JP6392553B2 - Method for producing hardened cement and hardened cement - Google Patents

Method for producing hardened cement and hardened cement Download PDF

Info

Publication number
JP6392553B2
JP6392553B2 JP2014119538A JP2014119538A JP6392553B2 JP 6392553 B2 JP6392553 B2 JP 6392553B2 JP 2014119538 A JP2014119538 A JP 2014119538A JP 2014119538 A JP2014119538 A JP 2014119538A JP 6392553 B2 JP6392553 B2 JP 6392553B2
Authority
JP
Japan
Prior art keywords
cement
water
parts
gypsum
hardened cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014119538A
Other languages
Japanese (ja)
Other versions
JP2015231927A (en
Inventor
樋口 隆行
隆行 樋口
慎 庄司
慎 庄司
啓史 原
啓史 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Priority to JP2014119538A priority Critical patent/JP6392553B2/en
Publication of JP2015231927A publication Critical patent/JP2015231927A/en
Application granted granted Critical
Publication of JP6392553B2 publication Critical patent/JP6392553B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、土木・建築分野で使用されるセメント硬化体および製造方法に関する。   The present invention relates to a hardened cement body and a manufacturing method used in the field of civil engineering and architecture.

寒冷地においてコンクリートやスレートなどセメント硬化体の凍結融解抵抗性が課題となっている。凍結融解抵抗性の向上には、AE剤、起泡剤、マイクロバブルを含んだ混練水などによって硬化体中に空気を導入することが望ましい(特許文献1〜3)。 しかし、セメントの種類や環境温度によっては、硬化時点において空気量を確保することが難しい場合があり、さらなる凍結融解抵抗性の向上が求められている。   Freezing and thawing resistance of hardened cement bodies such as concrete and slate is a problem in cold regions. In order to improve the freeze-thaw resistance, it is desirable to introduce air into the cured body with AE agent, foaming agent, kneaded water containing microbubbles, etc. (Patent Documents 1 to 3). However, depending on the type of cement and the environmental temperature, it may be difficult to ensure the amount of air at the time of curing, and further improvement in freeze-thaw resistance is required.

また、カルシウムアルミネートとセッコウの混合物をセメントに混和することによって、早期の強度発現性が得られることが知られている(特許文献4参照)。しかしながら、凍結融解抵抗性を確保することが難しい場合があった。   In addition, it is known that early strength development can be obtained by mixing a mixture of calcium aluminate and gypsum into cement (see Patent Document 4). However, it may be difficult to ensure freeze-thaw resistance.

そこで、本発明者は、前記課題を解決すべく、種々の努力を重ねた結果、特定の粒子直径のナノバブルを含む水を混練水として用い、特定の急硬性混和材を用いることによって、初期強度発現性と凍結融解抵抗性に優れるセメント硬化体を製造できることを知見し、本発明を完成するに至った。   Therefore, the present inventor has made various efforts to solve the above problems, and as a result, water containing nanobubbles having a specific particle diameter is used as kneaded water, and by using a specific quick-setting admixture, the initial strength is obtained. It has been found that a hardened cement body having excellent expression and freeze-thaw resistance can be produced, and the present invention has been completed.

特開2007−191358号公報JP 2007-191358 A 特開2007−261242号公報JP 2007-261242 A 特開2009−137025号公報JP 2009-137025 A 特開昭48−1024号公報JP-A-48-1024

本発明は、凍結融解抵抗性に優れたセメント硬化体を早期に提供する。   This invention provides the cement hardened body excellent in freeze thaw resistance at an early stage.

本発明者は、前記課題を解決すべく種々検討を重ねた結果、特定の粒子直径を有するナノバブルを練り混ぜ水と、特定の急硬材を用いることにより、前記課題が解決できるとの知見を得て本発明を完成するに至った。   As a result of various studies to solve the above problems, the present inventor has found that the above problems can be solved by mixing nanobubbles having a specific particle diameter with water and using a specific quick-hardening material. As a result, the present invention has been completed.

本発明は、(1)セメント、セメント急硬材、および粒子直径が500nm以下のナノバブルを0.5〜20Vol%含んだ水を混練してなるセメント硬化体の製造方法、(2)カルシウムアルミネートおよびセッコウを含有してなるセメント急硬材である請求項1のセメント硬化体の製造方法、(3)(1)または(2)の製造方法で製造されたセメント硬化体、である。   The present invention includes (1) a method for producing a hardened cement obtained by kneading cement, cement hardened material, and water containing 0.5 to 20 Vol% of nanobubbles having a particle diameter of 500 nm or less, and (2) calcium aluminate. A method for producing a hardened cement body according to claim 1, which is a cement rapid hardening material comprising gypsum and gypsum, and a hardened cement body produced by the production method according to (3), (1) or (2).

本発明のセメント硬化体の製造方法を使用することにより、初期強度発現に優れ、凍結融解抵抗性に優れたセメント硬化体を提供することができる。   By using the method for producing a hardened cement body of the present invention, it is possible to provide a hardened cement body which is excellent in initial strength development and excellent in freeze-thaw resistance.

以下、本発明を詳細に説明する。本発明で使用する部や%は特に規定のない限り質量基準である。
また、本発明で云うセメント硬化体とは、セメントペースト、セメントモルタル、およびセメントコンクリートの硬化体を総称するものである。
Hereinafter, the present invention will be described in detail. Parts and% used in the present invention are based on mass unless otherwise specified.
Moreover, the hardened cement body as used in the present invention is a general term for a hardened body of cement paste, cement mortar, and cement concrete.

本発明で使用するナノバブル水とは、ガスの微細な粒子を多数含ませたものであり、500nm以下の微細気泡を0.5〜20Vol%含有することが好ましく、1〜15Vol%含有することがより好ましい。前記範囲外では、セメント硬化体の凍結融解抵抗性が不十分になる場合がある。なお、ナノバブル水の製造装置としては特に限定されるものではないが、例えば、共和機設社製のナノバブル生成装置「ハヴィタス」や、アスプ社製の超微細気泡発生装置などが使用可能である。調製方法としては、まず混練水に所定量の混和剤を添加した後、ナノバブル発生装置で微細な気泡を導入することが望ましい。   The nanobubble water used in the present invention contains a large number of fine gas particles, and preferably contains 0.5 to 20% by volume of fine bubbles of 500 nm or less, and 1 to 15% by volume. More preferred. Outside this range, the freeze-thaw resistance of the hardened cement body may be insufficient. In addition, although it does not specifically limit as a manufacturing apparatus of nano bubble water, For example, the nano bubble production | generation apparatus "Havitas" by Kyowa Co., Ltd., the ultra fine bubble generation apparatus by Asp, etc. can be used. As a preparation method, it is desirable to first add a predetermined amount of an admixture to the kneaded water and then introduce fine bubbles with a nanobubble generator.

微細気泡の気泡直径や含有率の測定は、市販の粒度分布計によって測定可能である。例として、日本カンタム・デザイン社製のNanoSight等によって、ナノサイズの気泡分布や含有率の測定が可能である。   The measurement of the bubble diameter and the content rate of the fine bubbles can be measured by a commercially available particle size distribution meter. As an example, nano-sized bubble distribution and content rate can be measured by NanoSight etc. manufactured by Nippon Quantum Design.

本発明のセメント急硬材とは、特に限定されるものではなく、カルシウムアルミネートおよびセッコウを含有するものや、カルシウムアルミノシリケートとセッコウを含有するものなどが挙げられるが、なかでも、カルシウムアルミネートおよびセッコウを含有するものが好ましい。
本発明で使用するカルシウムアルミネートとは、CaOとAlを主成分とする化合物を総称するものであり、その具体例としては、例えば、CaO成分とAl成分を主成分とする非晶質の化合物や、CaO・2Al、CaO・Al、12CaO・7Al、3CaO・Al、11CaO・7Al・CaF、および3CaO・3Al・CaFなどと表わされる結晶性のカルシウムアルミネートが挙げられる。このうち、非晶質のカルシウムアルミネートが好ましい。
The cement quick-hardening material of the present invention is not particularly limited, and examples thereof include those containing calcium aluminate and gypsum and those containing calcium aluminosilicate and gypsum, among others, calcium aluminate. And those containing gypsum are preferred.
The calcium aluminate used in the present invention is a generic term for compounds having CaO and Al 2 O 3 as main components, and specific examples thereof include, for example, a CaO component and an Al 2 O 3 component as main components. and amorphous compounds, CaO · 2Al 2 O 3, CaO · Al 2 O 3, 12CaO · 7Al 2 O 3, 3CaO · Al 2 O 3, 11CaO · 7Al 2 O 3 · CaF 2, and 3CaO · 3Al Examples thereof include crystalline calcium aluminate represented by 2 O 3 .CaF 2 . Of these, amorphous calcium aluminate is preferred.

本発明で使用するセッコウとは、CaSOなる分子式で示される硫酸カルシウムを主成分とする鉱物の総称であり、CaSO、CaSO・1/2HO、CaSO・2HO、なる分子式でそれぞれ示される無水セッコウ、半水セッコウ、二水セッコウの総称である。 The gypsum used in the present invention is a general term for minerals mainly composed of calcium sulfate represented by the molecular formula CaSO 4 , and has a molecular formula of CaSO, CaSO 4 · 1 / 2H 2 O, CaSO 4 · 2H 2 O. It is a general term for anhydrous gypsum, half-water gypsum, and two-water gypsum, respectively.

カルシウムアルミネートとセッコウの混合割合は、特に限定されるものではないが、通常、カルシウムアルミネートとセッコウの合計100部中、カルシウムアルミネートは25〜75部、セッコウは25〜75部であることが好ましい。前記範囲外だと、コンクリートの可使時間の確保が難しくなる場合や初期強度発現性が不良となる場合がある。 The mixing ratio of calcium aluminate and gypsum is not particularly limited. Usually, among 100 parts of calcium aluminate and gypsum, calcium aluminate is 25 to 75 parts and gypsum is 25 to 75 parts. Is preferred. If it is out of the above range, it may be difficult to ensure the pot life of the concrete or the initial strength development may be poor.

セメント急硬材の粉末度は、特に限定されるものではないが、通常、ブレーン比表面積(以下、ブレーン値という)で3000〜9000cm/gが好ましく、4000〜8000cm/gがより好ましい。3000cm/g未満では初期強度の発現性が不充分となる場合があり、9000cm/gを超えると流動性や可使時間の確保が困難となる場合がある。 The fineness of the cement hardened material is not particularly limited, but is usually preferably 3000 to 9000 cm 2 / g, more preferably 4000 to 8000 cm 2 / g in terms of the specific surface area of the brane (hereinafter referred to as the brane value). If it is less than 3000 cm 2 / g, the initial strength may be insufficiently developed, and if it exceeds 9000 cm 2 / g, it may be difficult to ensure fluidity and pot life.

本発明のセメント急硬材の配合量は、コンクリートの配合によって変化するため特に限定されるものではないが、通常、セメントとセメント急硬材からなるセメント組成物100部中、5〜50部が好ましく、10〜40部がより好ましい。5部未満では充分な急硬性能が得られない場合があり、50部を超えて使用すると、長期材齢で強度低下が生じる場合がある。   The blending amount of the cement rapid hardening material of the present invention is not particularly limited because it varies depending on the blending of concrete, but usually 5 to 50 parts in 100 parts of a cement composition composed of cement and cement rapid hardening material. Preferably, 10 to 40 parts is more preferable. If it is less than 5 parts, sufficient rapid hardening performance may not be obtained, and if it is used in excess of 50 parts, strength reduction may occur with long-term aging.

本発明では減水剤を併用できる。減水剤はセメントに対する分散作用や空気連行作用を有し、流動性改善や強度増進するものの総称であり、具体的には、ナフタレンスルホン酸系減水剤、メラミンスルホン酸系減水剤、リグニンスルホン酸系減水剤、およびポリカルボン酸系減水剤等が挙げられるが、特には限定されるものではない。これらの中では、凍結融解抵抗性の改善効果が大きい点で、ナフタレンスルホン酸系減水剤やリグニンスルホン酸系減水剤が好ましい。   In the present invention, a water reducing agent can be used in combination. Water-reducing agent is a generic name for those that have a dispersing action and air-entraining action on cement, and improve fluidity and strength. Although a water reducing agent, a polycarboxylic acid type water reducing agent, etc. are mentioned, it does not specifically limit. Among these, naphthalene sulfonic acid-based water reducing agents and lignin sulfonic acid-based water reducing agents are preferable because they have a large effect of improving the freeze-thaw resistance.

本発明で使用するセメントとしては、普通、早強、超早強、低熱、および中庸熱などの各種ポルトランドセメント、これらポルトランドセメントに、高炉スラグ、フライアッシュ、シリカ、または石灰石微粉などを混合した各種混合セメント、ならびに、廃棄物利用型セメント、いわゆるエコセメントなどが挙げられる。これらの中では、練り混ぜ性および強度発現性の点で、普通ポルトランドセメントまたは早強ポルトランドセメントが好ましい。 As the cement used in the present invention, various portland cements such as normal, early strength, ultra-early strength, low heat, and moderate heat, and various portland cements mixed with blast furnace slag, fly ash, silica, limestone fine powder, etc. Examples include mixed cement, waste-use cement, so-called eco-cement, and the like. Among these, ordinary Portland cement or early-strength Portland cement is preferable in terms of kneadability and strength development.

本発明では、石灰石微粉末、高炉徐冷スラグ微粉末、下水汚泥焼却灰やその溶融スラグ、都市ゴミ焼却灰やその溶融スラグ、パルプスラッジ焼却灰などの混和材料、減水剤、AE減水剤、高性能減水剤、高性能AE減水剤、消泡剤、増粘剤、防錆剤、防凍剤、収縮低減剤、ポリマー、凝結調整剤、ベントナイトなどの粘土鉱物、ならびに、ハイドロタルサイトなどのアニオン交換体などのうちの1種または2種以上を、本発明の目的を実質的に阻害しない範囲で使用することが可能である。   In the present invention, limestone fine powder, blast furnace slow-cooled slag fine powder, sewage sludge incineration ash and its molten slag, admixture materials such as municipal waste incineration ash and its molten slag, pulp sludge incineration ash, water reducing agent, AE water reducing agent, high Performance water reducing agent, high performance AE water reducing agent, antifoaming agent, thickening agent, rust preventive agent, antifreeze agent, shrinkage reducing agent, polymer, setting modifier, clay minerals such as bentonite, and anion exchange such as hydrotalcite One or more of the body and the like can be used as long as the object of the present invention is not substantially inhibited.

本発明では骨材を併用できる。骨材としては、適度な施工性および強度発現性が得られれば、特に限定されるものではない。   In the present invention, aggregate can be used in combination. The aggregate is not particularly limited as long as moderate workability and strength development are obtained.

本発明で使用する練り混ぜ水量は特に限定されるものではないが、通常、水/セメント組成物比で25〜70%が好ましく、30〜50%がより好ましい。これらの範囲外では施工性が大きく低下したり、強度が低下したりする場合がある。   Although the amount of kneading water used by this invention is not specifically limited, Usually, 25-70% is preferable at a water / cement composition ratio, and 30-50% is more preferable. Outside these ranges, workability may be greatly reduced or the strength may be reduced.

以下に実験例を挙げて本発明をさらに具体的に説明するが、本発明はこれら実験例に限定されるものではない。   The present invention will be described more specifically with reference to experimental examples below, but the present invention is not limited to these experimental examples.

「実験例1」
使用材料に示す条件でカルシウムアルミネートを合成したものをボールミルで粉砕した。このカルシウムアルミネート(以下、CAという)と、セッコウの配合比率を変えて混合し、ブレーン値5000cm/gのセメント急硬材を調製した。なお、カルシウムアルミノシリケート(以下、CAS)についても同様に調製した。
このセメント急硬材を使用して、セメントとセメント急硬材からなるセメント組成物100部中、セメント急硬材を10部使用し、さらに、このセメント組成物に細骨材を150部、水を30部、凝結調整剤0.8部配合したセメントモルタルを5℃の室内で調製して、型枠に充填し、テーブルバイブレーターを用いて振動成形を行ない、そのまま5℃環境下で密封養生を行った。材齢3時間後の圧縮強度、材齢28日後の凍結融解抵抗性を評価した。
なお、混練水には、ナノバブル発生装置で水道水を用いて、500nm以下のナノバブルを0.5〜20Vol%含有したナノバブル水(実験No.1-3〜1-9)と、水道水をそのまま用いたもの(実験No.1-1〜1-2)を使用した。また、セメント組成物100部に対して0.5部の減水剤を水道水に配合してからナノバブル処理(500nm以下のナノバブル10Vol%含有)を行った水準も検討した(実験No.1-10〜1-16)。
"Experiment 1"
A calcium aluminate synthesized under the conditions shown in the materials used was pulverized with a ball mill. The calcium aluminate (hereinafter referred to as CA) and gypsum were mixed at different blending ratios to prepare a cement hardened material having a brain value of 5000 cm 2 / g. In addition, it prepared similarly about calcium aluminosilicate (henceforth CAS).
Using this cement rapid hardening material, 10 parts of cement rapid hardening material is used in 100 parts of cement composition composed of cement and cement rapid hardening material, and further, 150 parts of fine aggregate is added to this cement composition, water. A cement mortar containing 30 parts of the above and 0.8 part of the setting modifier is prepared in a room at 5 ° C., filled into a mold, subjected to vibration molding using a table vibrator, and then subjected to sealing curing in an environment of 5 ° C. as it is. went. The compressive strength after 3 hours of age and the freeze-thaw resistance after 28 days of age were evaluated.
In addition, the tap water is used for the kneading water in the nanobubble generator, and nanobubble water (experiment No. 1-3 to 1-9) containing 0.5 to 20% by volume of nanobubbles of 500 nm or less and tap water are used as they are. The used one (Experiment No. 1-1 to 1-2) was used. In addition, the level of nanobubble treatment (containing 10 vol% of nanobubbles of 500 nm or less) after adding 0.5 parts of a water reducing agent to 100 parts of cement composition in tap water was also examined (Experiment No. 1-10). ~ 1-16).

<使用材料、機材>
CA:CaO/Al23モル比1.7、SiO23%、非晶質、試薬1級の炭酸カルシウム、アルミナ、シリカを使用。1650℃で溶融後、急冷して合成。
CAS:CaO/Al23モル比1.7、SiO215%、非晶質、試薬1級の炭酸カルシウム、アルミナ、シリカを使用。1650℃で溶融後、急冷して合成。
セッコウ:市販品、無水セッコウ、10メッシュ通過品。
急硬材A:CA75部、セッコウ25部
急硬材B:CA50部、セッコウ50部
急硬材C:CA40部、セッコウ60部
急硬材D:CA25部、セッコウ75部
急硬材E:CAS50部、セッコウ50部
ナノバブル発生装置:アスプ社製の超微細気泡発生装置。
水:水道水
減水剤a:ナフタレンスルホン酸系、市販品
減水剤b:リグニンスルホン酸系、市販品
減水剤c:ポリカルボン酸系、市販品
セメント:普通ポルトランドセメント、市販品
凝結調整剤:試薬1級のクエン酸50部と試薬1級の炭酸カリウム50部の混合物。
細骨材:新潟県姫川産、5mm下、密度2.62g/cm3
<Materials and equipment>
CA: CaO / Al 2 O 3 molar ratio 1.7, SiO 2 3%, amorphous, reagent grade calcium carbonate, alumina, silica are used. After melting at 1650 ° C, it was synthesized by quenching.
CAS: CaO / Al 2 O 3 molar ratio 1.7, SiO 2 15%, amorphous, reagent grade calcium carbonate, alumina, silica are used. After melting at 1650 ° C, it was synthesized by quenching.
Gypsum: Commercial product, anhydrous gypsum, 10 mesh passing product.
Quick hardening material A: CA 75 parts, gypsum 25 parts quick hardening material B: CA 50 parts, gypsum 50 parts quick hardening material C: CA 40 parts, gypsum 60 parts quick hardening material D: CA 25 parts, gypsum 75 parts quick hardening material E: CAS50 Part, gypsum 50 parts nano bubble generator: Asp Co., Ltd. ultrafine bubble generator.
Water: tap water reducing agent a: naphthalene sulfonic acid, commercially available water reducing agent b: lignin sulfonic acid , commercially available water reducing agent c: polycarboxylic acid, commercially available cement: ordinary Portland cement, commercial product setting modifier: reagent Mixture of 50 parts primary citric acid and 50 parts reagent primary potassium carbonate.
Fine aggregate: from Himekawa, Niigata Prefecture, 5 mm below, density 2.62 g / cm 3

<測定方法>
圧縮強度:JIS A 1108に準拠。
凍結融解抵抗性:JIS A 1148(A法)に準拠して、水中凍結−水中融解にて試験を実施し、300サイクル時の相対動弾性係数と質量減少率を測定した。
<Measurement method>
Compressive strength: Conforms to JIS A 1108.
Freezing and thawing resistance: In accordance with JIS A 1148 (Method A), the test was carried out by freezing in water and thawing in water, and the relative kinematic modulus and mass reduction rate at 300 cycles were measured.

Figure 0006392553
Figure 0006392553

表1から、特定の体積割合のナノバブルを含む水を混練水として用いることで、凍結融解抵抗性に優れる急硬モルタルを調製できることが分かる。   From Table 1, it can be seen that by using water containing nanobubbles of a specific volume ratio as kneaded water, a quick-hardening mortar excellent in freeze-thaw resistance can be prepared.

本発明は、振動成型を行っても、急硬性と凍結融解抵抗性に優れたセメント硬化体を提供することが可能となる。   The present invention can provide a hardened cement body excellent in rapid hardening and freeze-thaw resistance even when vibration molding is performed.

Claims (2)

セメント、セメント急硬材、および粒子直径が500nm以下のナノバブルを0.5〜20Vol%含んだ水を混練してなるセメント硬化体の製造方法。 A method for producing a hardened cement body obtained by kneading cement, a cement hardened material, and water containing 0.5 to 20 Vol% of nanobubbles having a particle diameter of 500 nm or less. カルシウムアルミネートおよびセッコウを含有してなるセメント急硬材である請求項1のセメント硬化体の製造方法。 The method for producing a hardened cement body according to claim 1, which is a cement hardener containing calcium aluminate and gypsum.
JP2014119538A 2014-06-10 2014-06-10 Method for producing hardened cement and hardened cement Active JP6392553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014119538A JP6392553B2 (en) 2014-06-10 2014-06-10 Method for producing hardened cement and hardened cement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014119538A JP6392553B2 (en) 2014-06-10 2014-06-10 Method for producing hardened cement and hardened cement

Publications (2)

Publication Number Publication Date
JP2015231927A JP2015231927A (en) 2015-12-24
JP6392553B2 true JP6392553B2 (en) 2018-09-19

Family

ID=54933677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014119538A Active JP6392553B2 (en) 2014-06-10 2014-06-10 Method for producing hardened cement and hardened cement

Country Status (1)

Country Link
JP (1) JP6392553B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018058242A1 (en) * 2016-09-28 2018-04-05 Ebed Holdings Inc. Method and apparatus for producing concrete
JP6813339B2 (en) * 2016-11-09 2021-01-13 太平洋セメント株式会社 Cement composition
JP7092459B2 (en) * 2016-11-09 2022-06-28 太平洋セメント株式会社 Cement composition
JP6787816B2 (en) * 2017-02-28 2020-11-18 デンカ株式会社 Cementum material for 3D modeling for construction and 3D modeling method for construction
JP6983522B2 (en) * 2017-03-23 2021-12-17 太平洋セメント株式会社 Cement composition
JP6983523B2 (en) * 2017-03-23 2021-12-17 太平洋セメント株式会社 Cement composition
US11591268B2 (en) * 2019-03-14 2023-02-28 Columbia Machine, Inc. Method for gas entrainment via nano-bubbles into concrete upstream from a product mold
CN111943599B (en) * 2020-08-18 2022-07-01 广东天运混凝土有限公司 High-strength heat-insulating concrete and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03106642A (en) * 1989-09-20 1991-05-07 Chichibu Cement Co Ltd Composite panel of low shrinkable foam mortar
JP3096470B2 (en) * 1990-05-15 2000-10-10 電気化学工業株式会社 Rapidly hardened AE concrete composition
JP2007137746A (en) * 2005-11-22 2007-06-07 Taiheiyo Material Kk Quick-setting ae mortar or concrete composition
KR101310041B1 (en) * 2011-03-11 2013-09-17 이석기 Inorganic Binder Composition Hardening at Normal Temperature and Method Treating Surface of Porous Structure Using the Same

Also Published As

Publication number Publication date
JP2015231927A (en) 2015-12-24

Similar Documents

Publication Publication Date Title
JP6392553B2 (en) Method for producing hardened cement and hardened cement
JP2008239446A (en) Geopolymer composition and its production method
KR101121724B1 (en) A composition of cement zero concrete using the mixed blast slag, powder type sodium silicate and desulfurization gypsum as binder and method for it
JP4677824B2 (en) Acid resistant grout composition
JP2018100204A (en) Method of producing cement composition
JP6234739B2 (en) Method for producing hardened cement and hardened cement
JP7037879B2 (en) Early-strength admixture for secondary products and early-strength concrete for secondary products
WO2020100925A1 (en) Cement admixture, expansion material, and cement composition
JP2014125392A (en) Spray material, and spray method with use of the same
JP2010241618A (en) Super-quick hardening, underwater non-separable cement composition; super-quick hardening, underwater non-separable premixed mortar composition; and underwater non-separable grout mortar
JP6985177B2 (en) Hydraulic composition and concrete
JP2020066543A (en) Ultrarapid hardening hydraulic composition, cement composition, concrete composition, and spraying method
JP2017031037A (en) Anti-washout underwater concrete composition and cured body thereof
JP2008239392A (en) Expansive admixture, cement composition, and cement hardened body formed by using the same
JP6207992B2 (en) Cement admixture and cement composition-hardened cement using the same
JP2012140295A (en) Early expansive cement composition
JP2006282442A (en) Quick-setting and high-fluidity mortar
JP5383045B2 (en) Cement composition for grout and grout material using the same
JP6195460B2 (en) Method for producing anti-bleeding agent for concrete and method for producing cement composition containing the anti-bleeding agent for concrete
JP2012240874A (en) Cement composition
JP5701546B2 (en) Spraying material and spraying method using the same
JP6401951B2 (en) Cement composition and method for producing the same
JP2011132106A (en) Hydraulic composition and cured product
JP5744498B2 (en) Cement rapid hardwood manufacturing method
JP5160763B2 (en) Cement mortar composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180404

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180823

R150 Certificate of patent or registration of utility model

Ref document number: 6392553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250