JP6386935B2 - Silicon carbide material - Google Patents

Silicon carbide material Download PDF

Info

Publication number
JP6386935B2
JP6386935B2 JP2015035434A JP2015035434A JP6386935B2 JP 6386935 B2 JP6386935 B2 JP 6386935B2 JP 2015035434 A JP2015035434 A JP 2015035434A JP 2015035434 A JP2015035434 A JP 2015035434A JP 6386935 B2 JP6386935 B2 JP 6386935B2
Authority
JP
Japan
Prior art keywords
layer
silicon carbide
strength
sintered body
carbide member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015035434A
Other languages
Japanese (ja)
Other versions
JP2016155720A (en
Inventor
修 姫野
修 姫野
一憲 竹之内
一憲 竹之内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2015035434A priority Critical patent/JP6386935B2/en
Publication of JP2016155720A publication Critical patent/JP2016155720A/en
Application granted granted Critical
Publication of JP6386935B2 publication Critical patent/JP6386935B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Products (AREA)

Description

本発明は、炭化珪素質焼結体からなる基材上に被覆層を備える炭化珪素質部材に関するものである。   The present invention relates to a silicon carbide member provided with a coating layer on a substrate made of a silicon carbide sintered body.

炭化珪素質焼結体は、優れた強度と高い熱伝導率を有していることから、半導体および液晶製造装置用の部材として用いられており、このような部材においては、強度の向上や粒子の脱落によるパーティクル汚染が少ないことが鋭意検討されている。   Silicon carbide-based sintered bodies are used as members for semiconductor and liquid crystal manufacturing apparatuses because they have excellent strength and high thermal conductivity. It has been intensively studied that there is little particle contamination due to omission.

例えば、特許文献1には、炭化珪素質焼結体の表面にSiOガラス薄膜を形成することにより、強度を向上できることが記載されている。 For example, Patent Document 1 describes that the strength can be improved by forming a SiO 2 glass thin film on the surface of a silicon carbide based sintered body.

また、特許文献2には、炭化珪素質焼結体の表面に酸化膜を形成することにより、パーティクル汚染を少なくすることができることが記載されている。   Patent Document 2 describes that particle contamination can be reduced by forming an oxide film on the surface of a silicon carbide sintered body.

特開昭58−79885JP 58-79885 A 特開平4−361527JP-A-4-361527

近年においては、更なる強度向上および更なるパーティクル汚染の抑制が求められている。   In recent years, further strength improvement and further suppression of particle contamination have been demanded.

本発明は、上記要求を満たすべく案出されたものであり、強度向上およびパーティクル汚染を抑制可能な炭化珪素質部材を提供することを目的とする。   The present invention has been devised to satisfy the above-described requirements, and an object thereof is to provide a silicon carbide member capable of improving strength and suppressing particle contamination.

本発明の炭化珪素質部材は、炭化珪素質焼結体からなる基材上に被覆層を備えてなり、該被覆層の最表層がO−Si−C層からなることを特徴とするものである。   The silicon carbide member of the present invention comprises a coating layer on a substrate made of a silicon carbide sintered body, and the outermost layer of the coating layer is composed of an O-Si-C layer. is there.

本発明の炭化珪素質部材によれば、高い強度を有するとともに、パーティクル汚染が少ないため、長寿命かつ高い信頼性を有する。   According to the silicon carbide member of the present invention, it has a high strength and has a long life and high reliability because it has little particle contamination.

本実施形態の炭化珪素質部材の一例を示す断面図である。It is sectional drawing which shows an example of the silicon carbide based member of this embodiment.

以下、本実施形態の炭化珪素質部材について説明する。   Hereinafter, the silicon carbide member of this embodiment will be described.

図1は、本実施形態の炭化珪素質部材の一例を示す断面図である。図1に示すように、本実施形態の炭化珪素質部材1は、炭化珪素質焼結体からなる基材2上に被覆層3を備えている。そして、図1においては、被覆層3の最表層3aがO−Si−C層であり、O−Si−C層の下層である第2層3bがO−Si層であり、O−Si層の下層である第3層3cがSi−C−O層である例を示している。なお、被覆層3の各層における名称は、X
線光電子分光分析(XPS:X-ray Photoelectron Spectroscopy)によって得られた元素濃度の高い順に並べて示している。
FIG. 1 is a cross-sectional view showing an example of the silicon carbide member of the present embodiment. As shown in FIG. 1, the silicon carbide member 1 of this embodiment includes a coating layer 3 on a base material 2 made of a silicon carbide sintered body. In FIG. 1, the outermost layer 3 a of the covering layer 3 is an O—Si—C layer, the second layer 3 b that is a lower layer of the O—Si—C layer is an O—Si layer, and an O—Si layer The example which the 3rd layer 3c which is a lower layer of this is a Si-CO layer is shown. In addition, the name in each layer of the coating layer 3 is X
The elements are arranged in descending order of element concentration obtained by X-ray photoelectron spectroscopy (XPS).

様々な用途において、構造部材として用いられる炭化珪素質部材1は、特に半導体や液晶製造装置用の部材として用いられるとき、表面が平滑であることが求められるが、平滑にするための研削加工を行なった場合、表面には微細な研削痕が残ることとなる。そして、研削加工によって生じた研削痕は、強度低下の要因となるが、本実施形態の炭化珪素質部材1は、炭化珪素質焼結体からなる基材2上に被覆層3を備えてなり、被覆層3の最表層3aがO−Si−C層からなることにより、従来より強度を向上させることができる。   In various applications, the silicon carbide member 1 used as a structural member is required to have a smooth surface, particularly when used as a member for a semiconductor or liquid crystal manufacturing apparatus. If done, fine grinding marks will remain on the surface. The grinding marks generated by the grinding process cause a decrease in strength, but the silicon carbide member 1 of the present embodiment includes the coating layer 3 on the substrate 2 made of a silicon carbide sintered body. The outermost layer 3a of the covering layer 3 is made of an O—Si—C layer, whereby the strength can be improved as compared with the conventional case.

ここで、従来とは、特許文献1や特許文献2に記載されている酸化珪素膜(O−Si膜)のことである。   Here, the term “conventional” refers to a silicon oxide film (O—Si film) described in Patent Document 1 or Patent Document 2.

そして、本実施形態の炭化珪素質部材1は、上述したように高い強度を有していることにより、薄肉化に対応することができ、半導体や液晶製造装置用の部材として用いた際の軽量化を図ることができる。   And the silicon carbide based member 1 of this embodiment can respond to thickness reduction by having high intensity | strength as mentioned above, and when using it as a member for semiconductors or a liquid crystal manufacturing apparatus, it is lightweight. Can be achieved.

また、本実施形態の炭化珪素質部材1は、炭化珪素質焼結体からなる基材2上に被覆層3を備えてなり、被覆層3の最表層3aがO−Si−C層からなることにより、上述したように高い強度を有しているとともに、パーティクル汚染を抑制することができる。このように、パーティクル汚染を抑制することができるのは、従来のO−Si層よりもC(炭素)を含むO−Si−C層の方が、被膜力が高いからである。本実施形態の炭化珪素質部材1は、パーティクル抑制効果の高いDLC(diamond‐like carbon)膜と同等のパーティクル抑制効果を有する。   Moreover, the silicon carbide based member 1 of this embodiment is provided with the coating layer 3 on the base material 2 which consists of a silicon carbide sintered body, and the outermost layer 3a of the coating layer 3 consists of an O-Si-C layer. As a result, it has high strength as described above, and particle contamination can be suppressed. Thus, particle contamination can be suppressed because the coating force of the O—Si—C layer containing C (carbon) is higher than that of the conventional O—Si layer. The silicon carbide member 1 of the present embodiment has a particle suppression effect equivalent to that of a DLC (diamond-like carbon) film having a high particle suppression effect.

したがって、本実施形態の炭化珪素質部材1は、高い強度を有しているとともに、パーティクル汚染が少ないため、長寿命かつ高い信頼性を有する。   Therefore, the silicon carbide based member 1 of the present embodiment has high strength and has a long life and high reliability because of less particle contamination.

ここで、XPSによる被覆層3の元素濃度の測定方法について説明する。まず、基材2上に被覆層3を備えてなる試料を用意し、XPS装置(PHI社製 Quantera SXM)を用い、特定のエネルギーを有したX線(hν)を物質表面に照射し、そこから放出された光電子の運動エネルギー(EKIN)を測定し、その電子が原子に束縛されていた結合エネルギー(E)を求める(E=hν−EKIN−φ)。この結合エネルギー値は原子固有であることから、元素を同定することができ、放出された光電子の強度はその元素の濃度と比例しているため、元素濃度を求めることができる、本実施形態の炭化珪素質部材1におけるO−Si−C層とは、例えば、Oが50%であり、Siが28%であり、Oが22%である。 Here, a method for measuring the element concentration of the coating layer 3 by XPS will be described. First, a sample comprising a coating layer 3 on a substrate 2 is prepared, and an XPS apparatus (Quantera SXM manufactured by PHI) is used to irradiate the material surface with X-rays (hν) having specific energy. The kinetic energy (E KIN ) of the photoelectrons emitted from is measured, and the bond energy (E B ) in which the electrons are bound to the atoms is obtained (E B = hν−E KIN −φ). Since this bond energy value is unique to the atom, the element can be identified, and since the intensity of the emitted photoelectron is proportional to the concentration of the element, the element concentration can be obtained. The O—Si—C layer in the silicon carbide member 1 is, for example, 50% O, 28% Si, and 22% O.

測定条件の具体例としては、X線源がモノクロAlKα、Pass energyが112eV、step sizeが0.1eV、ガス種がアルゴン、加速電圧が4kVである。   As specific examples of the measurement conditions, the X-ray source is monochrome AlKα, the pass energy is 112 eV, the step size is 0.1 eV, the gas type is argon, and the acceleration voltage is 4 kV.

また、本実施形態の炭化珪素質部材1の強度は、炭化珪素質部材1からJIS R 1601−2008に準拠した寸法の試験片を切り出し、JIS R 1601−2008に準拠して測定すればよい。   Further, the strength of the silicon carbide member 1 of the present embodiment may be measured in accordance with JIS R 1601-2008 by cutting out a test piece having a size according to JIS R 1601-2008 from the silicon carbide member 1.

また、本実施形態の炭化珪素質部材1は、図1に示すように、最表層3aであるO−Si−C層の下層である第2層3bがO−Si層であり、O−Si層の下層である第3層3cがSi−C−O層であることが好適である。なお、O−Si層とは、例えば、Oが67%、Siが33%であり、Si−C−O層とは、Siが42〜52%であり、Cが40〜
50%であり、Oが残部となるものである。なお、Si−C−O層に関しては、SiとCの濃度は近似するものであるため、部分的には、Cが50%、Siが48%のように、元素濃度がC−Si−Oという並びになる場合も含む。
In addition, as shown in FIG. 1, the silicon carbide member 1 of the present embodiment has a second layer 3 b that is a lower layer of the O—Si—C layer that is the outermost layer 3 a being an O—Si layer, and an O—Si layer. The third layer 3c, which is the lower layer of the layer, is preferably a Si—C—O layer. The O—Si layer is, for example, 67% O and 33% Si, and the Si—C—O layer is 42 to 52% Si and 40 to 40% C.
50%, and O is the balance. Note that the Si—C—O layer has an approximate concentration of Si and C. Therefore, in part, the element concentration is C—Si—O, such that C is 50% and Si is 48%. Including the case where it becomes a line.

このような構成を満たすものであるときには、炭化珪素質部材1は、優れた強度を有するものとなる。このように、優れた強度を有するものとなるのは、炭化珪素質焼結体からなる基材2側に、基材2と組成の近似するSi−C−O層が存在し、O−Si−C層とSi−C−O層との間に、両層と組成の近似するO−Si層が存在しているからである。   When satisfying such a configuration, silicon carbide member 1 has excellent strength. Thus, what has the outstanding intensity | strength exists in the base-material 2 side which consists of a silicon carbide sintered body in the base-material 2 and the Si-CO layer which a composition approximates, and O-Si This is because an O—Si layer having a composition similar to that of both layers exists between the —C layer and the Si—C—O layer.

強度に関し、具体的には、炭化珪素質焼結体の研削加工後の4点曲げ強度をA、膜形成後の4点曲げ強度をBとしたとき、(B−A)/A×100の計算式で強度の向上率を表すと、従来が30%程度であったのに対し、上記構成を満たす炭化珪素質部材1は60%以上となる。すなわち、研削加工後の4点曲げ強度の値が同じであるとすれば、上記構成を満たす炭化珪素質部材1は、従来の酸化珪素膜を備える炭化珪素質部材よりも23%程度高い強度を有するものとなる。   Regarding the strength, specifically, when the four-point bending strength after grinding of the silicon carbide sintered body is A and the four-point bending strength after film formation is B, (B−A) / A × 100 When the strength improvement rate is expressed by a calculation formula, the conventional silicon carbide member 1 satisfying the above configuration is 60% or more, while the conventional ratio is about 30%. That is, if the four-point bending strength values after grinding are the same, the silicon carbide member 1 satisfying the above configuration has a strength that is about 23% higher than that of a silicon carbide member provided with a conventional silicon oxide film. It will have.

なお、上述した値は、4点曲げ強度の測定試験片の長手方向に研削痕がある場合であり、短手方向に研削痕がある場合における炭化珪素質部材1の強度向上率は、190%程度となり、研削痕の方向による強度の差異((炭化珪素質部材1における4点曲げ強度の最大値−最小値)/最小値×100)を3%以下に抑えることができる。   In addition, the above-mentioned value is a case where there is a grinding mark in the longitudinal direction of the measurement specimen of the four-point bending strength, and the strength improvement rate of the silicon carbide member 1 when there is a grinding mark in the short direction is 190%. Thus, the difference in strength depending on the direction of the grinding mark ((maximum value of 4-point bending strength in silicon carbide member 1−minimum value) / minimum value × 100) can be suppressed to 3% or less.

また、Si−C−O層においては、隣接する部位との組成を近似させるという点で、基材2側と第2層3b側を比較したとき、基材2側においてCが多く、第2層3b側においてOが多いことがさらに好適である。   Further, in the Si—C—O layer, when the base material 2 side and the second layer 3 b side are compared with each other in terms of approximating the composition with the adjacent portion, the second base 3 side has a large amount of C, and the second It is more preferable that the amount of O is large on the layer 3b side.

そして、Si−O−C層の具体的な厚みとしては5〜10nmであり、O−Si層の厚みとしては100nm程度であり、Si−C−O層は450〜550nm程度である。   The specific thickness of the Si—O—C layer is 5 to 10 nm, the thickness of the O—Si layer is about 100 nm, and the Si—C—O layer is about 450 to 550 nm.

次に、本実施形態の炭化珪素質部材1の製造方法の一例について説明する。   Next, an example of the manufacturing method of the silicon carbide based member 1 of this embodiment is demonstrated.

まず、出発原料として、主原料である炭化珪素粉末(平均粒径D50=0.5〜10μm)と、焼結助剤として炭化硼素(BC)粉末あるいは酸化アルミニウム(Al)粉末および酸化イットリウム(Y)粉末を準備し、所定量秤量した後、所定量の溶媒(水)とともにボールミルなどの粉砕機に投入して平均粒径2μm以下となるように混合・粉砕する。その後、ポリエチレングリコール、ポリエチレンオキサイド等のバインダーを適量添加してスラリーとした後、スプレードライヤーを用いてスラリーを噴霧造粒することにより顆粒を得る。 First, silicon carbide powder (average particle diameter D50 = 0.5 to 10 μm) as a main raw material as a starting material, and boron carbide (B 4 C) powder or aluminum oxide (Al 2 O 3 ) powder as a sintering aid And yttrium oxide (Y 2 O 3 ) powder is prepared, weighed in a predetermined amount, and then charged into a pulverizer such as a ball mill together with a predetermined amount of solvent (water) and mixed and pulverized so that the average particle size is 2 μm or less. . Thereafter, a suitable amount of a binder such as polyethylene glycol or polyethylene oxide is added to form a slurry, and then the slurry is spray granulated using a spray dryer to obtain granules.

次に、得られた顆粒を用いて、静水圧プレス成形法(ラバープレス)や粉末プレス成形法にて所定形状に成形し、切削加工を施すことにより基材となる成形体を得る。その後、乾燥、脱脂を行ない、焼成炉に入れて非酸化雰囲気中1800〜2100℃の最高温度で焼成し、焼結体の表面を含めて研削加工を施すことにより基材2を得る。   Next, the obtained granule is molded into a predetermined shape by an isostatic press molding method (rubber press) or a powder press molding method and subjected to cutting to obtain a molded body serving as a base material. Thereafter, drying and degreasing are performed, the substrate is put in a firing furnace, fired at a maximum temperature of 1800 to 2100 ° C. in a non-oxidizing atmosphere, and the substrate 2 is obtained by grinding including the surface of the sintered body.

次に、基材2と、基材2の周りに炭素粉末とを配置した後、1000〜1200℃の最高温度で熱処理することにより、炭化珪素質焼結体からなる基材2上に被覆層3を備えてなり、被覆層3の表面層3aがO−Si−C層からなる炭化珪素質部材1を得ることができる。   Next, after arrange | positioning the base material 2 and carbon powder around the base material 2, it heat-processes at the maximum temperature of 1000-1200 degreeC, and is a coating layer on the base material 2 which consists of a silicon carbide sintered body. 3, and the silicon carbide member 1 in which the surface layer 3 a of the covering layer 3 is an O—Si—C layer can be obtained.

また、O−Si−C層の下層である第2層3bがO−Si層であり、O−Si層の下層である第3層3cがSi−C−O層である炭化珪素質部材を得るには、基材2および基材
2の周りに炭素粉末を配置した後、非酸化雰囲気中において600〜800℃まで昇温し、さらに1000〜1200℃までに昇温する過程において雰囲気を大気雰囲気に置換すればよい。
Further, a silicon carbide member in which the second layer 3b, which is the lower layer of the O-Si-C layer, is an O-Si layer, and the third layer 3c, which is the lower layer of the O-Si layer, is a Si-C-O layer. In order to obtain, after arranging the carbon powder around the base material 2 and the base material 2, the temperature is raised to 600 to 800 ° C. in a non-oxidizing atmosphere, and further the atmosphere is raised to the atmosphere in the process of raising the temperature to 1000 to 1200 ° C. The atmosphere may be replaced.

1:炭化珪素質部材
2:基材
3:被覆層
3a:最表層
3b:第2層
3c:第3層
1: silicon carbide member 2: base material 3: coating layer 3a: outermost layer 3b: second layer 3c: third layer

Claims (1)

炭化珪素質焼結体からなる基材上に被覆層を備えてなり、該被覆層の最表層がO−Si−C層からなり、該O−Si−C層の下層である第2層がO−Si層であり、該O−Si層の下層である第3層がSi−C−O層であることを特徴とする炭化珪素質部材。 Be provided with a coating layer on a substrate made of silicon carbide sintered body, the outermost layer of the coating layer is Ri Do from O-Si-C layer, the second layer is a lower layer of the O-Si-C layer Is a O—Si layer, and the third layer, which is the lower layer of the O—Si layer, is a Si—C—O layer .
JP2015035434A 2015-02-25 2015-02-25 Silicon carbide material Active JP6386935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015035434A JP6386935B2 (en) 2015-02-25 2015-02-25 Silicon carbide material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015035434A JP6386935B2 (en) 2015-02-25 2015-02-25 Silicon carbide material

Publications (2)

Publication Number Publication Date
JP2016155720A JP2016155720A (en) 2016-09-01
JP6386935B2 true JP6386935B2 (en) 2018-09-05

Family

ID=56825263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015035434A Active JP6386935B2 (en) 2015-02-25 2015-02-25 Silicon carbide material

Country Status (1)

Country Link
JP (1) JP6386935B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6278177A (en) * 1985-09-30 1987-04-10 イビデン株式会社 Strength recovery for silicon carbide sintered body processed article
JP2000133605A (en) * 1998-10-26 2000-05-12 Asahi Glass Co Ltd Jig for semiconductor heat treatment
JP4997437B2 (en) * 2005-07-13 2012-08-08 独立行政法人産業技術総合研究所 Silicon carbide based porous molded body and method for producing the same

Also Published As

Publication number Publication date
JP2016155720A (en) 2016-09-01

Similar Documents

Publication Publication Date Title
JP4987238B2 (en) Aluminum nitride sintered body, semiconductor manufacturing member, and aluminum nitride sintered body manufacturing method
JP5363132B2 (en) Yttrium oxide material, member for semiconductor manufacturing apparatus, and method for manufacturing yttrium oxide material
CN101265101B (en) Yttrium oxide-containing material, component of semiconductor manufacturing equipment, and method of producing yttrium oxide-containing material
KR102657287B1 (en) Ceramic structure, method for manufacturing the same, and member for semiconductor manufacturing apparatus
WO2017170738A1 (en) Suction member
KR20170141340A (en) Sintered ceramics for electrostatic chuck and manufacturing method of the same
JP5406565B2 (en) Aluminum oxide sintered body, manufacturing method thereof, and semiconductor manufacturing apparatus member
JPWO2018061778A1 (en) Silicon carbide member for plasma processing apparatus and manufacturing method thereof
KR101413250B1 (en) Aluminum nitride sintered product, method for producing the same, and electrostatic chuck including the same
WO2008018302A1 (en) Aluminum nitride sintered body and method for producing the same
JP2006069843A (en) Ceramic member for semiconductor manufacturing apparatus
JP6386935B2 (en) Silicon carbide material
JP4939379B2 (en) Aluminum nitride sintered body for electrostatic chuck
JP4429742B2 (en) Sintered body and manufacturing method thereof
CN113260732A (en) Member for plasma processing apparatus and plasma processing apparatus provided with same
JP4897263B2 (en) Black low resistance ceramics and semiconductor manufacturing equipment components
JP2017080847A (en) Vitrified bond super abrasive grain wheel and method of manufacturing wafer using the same
JP2007299867A (en) Electrostatic chuck and its manufacturing method
JP2006294964A (en) Boron diffusing material and its manufacturing method
JP4491080B2 (en) Method for producing sintered silicon carbide
KR101315167B1 (en) Composition for heater including irregular shaped SiC particle having low sinterability and metal, and heater from the same
JP2021072350A (en) Composite sintered body and manufacturing method thereof
JP2006188415A (en) Ceramic for glass forming mold
JP2013535398A (en) Method for producing sintered silicon carbide using balls
WO2021177393A1 (en) Novel tungsten-based thermal-sprayed coating and thermal-spraying material for obtaining the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180810

R150 Certificate of patent or registration of utility model

Ref document number: 6386935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150