、1.5倍未満
○:接続抵抗Bが接続抵抗Aの1.5倍以上、2倍未満
△:接続抵抗Bが接続抵抗Aの2倍以上、5倍未満
×:接続抵抗Bが接続抵抗Aの5倍以上
(7)凝集状態
ビスフェノールA型エポキシ樹脂(三菱化学社製「エピコート1009」)10重量部と、アクリルゴム(重量平均分子量約80万)40重量部と、メチルエチルケトン200重量部と、マイクロカプセル型硬化剤(旭化成ケミカルズ社製「HX3941HP」)50重量部と、シランカップリング剤(東レダウコーニングシリコーン社製「SH6040」)2重量部とを混合し、導電性粒子を含有量が3重量%となるように添加し、分散させ、異方性導電材料を得た。
得られた異方性導電材料を25℃で72時間保管した。保管後に、異方性導電材料において凝集した導電性粒子が沈降しているか否かを評価した。凝集した導電性粒子が沈降していない場合を「良好」、凝集した導電性粒子が沈降している場合を「不良」と判定した。
結果を下記の表1に示す。
Figure 0006397742
1…導電性粒子
2…基材粒子
3…ニッケルを含む導電層
11…導電性粒子
11a…突起
12…ニッケルを含む導電層
12a…突起
13…芯物質
14…絶縁性物質
21…導電性粒子
21a…突起
22…ニッケルを含む導電層
22a…突起
22A…第1の導電層
22Aa…突起
22B…第2の導電層
22Ba…突起
51…接続構造体
52…第1の接続対象部材
52a…第1の電極
53…第2の接続対象部材
53a…第2の電極
54…接続部

Claims (8)

  1. 基材粒子と、前記基材粒子の表面上に配置されており、かつニッケルを含む導電層とを備え、
    前記ニッケルを含む導電層の融点が300℃以上であり、
    前記ニッケルを含む導電層が、ニッケルと錫とを含む合金層であり、
    前記ニッケルを含む導電層の全体100重量%中、錫の平均含有量が5重量%以上、50重量%以下であり、
    10%圧縮したときの圧縮弾性率が3000N/mm 以上、20000N/mm 以下である、導電性粒子。
  2. 基材粒子と、前記基材粒子の表面上に配置されており、かつニッケルを含む導電層とを備え、
    前記ニッケルを含む導電層の融点が300℃以上であり、
    前記ニッケルを含む導電層が、ニッケルと錫とを含む合金層であり、
    前記ニッケルを含む導電層の全体100重量%中、錫の平均含有量が5重量%以上、50重量%以下であり、
    前記ニッケルを含む導電層の内表面から外側に向かって厚み1/2の領域における錫の平均含有量が、前記ニッケルを含む導電層の外表面から内側に向かって厚み1/2の領域における錫の平均含有量よりも少ない、導電性粒子。
  3. 基材粒子と、前記基材粒子の表面上に配置されており、かつニッケルを含む導電層とを備え、
    前記ニッケルを含む導電層の融点が300℃以上であり、
    前記ニッケルを含む導電層が、ニッケルと錫とを含む合金層であり、
    前記ニッケルを含む導電層の全体100重量%中、錫の平均含有量が5重量%以上、50重量%以下であり、
    前記ニッケルを含む導電層の内表面から外側に向かって厚み1/2の領域における錫の平均含有量が、前記ニッケルを含む導電層の外表面から内側に向かって厚み1/2の領域における錫の平均含有量よりも10重量%以上少ない、導電性粒子。
  4. 基材粒子と、前記基材粒子の表面上に配置されており、かつニッケルを含む導電層とを備え、
    前記ニッケルを含む導電層が外表面に突起を有し、
    前記ニッケルを含む導電層の融点が300℃以上であり、
    前記ニッケルを含む導電層が、ニッケルと錫とを含む合金層であり、
    前記ニッケルを含む導電層の全体100重量%中、錫の平均含有量が5重量%以上、50重量%以下である、導電性粒子。
  5. 基材粒子と、前記基材粒子の表面上に配置されており、かつニッケルを含む導電層とを備え、
    前記ニッケルを含む導電層の外表面上に配置された絶縁性物質をさらに備え、
    前記ニッケルを含む導電層の融点が300℃以上であり、
    前記ニッケルを含む導電層が、ニッケルと錫とを含む合金層であり、
    前記ニッケルを含む導電層の全体100重量%中、錫の平均含有量が5重量%以上、50重量%以下である、導電性粒子。
  6. 前記ニッケルを含む導電層の内表面から外側に向かって厚み1/10の領域において、錫の平均含有量が10重量%以下である、請求項1〜5のいずれか1項に記載の導電性粒子。
  7. 請求項1〜のいずれか1項に記載の導電性粒子と、バインダー樹脂とを含む、導電材料。
  8. 第1の接続対象部材と、
    第2の接続対象部材と、
    前記第1の接続対象部材と、前記第2の接続対象部材とを接続している接続部とを備え、
    前記接続部が、請求項1〜のいずれか1項に記載の導電性粒子により形成されているか、又は前記導電性粒子とバインダー樹脂とを含む導電材料により形成されている、接続構造体。
JP2014241542A 2013-12-03 2014-11-28 導電性粒子、導電材料及び接続構造体 Active JP6397742B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014241542A JP6397742B2 (ja) 2013-12-03 2014-11-28 導電性粒子、導電材料及び接続構造体

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013250195 2013-12-03
JP2013250195 2013-12-03
JP2014241542A JP6397742B2 (ja) 2013-12-03 2014-11-28 導電性粒子、導電材料及び接続構造体

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018164403A Division JP6725607B2 (ja) 2013-12-03 2018-09-03 導電性粒子、導電材料及び接続構造体

Publications (2)

Publication Number Publication Date
JP2015130328A JP2015130328A (ja) 2015-07-16
JP6397742B2 true JP6397742B2 (ja) 2018-09-26

Family

ID=53760896

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014241542A Active JP6397742B2 (ja) 2013-12-03 2014-11-28 導電性粒子、導電材料及び接続構造体
JP2018164403A Active JP6725607B2 (ja) 2013-12-03 2018-09-03 導電性粒子、導電材料及び接続構造体

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2018164403A Active JP6725607B2 (ja) 2013-12-03 2018-09-03 導電性粒子、導電材料及び接続構造体

Country Status (1)

Country Link
JP (2) JP6397742B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017051872A1 (ja) * 2015-09-25 2017-03-30 積水化学工業株式会社 接続構造体の製造方法、導電性粒子、導電フィルム及び接続構造体
CN107851482B (zh) * 2016-02-08 2020-03-20 积水化学工业株式会社 导电性粒子、导电材料及连接结构体
WO2024034386A1 (ja) * 2022-08-08 2024-02-15 積水化学工業株式会社 導電性粒子、導電材料及び接続構造体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4975342B2 (ja) * 2005-03-15 2012-07-11 パナソニック株式会社 導電性接着剤
JP4364928B2 (ja) * 2007-04-13 2009-11-18 積水化学工業株式会社 導電性微粒子、異方性導電材料及び導電接続構造体
WO2012043472A1 (ja) * 2010-09-30 2012-04-05 積水化学工業株式会社 導電性粒子、異方性導電材料及び接続構造体
JP2012155952A (ja) * 2011-01-25 2012-08-16 Sekisui Chem Co Ltd 導電性粒子、異方性導電材料及び接続構造体
CN103650063B (zh) * 2011-07-28 2016-01-20 积水化学工业株式会社 导电性粒子、导电材料及连接结构体
JP5883283B2 (ja) * 2011-12-12 2016-03-09 株式会社日本触媒 導電性粒子及び異方性導電材料
JP2013152867A (ja) * 2012-01-25 2013-08-08 Sekisui Chem Co Ltd 導電性粒子、異方性導電材料及び接続構造体
JP6084866B2 (ja) * 2012-03-06 2017-02-22 積水化学工業株式会社 導電性粒子、導電材料及び接続構造体
JP2015017314A (ja) * 2013-07-12 2015-01-29 住友金属鉱山株式会社 ニッケル粉及びその製造方法

Also Published As

Publication number Publication date
JP2015130328A (ja) 2015-07-16
JP6725607B2 (ja) 2020-07-22
JP2019024006A (ja) 2019-02-14

Similar Documents

Publication Publication Date Title
JP6009933B2 (ja) 導電性粒子、導電材料及び接続構造体
JP5216165B1 (ja) 導電性粒子、導電材料及び接続構造体
JP5719483B1 (ja) 導電性粒子、導電材料及び接続構造体
JP6084868B2 (ja) 導電性粒子、導電材料及び接続構造体
JP2020095966A (ja) 導電性粒子、導電材料及び接続構造体
JP6276351B2 (ja) 導電性粒子、導電材料及び接続構造体
JP6725607B2 (ja) 導電性粒子、導電材料及び接続構造体
JP2019140116A (ja) 導電性粒子、導電材料及び接続構造体
JP6386163B2 (ja) 導電性粒子、導電材料及び接続構造体
JP6478308B2 (ja) 導電性粒子、導電材料及び接続構造体
JP2016154139A (ja) 導電性粒子粉体、導電性粒子粉体の製造方法、導電材料及び接続構造体
JP6423687B2 (ja) 導電性粒子、導電材料及び接続構造体
JP6445833B2 (ja) 導電性粒子、導電材料及び接続構造体
JP7144472B2 (ja) 導電性粒子、導電材料及び接続構造体
JP6411194B2 (ja) 導電性粒子、導電性粒子の製造方法、導電材料及び接続構造体
JP6441555B2 (ja) 導電性粒子、導電材料及び接続構造体
JP2015109267A (ja) 導電性粒子、導電材料及び接続構造体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180903

R150 Certificate of patent or registration of utility model

Ref document number: 6397742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150