JP6396731B2 - Volatile component generator and volatile component evaluation method - Google Patents

Volatile component generator and volatile component evaluation method Download PDF

Info

Publication number
JP6396731B2
JP6396731B2 JP2014190969A JP2014190969A JP6396731B2 JP 6396731 B2 JP6396731 B2 JP 6396731B2 JP 2014190969 A JP2014190969 A JP 2014190969A JP 2014190969 A JP2014190969 A JP 2014190969A JP 6396731 B2 JP6396731 B2 JP 6396731B2
Authority
JP
Japan
Prior art keywords
sample
air
volatile component
state
volatile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014190969A
Other languages
Japanese (ja)
Other versions
JP2016061712A (en
Inventor
伊藤 宏
宏 伊藤
悟 小坂
悟 小坂
一寿 内山
一寿 内山
さゆり 大黒
さゆり 大黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Central R&D Labs Inc
Original Assignee
Denso Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Central R&D Labs Inc filed Critical Denso Corp
Priority to JP2014190969A priority Critical patent/JP6396731B2/en
Publication of JP2016061712A publication Critical patent/JP2016061712A/en
Application granted granted Critical
Publication of JP6396731B2 publication Critical patent/JP6396731B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

本発明は、表面状態に応じて発生挙動が異なる揮発成分を、模擬的に発生させ得る揮発成分の発生装置とその評価方法に関する。 The present invention relates to a volatile component generation apparatus and an evaluation method thereof that can generate volatile components having different generation behaviors according to surface conditions in a simulated manner.

住宅室内や車室内などに存在する揮発成分(特に揮発性有機化合物(VOC))は、人体に影響を及ぼしたり、不快感を与えたりする。このような揮発成分の発生を抑制したり低減するには、揮発成分の種類、発生原因または発生メカニズム等の解明が必要となる。   Volatile components (particularly volatile organic compounds (VOCs)) present in the interior of a house, vehicle interior, etc. may affect the human body or cause discomfort. In order to suppress or reduce the generation of such volatile components, it is necessary to elucidate the type of volatile components, the cause of generation or the generation mechanism.

このような観点から、各種部材から発生する揮発成分を採取して分析する装置や方法が種々提案されており、例えば、下記の特許文献に関連する記載がある。   From such a viewpoint, various apparatuses and methods for collecting and analyzing volatile components generated from various members have been proposed. For example, there are descriptions related to the following patent documents.

特許第3935763号公報Japanese Patent No. 3935763 特許第4078190号公報Japanese Patent No. 4078190

特許文献1は、自動車用空気調和機(適宜、「カーエアコン」という。)の使用中に悪臭を放つ揮発成分(臭い成分)を採取して分析するために、カーエアコンのエバポレータをガスパック内に封入し、そのエバポレータを模擬運転させた際に発生する揮発成分をガスパックに設けた取出口から採取することを提案している。   Patent Document 1 discloses that an evaporator of a car air conditioner is installed in a gas pack in order to collect and analyze a volatile component (odorous component) that emits a bad odor during use of an air conditioner for an automobile (appropriately called “car air conditioner”). It is proposed to collect the volatile components generated when the evaporator is operated in a simulated manner from the outlet provided in the gas pack.

特許文献2は、温度や湿度等が制御された気体を送給する外装部と、その外装部内に設けられた多重管構造の採取部とからなる試料採取装置を提案している。   Patent Document 2 proposes a sampling device that includes an exterior part that supplies a gas whose temperature, humidity, and the like are controlled, and a multiple-pipe structure sampling part provided in the exterior part.

しかし、いずれの場合も、温度や湿度が安定的な環境下で発生する揮発成分を適切に採取することを目的としているに過ぎず、揮発成分が吸着している試料や部材(エバポレータ等)の表面状態が急激に変化する際に発生する揮発成分などの採取は想定されていない。   However, in any case, it is only intended to appropriately collect volatile components generated in an environment where temperature and humidity are stable, and the sample or member (evaporator, etc.) on which the volatile components are adsorbed. Sampling of volatile components that occur when the surface condition changes rapidly is not expected.

また、従来の装置は大型なため、研究室などの限られた場所でのみ使用されており、臭いを実際に生じている現場(例えば住宅室内や車室内)等で、その原因となる揮発成分を現実の環境下で採取したり、臭いの原因と思われる揮発成分を様々な状況下で模擬的に発生させて、実際に発生している臭いと模擬的に発生させた臭い(揮発成分)との異同を確認したりすることが困難であった。   In addition, since the conventional devices are large, they are used only in limited places such as laboratories, and the volatile components that cause odors at sites where odors are actually generated (for example, in the interior of a house or vehicle interior) Odors that are actually generated and odors (volatile components) that are generated in a variety of situations by simulating volatile components that are likely to cause odors. It was difficult to confirm the difference.

本発明はこのような事情に鑑みて為されたものであり、部材の表面状態が急激に変化するようなときに発生する揮発成分でも、模擬的に発生させることができ、また、実際に臭いを発生させている現場で、その臭い成分(揮発成分)を直接的に捕集したり、人が官能で評価したり、その原因となる揮発成分を特定または確認することを可能とする揮発成分の発生装置およびその評価方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and even a volatile component generated when the surface state of a member changes suddenly can be generated in a simulated manner, and actually has an odor. Volatile components that enable direct collection of odorous components (volatile components), evaluation by human sensuality, and identification or confirmation of the volatile components that cause them An object of the present invention is to provide a generator for the above and an evaluation method thereof.

本発明者はこの課題を解決すべく鋭意研究し、試行錯誤を重ねた結果、カーエアコン(特にエバポレータ)から発生する臭いには、安定した環境下で定常的に発生する臭いの他に、環境が急激に変化するような過渡的な状況下で発生する臭いもあることを新たに見出した。具体的には、カーエアコンのエバポレータの表面に凝縮水(結露)が生じるタイミングやその表面が乾燥するタイミングで臭いが発生することを発見した。このような成果を発展させることにより、以降に述べる本発明を完成するに至った。   The present inventor has conducted intensive research to solve this problem, and as a result of repeated trial and error, the odor generated from the car air conditioner (especially the evaporator) includes not only the odor that is constantly generated in a stable environment but also the environment. It has been newly found that there is also an odor that occurs in a transitional situation in which changes rapidly. Specifically, we discovered that odors occur when condensed water (condensation) occurs on the surface of an evaporator of a car air conditioner and when the surface dries. By developing such results, the present invention described below has been completed.

《揮発成分発生装置》
(1)本発明の揮発成分発生装置は、揮発成分が吸着した試料を保持し得る試料ホルダーを内蔵する試料室と、該試料ホルダーに保持された該試料の温度を調節し得る温度調節手段と、該試料室に設けたガスポートから加湿または乾燥した清浄な搬送ガスを該試料へ供給し得る給気手段と、該温度調節手段と該給気手段を用いて該試料の表面状態を少なくとも乾き状態と凝縮水の生成する濡れ状態とし得る状態設定手段とを備え、該試料の表面状態に応じた該揮発成分を発生させ得ると共に、さらに、前記試料室に設けられ前記試料ホルダーに関して前記ガスポートと反対側に位置する採取口から、該試料室の外環境にある外気を吸気して該試料ホルダーに保持した捕集材へ誘導する吸気手段を備え、該外気中に含まれる揮発成分を該捕集材に濃縮し得ることを特徴とする。
<Volatile component generator>
(1) The volatile component generator of the present invention includes a sample chamber containing a sample holder capable of holding a sample to which a volatile component is adsorbed, and a temperature adjusting means capable of adjusting the temperature of the sample held in the sample holder. An air supply means capable of supplying a clean carrier gas humidified or dried from a gas port provided in the sample chamber to the sample; and the temperature control means and the air supply means are used to at least dry the surface state of the sample. And a state setting means that can be in a wet state in which condensed water is generated, and can generate the volatile component according to the surface state of the sample, and further, the gas port with respect to the sample holder provided in the sample chamber A suction means for sucking outside air in the outside environment of the sample chamber from the sampling port located on the opposite side of the sample chamber and guiding it to a collecting material held in the sample holder, and for removing volatile components contained in the outside air Collection material Characterized in that that may be concentrated.

(2)本発明によれば、揮発成分が吸着している部材表面(「吸着表面」という。)の環境(温度および湿度)が大きく変動するときを再現でき、その際に放出される揮発成分を模擬的に発生させることができる。吸着表面の環境変動が大きい場合として、例えば、吸着表面が乾き状態から凝縮水の生成する濡れ状態へ変化するとき、またはその逆のとき(つまり凝縮水が蒸発して乾き状態となるとき)がある。 (2) According to the present invention, it is possible to reproduce the time when the environment (temperature and humidity) of the member surface adsorbing the volatile component (referred to as “adsorption surface”) fluctuates greatly, and the volatile component released at that time Can be generated in a simulated manner. For example, when the adsorption surface has a large environmental fluctuation, for example, when the adsorption surface changes from a dry state to a wet state where condensed water is generated, or vice versa (that is, when the condensed water evaporates and becomes dry). is there.

本発明に係る揮発成分はその種類や発生メカニズムを問わないが、本発明者の研究によれば、凝縮水の生成や蒸発が表面に吸着していた揮発成分の放出(例えばエアコン臭の発生)に関与していることがわかっている。さらに、凝縮水の関与により発生する揮発成分は、単に親水性成分のみならず、疎水性成分も含まれることも明らかとなってきた。そして親水性成分は凝縮水が蒸発するとき、つまり吸着表面が濡れ状態から乾き状態へ変化する際に放出され易く、疎水性成分は凝縮水が生成するとき、つまり吸着表面が乾き状態が濡れ状態へ変化する際に放出され易いことも分かってきた。   The type and generation mechanism of the volatile component according to the present invention are not limited, but according to the present inventors' research, the release of volatile components adsorbed on the surface by the generation and evaporation of condensed water (for example, generation of odor of air conditioner) Is known to be involved in Furthermore, it has been clarified that the volatile components generated by the participation of condensed water include not only hydrophilic components but also hydrophobic components. The hydrophilic component is easily released when the condensed water evaporates, that is, when the adsorption surface changes from a wet state to a dry state, and the hydrophobic component is generated when condensed water is generated, that is, the adsorption surface is dry. It has also been found that it is likely to be released when changing to.

本発明の揮発成分発生装置によれば、試料をほぼ密閉した状態で包囲できる試料室内において、試料の温度と試料の表面近傍の湿度を状態設定手段で調整または制御することにより、その試料表面(吸着表面)の状態を、所定のタイミングで、乾き状態から濡れ状態にしたり、濡れ状態から乾き状態にしたりすることが可能である。このように本発明の揮発成分発生装置を用いれば、凝縮水の生成・蒸発(乾燥)と揮発成分の放出との関係を模擬的に再現でき、これまで未解明であった特定のタイミングで生じる臭いの原因物質の検出、評価、特定または確認等が容易となる。   According to the volatile component generator of the present invention, the sample surface (by adjusting or controlling the temperature of the sample and the humidity near the surface of the sample by the state setting means in the sample chamber in which the sample can be enclosed in a substantially sealed state, It is possible to change the state of the adsorption surface) from a dry state to a wet state, or from a wet state to a dry state at a predetermined timing. In this way, by using the volatile component generator of the present invention, the relationship between the generation / evaporation (drying) of condensed water and the release of volatile components can be simulated and generated at a specific timing that has not been elucidated so far. Detection, evaluation, identification or confirmation of odor-causing substances becomes easy.

また、本発明の揮発成分発生装置は、小さい試料を用いて、その表面状態を少なくとも乾き状態(湿度は適宜調整され得る。)と濡れ状態とできれば足るから、小型化や簡素化が容易である。このため本発明の揮発成分発生装置は、携帯性に優れるコンパクトなものとでき、また、複雑な操作も不要で操作性に優れたものとできる。従って本発明の揮発成分発生装置は、研究室等のみならず、臭いの発生現場等に持ち込んで用いることも容易である。   In addition, the volatile component generator of the present invention can be easily downsized and simplified because it is sufficient to use a small sample and to make the surface state at least dry (humidity can be adjusted as appropriate) and wet. . For this reason, the volatile component generator of the present invention can be made compact with excellent portability, and can be made excellent in operability without requiring complicated operations. Therefore, the volatile component generator of the present invention can be easily used not only in laboratories and the like but also in the field where odors are generated.

(3)本発明の揮発成分発生装置は、特定の条件下またはタイミングで試料から揮発成分を放出させるのみならず、搬送ガスの流動方向を逆にすれば、試料室の外部環境に存在する揮発成分を捕集材に吸着させて濃縮することも可能である。そして、臭いの発生現場等において、特有の条件下またはタイミングで発生する揮発成分を、選択的に濃縮した試料を得ることが可能となる。 (3) The volatile component generator of the present invention not only releases the volatile component from the sample under specific conditions or timing, but also reverses the flow direction of the carrier gas to cause the volatilization present in the external environment of the sample chamber. It is also possible to concentrate the components by adsorbing them on the collecting material. Then, it is possible to obtain a sample in which volatile components generated under specific conditions or timing are selectively concentrated at the site where odor is generated.

そこで本発明の揮発成分発生装置は、さらに、前記試料室の外環境にある外気を該試料室に設けた採取口から吸気して前記試料ホルダーに保持した捕集材へ誘導する吸気手段を備え、該外気中に含まれる揮発成分を該捕集材に濃縮し得るものであると好適である。 Therefore, the volatile component generator of the present invention further includes an intake means for sucking outside air in the outside environment of the sample chamber from a sampling port provided in the sample chamber and guiding it to the collecting material held in the sample holder. It is preferable that volatile components contained in the outside air can be concentrated in the trapping material.

《揮発成分評価方法》
本発明は上述の揮発成分の発生装置としてのみならず、その発生装置を用いた揮発成分の評価方法としても把握できる。すなわち本発明は、試料室に内蔵された該試料ホルダーに保持された該試料の温度と該試料の表面近傍の湿度を調整して、該試料の表面状態を少なくとも乾き状態と凝縮水の生成する濡れ状態とし得る状態設定ステップと、該試料の表面状態に応じて発生した該揮発成分を該試料室に設けた採取口から取得して官能または機器により評価する評価ステップとを備え、上述した揮発成分発生装置を用いて行う揮発成分評価方法でもよい。
《Volatile component evaluation method》
The present invention can be grasped not only as a volatile component generator described above but also as a volatile component evaluation method using the generator . That is, the present invention adjusts the temperature of the sample held in the sample holder built in the sample chamber and the humidity in the vicinity of the surface of the sample to generate at least a dry state and condensed water in the surface state of the sample. includes a state setting step, which may be a wet state, to obtain the volatiles components generated in accordance with the surface state of the sample from the sample chamber provided with collection port and evaluation step of evaluating the functional or equipment, the above-described volatile A volatile component evaluation method performed using a component generator may be used.

本発明の一実施例である揮発成分の発生濃縮装置を模式的に示す概要図である。1 is a schematic diagram schematically showing a volatile component generation and concentration apparatus according to an embodiment of the present invention. その発生濃縮装置を用いて揮発成分を採取する場合を示す説明図である。It is explanatory drawing which shows the case where a volatile component is extract | collected using the generation | occurrence | production concentration apparatus. その発生濃縮装置を用いて乾燥状態で揮発成分を発生させる場合を示す説明図である。It is explanatory drawing which shows the case where a volatile component is generated in a dry state using the generation concentration apparatus. その発生濃縮装置を用いて加湿状態で揮発成分を発生させる場合を示す説明図である。It is explanatory drawing which shows the case where a volatile component is generated in a humidified state using the generation concentrator. マスフローコントローラを追加した発生濃縮装置の概要図である。It is a schematic diagram of a generating and concentrating device to which a mass flow controller is added. 切替弁と管路構成を変更した発生濃縮装置の概要図である。It is a schematic diagram of the generation concentration device which changed the changeover valve and the pipe line composition. 多層構造の吸着材と反転型の試料ホルダーを模式的に示す概要図である。It is a schematic diagram which shows typically the adsorption material of a multilayer structure, and an inversion type sample holder. ガス非透過型の試料または吸着材を用いて揮発成分の発生や採取を行う場合を示す説明図である。It is explanatory drawing which shows the case where generation | occurrence | production and collection | recovery of a volatile component are performed using a gas non-permeable type | mold sample or adsorbent.

本明細書で説明する内容は、本発明の揮発成分の発生装置のみならず、その評価方法にも適宜該当し得る。上述した本発明の構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。なお、本明細書では、主に各「手段」について説明するが、それらは適宜「ステップ」と言い換えることができる。 The contents described in the present specification can be appropriately applied not only to the volatile component generator of the present invention but also to the evaluation method thereof. One or two or more components arbitrarily selected from the present specification may be added to the above-described components of the present invention. Which embodiment is the best depends on the target, required performance, and the like. In the present specification, each “means” will be mainly described, but they can be referred to as “steps” as appropriate.

《試料室》
試料室は、試料または捕集材(適宜、単に「試料等」という。)を保持する試料ホルダーを収容でき、搬送ガスが試料等を透過またはそれらの表面近傍を流動するために必要な流路を形成する。そして、試料ホルダーや試料室を小さくすることにより、装置全体のコンパクト化や軽量化も図り易くなる。
<Sample chamber>
The sample chamber can accommodate a sample holder for holding a sample or a collecting material (simply referred to simply as “sample etc.”), and a flow path necessary for the carrier gas to permeate the sample or flow near the surface thereof. Form. Further, by reducing the size of the sample holder and the sample chamber, the entire apparatus can be easily made compact and light.

なお、当然ながら、試料室には、揮発成分の導出または導入を行う採取口、搬送ガスが導出入されるガスポート、各種センサー(温度センサー、湿度センサー、臭いセンサー等)が嵌挿されるセンサーポート等が形成され得る。但し、試料室は、それらを除いて、揮発成分や搬送ガスが所定流路外に漏洩しない密閉構造となっている。   Of course, in the sample chamber, a sampling port for deriving or introducing volatile components, a gas port for deriving and introducing carrier gas, and a sensor port for inserting various sensors (temperature sensor, humidity sensor, odor sensor, etc.) Etc. may be formed. However, except for them, the sample chamber has a sealed structure in which volatile components and carrier gas do not leak out of the predetermined flow path.

《試料ホルダー》
試料ホルダーは、試料等を保持できるものであれば足る。例えば、搬送ガスが試料等を透過する場合なら試料ホルダーは金網等からなるメッシュ構造であると好ましい。
<Sample holder>
Any sample holder that can hold a sample or the like is sufficient. For example, if the carrier gas permeates the sample or the like, the sample holder is preferably a mesh structure made of a wire mesh or the like.

また多層構造の捕集材を用いて、その各層で複数種の揮発成分を選択的に捕集する場合、試料ホルダーは反転可能な構造であると好ましい。これにより、捕集材の各層に所望の揮発成分を効率的に採取し易くなる。   In addition, when a plurality of types of volatile components are selectively collected in each layer using a multi-layered collection material, it is preferable that the sample holder has a reversible structure. Thereby, it becomes easy to efficiently collect a desired volatile component in each layer of the collecting material.

なお、多層構造の捕集材は、例えば、孔径の異なるメンブランフィルター同士を組合わせる他、特定のメンブランフィルターとそれ以外のフィルター(逆浸透膜(ROフィルター)、活性炭フィルター等)を組合わせてもよい。いずれにしても、捕集する揮発成分の種類に応じて適切な捕集材が選択されればよい。   In addition, the collection material having a multilayer structure may be, for example, a combination of membrane filters having different pore sizes, or a combination of a specific membrane filter and other filters (reverse osmosis membrane (RO filter), activated carbon filter, etc.). Good. In any case, an appropriate collection material may be selected according to the type of volatile component to be collected.

《温度調節手段》
温度調節手段は、試料ホルダーに保持された試料または捕集材(吸着体等)を、加熱または冷却して所望の温度に調節する。温度調節手段は、例えば、ペルチェ素子等の半導体冷熱素子やセラミックヒーター等からなる。温度調節手段は、さらに、それらの冷熱を制御するCPU等の制御部(コンピュータ)と、その電力源とを備えると好ましい。小さい試料等なら、上記のような温度調節手段でも十分な加熱または冷却をすることができる。なお、冷熱素子が試料ホルダーと一体的になっていると、コンパクト化を図りつつ、試料等の表面温度を効率的に調整できて好ましい。
<Temperature control means>
The temperature adjusting means heats or cools the sample or the trapping material (such as an adsorbent) held in the sample holder to adjust to a desired temperature. The temperature adjusting means includes, for example, a semiconductor cooling / heating element such as a Peltier element, a ceramic heater, or the like. It is preferable that the temperature adjusting means further includes a control unit (computer) such as a CPU for controlling the cooling energy and a power source thereof. For a small sample or the like, sufficient heating or cooling can be performed even with the temperature adjusting means as described above. It is preferable that the cooling element is integrated with the sample holder because the surface temperature of the sample and the like can be adjusted efficiently while achieving compactness.

《給気手段》
給気手段は、試料室に設けたガスポートから加湿または乾燥した清浄な搬送ガスを試料へ供給する。例えば、搬送ガスが空気である場合、給気手段は、空気(試料室外の大気)を圧送するポンプと、圧送された空気を浄化する浄化手段と、浄化された空気を除湿する除湿手段と、浄化された空気を加湿する加湿手段と、除湿された空気と加湿された空気との切替えまたは混合を行う手段とからなると好適である。
《Air supply means》
The air supply means supplies a clean carrier gas humidified or dried to a sample from a gas port provided in the sample chamber. For example, when the carrier gas is air, the air supply means includes a pump that pumps air (atmosphere outside the sample chamber), a purification means that purifies the pumped air, a dehumidification means that dehumidifies the purified air, a humidifying means for humidifying the purified air, it is preferable that and means for switching or mixing with humidified and dehumidified air air.

浄化手段には活性炭等からなる清浄材を用いることができる。また除湿手段にはシリカゲル等の除湿材を用いることができる。なお、浄化手段と除湿手段は、搬送ガスの流路中に複数配置してもよい。   As the purification means, a cleaning material made of activated carbon or the like can be used. A dehumidifying material such as silica gel can be used as the dehumidifying means. A plurality of purifying means and dehumidifying means may be arranged in the flow path of the carrier gas.

さらに加湿手段も種々の装置を用いることができるが、特許第4321138号公報や特許第4734904号公報で紹介されている加湿装置を用いると、装置の小型化を図りつつ、微粒子状態の液体(水または水蒸気)により搬送ガスを適切かつ効率的に加湿できる。   Furthermore, various devices can be used as the humidifying means. However, when the humidifying device introduced in Japanese Patent No. 4321138 and Japanese Patent No. 4734904 is used, liquid (water Or, the carrier gas can be appropriately and efficiently humidified by water vapor).

具体的にいうと、本発明で用いる加湿装置は、流量制御された加圧流体(搬送ガス)が供給される供給部と、供給部に連通すると共に、該供給部から流入する加圧流体により保液(水)を微粒子状態で放出し得る保液材(例えば、親液性または保液性と透過性とを有するアクリル毛糸やナイロン毛糸等)を内蔵する保液部と、保液部に連通すると共に、該保液部から流出する加圧流体により液体(水)を所定の微粒子状態にして放出する止液材(例えば、疎液性の薄膜状フィルター(テフロン(登録商標)製メンブランフィルター等))を備えた止液部とからなると好適である。   Specifically, the humidifier used in the present invention is connected to a supply unit to which a pressurized fluid (carrier gas) whose flow rate is controlled is supplied, and to the supply unit, and by the pressurized fluid flowing from the supply unit A liquid retention part that contains a liquid retention material (for example, acrylic wool or nylon wool having lyophilicity or liquid retention and permeability) capable of releasing liquid retention (water) in a fine particle state; A liquid-stopping material (for example, a lyophobic thin-film filter (a membrane filter made of Teflon (registered trademark)) that communicates and discharges liquid (water) in a predetermined fine particle state by a pressurized fluid that flows out from the liquid-retaining part. Etc.)) and a liquid stopping part provided with the above.

この加湿装置を用いると、従来の加湿器のように液体粒子(水滴等)を混合させた搬送ガスの給気とは異なり、完全に湿った状態の搬送ガスの給気を、簡素な構造で実現でき、揮発成分発生装置の小型化も図り易い。なお、ヒーター等で加熱して、液体の蒸発量(加湿量)を調整するようにしてもよい。   Using this humidifier, unlike a conventional humidifier, unlike a conventional humidifier, the carrier gas is mixed with liquid particles (water droplets, etc.). This can be realized and the volatile component generator can be easily downsized. Note that the evaporation amount (humidification amount) of the liquid may be adjusted by heating with a heater or the like.

また、このような加湿装置は、保液部と止液部の間に液体の粒子膜の生成を抑制する空間層と、止液材によって止液された液体を保液材に回収する回収材とを備えると好ましい。また、供給部が下方側となり止液部が上方側となるように傾斜して加湿装置が配設されると、保液部内で保液が効率よく循環して好ましい。   In addition, such a humidifier includes a space layer that suppresses generation of a liquid particle film between the liquid retaining part and the liquid stopping part, and a recovery material that collects the liquid stopped by the liquid stopping material in the liquid retaining material. Are preferably provided. In addition, it is preferable that the humidifier is disposed so that the supply portion is on the lower side and the liquid stop portion is on the upper side, so that the liquid retention is efficiently circulated in the liquid retention portion.

さらに加湿装置は、上述のようにして加湿された搬送ガスの流路(加湿流路)と、非加湿な搬送ガスの流路(非加湿流路)と、加湿流路から流通した加湿ガスと非加湿流路から流通した非加湿ガスとを混合する混合路と、加湿ガスと非加湿ガスの混合割合を調整する調整手段とを有すると好ましい。この場合、加湿ガスと非加湿ガスの混合制御により、所望に加湿された搬送ガスを所定のタイミングで、試料室内の試料ホルダーへ給気可能となる。   Further, the humidifier includes a carrier gas channel (humidified channel) humidified as described above, a non-humidified carrier gas channel (non-humidified channel), and a humidified gas circulated from the humidified channel. It is preferable to have a mixing path for mixing the non-humidified gas flowing from the non-humidified flow path and an adjusting means for adjusting the mixing ratio of the humidified gas and the non-humidified gas. In this case, the desired humidified carrier gas can be supplied to the sample holder in the sample chamber at a predetermined timing by mixing control of the humidified gas and the non-humidified gas.

《状態設定手段》
状態設定手段は、温度調節手段と給気手段を用いて、試料等の表面状態を少なくとも乾き状態と濡れ状態とすることができる。このような表面状態の設定(変更)は、試料等の表面温度とその表面近傍における湿度(表面湿度)との相関に基づき行うことができる。具体的には、特定の表面湿度に対して表面温度を露点未満とすることにより凝縮水が生成(結露)した濡れ状態とすることができる。逆に、表面温度を露点超とすることにより乾き状態とすることができる。このような表面状態の設定は、温度調節手段による試料等の表面温度と、給気手段による搬送ガスの湿度とをコンピュータ等(制御手段)で制御または管理することにより、容易かつ的確に行うことができる。
<State setting means>
The state setting means can set the surface state of the sample or the like to at least a dry state and a wet state using the temperature adjusting means and the air supply means. Such setting (change) of the surface state can be performed based on the correlation between the surface temperature of the sample or the like and the humidity in the vicinity of the surface (surface humidity). Specifically, it is possible to obtain a wet state in which condensed water is generated (condensed) by setting the surface temperature below a dew point with respect to a specific surface humidity. On the contrary, it can be made into a dry state by making surface temperature over a dew point. Such surface conditions are set easily and accurately by controlling or managing the surface temperature of the sample or the like by the temperature adjusting means and the humidity of the carrier gas by the air supply means with a computer or the like (control means). Can do.

なお、乾き状態は、除湿部のシリカゲルを通過した空気で湿度10〜20%程度であるが、濡れ状態とならない範囲で様々な湿度をとり得る。要するに、本明細書でいう乾き状態は、試料等の表面に凝縮水が生成していない状態である。必要により湿度0%の空気または窒素ガスを使用することも可能である。   The dry state is about 10% to 20% humidity by the air that has passed through the silica gel of the dehumidifying part, but various humidity can be taken as long as it does not become wet. In short, the dry state referred to in this specification is a state in which condensed water is not generated on the surface of a sample or the like. It is also possible to use 0% humidity air or nitrogen gas if necessary.

《吸気手段》
本発明の揮発成分発生装置は、試料室の外環境にある外気を試料室に設けた採取口から吸気して試料ホルダーに保持した捕集材(吸着材)へ誘導する吸気手段をさらに備えると好適である。これにより、試料室の外環境中に含まれる揮発成分を、試料ホルダーに載置した捕集材へ濃縮させることもできる。このようにして揮発成分の採取または濃縮を行う場合、試料から揮発成分を発生させる場合に対して、試料室内における搬送ガスの流動方向を逆転させる必要がある。この場合、吸気手段として搬送ガスを圧送するポンプと、給気手段として搬送ガスを圧送するポンプとを個別に設けてもよいが、両者を兼用すると揮発成分発生装置の小型化や簡素化を図れて好ましい。そこで本発明に係る吸気手段は、給気手段に用いるポンプと、ポンプの流入側管路と流出側管路の接続先を切り替える切替弁とからなり、切替弁の切替えによってポンプを吸気手段と給気手段で兼用できるようにすると好ましい。
《Intake means》
The volatile component generator of the present invention further includes an intake means for sucking outside air in the environment outside the sample chamber from a sampling port provided in the sample chamber and guiding it to a collection material (adsorbent) held in the sample holder. Is preferred. Thereby, the volatile component contained in the external environment of a sample chamber can also be concentrated to the collection material mounted in the sample holder. When collecting or concentrating volatile components in this way, it is necessary to reverse the flow direction of the carrier gas in the sample chamber as compared with the case where volatile components are generated from the sample. In this case, a pump for pumping the carrier gas as the intake means and a pump for pumping the carrier gas as the air supply means may be provided separately, but if both are used, the volatile component generator can be reduced in size and simplified. It is preferable. In view of this, the intake means according to the present invention comprises a pump used for the supply means and a switching valve for switching the connection destination of the inflow side pipe and the outflow side pipe of the pump. The pump is supplied to the intake means by switching the switching valve. It is preferable to be able to also use the air means.

《用途》
本発明の揮発成分発生装置を用いれば、臭い等の発生源の表面状態に応じて、揮発成分を模擬的に発生させたり、そのような揮発成分の採取または捕集をすることができる。本発明の揮発成分発生装置は、その用途が限定されるものではないが、代表例として、凝縮水の生成と乾燥に起因して臭いを生じるカーエアコンの揮発成分を模擬的に発生させたり、その揮発成分を採取・捕集する際に用いられると好ましい。
<Application>
If the volatile component generator of the present invention is used, a volatile component can be generated in a simulated manner, or such a volatile component can be collected or collected according to the surface state of a source such as odor. Although the use of the volatile component generator of the present invention is not limited, as a representative example, the volatile component of a car air conditioner that generates odor due to generation and drying of condensed water is simulated, It is preferably used when collecting and collecting the volatile components.

《装置構成の概要》
本発明に係る一実施例である揮発成分の発生濃縮装置D(単に「発生濃縮装置D」という。)の概要図を図1に示した。発生濃縮装置Dは、試料部1と、送気部2(給気手段、吸気手段)と、制御部(図略/状態設定手段)とからなり、携帯可能なケースに収納可能となっている。
<Outline of device configuration>
A schematic diagram of a volatile component generating and concentrating device D (simply referred to as “generating and concentrating device D”) according to an embodiment of the present invention is shown in FIG. The generating and concentrating device D includes a sample unit 1, an air supply unit 2 (air supply unit, air intake unit), and a control unit (not shown / state setting unit), and can be stored in a portable case. .

試料部1は、搬送ガス(空気)の流路111(ガスポート)を有する基体11と、基体11上に配置され、放出または採取された揮発成分が流動する逆漏斗状の流路121を構成する筐体12と、基体11と筐体12の間に配設された試料ホルダー13と、試料ホルダー13の冷却または加熱するペルチェ素子14(温度調節手段)と、流路121の温度と湿度を検出する温湿度センサー15と、流路121内の揮発成分を簡易的に検出する臭いセンサー16とからなる。なお、筐体12の上端側中央には揮発成分の放出または採取する際に用いる採取口122が形成されており、ここで機器分析用の試料の採取や人による官能評価を行う。基体11と筐体12により試料ホルダー13を内蔵する試料室が形成される。   The sample unit 1 includes a base body 11 having a carrier gas (air) flow path 111 (gas port), and a reverse funnel-shaped flow path 121 disposed on the base body 11 through which discharged or collected volatile components flow. The temperature of the housing 12, the sample holder 13 disposed between the base 11 and the housing 12, the Peltier element 14 (temperature adjusting means) for cooling or heating the sample holder 13, and the temperature and humidity of the channel 121. The temperature / humidity sensor 15 to detect and the odor sensor 16 to simply detect the volatile components in the flow path 121 are included. Note that a sampling port 122 used for releasing or collecting volatile components is formed in the center of the upper end side of the housing 12, and a sample for instrumental analysis and human sensory evaluation are performed here. A sample chamber containing the sample holder 13 is formed by the base 11 and the housing 12.

送気部2は、大気中の空気を吸気口211から吸気し、吐出口212から圧送するエアポンプ21と、エアポンプ21から圧送された空気をシリカゲル(除湿手段)で除湿する第1除湿部22と、第1除湿部22を通過した空気(第1除湿空気)を活性炭(浄化手段)で清浄化して夾雑成分等を除去する浄化部23と、浄化部23を通過した空気(浄化空気)をシリカゲル(除湿手段)で除湿する第2除湿部24と、浄化部23を通過した浄化空気を加湿する加湿器25(加湿手段)と、加湿器25を通過した空気(加湿空気)に混合する浄化空気(浄化部23を通過した空気)の流量を調整するニードルバルブ26と、第1除湿部22と浄化部23の間で流動する空気の質量を調整するマスフローコントローラ271と、エアポンプ21の吸気口211側に設けられる三方弁281と、エアポンプ21の吐出口212側に設けられる三方弁282と、第2除湿部24または加湿器25の上流側に設けられる三方弁283と、第2除湿部24または加湿器25の下流側に設けられる三方弁284と、三方弁281と三方弁284の間に設けられる三方弁285とからなる。なお、各三方弁は、3つのポート間の連通と遮断を、2ポジションで切り替えるタイプである。 The air supply unit 2 sucks air in the atmosphere from the intake port 211 and pumps the air from the discharge port 212, and the first dehumidification unit 22 dehumidifies the air pumped from the air pump 21 with silica gel (dehumidifying means) The purification unit 23 that purifies the air (first dehumidification air) that has passed through the first dehumidification unit 22 with activated carbon (purification means) and removes impurities and the like, and the air (purified air) that has passed through the purification unit 23 is silica gel. Purified air to be mixed with the second dehumidifying part 24 dehumidified by (dehumidifying means), a humidifier 25 (humidifying means) for humidifying the purified air that has passed through the purifying part 23, and air (humidified air) that has passed through the humidifier 25 A needle valve 26 that adjusts the flow rate of (the air that has passed through the purification unit 23), a mass flow controller 271 that adjusts the mass of air flowing between the first dehumidifying unit 22 and the purification unit 23, A three-way valve 281 provided on the intake port 211 side, a three-way valve 282 provided on the discharge port 212 side of the air pump 21, a three-way valve 283 provided on the upstream side of the second dehumidifier 24 or the humidifier 25, and a second dehumidifier The three-way valve 284 provided on the downstream side of the unit 24 or the humidifier 25, and the three-way valve 285 provided between the three-way valve 281 and the three-way valve 284. Each three-way valve is a type that switches between communication and blocking between three ports in two positions.

制御部は、ペルチェ素子14への通電制御により試料ホルダー13(ひいては試料Sまたは吸着材)を所望温度に制御するサーモモジュールと、エアポンプ21およびマスフローコントローラ271(さらには後述のマスフローコントローラ272、273)を用いて浄化部23(さらには加湿器25とバイパス管路261)へ圧送する空気量(質量)を制御するフローモジュールと、圧送される空気の流量、加湿度、温度等のガス情報と試料ホルダー13(試料S)の温度情報と試料S(または吸着材)の表面状態情報との相関を示すデータベースと、このデータベースに基づき所望する試料Sの表面状態(濡れ状態と乾き状態(乾き度情報を含む。))を実現すべくサーモモジュールとフローモジュールを駆動するCPU等からなる演算処理部とを備えてなる。なお、制御部は、温湿度センサー15に基づく流路121の温度情報と湿度情報、さらには臭いセンサー16に基づく流路121の揮発成分情報を加味して、適宜、上述の制御を補正することも可能である。なお、これらの機能は、必要により手動とすることも可能である。   The control unit includes a thermo module that controls the sample holder 13 (and thus the sample S or the adsorbent) to a desired temperature by controlling energization to the Peltier element 14, and an air pump 21 and a mass flow controller 271 (and mass flow controllers 272 and 273 described later). A flow module that controls the amount (mass) of air to be pumped to the purifier 23 (and also the humidifier 25 and bypass pipe 261), gas information such as the flow rate, humidification, and temperature of the pumped air, and the sample A database showing the correlation between the temperature information of the holder 13 (sample S) and the surface state information of the sample S (or adsorbent), and the desired surface state (wet state and dry state (dryness information) of the sample S based on this database. Computation including a CPU that drives a thermo module and a flow module to realize Made and a processing section. The control unit appropriately corrects the above-described control in consideration of the temperature information and humidity information of the flow path 121 based on the temperature / humidity sensor 15 and the volatile component information of the flow path 121 based on the odor sensor 16. Is also possible. Note that these functions can be manually operated if necessary.

《装置の稼働パターン》
(1)揮発成分の捕集(濃縮採取)
発生濃縮装置Dにより、室内など空間に存在する臭い成分などの揮発成分を次のようにして採取(濃縮)することができる。
<< Device operation pattern >>
(1) Collection of volatile components (concentrated collection)
The generation and concentration device D can collect (concentrate) volatile components such as odorous components present in a space such as a room as follows.

先ず、三方弁281、282、285を図2に示すように切り替える。そしてエアポンプ21を稼働させると、発生濃縮装置Dの外環境中に存在する揮発成分を含んだ空気は、採取口122から吸気され、流路121、試料ホルダー13、流路111、三方弁285、三方弁281、エアポンプ21および三方弁282を経て大気開放される(吸気手段)。この空気流により、試料ホルダー13上に載置したフィルター等の吸着材(捕集材)には、外環境中に存在する揮発成分が濃縮された状態で採取され得る。本明細書では、このように揮発成分を吸着または保持したフィルター等も適宜、試料という。   First, the three-way valves 281, 282, 285 are switched as shown in FIG. When the air pump 21 is operated, air containing volatile components existing in the outside environment of the generation concentrator D is sucked from the sampling port 122, and the flow path 121, the sample holder 13, the flow path 111, the three-way valve 285, The air is released through the three-way valve 281, the air pump 21 and the three-way valve 282 (intake means). By this air flow, the adsorbent (collecting material) such as a filter placed on the sample holder 13 can be collected in a state where volatile components existing in the external environment are concentrated. In this specification, the filter or the like that adsorbs or holds the volatile component as described above is also referred to as a sample as appropriate.

なお、流路111と流路121の間に介在する試料ホルダー13は通気性を有するメッシュ構造からなるが、試料となる吸着材はフィルターのように通気性を有するものに限らず、試料ホルダー13に載置できる限り、通気性のない細片等でもよい(図8参照)。   The sample holder 13 interposed between the flow path 111 and the flow path 121 has a breathable mesh structure. However, the adsorbent as a sample is not limited to a breathable structure such as a filter. As long as it can be mounted on the surface, a non-breathable strip or the like may be used (see FIG. 8).

また、吸着材の表面状態やその特性(例えばフィルターの細孔径等)を調整することにより、目的とする揮発成分を選択的に採取したり、親水性成分と疎水性成分を分別して採取することも可能である。また、試料ホルダー13(ひいては吸着材)の状態(温度、湿度、乾き状態または濡れ状態等)を調整して、目的とする揮発成分を選択的に採取することもできる。   In addition, by adjusting the surface condition of the adsorbent and its characteristics (for example, the pore size of the filter), the target volatile component can be selectively collected, or the hydrophilic component and the hydrophobic component can be collected separately. Is also possible. It is also possible to selectively collect a target volatile component by adjusting the state (temperature, humidity, dry state or wet state) of the sample holder 13 (and hence the adsorbent).

(2)乾燥状態における揮発成分の発生(または揮発成分を含む試料の乾燥)
発生濃縮装置Dにより、別に用意した試料S(揮発成分が既知な標準試料、揮発成分が未知な分析・評価の対象試料)から、次のようにして、乾燥状態で生じ得る揮発成分を模擬的に発生させることができる。
(2) Generation of volatile components in the dry state (or drying of samples containing volatile components)
From the sample S (standard sample with known volatile components, sample for analysis / evaluation with unknown volatile components) prepared separately by the generation concentrator D, the volatile components that can be generated in the dry state are simulated as follows. Can be generated.

先ず、三方弁281〜285を図3に示すように切り替える。そしてエアポンプ21を稼働させると、大気(空気)が三方弁281からエアポンプ21の吸気口211に導かれ、エアポンプ21により圧縮されて吐出口212から圧送される。加圧された空気は第1除湿部22で除湿され、マスフローコントローラ271で流量調整された後に、浄化部23で浄化された浄化空気となる。この浄化空気は、三方弁283を介して第2除湿部24へ導かれ、さらに除湿されて乾燥空気となり、三方弁284、285を介して試料部1の流路111へ供給される。   First, the three-way valves 281 to 285 are switched as shown in FIG. When the air pump 21 is operated, the atmosphere (air) is guided from the three-way valve 281 to the intake port 211 of the air pump 21, compressed by the air pump 21, and pumped from the discharge port 212. The pressurized air is dehumidified by the first dehumidifying unit 22, the flow rate is adjusted by the mass flow controller 271, and then the purified air is purified by the purifying unit 23. The purified air is guided to the second dehumidifying unit 24 via the three-way valve 283, further dehumidified to become dry air, and is supplied to the flow path 111 of the sample unit 1 via the three-way valves 284 and 285.

流路111に誘導された乾燥空気は、試料ホルダー13の下方全面へほぼ均等的に分配されて、その試料ホルダー13に載置された試料Sへ給気される。そして、試料Sを通過または試料Sに接触した乾燥空気は、試料Sから発生した揮発成分を含んで、流路121を介して採取口122へ導かれる。こうして、試料Sが乾燥状態のときに生じる揮発成分を模擬的に採取口122から取得でき、その揮発成分を官能評価等することが可能となる。この際、ペルチェ素子14により試料ホルダー13の温度を制御して、乾燥状態で発生する揮発成分量を調節してもよい。逆に、試料ホルダー13(試料S)の温度と揮発成分の発生量との相関(乾燥状態における揮発成分の発生挙動)を分析してもよい。通常であれば、試料ホルダー13の温度上昇により揮発成分の発生量は増加し得る。   The dry air guided to the flow path 111 is distributed almost evenly to the entire lower surface of the sample holder 13 and supplied to the sample S placed on the sample holder 13. Then, the dry air that has passed through or is in contact with the sample S contains volatile components generated from the sample S, and is guided to the sampling port 122 through the channel 121. Thus, a volatile component generated when the sample S is in a dry state can be obtained from the sampling port 122 in a simulated manner, and the volatile component can be subjected to sensory evaluation or the like. At this time, the temperature of the sample holder 13 may be controlled by the Peltier element 14 to adjust the amount of volatile components generated in the dry state. Conversely, the correlation between the temperature of the sample holder 13 (sample S) and the amount of volatile components generated (the generation behavior of volatile components in a dry state) may be analyzed. Normally, the amount of volatile components generated can be increased by increasing the temperature of the sample holder 13.

発生濃縮装置Dは、単に試料Sから揮発成分を発生させるのみならず、試料Sの乾燥を行うこともできる。このような試料Sの乾燥が必要になる場合として、例えば、高湿度な外環境から揮発成分を捕集したり、液体(例えば、エアコンのドレン水)中に含まれる揮発成分を採取する際に、フィルター等の吸着材が高湿度であったり濡れていたりする場合である。なお、このような乾燥は、通常、ペルチェ素子14により試料ホルダー13(試料S)を低温にした状態で行うと、揮発成分の揮発を抑制しつつ吸着材を乾燥させることができて好ましい。   The generating and concentrating device D can not only generate volatile components from the sample S but also dry the sample S. For example, when the sample S needs to be dried, for example, when collecting volatile components from a high humidity external environment or collecting volatile components contained in a liquid (for example, drain water of an air conditioner). This is a case where an adsorbent such as a filter is highly humid or wet. In general, such drying is preferably performed with the sample holder 13 (sample S) at a low temperature by the Peltier element 14 because the adsorbent can be dried while suppressing volatilization of volatile components.

(3)加湿状態における揮発成分の発生
発生濃縮装置Dにより、別に用意した試料Sから、次のようにして、加湿状態(濡れ状態を含む)で生じ得る揮発成分を模擬的に発生させることができる。
(3) Generation of Volatile Components in Humidified State Generation / concentration device D can generate volatile components that can be generated in a humidified state (including a wet state) from sample S prepared separately as follows. it can.

先ず、三方弁281〜285を図4に示すように切り替える。そしてエアポンプ21を稼働させると、上述した場合(図3)と同様に、浄化部23で浄化された浄化空気が圧送される。   First, the three-way valves 281 to 285 are switched as shown in FIG. When the air pump 21 is operated, the purified air purified by the purification unit 23 is pumped in the same manner as described above (FIG. 3).

次に、この浄化空気は、三方弁283を介して加湿器25およびニードルバルブ26へ導かれ、加湿器25で所定の湿度に加湿された加湿空気とニードルバルブ26から流量調整された浄化空気とが三方弁284の手前で混合される。こうして所望の湿度に調整された加湿空気が三方弁284、285を介して試料部1の流路111へ供給される。   Next, this purified air is guided to the humidifier 25 and the needle valve 26 via the three-way valve 283, and the humidified air humidified to a predetermined humidity by the humidifier 25 and the purified air whose flow rate is adjusted from the needle valve 26, Are mixed before the three-way valve 284. The humidified air adjusted to a desired humidity in this way is supplied to the flow path 111 of the sample unit 1 via the three-way valves 284 and 285.

流路111に誘導された乾燥空気は、試料ホルダー13の下方全面へほぼ均等的に分配されて、試料ホルダー13に載置された試料Sへ供給される。試料Sを通過または試料Sに接触した加湿空気は、試料Sから発生した揮発成分を含んで、流路121を介して採取口122へ導かれる。こうして、試料Sが加湿状態(乾き状態または濡れ状態)のときに生じる揮発成分を模擬的に採取口122から取得でき、その揮発成分を官能評価等することが可能となる。   The dry air guided to the flow path 111 is distributed almost uniformly over the entire lower surface of the sample holder 13 and supplied to the sample S placed on the sample holder 13. The humidified air that has passed through or contacted the sample S contains volatile components generated from the sample S, and is guided to the sampling port 122 via the channel 121. Thus, a volatile component generated when the sample S is in a humidified state (dry state or wet state) can be obtained from the sampling port 122 in a simulated manner, and the volatile component can be subjected to sensory evaluation or the like.

この際、ペルチェ素子14により試料ホルダー13の温度を制御して、加湿状態で発生する揮発成分量を調節したり、試料ホルダー13(試料S)の温度とその近傍の湿度と揮発成分の発生量との相関(揮発成分の発生挙動)を分析してもよい。特に、試料Sの表面近傍を低温で高湿度な環境とすることにより、試料Sの表面に凝縮水を生成させて試料Sの表面状態を濡れ状態とすることができる。こうして、試料Sの表面状態が濡れ状態となるときに生じ得る揮発成分を模擬的に発生させることが可能となる。   At this time, the temperature of the sample holder 13 is controlled by the Peltier element 14 to adjust the amount of volatile components generated in the humidified state, or the temperature of the sample holder 13 (sample S), the humidity in the vicinity thereof, and the amount of generated volatile components. The correlation (the generation behavior of volatile components) may be analyzed. In particular, by setting the vicinity of the surface of the sample S to a low temperature and high humidity environment, condensed water can be generated on the surface of the sample S to make the surface state of the sample S wet. In this way, it is possible to simulate a volatile component that can be generated when the surface state of the sample S becomes wet.

《他の実施例》
上述した発生濃縮装置Dの変形例を以下に示す。便宜上、既述した構成と同様な構成(部材または機器等)には、各図において同符号を付し、それらの詳細な説明を省略した。
<< Other Examples >>
A modification of the generation and concentration apparatus D described above will be shown below. For convenience, the same components (members or devices) as those described above are denoted by the same reference numerals in each drawing, and detailed description thereof is omitted.

(1)発生濃縮装置Dは、図5に示すように浄化部23の上流側に設けるマスフローコントローラ271に加えて、加湿器25の上流側にマスフローコントローラ272を設けると共に、ニードルバルブ26に替わるマスフローコントローラ273をバイパス管路261に設けると好ましい。これにより、試料部1へ送気する加湿空気の流量を詳細かつ正確に制御することが可能となる。 (1) In addition to the mass flow controller 271 provided on the upstream side of the purification unit 23 as shown in FIG. 5, the generation concentrator D is provided with a mass flow controller 272 on the upstream side of the humidifier 25 and a mass flow that replaces the needle valve 26. It is preferable to provide the controller 273 in the bypass line 261. Thereby, it becomes possible to control the flow rate of the humidified air supplied to the sample unit 1 in detail and accurately.

(2)発生濃縮装置Dは、図6に示すように、上述した三方弁283および三方弁284を一つの六方弁286に置換し、三方弁281、三方弁282および三方弁285を一つの十方弁287に置換したものである。なお、六方弁286と十方弁287も、各ポート間の連通と遮断を2ポジションで切り替えるタイプである。 (2) As shown in FIG. 6, the generating and concentrating device D replaces the above-described three-way valve 283 and three-way valve 284 with one six-way valve 286, and replaces the three-way valve 281, three-way valve 282 and three-way valve 285 with one ten-way valve 286. This is a replacement for the way valve 287. Note that the six-way valve 286 and the ten-way valve 287 are also of a type that switches between communication and blocking between each port in two positions.

十方弁287のポジションを変更することにより、試料部1の採取口122から吸気して揮発成分を吸着材に捕集するモード(管路構成)と、乾燥空気または加湿空気を試料部1の流路111へ送気して試料Sに含まれる揮発成分を発生させるモード(管路構成)とのいずれかに切り替えることができる。   By changing the position of the ten-way valve 287, a mode (pipe line configuration) that sucks air from the sampling port 122 of the sample unit 1 and collects volatile components in the adsorbent, and dry air or humidified air is supplied to the sample unit 1 The mode can be switched to a mode (pipe line configuration) in which gas is supplied to the flow path 111 to generate a volatile component contained in the sample S.

また六方弁286のポジションを変更することにより、浄化部23を通過した浄化空気を第2除湿部24へ誘導し、試料部1へ乾燥空気を供給するモード(管路構成)と、浄化部23を通過した浄化空気を加湿器25およびバイパス管路261へ誘導し、試料部1へ加湿空気を供給するモード(管路構成)とのいずれかに切り替えることができる。このような六方弁286と十方弁287を用いて管路を構成することにより、弁数の大幅な削減や管路の集積化を図れ、発生濃縮装置Dのコンパクト化や低コスト化を図り易くなる。   In addition, by changing the position of the six-way valve 286, the purified air that has passed through the purification unit 23 is guided to the second dehumidifying unit 24, and dry air is supplied to the sample unit 1 (pipe line configuration). It is possible to switch to either the mode (pipe line configuration) in which the purified air that has passed through is guided to the humidifier 25 and the bypass line 261 and the humidified air is supplied to the sample unit 1. By constructing a pipeline using such a six-way valve 286 and a ten-way valve 287, the number of valves can be greatly reduced and the pipelines can be integrated, and the generating and concentrating device D can be made compact and reduced in cost. It becomes easy.

(3)試料ホルダー13に保持する吸着材は、図7に示すような多層構造体でもよい。例えば、特性(捕集・採取できる揮発成分)が異なるフィルターf1とフィルターf2を積層したものを吸着材として用いると、複数種の揮発成分を同時に捕集することができる。フィルターf1とフィルターf2は、例えば、メンブランフィルターと、他のフィルター(逆浸透膜(ROフィルター)、活性炭フィルター等)とをそれぞれ組合わせることができる。 (3) The adsorbent held in the sample holder 13 may be a multilayer structure as shown in FIG. For example, when a stack of filters f1 and f2 having different characteristics (volatile components that can be collected and collected) is used as an adsorbent, a plurality of types of volatile components can be collected simultaneously. As the filter f1 and the filter f2, for example, a membrane filter and another filter (reverse osmosis membrane (RO filter), activated carbon filter, etc.) can be combined.

このような多層構造の吸着材は、親水性揮発成分と疎水性揮発成分が混在している試料や生体試料(呼気)などを採取する際に好ましい。また、多層構造の吸着材は、図7に示すように反転可能な試料ホルダー13に保持して、交互に各フィルターへ揮発成分を吸着させてもよい。   Such a multi-layered adsorbent is preferred when collecting a sample in which a hydrophilic volatile component and a hydrophobic volatile component are mixed, a biological sample (exhaled breath), or the like. Alternatively, the adsorbent having a multilayer structure may be held in a reversible sample holder 13 as shown in FIG. 7 to alternately adsorb volatile components to each filter.

(4)試料ホルダー13に保持する試料Sや吸着材がガス非透過性である場合、図8に示すように、試料Sや吸着材の表面に流動する搬送ガスを接触させて、揮発成分の発生や採取を行うとよい。 (4) When the sample S and the adsorbent held in the sample holder 13 are non-permeable to gas, as shown in FIG. It is recommended to generate and collect.

D 揮発成分の発生濃縮装置
S 試料
1 試料部
11 基体
12 筐体
111 流路
122 採取口
13 試料ホルダー
14 ペルチェ素子(温度調節手段)
2 送気部
22、24 除湿部
25 加湿器
23 浄化部
D Volatile Component Generation Concentrator S Sample 1 Sample Part 11 Substrate 12 Case 111 Channel 122 Collection Port 13 Sample Holder 14 Peltier Element (Temperature Control Unit)
2 Air supply unit 22, 24 Dehumidification unit 25 Humidifier 23 Purification unit

Claims (4)

揮発成分が吸着した試料を保持し得る試料ホルダーを内蔵する試料室と、
該試料ホルダーに保持された該試料の温度を調節し得る温度調節手段と、
該試料室に設けたガスポートから加湿または乾燥した清浄な搬送ガスを該試料へ供給し得る給気手段と、
該温度調節手段と該給気手段を用いて該試料の表面状態を少なくとも乾き状態と凝縮水の生成する濡れ状態とし得る状態設定手段とを備え、該試料の表面状態に応じた該揮発成分を発生させ得ると共に、
さらに、前記試料室に設けられ前記試料ホルダーに関して前記ガスポートと反対側に位置する採取口から、該試料室の外環境にある外気を吸気して該試料ホルダーに保持した捕集材へ誘導する吸気手段を備え、該外気中に含まれる揮発成分を該捕集材に濃縮し得ることを特徴とする揮発成分発生装置。
A sample chamber containing a sample holder capable of holding a sample to which volatile components are adsorbed;
Temperature adjusting means capable of adjusting the temperature of the sample held in the sample holder;
An air supply means capable of supplying a humidified or dried clean carrier gas to the sample from a gas port provided in the sample chamber;
A state setting unit capable of setting the surface state of the sample to at least a dry state and a wet state in which condensed water is generated using the temperature adjusting unit and the air supply unit, and the volatile component corresponding to the surface state of the sample is provided. Can be generated ,
Furthermore, the outside air in the external environment of the sample chamber is sucked from the sampling port provided in the sample chamber and located on the opposite side of the gas port with respect to the sample holder, and guided to the collection material held in the sample holder. A volatile component generating apparatus comprising an intake means and capable of concentrating volatile components contained in the outside air in the collection material .
前記搬送ガスは空気であり、
前記給気手段は、
空気を圧送するポンプと、
該圧送された空気を浄化する浄化手段と、
該浄化された空気を除湿する除湿手段と、
該浄化された空気を加湿する加湿手段と、
該除湿された空気と該加湿された空気との切替えまたは混合を行う手段とからなる請求項1に記載の揮発成分発生装置。
The carrier gas is air;
The air supply means
A pump that pumps air,
Purification means for purifying the pumped air;
Dehumidifying means for dehumidifying the purified air;
Humidifying means for humidifying the purified air;
2. The volatile component generator according to claim 1, comprising means for switching or mixing the dehumidified air and the humidified air.
前記吸気手段は、
前記給気手段に用いるポンプと、
該ポンプの流入側管路と流出側管路の接続先を切り替える切替弁とからなり、
前記採取口から前記ガスポートを通じて吸気する請求項1または2に記載の揮発成分発生装置。
The intake means is
A pump used for the air supply means;
Ri Do and a switching valve for switching the outflow side pipe connection destination inflow side pipe of the pump,
Volatile components generating apparatus according to claim 1 or 2 you intake through the gas port from the sampling port.
試料室に内蔵された該試料ホルダーに保持された該試料の温度と該試料の表面近傍の湿度を調整して、該試料の表面状態を少なくとも乾き状態と凝縮水の生成する濡れ状態とし得る状態設定ステップと、
該試料の表面状態に応じて発生した該揮発成分を該試料室に設けた採取口から取得して官能または機器により評価する評価ステップとを備え、
請求項1〜3のいずれかに記載の揮発成分発生装置を用いて行う揮発成分評価方法。
A state in which the temperature of the sample held in the sample holder built in the sample chamber and the humidity near the surface of the sample are adjusted so that the surface state of the sample is at least a dry state and a wet state in which condensed water is generated. Configuration steps;
An evaluation step in which the volatile component generated according to the surface state of the sample is obtained from a sampling port provided in the sample chamber and evaluated by a sensory or instrument,
The volatile component evaluation method performed using the volatile component generator in any one of Claims 1-3 .
JP2014190969A 2014-09-19 2014-09-19 Volatile component generator and volatile component evaluation method Expired - Fee Related JP6396731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014190969A JP6396731B2 (en) 2014-09-19 2014-09-19 Volatile component generator and volatile component evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014190969A JP6396731B2 (en) 2014-09-19 2014-09-19 Volatile component generator and volatile component evaluation method

Publications (2)

Publication Number Publication Date
JP2016061712A JP2016061712A (en) 2016-04-25
JP6396731B2 true JP6396731B2 (en) 2018-09-26

Family

ID=55797627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014190969A Expired - Fee Related JP6396731B2 (en) 2014-09-19 2014-09-19 Volatile component generator and volatile component evaluation method

Country Status (1)

Country Link
JP (1) JP6396731B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6800532B2 (en) * 2017-01-24 2020-12-16 山陽特殊製鋼株式会社 Hot tool steel with excellent thermal conductivity

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3935763B2 (en) * 2002-04-15 2007-06-27 株式会社豊田中央研究所 Volatile component test equipment
JP2004108967A (en) * 2002-09-19 2004-04-08 Dainippon Printing Co Ltd System and method for measuring volatilizing amount of volatile organic compound
JP4078190B2 (en) * 2002-11-12 2008-04-23 株式会社豊田中央研究所 Sampling device
JP4321138B2 (en) * 2003-06-30 2009-08-26 株式会社豊田中央研究所 Humidifier and sampling device with humidifier
JP4734904B2 (en) * 2004-12-02 2011-07-27 株式会社豊田中央研究所 Humidifier
JP5184171B2 (en) * 2008-03-26 2013-04-17 矢崎総業株式会社 Sample gas collector and gas chromatograph
JP2011062679A (en) * 2009-09-17 2011-03-31 Hosen Techno:Kk Apparatus for high precision humidity, flow rate control, and mixing and diluting of gas

Also Published As

Publication number Publication date
JP2016061712A (en) 2016-04-25

Similar Documents

Publication Publication Date Title
Bui et al. On the theoretical and experimental energy efficiency analyses of a vacuum-based dehumidification membrane
US9399187B2 (en) Air handling system with integrated air treatment
Zhang Fabrication of a lithium chloride solution based composite supported liquid membrane and its moisture permeation analysis
RU2733529C2 (en) System, apparatus and method for monitoring organic compounds in a gaseous medium
ATE544622T1 (en) DEHUMIDIFICATION/HUMIDIFICATION DEVICE FOR A VEHICLE
KR101756850B1 (en) Apparatus for controlling humidity
TWI590932B (en) Hand mode operation box
KR20160111949A (en) Ambient air purifier with humidification and dehumidification
JP4830348B2 (en) Humidification device and humidification method
KR101131616B1 (en) Air quality and water exclusion unit of minute particles measuring instrument and water exclusion method
KR101749061B1 (en) Humidifier
CN109477649B (en) Air treatment system for managing air conditions in an enclosed environment
WO2015151537A1 (en) Gas detection device and gas detection method using same
JP6396731B2 (en) Volatile component generator and volatile component evaluation method
KR102068115B1 (en) Particle Measuring System
JP2012011343A (en) Apparatus for generating low dew point air
KR102291765B1 (en) High Purity Oxygen Generator
JP3543496B2 (en) Odor detection device
JP2013111546A (en) Dehumidifier
JP3584863B2 (en) Continuous gas analyzer
KR102173403B1 (en) Performance measuring system and method for absorbent of removal micro pollutants
KR102371827B1 (en) Control method of air conditioner and air conditioner
US20240133867A1 (en) Breath capture and analysis system and method
JP2006142121A (en) Air treatment device
JP4165341B2 (en) Infrared gas analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180830

R150 Certificate of patent or registration of utility model

Ref document number: 6396731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees