JP6386370B2 - Laminated structure, photocurable composition, and method for producing laminated structure - Google Patents

Laminated structure, photocurable composition, and method for producing laminated structure Download PDF

Info

Publication number
JP6386370B2
JP6386370B2 JP2014262759A JP2014262759A JP6386370B2 JP 6386370 B2 JP6386370 B2 JP 6386370B2 JP 2014262759 A JP2014262759 A JP 2014262759A JP 2014262759 A JP2014262759 A JP 2014262759A JP 6386370 B2 JP6386370 B2 JP 6386370B2
Authority
JP
Japan
Prior art keywords
base material
photocurable composition
laminated structure
fluorine
photocurable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014262759A
Other languages
Japanese (ja)
Other versions
JP2016120683A (en
Inventor
忠弘 須永
忠弘 須永
小田 隆志
隆志 小田
大喜田 尚紀
尚紀 大喜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2014262759A priority Critical patent/JP6386370B2/en
Publication of JP2016120683A publication Critical patent/JP2016120683A/en
Application granted granted Critical
Publication of JP6386370B2 publication Critical patent/JP6386370B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

本発明は、積層構造物、光硬化性組成物および積層構造物の製造方法に関する。   The present invention relates to a laminated structure, a photocurable composition, and a method for producing the laminated structure.

接着剤は、日常的に使用される家庭用のものから、光学、電気、電子、医療などの分野で関連する材料および部材の製造などで幅広く利用されており、構造物を作製する上で欠くことのできない材料である。接着剤を硬化方法により分類すると、溶剤揮発型、湿気硬化型、加熱硬化型、硬化剤混合型、嫌気硬化型、光照射硬化型、熱溶融型、感圧型、再湿型などに分類することができる。この中で、広く利用されている接着剤は、光硬化性組成物を紫外線により硬化させる光照射硬化型の接着剤である。光照射硬化型の接着剤は、光照射面が光を透過しなければならないという制約があるが、通常は、加熱や高い圧力の印加などを必要としないことからプロセスへの適応性が高く、また、光硬化性化合物として多くの化合物合成が可能で、各種の基材に合わせた適用の範囲が広いことなどの理由で広く利用されている。   Adhesives are widely used in daily production of household materials and in the production of materials and components related in the fields of optics, electricity, electronics, medicine, etc., and are lacking in making structures. It is a material that cannot be done. The adhesives are classified according to the curing method: solvent volatile type, moisture curable type, heat curable type, hardener mixed type, anaerobic curable type, light irradiation curable type, heat melting type, pressure sensitive type, rewet type, etc. Can do. Among them, a widely used adhesive is a light irradiation curable adhesive that cures a photocurable composition with ultraviolet rays. Light-curing type adhesives have the limitation that the light-irradiated surface must transmit light, but usually they do not require heating or application of high pressure, so they are highly adaptable to the process, In addition, many compounds can be synthesized as photo-curable compounds, and they are widely used for a wide range of applications according to various substrates.

しかしながら、光照射硬化型の接着剤は光硬化の際の硬化収縮という避けがたい課題があり、これにより接着した構造物に反り、歪み、剥離、亀裂、光学歪などを発生させる懸念がある。硬化収縮が起こる理由は、多くの場合、モノマーがポリマーに変化するときに、モノマーが重合連鎖により共有結合を介して結合することで収縮することが知られている(例えば、非特許文献1)。   However, the light irradiation curable adhesive has an unavoidable problem of curing shrinkage at the time of photocuring, which may cause warping of the bonded structure and generation of distortion, peeling, cracking, optical distortion, and the like. In many cases, it is known that curing shrinkage occurs when a monomer is converted into a polymer, and the monomer is shrunk by being bonded via a covalent bond through a polymerization chain (for example, Non-Patent Document 1). .

光硬化性化合物を接着剤として利用するときの硬化収縮を低減する試みとして、重合性基の濃度を低減する方法、非反応性化合物を添加する方法(特許文献1、特許文献2)、硬化速度を低下させる方法、開環重合性化合物を利用する方法などが検討されている。   As an attempt to reduce curing shrinkage when using a photocurable compound as an adhesive, a method of reducing the concentration of a polymerizable group, a method of adding a non-reactive compound (Patent Document 1, Patent Document 2), a curing rate A method for lowering the pH, a method using a ring-opening polymerizable compound, and the like have been studied.

例えば、重合性基の濃度を低減する方法に関し、特許文献3には(メタ)アクリル酸エステルを含む光硬化性組成物のアクリル当量が280より小さい場合、この材料を接着剤とする構造物に硬化収縮の影響が顕著に現れるため構造物は反り、280より大きい場合、硬化収縮に伴う影響を低く抑える事ができることが開示されている。
しかしながら、この方法は、重合性基の濃度自体を低下させるため、硬化させる際に時間を要し、プロセスの効率化の観点から課題を残すものである。
For example, regarding a method for reducing the concentration of a polymerizable group, Patent Document 3 discloses that a photocurable composition containing a (meth) acrylic ester has a structure having an adhesive as a material when the acrylic equivalent is less than 280. It is disclosed that since the influence of curing shrinkage appears remarkably, the structure is warped, and when it is larger than 280, the influence accompanying the curing shrinkage can be kept low.
However, since this method lowers the concentration of the polymerizable group itself, it takes time to cure, leaving a problem from the viewpoint of process efficiency.

また、非反応性化合物を添加する方法では、金属微粒子やフィラーが含まれる無機系材料を添加する方法や、ポリマー、オリゴマーが含まれる有機系材料を添加する方法が知られている。しかしながら、無機系材料は金属微粒子の凝集に伴う構造物の不透明化や硬化物(接着層)表面の平滑性を損なうなどの問題があり、その使用は塗料など一部の用途に限られ、また、有機系材料では光硬化性モノマーとの溶解性の問題や、硬化物と添加物の相溶性から硬化後の状態でヒビ、割れ、などを生じる場合があり、材料設計の幅が狭く、場合によっては硬化物、あるいは、それらを含む構造物の透明性や密着性などを低下させることがある。   In addition, as a method of adding a non-reactive compound, a method of adding an inorganic material containing metal fine particles and a filler and a method of adding an organic material containing a polymer and an oligomer are known. However, inorganic materials have problems such as the opaqueness of structures and the smoothness of the cured product (adhesive layer) surface due to the aggregation of fine metal particles, and their use is limited to some applications such as paint. In the case of organic materials, there is a case where the material design is narrow due to the problem of solubility with the photo-curable monomer or the compatibility between the cured product and the additive, resulting in cracks, cracks, etc. after curing. Depending on the case, the transparency or adhesion of the cured product or the structure containing them may be reduced.

さらに、硬化速度を低下させる方法は硬化時に生じる重合熱の発生量を抑え、硬化後の冷却に伴う応力収縮を低減することにより硬化収縮を抑える方法であるが、この場合、硬化収縮の程度を抑えられても本質的に硬化収縮をゼロにする事はできず、また、穏やかな条件で硬化させなければならないことから、プロセスに実装した場合の生産性を悪化させる可能性がある。   Further, the method of reducing the curing rate is a method of suppressing the shrinkage of the curing by suppressing the amount of polymerization heat generated during curing and reducing the stress shrinkage accompanying the cooling after curing. Even if it is suppressed, the cure shrinkage cannot be essentially reduced to zero, and it must be cured under mild conditions, which may deteriorate the productivity when mounted in a process.

開環重合性化合物を利用する方法に関して、従来からカチオン硬化系材料のエポキシ基を有するモノマーの硬化収縮は比較的小さい事が知られている。しかしながら、一般的にエポキシ系の硬化物は脆く、例えば、接着剤に利用した場合、硬化後の構造物を変形させると構造物の中にヒビ、あるいは、割れを生じる場合がある。最近では、エポキシ系硬化物の脆さを補い、かつ、硬化収縮を小さく抑えるカチオン硬化系のオキセタニル基を有する材料が開発されているが(特許文献4)、構造物を利用する分野によっては要求に対して十分に構造物の反り、歪みを解消するまでには至っていない。   With respect to a method using a ring-opening polymerizable compound, it is conventionally known that the curing shrinkage of a monomer having an epoxy group of a cationic curing material is relatively small. However, generally, an epoxy-based cured product is brittle. For example, when used as an adhesive, if the cured structure is deformed, the structure may be cracked or cracked. Recently, a material having a cationically cured oxetanyl group that compensates for the brittleness of an epoxy-based cured product and suppresses curing shrinkage has been developed (Patent Document 4), but may be required depending on the field in which the structure is used. However, the warping and distortion of the structure have not been solved sufficiently.

T.Takata Prog.Polym.Sci.Vol.18,839,1993T.A. Takata Prog. Polym. Sci. Vol.18,839,1993

特開平2−53850号公報JP-A-2-53850 特開2002−30105号公報JP 2002-30105 A 特開2010−157295号公報JP 2010-157295 A 特開2005−120192号公報JP 2005-120192 A

本発明は、無機材料または/および有機材料から構成される二つの基材間を接着させる接着層が光硬化のプロセスにおいて硬化収縮しにくいものとし、これによって全体としての寸法変化が抑制された積層構造物を提供することを目的とする。
あわせて、寸法変化を抑え、厚みとしての精度も良く、基材を接着させる光硬化性組成物を提供することを目的とする。
In the present invention, an adhesive layer for bonding two substrates composed of an inorganic material and / or an organic material is difficult to cure and shrink in the photo-curing process, thereby suppressing a dimensional change as a whole. The object is to provide a structure.
In addition, it is an object of the present invention to provide a photocurable composition that suppresses dimensional change, has good accuracy as a thickness, and adheres a substrate.

本発明は、以下に示される。   The present invention is shown below.

(1) 無機材料または有機材料で構成される第1の基材と、無機材料または有機材料で構成される第2の基材と、前記第1の基材と前記第2の基材とを接着する接着層とを備える積層構造物であって、
前記接着層は、光硬化性化合物(A)、光硬化開始剤(B)、下記一般式(1)で表される構造単位を有するフッ素含有ポリマー(C)、および自身は光硬化しない溶剤(D)を含有し、かつ質量比(A)/(C)が95/5〜5/95の範囲であり、さらに質量比[(A)+(C)]/(D)が80/20〜5/95である光硬化性組成物を硬化することにより形成される、積層構造物。
(1) A first base material composed of an inorganic material or an organic material, a second base material composed of an inorganic material or an organic material, the first base material, and the second base material A laminated structure comprising an adhesive layer to be bonded,
The adhesive layer comprises a photocurable compound (A), a photocuring initiator (B), a fluorine-containing polymer (C) having a structural unit represented by the following general formula (1), and a solvent that is not photocured by itself ( D), the mass ratio (A) / (C) is in the range of 95/5 to 5/95, and the mass ratio [(A) + (C)] / (D) is 80/20 to A laminated structure formed by curing a photocurable composition that is 5/95.

Figure 0006386370
(式(1)中、R〜Rは、フッ素、フッ素を含有する炭素数1〜10のアルキル基、フッ素を含有する炭素数1〜10のアルコキシ基、またはフッ素を含有する炭素数2〜10のアルコキシアルキル基のいずれかである。R〜Rは互いに同一であっても異なっていてもよい。R〜Rは互いに結合して環構造を形成していてもよく、XはCHまたはOから選ばれる。)
Figure 0006386370
(In Formula (1), R 1 to R 4 are fluorine, a C 1-10 alkyl group containing fluorine, a C 1-10 alkoxy group containing fluorine, or a carbon number 2 containing fluorine. Or R 1 to R 4 may be the same or different from each other, R 1 to R 4 may be bonded to each other to form a ring structure, X is selected from CH 2 or O.)

(2) 無機材料または有機材料で構成される第1の基材と、無機材料または有機材料で構成される第2の基材と、前記第1の基材と前記第2の基材とを接着する接着層とを備える積層構造物であって、
前記接着層は、光硬化性化合物(A)、光硬化開始剤(B)および下記一般式(1)で表される構造単位を有するフッ素含有ポリマー(C)を含有し、かつ質量比(A)/(C)が95/5〜25/75の範囲である光硬化性組成物を硬化させることにより形成される、積層構造物。
(2) A first base material composed of an inorganic material or an organic material, a second base material composed of an inorganic material or an organic material, the first base material, and the second base material A laminated structure comprising an adhesive layer to be bonded,
The adhesive layer contains a photocurable compound (A), a photocuring initiator (B), and a fluorine-containing polymer (C) having a structural unit represented by the following general formula (1), and a mass ratio (A ) / (C) is a laminated structure formed by curing a photocurable composition having a range of 95/5 to 25/75.

Figure 0006386370
(式(1)中、R〜Rは、フッ素、フッ素を含有する炭素数1〜10のアルキル基、フッ素を含有する炭素数1〜10のアルコキシ基、またはフッ素を含有する炭素数2〜10のアルコキシアルキル基のいずれかである。R〜Rは互いに同一であっても異なっていてもよい。R〜Rは互いに結合して環構造を形成していてもよく、XはCHまたはOから選ばれる。)
Figure 0006386370
(In Formula (1), R 1 to R 4 are fluorine, a C 1-10 alkyl group containing fluorine, a C 1-10 alkoxy group containing fluorine, or a carbon number 2 containing fluorine. Or R 1 to R 4 may be the same or different from each other, R 1 to R 4 may be bonded to each other to form a ring structure, X is selected from CH 2 or O.)

(3) (1)または(2)に記載の積層構造物であって、
前記第1の基材が、表面に凹凸の構造を有するフィルムであり、当該フィルムの裏面が前記接着層と接していることを特徴とする積層構造物。
(3) The laminated structure according to (1) or (2),
The first substrate is a film having an uneven structure on the surface, and the back surface of the film is in contact with the adhesive layer.

(4) 前記光硬化性化合物(A)が、カチオン重合可能な開環重合性化合物であることを特徴とする、(1)または(2)に記載の積層構造物。 (4) The laminated structure according to (1) or (2), wherein the photocurable compound (A) is a cationically polymerizable ring-opening polymerizable compound.

(5) 光硬化性化合物(A)、光硬化開始剤(B)、下記一般式(1)で表される構造単位を有するフッ素含有ポリマー(C)、および自身は光硬化しない溶剤(D)を含有し、かつ質量比(A)/(C)が95/5〜5/95の範囲であり、さらに質量比[(A)+(C)]/(D)が80/20〜5/95である光硬化性組成物。 (5) A photocurable compound (A), a photocuring initiator (B), a fluorine-containing polymer (C) having a structural unit represented by the following general formula (1), and a solvent (D) that does not photocure itself And the mass ratio (A) / (C) is in the range of 95/5 to 5/95, and the mass ratio [(A) + (C)] / (D) is 80/20 to 5 / A photocurable composition that is 95.

Figure 0006386370
(式(1)中、R〜Rは、フッ素、フッ素を含有する炭素数1〜10のアルキル基、フッ素を含有する炭素数1〜10のアルコキシ基、またはフッ素を含有する炭素数2〜10のアルコキシアルキル基のいずれかである。R〜Rは互いに同一であっても異なっていてもよい。R〜Rは互いに結合して環構造を形成していてもよく、XはCHまたはOから選ばれる。)
Figure 0006386370
(In Formula (1), R 1 to R 4 are fluorine, a C 1-10 alkyl group containing fluorine, a C 1-10 alkoxy group containing fluorine, or a carbon number 2 containing fluorine. Or R 1 to R 4 may be the same or different from each other, R 1 to R 4 may be bonded to each other to form a ring structure, X is selected from CH 2 or O.)

(6) 光硬化性化合物(A)、光硬化開始剤(B)および下記一般式(1)で表される構造単位を有するフッ素含有ポリマー(C)を含有し、かつ質量比(A)/(C)が95/5〜25/75の範囲である光硬化性組成物。 (6) Contains a photocurable compound (A), a photocuring initiator (B), and a fluorine-containing polymer (C) having a structural unit represented by the following general formula (1), and a mass ratio (A) / (C) The photocurable composition whose range is 95/5-25/75.

Figure 0006386370
(式(1)中、R〜Rは、フッ素、フッ素を含有する炭素数1〜10のアルキル基、フッ素を含有する炭素数1〜10のアルコキシ基、またはフッ素を含有する炭素数2〜10のアルコキシアルキル基のいずれかである。R〜Rは互いに同一であっても異なっていてもよい。R〜Rは互いに結合して環構造を形成していてもよく、XはCHまたはOから選ばれる。)
Figure 0006386370
(In Formula (1), R 1 to R 4 are fluorine, a C 1-10 alkyl group containing fluorine, a C 1-10 alkoxy group containing fluorine, or a carbon number 2 containing fluorine. Or R 1 to R 4 may be the same or different from each other, R 1 to R 4 may be bonded to each other to form a ring structure, X is selected from CH 2 or O.)

(7) 自身は光硬化しない溶媒(D)を実質的に含まない、(6)に記載の光硬化性組成物。 (7) The photocurable composition according to (6), which does not substantially contain a solvent (D) that is not photocured.

(8) 前記光硬化性化合物(A)が、カチオン重合可能な開環重合性化合物である、(5)ないし(7)のいずれか一つに記載の光硬化性組成物。 (8) The photocurable composition according to any one of (5) to (7), wherein the photocurable compound (A) is a cationically polymerizable ring-opening polymerizable compound.

(9) 光照射時における300nmの光線透過率が50%/μm以上である、(5)ないし(7)のいずれか一つに記載の光硬化性組成物。 (9) The photocurable composition according to any one of (5) to (7), wherein the light transmittance at 300 nm during light irradiation is 50% / μm or more.

(10) 光硬化後の収縮率が0〜4%である、(5)ないし(7)のいずれか一つに記載の光硬化性組成物。 (10) The photocurable composition according to any one of (5) to (7), wherein the shrinkage after photocuring is 0 to 4%.

(11) 無機材料または有機材料で構成される第1の基材と、無機材料または有機材料で構成される第2の基材と、前記第1の基材と前記第2の基材とを接着する接着層とを備える積層構造物の製造方法であって、
前記積層構造物に備えられる前記第1の基材と、前記第2の基材のうち、少なくともいずれか一方は、光透過性を有する基材であり、
前記積層構造物の製造方法は、
前記第1の基材と前記第2の基材のうち少なくともいずれか一方の表面に、(5)に記載の光硬化性組成物を塗布する塗布工程と、
前記光硬化性組成物を塗布した基材を加熱して溶剤を蒸発させる工程と、
前記光硬化性組成物を塗布した表面を介して、前記第1の基材と前記第2の基材とを貼り合せる積層工程と、
前記光透過性を有する基材を介して光を照射する光照射工程と、
を含むことを特徴とする、積層構造物の製造方法。
(11) A first base material composed of an inorganic material or an organic material, a second base material composed of an inorganic material or an organic material, the first base material, and the second base material A method for manufacturing a laminated structure including an adhesive layer to be bonded,
At least one of the first base material and the second base material provided in the laminated structure is a light-transmitting base material,
The manufacturing method of the laminated structure is as follows:
An application step of applying the photocurable composition according to (5) to at least one surface of the first substrate and the second substrate;
Heating the substrate coated with the photocurable composition to evaporate the solvent;
A laminating step of bonding the first base material and the second base material through the surface coated with the photocurable composition;
A light irradiation step of irradiating light through the substrate having the light transmission property;
The manufacturing method of a laminated structure characterized by including.

(12) 無機材料または有機材料で構成される第1の基材と、無機材料または有機材料で構成される第2の基材と、前記第1の基材と前記第2の基材とを接着する接着層とを備える積層構造物の製造方法であって、
前記積層構造物に備えられる前記第1の基材と、前記第2の基材のうち、少なくともいずれか一方は、光透過性を有する基材であり、
前記積層構造物の製造方法は、
前記第1の基材と前記第2の基材のうち少なくともいずれか一方の表面に、(6)または(7)に記載の光硬化性組成物を塗布する塗布工程と、
前記光硬化性組成物を塗布した表面を介して、前記第1の基材と前記第2の基材とを貼り合せる積層工程と、
前記光透過性を有する基材を介して光を照射する光照射工程と、
を含むことを特徴とする、積層構造物の製造方法。
(12) A first base material composed of an inorganic material or an organic material, a second base material composed of an inorganic material or an organic material, the first base material, and the second base material A method for manufacturing a laminated structure including an adhesive layer to be bonded,
At least one of the first base material and the second base material provided in the laminated structure is a light-transmitting base material,
The manufacturing method of the laminated structure is as follows:
An application step of applying the photocurable composition according to (6) or (7) to at least one surface of the first substrate and the second substrate;
A laminating step of bonding the first base material and the second base material through the surface coated with the photocurable composition;
A light irradiation step of irradiating light through the substrate having the light transmission property;
The manufacturing method of a laminated structure characterized by including.

本発明は、光硬化性化合物および光硬化開始剤と特定のフッ素含有ポリマーからなる光硬化性組成物を用いて積層構造物中の接着層を形成しているため、光硬化のプロセスにおける光硬化性組成物の硬化収縮を抑制できる。そのため、積層構造物全体としての寸法変化を抑制することができる。
また、本発明によれば、光硬化プロセスの硬化収縮を生じず、接着した積層構造物の寸法変化を抑え、厚み精度良く基材を接着することができる光硬化性組成物を提供することができる。これを用いて凹凸構造を有するフィルムまたは平滑なフィルムの積層構造物を安定的に提供することができる。
In the present invention, since the adhesive layer in the laminated structure is formed using a photocurable composition comprising a photocurable compound, a photocuring initiator, and a specific fluorine-containing polymer, photocuring in the photocuring process. The curing shrinkage of the adhesive composition can be suppressed. Therefore, the dimensional change as the whole laminated structure can be suppressed.
In addition, according to the present invention, it is possible to provide a photocurable composition that does not cause curing shrinkage of the photocuring process, suppresses a dimensional change of the laminated structure that has been adhered, and can adhere a substrate with high thickness accuracy. it can. By using this, a laminated structure of a film having a concavo-convex structure or a smooth film can be stably provided.

実施の形態に係る積層構造物の模式断面図である。It is a schematic cross section of the laminated structure according to the embodiment.

以下、本発明の実施の形態について適宜図面を用いて詳しく説明する。なお、本明細書中において「〜」は特に断りがなければ以上から以下を表す。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate. In the present specification, “to” represents the following unless otherwise specified.

[積層構造物]
まず、本実施形態に係る積層構造物について図1に基づいて説明する。
本実施形態の積層構造物100は、第1の基材11と第2の基材12と、これらの基材間を接着する接着層13を備えるものである。
[Laminated structure]
First, the laminated structure according to the present embodiment will be described with reference to FIG.
The laminated structure 100 of the present embodiment includes a first base material 11 and a second base material 12, and an adhesive layer 13 that bonds these base materials.

この第1の基材11および第2の基材12は、それぞれ無機材料または有機材料から構成されるものである。
無機材料の例としては、ガラス、石英、アルミニウム、ニッケル、鉄、銅、銀、金、ステンレス鋼、ゲルマニウム、チタン、シリコン、アルミナ、半導体等の無機材料が挙げられる。
また、有機材料の例としては、ポリイミド、ポリアミド、ポリエステル、ポリカーボネート、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリアクリレート、ポリメタクリレート、ポリアリレート、エポキシ樹脂、シリコーン樹脂、ポリオレフィン、ポリ環状オレフィン、セルロース系樹脂、フッ素樹脂等の有機材料などが挙げられる。また、後述するフッ素含有ポリマー、または光硬化性組成物からなる成形体を基材として採用することもできる。
さらに、これらの基材は、接着性を上げる目的で基材の表面にコロナ処理、プラズマ処理、UV処理、プライマー処理、エッチング処理などの物理的あるいは化学的な表面処理によって易接着処理を施してもよい。
なお、本実施形態の積層構造物100は、第1の基材11または第2の基材12のいずれかの基材を介して光を照射し、後述する光硬化性組成物を硬化することで接着層12が形成される。
そのため、通常、第1の基材11または第2の基材12のいずれかは光透過性の基材が用いられる。
The first base material 11 and the second base material 12 are each composed of an inorganic material or an organic material.
Examples of the inorganic material include inorganic materials such as glass, quartz, aluminum, nickel, iron, copper, silver, gold, stainless steel, germanium, titanium, silicon, alumina, and semiconductor.
Examples of organic materials include polyimide, polyamide, polyester, polycarbonate, polyphenylene ether, polyphenylene sulfide, polyacrylate, polymethacrylate, polyarylate, epoxy resin, silicone resin, polyolefin, polycyclic olefin, cellulose resin, and fluorine resin. And organic materials such as Moreover, the molded object which consists of a fluorine-containing polymer mentioned later or a photocurable composition is also employable as a base material.
Furthermore, these substrates are subjected to easy adhesion treatment by physical or chemical surface treatments such as corona treatment, plasma treatment, UV treatment, primer treatment, etching treatment for the purpose of improving adhesion. Also good.
In addition, the laminated structure 100 of this embodiment irradiates light through the base material in any one of the 1st base material 11 or the 2nd base material 12, and cures the photocurable composition mentioned later. Thus, the adhesive layer 12 is formed.
Therefore, a light-transmitting substrate is usually used as either the first substrate 11 or the second substrate 12.

なお、図1において、第1の基材11、第2の基材12および接着層13の三層のみからなる積層構造物100を図示したが、本発明においては、これ以外の層を設けることもできる。
たとえば、後述する光硬化性組成物を第1の基材11の上面に塗布し、他の基材をこの光硬化性樹脂組成物の塗布層上に設け、積層数を増加させることもできる。
光硬化性組成物は片方の基材に塗工しても両方の基材に塗工してもよく、両方の基材に塗工するときは同種、異種いずれの接着剤を用いてもよく、積層数を増加させる基材は本実施形態の積層構造物100で用いたものと同種、異種いずれのものであってもよい。
このような方法で積層した構造物は、いずれか一方の基材が光を透過し光硬化反応が起こるものであればよく、無機、有機何れの材料であっても、同種あるいは、異種の材料を組み合わせて用いてもよい。
In addition, in FIG. 1, although the laminated structure 100 which consists only of three layers of the 1st base material 11, the 2nd base material 12, and the contact bonding layer 13 was illustrated, in this invention, layers other than this are provided. You can also.
For example, the photocurable composition mentioned later can be apply | coated to the upper surface of the 1st base material 11, and another base material can be provided on the application layer of this photocurable resin composition, and the number of lamination | stacking can also be increased.
The photocurable composition may be applied to one substrate or both substrates, and the same or different adhesives may be used when applying to both substrates. The base material for increasing the number of layers may be the same or different from that used in the laminated structure 100 of this embodiment.
The structure laminated by such a method is not limited as long as either one of the base materials transmits light and a photocuring reaction occurs, and the same or different materials can be used regardless of whether the materials are inorganic or organic. May be used in combination.

また、本実施形態の積層構造物100は、第1の基材11として、表面に凹凸の構造を有するフィルムを用い、裏面が接着層13と接する構造としてもよい。
または、第1の基材11と第2の基材12の両方の表面に凹凸の構造を有するフィルムを用い、凹凸の構造を有する面が接着層13と接する構造としてもよい。
この凹凸構造のサイズは、40nm〜5000μmのパターンを賦型したものであり、形状は特に限定されるものではない。ここで凹凸構造は、スクリーン印刷、エンボス加工、サブミクロンインプリント、ナノインプリントなど様々な方法で凹凸構造を形成しても良い。
特に、凹凸構造をインプリント方法で形成するときは、石英、シリコン、ニッケル、レジストなどからなるモールドの様々なパターンに光硬化性樹脂、または熱可塑性樹脂、ポリマーワニスなどの樹脂を塗布し、適宜、それぞれに合った方法で凹凸構造を形成させる。この凹凸構造を表面に持つフィルムを後述する光硬化性組成物で第2の基材12と接着させて、積層構造物100とすることもでき、第1の基材11と第2の基材12の両方の表面に凹凸の構造を有するフィルムを接着させて積層構造物100とすることもできる。
Moreover, the laminated structure 100 of this embodiment is good also as a structure which uses the film which has an uneven | corrugated structure on the surface as the 1st base material 11, and the back surface contacts the contact bonding layer 13. FIG.
Alternatively, a film having an uneven structure on both surfaces of the first base material 11 and the second base material 12 may be used, and a surface having an uneven structure may be in contact with the adhesive layer 13.
The size of the concavo-convex structure is obtained by shaping a pattern of 40 nm to 5000 μm, and the shape is not particularly limited. Here, the concavo-convex structure may be formed by various methods such as screen printing, embossing, submicron imprint, and nanoimprint.
In particular, when forming a concavo-convex structure by an imprint method, a resin such as a photocurable resin, a thermoplastic resin, or a polymer varnish is applied to various patterns of a mold made of quartz, silicon, nickel, resist, etc. The concavo-convex structure is formed by a method suitable for each. A film having this concavo-convex structure on the surface can be bonded to the second substrate 12 with a photocurable composition to be described later to form a laminated structure 100. The first substrate 11 and the second substrate The laminated structure 100 can also be formed by adhering a film having an uneven structure on both surfaces.

[光硬化性組成物]
本実施形態の光硬化性組成物は、具体的には以下に示す種の組成物を用いることができる。
(1) 光硬化性化合物(A)および光硬化開始剤(B)、特定のフッ素含有ポリマー(C)および自身は光硬化しない溶剤(D)を含有し、かつ質量比(A)/(C)が95/5〜5/95の範囲であり、さらに質量比[(A)+(C)] /(D)が80/20〜5/95であることを特徴とする光硬化性組成物。
(2) 光硬化性化合物(A)、光硬化開始剤(B)および特定のフッ素含有ポリマー(C)を含有し、かつ質量比(A)/(C)が95/5〜25/75の範囲であり、好ましくは自身は光硬化しない溶媒を実質的には含まない光硬化性組成物。
[Photocurable composition]
Specifically, the following types of compositions can be used as the photocurable composition of the present embodiment.
(1) A photocurable compound (A), a photocuring initiator (B), a specific fluorine-containing polymer (C), and a solvent (D) that is not photocured by itself, and a mass ratio (A) / (C ) Is in the range of 95/5 to 5/95, and the mass ratio [(A) + (C)] / (D) is 80/20 to 5/95. .
(2) A photocurable compound (A), a photocuring initiator (B) and a specific fluorine-containing polymer (C) are contained, and the mass ratio (A) / (C) is 95/5 to 25/75. A photocurable composition that is substantially free of solvents that are in the range and preferably not photocured themselves.

通常、光硬化性組成物を接着層に利用して積層構造物を作製する際に生じる、基材の反り、歪みは、光照射硬化時の光硬化性化合物の硬化収縮に起因する。
具体的に、反応性二重結合を有するモノマーを光照射により硬化させるラジカル重合系の光硬化性組成物では硬化収縮の程度が大きく、硬化前後の体積の変化率を収縮率とする指標で10%以上の硬化収縮が生じる。そこで、利用されるのが含酸素環状部位の開環重合により硬化反応が進行するエポキシ、オキセタン化合物のカチオン重合系の光硬化性組成物であるが、このような光硬化組成物を用いた場合であっても、三員環の開環反応で硬化が進行するエポキシ化合物のときの硬化収縮は10%を下回る程度、四員環の開環反応で硬化が進行するオキセタン化合物のときで5%程度である。
Usually, the warp and distortion of the substrate that occur when a laminated structure is produced using the photocurable composition as an adhesive layer are caused by curing shrinkage of the photocurable compound during light irradiation curing.
Specifically, in a radical polymerization type photocurable composition in which a monomer having a reactive double bond is cured by light irradiation, the degree of cure shrinkage is large, and the volume change rate before and after cure is 10 as an index of shrinkage. % Cure shrinkage occurs. Therefore, a photo-curable composition of a cationic polymerization system of an epoxy or oxetane compound in which a curing reaction proceeds by ring-opening polymerization of an oxygen-containing cyclic site is used. When such a photo-curable composition is used Even in the case of an epoxy compound that cures by a three-membered ring-opening reaction, the cure shrinkage is less than 10%, and in the case of an oxetane compound that cures by a four-membered ring-opening reaction, it is 5%. Degree.

これに対し、本実施形態の光硬化性組成物では、組成を適切に調整することにより、光硬化後の収縮率を0〜4%に制御することができる。
また、硬化後の収縮率は配合の調整を適切に図ることにより、好ましくは0〜3%とすることができ、さらに好ましくは0〜1%とすることができる。
すなわち、これまでにない収縮率の低さにより、従来は反り、歪みがあった積層構造物を、反り、歪みのない積層構造物として提供することができるようになる。
On the other hand, in the photocurable composition of this embodiment, the shrinkage rate after photocuring can be controlled to 0 to 4% by appropriately adjusting the composition.
Moreover, the shrinkage | contraction rate after hardening can be 0 to 3% preferably by adjusting a mixing | blending appropriately, More preferably, it can be 0 to 1%.
That is, due to an unprecedented low shrinkage rate, a laminated structure that has been warped and distorted in the past can be provided as a laminated structure without warping and distorted.

さらには、本実施形態の光硬化性組成物は、光硬化性化合物(A)、光硬化開始剤(B)および特定のフッ素含有ポリマー(C)を含有し、かつ質量比(A)/(C)が95/5〜25/75の範囲である無溶剤の光硬化性組成物を用いても良い。
これにより、後述する積層構造物の製造方法において、乾燥工程を要せず、工程を簡略化でき、光硬化後の収縮率を0〜4%に制御した積層構造物を得ることができる。
また、硬化後の収縮率は配合の調整を適切に図ることにより、好ましくは0〜3%とすることができ、さらに好ましくは0〜1%とすることができる。
Furthermore, the photocurable composition of this embodiment contains a photocurable compound (A), a photocuring initiator (B) and a specific fluorine-containing polymer (C), and a mass ratio (A) / ( A solventless photocurable composition having C) in the range of 95/5 to 25/75 may be used.
Thereby, in the manufacturing method of the laminated structure mentioned later, a drying process is not required, a process can be simplified and the laminated structure which controlled the shrinkage rate after photocuring to 0 to 4% can be obtained.
Moreover, the shrinkage | contraction rate after hardening can be 0 to 3% preferably by adjusting a mixing | blending appropriately, More preferably, it can be 0 to 1%.

また、本実施形態の光硬化性組成物は光透過性に優れ、厚さ1μmあたりの光照射時における300nmの光線透過率が50%/μm以上とすることができる。さらに、光硬化性組成物の、厚さ1μmあたりの光照射時における300nmの光線透過率は、60%/μm以上であることがより好ましく、70%/μm以上であることがさらに好ましい。
なお、この「%/μm」は光照射時、波長300nmにおける接着層の厚さ1μmあたりの透過率である。
Moreover, the photocurable composition of this embodiment is excellent in light transmittance, and the light transmittance of 300 nm at the time of light irradiation per 1 μm thickness can be 50% / μm or more. Furthermore, the light transmittance at 300 nm of the photocurable composition upon light irradiation per 1 μm thickness is more preferably 60% / μm or more, and further preferably 70% / μm or more.
This “% / μm” is the transmittance per 1 μm thickness of the adhesive layer at a wavelength of 300 nm when irradiated with light.

本実施形態における光硬化性組成物は、光硬化性化合物(A)とフッ素含有ポリマー(C)の質量比(A)/(C)は、自身は硬化しない溶剤(D)を含有するとき95/5〜5/95であり、90/10〜10/90であることが好ましく、85/15〜10/90であることがより好ましい。また、質量比[(A)+(C)] /(D)が80/20〜5/95であり、75/25〜5/95であることが好ましく、70/30〜5/95であることがより好ましい。このような範囲に設定することで、硬化後の収縮率を効果的に低下させ、また、光透過性を向上させることができる。
また、溶剤(D)を含有しない場合、本実施形態における光硬化性組成物は、光硬化性化合物(A)とフッ素含有ポリマー(C)の質量比(A)/(C)は、95/5〜25/75であり、92/8〜28/72であることが好ましく、90/10〜30/70であることがより好ましい。このような範囲に設定することで、上述の自身は硬化しない溶剤を含む光硬化性組成物を用いる場合と同様な効果が得られる。
The mass ratio (A) / (C) of the photocurable compound (A) and the fluorine-containing polymer (C) is 95 when the photocurable composition in this embodiment contains a solvent (D) that does not cure itself. / 5 to 5/95, preferably 90/10 to 10/90, and more preferably 85/15 to 10/90. Moreover, mass ratio [(A) + (C)] / (D) is 80 / 20-5 / 95, it is preferable that it is 75 / 25-5 / 95, and it is 70 / 30-5 / 95. It is more preferable. By setting to such a range, the shrinkage rate after curing can be effectively reduced, and the light transmittance can be improved.
Further, when the solvent (D) is not contained, the photocurable composition in the present embodiment has a mass ratio (A) / (C) of the photocurable compound (A) to the fluorine-containing polymer (C) of 95 / It is 5-25 / 75, it is preferable that it is 92 / 8-28 / 72, and it is more preferable that it is 90 / 10-30 / 70. By setting to such a range, the same effect as the case where the photocurable composition containing the solvent which does not cure itself is used can be obtained.

具体的に本実施形態の光硬化性組成物に含まれる、光硬化性化合物(A)、光硬化開始剤(B)およびフッ素含有ポリマー(C)は以下に示される。   Specifically, the photocurable compound (A), the photocuring initiator (B) and the fluorine-containing polymer (C) contained in the photocurable composition of the present embodiment are shown below.

<光硬化性化合物(A)>
光硬化性化合物(A)は、公知の光硬化性化合物の中から適宜選択することができるが、硬化後の硬化収縮にともなう基材の変形の抑制や、フッ素含有ポリマー(C)との相溶性の観点から、好適にはカチオン重合可能な開環重合性化合物が選ばれる。
<Photocurable compound (A)>
The photocurable compound (A) can be appropriately selected from known photocurable compounds. However, the photocurable compound (A) can be appropriately selected from the suppression of deformation of the base material caused by curing shrinkage after curing, and the phase with the fluorine-containing polymer (C). From the viewpoint of solubility, a ring-opening polymerizable compound capable of cationic polymerization is preferably selected.

カチオン重合可能な開環重合性化合物は、1分子中に反応性基を1個有していてもよく、複数個有していてもよい。また、光硬化性化合物(A)には、異なる反応性基数の化合物を任意の割合で混合して用いても良い。これらにより、本実施形態の光硬化性組成物を接着剤に使用した際の光照射硬化後の形態で、光透過性良く、積層構造物の反り、歪みを生じず寸法精度良く、かつ強固に基材を接着することができる。   The ring-opening polymerizable compound capable of cationic polymerization may have one reactive group or a plurality of reactive groups in one molecule. Moreover, you may use for a photocurable compound (A), mixing the compound of a different reactive group number in arbitrary ratios. With these, in the form after light irradiation curing when the photocurable composition of the present embodiment is used as an adhesive, the light transmission is good, the laminated structure is not warped, distortion is not caused, and the dimensional accuracy is strong and strong. The substrate can be glued.

光硬化性化合物(A)のうち、カチオン重合可能な開環重合性化合物としては、例えば、シクロヘキセンエポキシド、ジシクロペンタジエンオキサイド、リモネンジオキサイド、4−ビニルシクロヘキセンジオキサイド、3,4−エポキシシクロヘキシルメチル−3',4'−エポキシシクロヘキサンカルボキシレート、ジ(3,4−エポキシシクロヘキシル)アジペート、(3,4−エポキシシクロヘキシル)メチルアルコール、(3,4−エポキシ−6−メチルシクロヘキシル)メチル−3,4−エポキシ−6−メチルシクロヘキサンカルボキシレート、エチレン−1,2−ジ(3,4−エポキシシクロヘキサンカルボン酸)エステル、1−tert−ブトキシ−2,3−エポキシプロパン、(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、フェニルグリシジルエーテル、ジシクロヘキシル−3,3´−ジエポキシド、1,7−オクタジエンジエポキシド、ビスフェノールA型エポキシ樹脂、ハロゲン化ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、o−、m−、p−クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、多価アルコールのポリグリシジルエーテル、3,4−エポキシシクロヘキセニルメチル−3´,4´−エポキシシクロヘキセンカルボキシレートといった脂環式エポキシ樹脂あるいは水添ビスフェノールAのグリシジルエーテル等の、エポキシ化合物類が挙げられる。さらに、3−メチル−3−(ブトキシメチル)オキセタン、3−メチル−3−(ペンチロキシメチル)オキセタン、3−メチル−3−(ヘキシロキシメチル)オキセタン、3−メチル−3−(2−エチルヘキシロキシメチル)オキセタン、3−メチル−3−(オクチロキシメチル)オキセタン、3−メチル−3−(デカニロキシメチル)オキセタン、3−メチル−3−(ドデカニロキシメチル)オキセタン、3−メチル−3−(フェノキシメチル)オキセタン、3−エチル−3−(ブトキシメチル)オキセタン、3−エチル−3−(ペンチロキシメチル)オキセタン、3−エチル−3−(ヘキシロキシメチル)オキセタン、3−エチル−3−(2−エチルヘキシロキシメチル)オキセタン、3−エチル−3−(オクチロキシメチル)オキセタン、3−エチル−3−(デカニロキシメチル)オキセタン、3−エチル−3−(ドデカニロキシメチル)オキセタン、3−(シクロヘキシロキシメチル)オキセタン、3−メチル−3−(シクロヘキシロキシメチル)オキセタン、3−エチル−3−(シクロヘキシロキシメチル)オキセタン、3−エチル−3−(フェノキシメチル)オキセタン、3,3−ジメチルオキセタン、3−ヒドロキシメチルオキセタン、3−メチル−3−ヒドロキシメチルオキセタン、3−エチル−3−ヒドロキシメチルオキセタン、3−エチル−3−フェノキシメチルオキセタン、3−n−プロピル−3−ヒドロキシメチルオキセタン、3−イソプロピル−3−ヒドロキシメチルオキセタン、3−n−ブチル−3−ヒドロキシメチルオキセタン、3−イソブチル−3−ヒドロキシメチルオキセタン、3−sec−ブチル−3−ヒドロキシメチルオキセタン、3−tert−ブチル−3−ヒドロキシメチルオキセタン、3−エチル−3−(2−エチルヘキシル)オキセタン、3−エチル−3−(ヘキシルオキシメチル)オキセタン等があり、オキセタニル基を2個以上有する化合物としてビス(3−エチル−3−オキセタニルメチル)エーテル、1,2−ビス[(3−エチル−3−オキセタニルメトキシ)]エタン、1,3−ビス[(3−エチル−3−オキセタニルメトキシ)]プロパン、1,3−ビス[(3−エチル−3−オキセタニルメトキシ)]−2,2−ジメチル−プロパン、1,4−ビス(3−エチル−3−オキセタニルメトキシ)ブタン、1,6−ビス(3−エチル−3−オキセタニルメトキシ)ヘキサン、1,4−ビス[(3−メチル−3−オキセタニル)メトキシ]ベンゼン、1,3−ビス[(3−メチル−3−オキセタニル)メトキシ]ベンゼン、1,4−ビス{[(3−メチル−3−オキセタニル)メトキシ]メチル}ベンゼン、1,4−ビス{[(3−メチル−3−オキセタニル)メトキシ]メチル}シクロヘキサン、4,4´−ビス{[(3−メチル−3−オキセタニル)メトキシ]メチル}ビフェニル、4,4´−ビス{[(3−メチル−3−オキセタニル)メトキシ]メチル}ビシクロヘキサン、2,3−ビス[(3−メチル−3−オキセタニル)メトキシ]ビシクロ[2.2.1]ヘプタン、2,5−ビス[(3−メチル−3−オキセタニル)メトキシ]ビシクロ[2.2.1]ヘプタン、2,6−ビス[(3−メチル−3−オキセタニル)メトキシ]ビシクロ[2.2.1]ヘプタン、1,4−ビス[(3−エチル−3−オキセタニル)メトキシ]ベンゼン、1,3−ビス[(3−エチル−3−オキセタニル)メトキシ]ベンゼン、1,4−ビス{[(3−エチル−3−オキセタニル)メトキシ]メチル}ベンゼン、1,4−ビス{[(3−エチル−3−オキセタニル)メトキシ]メチル}シクロヘキサン、4,4´−ビス{[(3−エチル−3−オキセタニル)メトキシ]メチル}ビフェニル、4,4'−ビス{[(3−エチル−3−オキセタニル)メトキシ]メチル}ビシクロヘキサン、2,3−ビス[(3−エチル−3−オキセタニル)メトキシ]ビシクロ[2.2.1]ヘプタン、2,5−ビス[(3−エチル−3−オキセタニル)メトキシ]ビシクロ[2.2.1]ヘプタン、2,6−ビス[(3−エチル−3−オキセタニル)メトキシ]ビシクロ[2.2.1]ヘプタン、3−エチル−3{[(3−エチルオキセタン−3−イル)メトキシ]メチル}オキセタン等のオキセタン化合物類が挙げられる。これらは、単独で用いても、2種以上組み合わせて用いてもよい。   Among the photocurable compounds (A), examples of the ring-opening polymerizable compound capable of cationic polymerization include, for example, cyclohexene epoxide, dicyclopentadiene oxide, limonene dioxide, 4-vinylcyclohexene dioxide, and 3,4-epoxycyclohexylmethyl. -3 ′, 4′-epoxycyclohexanecarboxylate, di (3,4-epoxycyclohexyl) adipate, (3,4-epoxycyclohexyl) methyl alcohol, (3,4-epoxy-6-methylcyclohexyl) methyl-3, 4-epoxy-6-methylcyclohexanecarboxylate, ethylene-1,2-di (3,4-epoxycyclohexanecarboxylic acid) ester, 1-tert-butoxy-2,3-epoxypropane, (3,4-epoxycyclohexyl) ) Ethylt Methoxysilane, phenyl glycidyl ether, dicyclohexyl-3,3'-diepoxide, 1,7-octadiene diepoxide, bisphenol A type epoxy resin, halogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, o-, m- P-cresol novolak type epoxy resin, phenol novolak type epoxy resin, polyglycidyl ether of polyhydric alcohol, 3,4-epoxycyclohexenylmethyl-3 ', 4'-epoxycyclohexenecarboxylate, or water Examples thereof include epoxy compounds such as glycidyl ether of bisphenol A added. Further, 3-methyl-3- (butoxymethyl) oxetane, 3-methyl-3- (pentyloxymethyl) oxetane, 3-methyl-3- (hexyloxymethyl) oxetane, 3-methyl-3- (2-ethyl) Hexyloxymethyl) oxetane, 3-methyl-3- (octyloxymethyl) oxetane, 3-methyl-3- (decanyloxymethyl) oxetane, 3-methyl-3- (dodecanyloxymethyl) oxetane, 3-methyl -3- (phenoxymethyl) oxetane, 3-ethyl-3- (butoxymethyl) oxetane, 3-ethyl-3- (pentyloxymethyl) oxetane, 3-ethyl-3- (hexyloxymethyl) oxetane, 3-ethyl -3- (2-ethylhexyloxymethyl) oxetane, 3-ethyl-3- (octyloxymethyl) oxeta 3-ethyl-3- (decanyloxymethyl) oxetane, 3-ethyl-3- (dodecanyloxymethyl) oxetane, 3- (cyclohexyloxymethyl) oxetane, 3-methyl-3- (cyclohexyloxymethyl) oxetane 3-ethyl-3- (cyclohexyloxymethyl) oxetane, 3-ethyl-3- (phenoxymethyl) oxetane, 3,3-dimethyloxetane, 3-hydroxymethyloxetane, 3-methyl-3-hydroxymethyloxetane, 3 -Ethyl-3-hydroxymethyloxetane, 3-ethyl-3-phenoxymethyloxetane, 3-n-propyl-3-hydroxymethyloxetane, 3-isopropyl-3-hydroxymethyloxetane, 3-n-butyl-3-hydroxy Methyl oxetane, 3-isobutyl- -Hydroxymethyloxetane, 3-sec-butyl-3-hydroxymethyloxetane, 3-tert-butyl-3-hydroxymethyloxetane, 3-ethyl-3- (2-ethylhexyl) oxetane, 3-ethyl-3- (hexyl) Examples of compounds having two or more oxetanyl groups include bis (3-ethyl-3-oxetanylmethyl) ether, 1,2-bis [(3-ethyl-3-oxetanylmethoxy)] ethane, , 3-bis [(3-ethyl-3-oxetanylmethoxy)] propane, 1,3-bis [(3-ethyl-3-oxetanylmethoxy)]-2,2-dimethyl-propane, 1,4-bis ( 3-ethyl-3-oxetanylmethoxy) butane, 1,6-bis (3-ethyl-3-oxetanylmethoxy) ) Hexane, 1,4-bis [(3-methyl-3-oxetanyl) methoxy] benzene, 1,3-bis [(3-methyl-3-oxetanyl) methoxy] benzene, 1,4-bis {[(3 -Methyl-3-oxetanyl) methoxy] methyl} benzene, 1,4-bis {[(3-methyl-3-oxetanyl) methoxy] methyl} cyclohexane, 4,4'-bis {[(3-methyl-3- Oxetanyl) methoxy] methyl} biphenyl, 4,4′-bis {[(3-methyl-3-oxetanyl) methoxy] methyl} bicyclohexane, 2,3-bis [(3-methyl-3-oxetanyl) methoxy] bicyclo [2.2.1] heptane, 2,5-bis [(3-methyl-3-oxetanyl) methoxy] bicyclo [2.2.1] heptane, 2,6-bis [(3-methyl Ru-3-oxetanyl) methoxy] bicyclo [2.2.1] heptane, 1,4-bis [(3-ethyl-3-oxetanyl) methoxy] benzene, 1,3-bis [(3-ethyl-3- Oxetanyl) methoxy] benzene, 1,4-bis {[(3-ethyl-3-oxetanyl) methoxy] methyl} benzene, 1,4-bis {[(3-ethyl-3-oxetanyl) methoxy] methyl} cyclohexane, 4,4′-bis {[(3-ethyl-3-oxetanyl) methoxy] methyl} biphenyl, 4,4′-bis {[(3-ethyl-3-oxetanyl) methoxy] methyl} bicyclohexane, 2,3 -Bis [(3-ethyl-3-oxetanyl) methoxy] bicyclo [2.2.1] heptane, 2,5-bis [(3-ethyl-3-oxetanyl) methoxy] bisi B [2.2.1] heptane, 2,6-bis [(3-ethyl-3-oxetanyl) methoxy] bicyclo [2.2.1] heptane, 3-ethyl-3 {[(3-ethyloxetane- And oxetane compounds such as 3-yl) methoxy] methyl} oxetane. These may be used alone or in combination of two or more.

<光硬化開始剤(B)>
光硬化開始剤(光重合開始剤)(B)としては、光の照射によってカチオンを生成する光カチオン開始剤が挙げられる。光硬化開始剤(B)の使用量は、光硬化性化合物(A)100質量部に対して0.05質量部以上であることが好ましく、0.1〜10質量部であることがより好ましい。
<Photocuring initiator (B)>
Examples of the photocuring initiator (photopolymerization initiator) (B) include a photocationic initiator that generates cations by light irradiation. It is preferable that the usage-amount of a photocuring initiator (B) is 0.05 mass part or more with respect to 100 mass parts of photocurable compounds (A), and it is more preferable that it is 0.1-10 mass parts. .

光硬化開始剤(B)のうち、光の照射によってカチオンを生成する光カチオン開始剤としては、光照射により、上述のカチオン重合可能な開環重合性化合物のカチオン重合を開始させる化合物が例示されるが、例えば、オニウム陽イオンと対を成す陰イオンとのオニウム塩のように光反応しルイス酸を放出する化合物が好ましい。   Among the photocuring initiators (B), examples of the photocationic initiator that generates cations by light irradiation include compounds that initiate cationic polymerization of the above-described cationically polymerizable ring-opening polymerizable compound by light irradiation. However, for example, a compound that reacts with light and releases a Lewis acid is preferable, such as an onium salt with an anion paired with an onium cation.

オニウム陽イオンの具体例としては、ジフェニルヨードニウム、4−メトキシジフェニルヨードニウム、ビス(4−メチルフェニル)ヨードニウム、ビス(4−tert−ブチルフェニル)ヨードニウム、ビス(ドデシルフェニル)ヨードニウム、トリフェニルスルホニウム、ジフェニル−4−チオフェノキシフェニルスルホニウム、ビス〔4−(ジフェニルスルフォニオ)−フェニル〕スルフィド、ビス〔4−(ジ(4−(2−ヒドロキシエチル)フェニル)スルホニオ)−フェニル〕スルフィド、η5−2,4−(シクロペンタジェニル)〔1,2,3,4,5,6−η−(メチルエチル)ベンゼン〕−鉄(1+)等が挙げられる。また、これらの陽イオンは、単独で用いても、2種以上組み合わせて用いてもよい。   Specific examples of the onium cation include diphenyliodonium, 4-methoxydiphenyliodonium, bis (4-methylphenyl) iodonium, bis (4-tert-butylphenyl) iodonium, bis (dodecylphenyl) iodonium, triphenylsulfonium, diphenyl -4-thiophenoxyphenylsulfonium, bis [4- (diphenylsulfonio) -phenyl] sulfide, bis [4- (di (4- (2-hydroxyethyl) phenyl) sulfonio) -phenyl] sulfide, η5-2 , 4- (cyclopentagenyl) [1,2,3,4,5,6-η- (methylethyl) benzene] -iron (1+) and the like. These cations may be used alone or in combination of two or more.

一方、陰イオンの具体例としては、テトラフルオロボレート、ヘキサフルオロホスフェート、ヘキサフルオロアンチモネート、ヘキサフルオロアルセネート、ヘキサクロロアンチモネート、テトラ(フルオロフェニル)ボレート、テトラ(ジフルオロフェニル)ボレート、テトラ(トリフルオロフェニル)ボレート、テトラ(テトラフルオロフェニル)ボレート、テトラ(ペンタフルオロフェニル)ボレート、テトラ(ペルフルオロフェニル)ボレート、テトラ(トリフルオロメチルフェニル)ボレート、テトラ(ジ(トリフルオロメチル)フェニル)ボレート等が挙げられる。また、これらの陰イオンは、単独で用いても、2種類以上組み合わせて用いてもよい。さらに、過塩素酸イオン、トリフルオロメタンスルホン酸イオン、トルエンスルホン酸イオン、トリニトロトルエンスルホン酸イオン等などの酸発生剤を併用してもよい。   On the other hand, specific examples of anions include tetrafluoroborate, hexafluorophosphate, hexafluoroantimonate, hexafluoroarsenate, hexachloroantimonate, tetra (fluorophenyl) borate, tetra (difluorophenyl) borate, tetra (trifluoro). Phenyl) borate, tetra (tetrafluorophenyl) borate, tetra (pentafluorophenyl) borate, tetra (perfluorophenyl) borate, tetra (trifluoromethylphenyl) borate, tetra (di (trifluoromethyl) phenyl) borate and the like It is done. Moreover, these anions may be used independently or may be used in combination of 2 or more types. Furthermore, an acid generator such as perchlorate ion, trifluoromethanesulfonate ion, toluenesulfonate ion, trinitrotoluenesulfonate ion, or the like may be used in combination.

さらに、好ましく用いられる光カチオン開始剤の具体例としては、例えば、イルガキュアー250(チバ・スペシャリティー・ケミカルズ社製)、イルガキュアー290(BASF社製)、イルガキュアー784(チバ・スペシャリティー・ケミカルズ社製)、エサキュアー1064(ランベルティー社製)、WPI−124(和光純薬工業社製)、CYRAURE UVI6990(ユニオンカーバイト日本社製)、CPI−100P(サンアプロ社製)、PHOTO INITIATOR 2074(ソルベイジャパン社製)、アデカオプトマーSP−172(旭電化社製)、アデカオプトマーSP−170(旭電化社製)、アデカオプトマーSP−152(旭電化社製)、アデカオプトマーSP−150(旭電化社製)等が挙げられる。また、これらの光カチオン開始剤は、単独で用いても、2種類以上組み合わせて用いてもよい。   Furthermore, specific examples of the photocation initiator preferably used include, for example, Irgacure 250 (manufactured by Ciba Specialty Chemicals), Irgacure 290 (manufactured by BASF), Irgacure 784 (Ciba Specialty Chemicals). Esacure 1064 (Lamberti), WPI-124 (Wako Pure Chemical Industries), CYRAURE UVI 6990 (Union Carbide Japan), CPI-100P (San Apro), PHOTO INITIATOR 2074 (Solvay) Japan)), Adeka optomer SP-172 (Asahi Denka), Adeka optomer SP-170 (Asahi Denka), Adeka optomer SP-152 (Asahi Denka), Adeka optomer SP-150 (Made by Asahi Denka Co., Ltd.). These photocationic initiators may be used alone or in combination of two or more.

光硬化性化合物(A)および光硬化開始剤(B)は、これらを含有する光硬化性を有する混合物として用いることができる。このような混合物は、光硬化開始剤(B)を前記の光硬化性化合物(A)に溶解して得ることができ、光硬化性化合物(A)と光硬化開始剤(B)を共に有機溶剤に溶解して得ることもできる。さらに、必要に応じて第3成分として他の公知の成分、例えば、老化防止剤、レベリング剤、濡れ性改良剤、界面活性剤、可塑剤等の改質剤、紫外線吸収剤、防腐剤、抗菌剤などの安定剤、光増感剤、シランカップリング剤等を加えてもよい。   The photocurable compound (A) and the photocuring initiator (B) can be used as a photocurable mixture containing them. Such a mixture can be obtained by dissolving the photocuring initiator (B) in the photocurable compound (A), and both the photocurable compound (A) and the photocuring initiator (B) are organic. It can also be obtained by dissolving in a solvent. Furthermore, other known components as a third component as required, for example, anti-aging agents, leveling agents, wettability improvers, surfactants, modifiers such as plasticizers, ultraviolet absorbers, preservatives, antibacterial agents You may add stabilizers, such as an agent, a photosensitizer, a silane coupling agent.

<フッ素含有ポリマー(C)>
フッ素含有ポリマーは、下記一般式(1)で表される構造単位を含有する。本実施形態において、このフッ素含有ポリマーを特定の割合で含む光硬化性組成物を接着剤として利用することにより、反り、歪みの発生を抑制し、高い寸法精度の積層構造物を作製することができる。
<Fluorine-containing polymer (C)>
The fluorine-containing polymer contains a structural unit represented by the following general formula (1). In this embodiment, by using a photocurable composition containing this fluorine-containing polymer in a specific ratio as an adhesive, it is possible to suppress the occurrence of warpage and distortion and to produce a laminated structure with high dimensional accuracy. it can.

Figure 0006386370
Figure 0006386370

(式(1)中、R〜Rは、フッ素、フッ素を含有する炭素数1〜10のアルキル基、フッ素を含有する炭素数1〜10のアルコキシ基、またはフッ素を含有する炭素数2〜10のアルコキシアルキル基のいずれかである。R〜Rは互いに同一であっても異なっていてもよい。R〜Rは互いに結合して環構造を形成していてもよく、XはCHまたはOから選ばれる。) (In Formula (1), R 1 to R 4 are fluorine, a C 1-10 alkyl group containing fluorine, a C 1-10 alkoxy group containing fluorine, or a carbon number 2 containing fluorine. Or R 1 to R 4 may be the same or different from each other, R 1 to R 4 may be bonded to each other to form a ring structure, X is selected from CH 2 or O.)

一般式(1)においてR〜Rは、フッ素、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、トリフルオロエチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ヘキサフルオロイソプロピル基、ヘプタフルオロイソプロピル基、ヘキサフルオロ−2−メチルイソプロピル基、ペルフルオロ−2−メチルイソプロピル基、n−ペルフルオロブチル基、n−ペルフルオロペンチル基、ペルフルオロシクロペンチル基等のアルキル基の水素の一部または全てがフッ素で置換されたアルキル基等のフッ素を含有する炭素数1〜10のアルキル基;フルオロメトキシ基、ジフルオロメトキシ基、トリフルオロメトキシ基、トリフルオロエトキシ基、ペンタフルオロエトキシ基、ヘプタフルオロプロポキシ基、ヘキサフルオロイソプロポキシ基、ヘプタフルオロイソプロポキシ基、ヘキサフルオロ−2−メチルイソプロポキシ基、ペルフルオロ−2−メチルイソプロポキシ基、n−ペルフルオロブトキシ基、n−ペルフルオロペントキシ基、ペルフルオロシクロペントキシ基等のアルコキシ基の水素の一部または全てがフッ素で置換されたアルコキシ基等のフッ素を含有する炭素数1〜10のアルコキシ基;またはフルオロメトキシメチル基、ジフルオロメトキシメチル基、トリフルオロメトキシメチル基、トリフルオロエトキシメチル基、ペンタフルオロエトキシメチル基、ヘプタフルオロプロポキシメチル基、ヘキサフルオロイソプロポキシメチル基、ヘプタフルオロイソプロポキシメチル基、ヘキサフルオロ−2−メチルイソプロポキシメチル基、ペルフルオロ−2−メチルイソプロポキシメチル基、n−ペルフルオロブトキシメチル基、n−ペルフルオロペントキシメチル基、ペルフルオロシクロペントキシメチル基等のアルコキシアルキル基の水素の一部または全てがフッ素で置換されたアルコキシアルキル基等のフッ素を含有する炭素数2〜10のアルコキシアルキル基が例示される。
また、R〜Rが互いに結合して環構造を形成していてもよく、ペルフルオロシクロアルキル、酸素を介したペルフルオロシクロエーテル等の環を形成してもよい。
In the general formula (1), R 1 to R 4 are fluorine, fluoromethyl group, difluoromethyl group, trifluoromethyl group, trifluoroethyl group, pentafluoroethyl group, heptafluoropropyl group, hexafluoroisopropyl group, heptafluoro. Some or all of the hydrogen atoms in the alkyl group such as isopropyl group, hexafluoro-2-methylisopropyl group, perfluoro-2-methylisopropyl group, n-perfluorobutyl group, n-perfluoropentyl group, and perfluorocyclopentyl group are substituted with fluorine. A fluorine-containing alkyl group having 1 to 10 carbon atoms such as an alkyl group; a fluoromethoxy group, a difluoromethoxy group, a trifluoromethoxy group, a trifluoroethoxy group, a pentafluoroethoxy group, a heptafluoropropoxy group, a hexafoxy group; Oroisopropoxy group, heptafluoroisopropoxy group, hexafluoro-2-methylisopropoxy group, perfluoro-2-methylisopropoxy group, n-perfluorobutoxy group, n-perfluoropentoxy group, perfluorocyclopentoxy group, etc. A C1-C10 alkoxy group containing fluorine, such as an alkoxy group in which part or all of the hydrogen of the alkoxy group is substituted with fluorine; or a fluoromethoxymethyl group, difluoromethoxymethyl group, trifluoromethoxymethyl group, Fluoroethoxymethyl group, pentafluoroethoxymethyl group, heptafluoropropoxymethyl group, hexafluoroisopropoxymethyl group, heptafluoroisopropoxymethyl group, hexafluoro-2-methylisopropoxymethyl group, per Alkoxy in which some or all of the hydrogens of alkoxyalkyl groups such as uro-2-methylisopropoxymethyl, n-perfluorobutoxymethyl, n-perfluoropentoxymethyl, and perfluorocyclopentoxymethyl are substituted with fluorine Examples thereof include C2-C10 alkoxyalkyl groups containing fluorine such as alkyl groups.
R 1 to R 4 may be bonded to each other to form a ring structure, or a ring such as perfluorocycloalkyl or perfluorocycloether via oxygen may be formed.

フッ素含有ポリマーは、一般式(1)で表される構造単位1種類のみを有するものであってもよく、また、R〜Rのうち、いずれかが異なる種類の構造単位を含んでいてもよい。
さらに、本実施形態のフッ素含有ポリマーにおける一般式(1)のXは、−CH−または−O−から選ばれ、それぞれを単独に有してもよく、それぞれを含んでいてもよい。また、一般式(1)のXが−CH−または−O−を単独に、もしくはそれぞれを含む何れの場合であっても、R〜Rのうち、いずれかが異なる種類の構造単位を含んでいてもよい。
The fluorine-containing polymer may have only one type of structural unit represented by the general formula (1), and any one of R 1 to R 4 contains different types of structural units. Also good.
Furthermore, X in the general formula (1) in the fluorine-containing polymer of the present embodiment is selected from —CH 2 — or —O—, and each of them may be contained alone. In addition, in the case where X in the general formula (1) is —CH 2 — or —O— alone or each of them, a structural unit of a type in which any one of R 1 to R 4 is different. May be included.

一般式(1)で表される構造単位を含有するフッ素含有ポリマーの具体的な例として、ポリ(1,1,2−トリフルオロ−2−トリフルオロメチル−3,5−シクロペンチレンエチレン)、ポリ(1,2−ジフルオロ−1,2−ビス(トリフルオロメチル)−3,5−シクロペンチレンエチレン)、ポリ(1,1,2,2,3,3,3a, 6a−オクタフルオロシクロペンチル−4,6−シクロペンチレンエチレン)、ポリ(1,1,2,2,3,3,4,4,3a, 7a−デカフルオロシクロヘキシル−5,7−シクロペンチレンエチレン)、ポリ(1,1,2−トリフルオロ−2−ペルフルオロブチル−3,5−シクロペンチレンエチレン)、ポリ(1,2−ジフルオロ−1−トリフルオロメチル−2−ペルフルオロブチル−3,5−シクロペンチレンエチレン)、ポリ(1−フルオロ−1−ペルフルオロエチル−2,2−ビス(トリフルオロメチル))−3,5−シクロペンチレンエチレン)、ポリ(1,2−ジフルオロ−1−ペルフルオロプロパニル−2−トリフルオロメチル)−3,5−シクロペンチレンエチレン)、ポリ(1,1,2−トリフルオロ−2−ペルフルオロペンチル−3,5−シクロペンチレンエチレン)、ポリ(1,2−ジフルオロ−1−トリフルオロメチル−2−ペルフルオロブチル−3,5−シクロペンチレンエチレン)、ポリ(1,1,2−トリフルオロ−2−ペルフルオロヘキシル−3,5−シクロペンチレンエチレン)、ポリ(1,2−ジフルオロ−1−トリフルオロメチル−2−ペルフルオロペンチル−3,5−シクロペンチレンエチレン)、ポリ(1,1,3,3,3a, 6a−ヘキサフルオロフラニル−3,5−シクロペンチレンエチレン)、ポリ(1,1,2−トリフルオロ−2−トリフルオロメトキシ−3,5−シクロペンチレンエチレン)、ポリ(1,2−ジフルオロ−1,2−ビス(トリフルオロメトキシ)−3,5−シクロペンチレンエチレン)、ポリ(1,2−ジフルオロ−1−トリフルオロメトキシ−2−ペルフルオロエトキシ−3,5−シクロペンチレンエチレン)、ポリ(1,1,2−トリフルオロ−2−ペルフルオロブトキシ−3,5−シクロペンチレンエチレン)、ポリ(1,2−ジフルオロ−1−トリフルオロメトキシ−2−ペルフルオロブトキシ−3,5−シクロペンチレンエチレン)、ポリ(1−フルオロ−1−ペルフルオロエトキシ−2,2−ビス(トリフルオロメトキシ)−3,5−シクロペンチレンエチレン)、ポリ(1,2−ジフルオロ−1−ペルフルオロプロポキシ−2−トリフルオロメトキシ−3,5−シクロペンチレンエチレン)、ポリ(1,1,2−トリフルオロ−2−ペルフルオロペントキシ−3,5−シクロペンチレンエチレン)、ポリ(1,2−ジフルオロ−1−トリフルオロメトキシ−2−ペルフルオロブトキシ−3,5−シクロペンチレンエチレン)、ポリ(1,1,2−トリフルオロ−2−ペルフルオロヘトキシ−3,5−シクロペンチレンエチレン)、ポリ(1,2−ジフルオロ−1−トリフルオロメトキシ−2−ペルフルオロペンチル−3,5−シクロペンチレンエチレン)、ポリ(1,2−ジフルオロ−1−トリフルオロメトキシ−2−(2´,2´,2´-トリフルオロエトキシ)−3,5−シクロペンチレンエチレン)、ポリ(1,1,2−トリフルオロ−2−(2´, 2´, 3´, 3´ , 4´,4´,4´-ヘプタフルオロブトキシ)−3,5−シクロペンチレンエチレン)、ポリ(1−フルオロ−1−(2´, 2´, 2´, −トリフルオロエトキシ)−2,2−ビス(トリフルオロメトキシ))−3,5−シクロペンチレンエチレン)、ポリ(1,1,2−トリフルオロ−2−(1´,1´,1´-トリフルオロ-iso-プロポキシ)−3,5−シクロペンチレンエチレン)、ポリ(1,2−ジフルオロ−1−トリフルオロメトキシ−2−(2´, 2´, 3´, 3´ , 4´,4´,4´−ヘプタフルオロブトキシ)−3,5−シクロペンチレンエチレン)、ポリ(1,1,2−トリフルオロ−2−(2´, 2´, 3´, 3´ , 4´,4´,5´,5´,6´,6´,6´−ウンデカフルオロヘトキシ)−3,5−シクロペンチレンエチレン)等が挙げられる。   Specific examples of the fluorine-containing polymer containing the structural unit represented by the general formula (1) include poly (1,1,2-trifluoro-2-trifluoromethyl-3,5-cyclopentyleneethylene). , Poly (1,2-difluoro-1,2-bis (trifluoromethyl) -3,5-cyclopentyleneethylene), poly (1,1,2,2,3,3,3a, 6a-octafluoro Cyclopentyl-4,6-cyclopentyleneethylene), poly (1,1,2,2,3,3,4,4,3a, 7a-decafluorocyclohexyl-5,7-cyclopentyleneethylene), poly ( 1,1,2-trifluoro-2-perfluorobutyl-3,5-cyclopentyleneethylene), poly (1,2-difluoro-1-trifluoromethyl-2-perfluorobutyl-3,5-cyclope Tyleneethylene), poly (1-fluoro-1-perfluoroethyl-2,2-bis (trifluoromethyl))-3,5-cyclopentyleneethylene), poly (1,2-difluoro-1-perfluoropropanyl) -2-trifluoromethyl) -3,5-cyclopentyleneethylene), poly (1,1,2-trifluoro-2-perfluoropentyl-3,5-cyclopentyleneethylene), poly (1,2- Difluoro-1-trifluoromethyl-2-perfluorobutyl-3,5-cyclopentyleneethylene), poly (1,1,2-trifluoro-2-perfluorohexyl-3,5-cyclopentyleneethylene), poly (1,2-difluoro-1-trifluoromethyl-2-perfluoropentyl-3,5-cyclopentyleneethylene), poly (1,1,3,3,3a, 6a-hexafluorofuranyl-3,5-cyclopentyleneethylene), poly (1,1,2-trifluoro-2-trifluoromethoxy-3,5-cyclo Pentyleneethylene), poly (1,2-difluoro-1,2-bis (trifluoromethoxy) -3,5-cyclopentyleneethylene), poly (1,2-difluoro-1-trifluoromethoxy-2-) Perfluoroethoxy-3,5-cyclopentyleneethylene), poly (1,1,2-trifluoro-2-perfluorobutoxy-3,5-cyclopentyleneethylene), poly (1,2-difluoro-1-tri) Fluoromethoxy-2-perfluorobutoxy-3,5-cyclopentyleneethylene), poly (1-fluoro-1-perfluoroethoxy-2,2-bis (tri Fluoromethoxy) -3,5-cyclopentyleneethylene), poly (1,2-difluoro-1-perfluoropropoxy-2-trifluoromethoxy-3,5-cyclopentyleneethylene), poly (1,1,2 -Trifluoro-2-perfluoropentoxy-3,5-cyclopentyleneethylene), poly (1,2-difluoro-1-trifluoromethoxy-2-perfluorobutoxy-3,5-cyclopentyleneethylene), poly (1,1,2-trifluoro-2-perfluorohexoxy-3,5-cyclopentyleneethylene), poly (1,2-difluoro-1-trifluoromethoxy-2-perfluoropentyl-3,5-cyclo Pentyleneethylene), poly (1,2-difluoro-1-trifluoromethoxy-2- (2 ′, 2 ′, 2′-trif) Oloethoxy) -3,5-cyclopentyleneethylene), poly (1,1,2-trifluoro-2- (2 ′, 2 ′, 3 ′, 3 ′, 4 ′, 4 ′, 4′-heptafluoro) Butoxy) -3,5-cyclopentyleneethylene), poly (1-fluoro-1- (2 ′, 2 ′, 2 ′, -trifluoroethoxy) -2,2-bis (trifluoromethoxy))-3 , 5-cyclopentyleneethylene), poly (1,1,2-trifluoro-2- (1 ′, 1 ′, 1′-trifluoro-iso-propoxy) -3,5-cyclopentyleneethylene), Poly (1,2-difluoro-1-trifluoromethoxy-2- (2 ′, 2 ′, 3 ′, 3 ′, 4 ′, 4 ′, 4′-heptafluorobutoxy) -3,5-cyclopentylene Ethylene), poly (1,1,2-trifluoro-2- (2 ′, 2 ′, 3 ′, 3 ′, 4 ′, 4 ′) 5 '5' 6 ', 6', 6'-undecafluoro-het carboxymethyl) -3,5-cyclopentylene ethylene), and the like.

さらに、一般式(1)のR〜Rは等しく、Xが−O−であるポリ(4−オキサ−3,5−シクロペンチレンエチレン)の誘導体が挙げられ、これらフッ素系のポリマーからなるフィルムの光の透過性は全光線透過率が94%〜99%である。 Furthermore, derivatives of poly (4-oxa-3,5-cyclopentylene ethylene) in which R 1 to R 4 in the general formula (1) are the same and X is —O— are included. The light transmittance of the resulting film has a total light transmittance of 94% to 99%.

フッ素含有ポリマー(C)の分子量は、たとえば試料濃度3.0〜9.0mg/mlでゲルパーミュエーションクロマトグラフィー(GPC)によって測定したポリスチレン換算の重量平均分子量(Mw)において、3,000〜100,000であることが好ましく、5,000〜30,000であることがより好ましい。この重量平均分子量(Mw)を上記下限値以上とすることにより、本実施形態の光硬化性組成物を接着剤として利用し、光照射により光硬化性組成物を硬化させ積層構造物を作製した際に接着層のヒビなど生じず、良好な状態の積層構造物を得ることができる。また、重量平均分子量(Mw)を上記上限値以下とすることにより、光硬化性組成物を調製する際の優れたポリマーの溶解性を発現でき、ゲルなど生じず、接着剤として光照射硬化後の基材との界面を均一に保つことができ、膜厚精度が高い積層構造物を得ることができる。   The molecular weight of the fluorine-containing polymer (C) is, for example, from 3,000 to 3,000 in terms of polystyrene-converted weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) at a sample concentration of 3.0 to 9.0 mg / ml. 100,000 is preferable, and 5,000 to 30,000 is more preferable. By setting the weight average molecular weight (Mw) to the above lower limit or more, the photocurable composition of the present embodiment was used as an adhesive, and the photocurable composition was cured by light irradiation to produce a laminated structure. In this case, the adhesive layer is not cracked, and a laminated structure in a good state can be obtained. Moreover, by making a weight average molecular weight (Mw) below the said upper limit, the solubility of the outstanding polymer at the time of preparing photocurable composition can be expressed, a gel etc. do not arise, but after light irradiation hardening as an adhesive agent The interface with the base material can be kept uniform, and a laminated structure with high film thickness accuracy can be obtained.

また、重量平均分子量(Mw)と数平均分子量(Mn)との比である分子量分布(Mw/Mn)は、1.3〜5.0とすることが好ましく、1.5〜4.5とすることがより好ましく、1.7〜4.0とすることがさらに好ましい。この分子量分布(Mw/Mn)を上記下限値以上とすることにより、本実施形態の光硬化性組成物を接着剤として利用した積層構造物の接着層の靱性を向上させ、外部応力に起因したクラックや割れの発生を効果的に抑制することができる。一方で、分子量分布(Mw/Mn)を上記上限値以下とすることにより、光照射硬化後の接着層のオリゴマーなどの特に低分子量成分のブリードアウトを抑え、基材と接着層の界面を均一に保て膜厚精度が高い積層構造物を作製することができる。
すなわち、重量平均分子量(Mw)、および分子量分布(Mw/Mn)を上記した範囲とすることにより、基材間を接着する接着剤として、本実施形態の光硬化性組成物を好適に利用することができる。
The molecular weight distribution (Mw / Mn), which is the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn), is preferably 1.3 to 5.0, and is preferably 1.5 to 4.5. More preferably, it is more preferably 1.7 to 4.0. By setting the molecular weight distribution (Mw / Mn) to the above lower limit value or more, the toughness of the adhesive layer of the laminated structure using the photocurable composition of the present embodiment as an adhesive is improved, resulting from external stress. Generation of cracks and cracks can be effectively suppressed. On the other hand, by setting the molecular weight distribution (Mw / Mn) to the upper limit or less, bleeding out of low molecular weight components such as an oligomer of the adhesive layer after light irradiation curing is suppressed, and the interface between the substrate and the adhesive layer is made uniform. Therefore, a laminated structure with high film thickness accuracy can be manufactured.
That is, by setting the weight average molecular weight (Mw) and the molecular weight distribution (Mw / Mn) in the above ranges, the photocurable composition of the present embodiment is suitably used as an adhesive for adhering the substrates. be able to.

示差走査熱量分析によるフッ素含有ポリマー(C)のガラス転移温度は、50〜250℃とすることが好ましく、80〜200℃とすることがより好ましく、90〜180℃とすることがさらに好ましい。ガラス転移温度が上記範囲であると、光照射硬化の際の発熱や光源からの輻射熱による接着層のタレを防止でき、また使用環境下で形状を維持することができ、本実施形態の光硬化性組成物を、基材間を接着する接着剤として好適に利用することができる。   The glass transition temperature of the fluorine-containing polymer (C) by differential scanning calorimetry is preferably 50 to 250 ° C, more preferably 80 to 200 ° C, and still more preferably 90 to 180 ° C. When the glass transition temperature is in the above range, heat generation during light irradiation curing and sagging of the adhesive layer due to radiant heat from the light source can be prevented, and the shape can be maintained under the usage environment. The adhesive composition can be suitably used as an adhesive that bonds the substrates.

本発明の一般式(1)の部分的にフッ素化されたポリマーは、全フッ素化ポリマーとは異なり、主鎖が炭化水素で側鎖にフッ素原子を有する部分的なフッ素化ポリマーである構造に起因して極性が大きく、これにより、ポリマー合成時の溶剤である通常市販されているエーテル、ケトンなどの極性溶剤に対して良く溶解し、光硬化性化合物などの極性化合物にも優れた溶解性を示しながら、無機材料または有機材料で構成される基材に対して優れた接着性を示す。   Unlike the fully fluorinated polymer, the partially fluorinated polymer of the general formula (1) of the present invention has a structure in which the main chain is a partially fluorinated polymer having a hydrocarbon and a fluorine atom in a side chain. Due to its large polarity, it dissolves well in polar solvents such as commercially available ethers and ketones, which are solvents for polymer synthesis, and also has excellent solubility in polar compounds such as photocurable compounds. While exhibiting excellent adhesion to a substrate composed of an inorganic material or an organic material.

[フッ素含有ポリマー(C)の製造方法]
フッ素含有ポリマー(C)は、下記一般式(2)で表わされるモノマーを開環メタセシス重合触媒によって連鎖移動重合し、得られる重合体の主鎖のオレフィン部(二重結合部分)を水素添加することによって、合成することができる。
[Method for producing fluorine-containing polymer (C)]
In the fluorine-containing polymer (C), the monomer represented by the following general formula (2) is subjected to chain transfer polymerization using a ring-opening metathesis polymerization catalyst, and the olefin portion (double bond portion) of the main chain of the resulting polymer is hydrogenated. Can be synthesized.

Figure 0006386370
Figure 0006386370

(式(2)中、R〜RおよびXは、上述した式(1)と同義である。) (In the formula (2), R 1 to R 4 and X have the same meanings as the above-described formula (1).)

なお、本発明の効果を損なわない範囲であれば、一般式(2)で表されるモノマー以外のモノマーを含んでいてもよい。
ここで、本実施形態のフッ素含有ポリマーを合成するに際し、一般式(2)で表されるモノマーは、重合に寄与する化合物全体のうち、90重量%以上用いることが好ましく、95重量%以上用いることがより好ましく、98重量%以上用いることが更に好ましい。
In addition, if it is a range which does not impair the effect of this invention, monomers other than the monomer represented by General formula (2) may be included.
Here, in synthesizing the fluorine-containing polymer of the present embodiment, the monomer represented by the general formula (2) is preferably used in an amount of 90% by weight or more, and 95% by weight or more of the whole compound contributing to the polymerization. It is more preferable to use 98% by weight or more.

本実施形態の一般式(1)で表されるフッ素含有ポリマー(C)は、一般式(2)で表されるモノマーを開環メタセシス重合した後に、主鎖二重結合を水添したフッ素含有ポリマーである。開環メタセシス重合は、Schrock触媒が好ましく用いられ、Grubbs触媒を用いても良く、特に、極性モノマーに対する重合触媒活性を高め、工業的に優れた製造方法を実現することが可能となる。なお、これらの開環メタセシス重合触媒は、単独で用いてもよく、二種以上を組み合わせて用いてもよい。また、古典的な有機遷移金属錯体、遷移金属ハロゲン化物または遷移金属酸化物と、助触媒としてのルイス酸との組み合せからなる開環メタセシス重合触媒を用いることもできる。   The fluorine-containing polymer (C) represented by the general formula (1) of the present embodiment is a fluorine-containing polymer in which the main chain double bond is hydrogenated after ring-opening metathesis polymerization of the monomer represented by the general formula (2). It is a polymer. In the ring-opening metathesis polymerization, a Schrock catalyst is preferably used, and a Grubbs catalyst may be used. In particular, the polymerization catalyst activity for polar monomers is enhanced, and an industrially excellent production method can be realized. These ring-opening metathesis polymerization catalysts may be used alone or in combination of two or more. A ring-opening metathesis polymerization catalyst comprising a combination of a classic organic transition metal complex, transition metal halide or transition metal oxide and a Lewis acid as a cocatalyst can also be used.

また、開環メタセシス重合を行う時は分子量、およびその分布を制御するために、連鎖移動剤としてオレフィンまたはジエンを使用することができる。オレフィンとしては、例えば、エチレン、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン等のα−オレフィンまたはこれらのフッ素含有オレフィンを用いることができる。例えば、ビニルトリメチルシラン、アリルトリメチルシラン、アリルトリエチルシラン、アリルトリイソプロピルシラン等のケイ素含有オレフィンまたはこれらのフッ素およびケイ素含有オレフィン等があげられる。また、ジエンとしては、1,4−ペンタジエン、1,5−ヘキサジエン、1,6−ヘプタジエン等の非共役系ジエンまたはこれらのフッ素含有非共役系ジエンがあげられる。これらオレフィン、フッ素含有オレフィンまたはジエンはそれぞれ単独で用いてもよく、2種類以上を併用しても良い。   Further, when performing ring-opening metathesis polymerization, an olefin or a diene can be used as a chain transfer agent in order to control the molecular weight and its distribution. As an olefin, alpha-olefins, such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, or these fluorine-containing olefins can be used, for example. Examples thereof include silicon-containing olefins such as vinyltrimethylsilane, allyltrimethylsilane, allyltriethylsilane, and allyltriisopropylsilane, and fluorine and silicon-containing olefins thereof. Examples of the diene include nonconjugated dienes such as 1,4-pentadiene, 1,5-hexadiene, 1,6-heptadiene, and fluorine-containing nonconjugated dienes. These olefins, fluorine-containing olefins or dienes may be used alone or in combination of two or more.

また、モノマーの開環メタセシス重合は、無溶剤でも溶剤を使用しても良いが、特に使用する溶剤としては、テトラヒドロフラン、ジエチルエーテル、ジブチルエーテル、ジメトキシエタンもしくはジオキサン等のエーテル類、酢酸エチル、酢酸プロピルもしくは酢酸ブチル等のエステル類、ベンゼン、トルエン、キシレンもしくはエチルベンゼン等の芳香族炭化水素、ペンタン、ヘキサンもしくはヘプタン等の脂肪族炭化水素、シクロペンタン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサンもしくはデカリン等の脂肪族環状炭化水素、メチレンジクロライド、ジクロロエタン、ジクロロエチレン、テトラクロロエタン、クロロベンゼンもしくはトリクロロベンゼン等のハロゲン化炭化水素、フルオロベンゼン、ジフルオロベンゼン、ヘキサフルオロベンゼン、トリフルオロメチルベンゼン、メタキシレンヘキサフルオライド等のフッ素含有芳香族炭化水素、ペルフルオロヘキサン等のフッ素含有脂肪族炭化水素、ペルフルオロシクロデカリン等のフッ素含有脂肪族環状炭化水素、またはペルフルオロ−2−ブチルテトラヒドロフラン等のフッ素含有エーテル類が挙げられる。これらは、単独で用いてもよく、2種類以上を組み合わせて使用しても良い。   In addition, the ring-opening metathesis polymerization of the monomer may be solventless or may use a solvent. Particularly, the solvent to be used includes ethers such as tetrahydrofuran, diethyl ether, dibutyl ether, dimethoxyethane or dioxane, ethyl acetate, acetic acid. Esters such as propyl or butyl acetate, aromatic hydrocarbons such as benzene, toluene, xylene or ethylbenzene, aliphatic hydrocarbons such as pentane, hexane or heptane, fats such as cyclopentane, cyclohexane, methylcyclohexane, dimethylcyclohexane or decalin Aromatic hydrocarbons, methylene dichloride, dichloroethane, dichloroethylene, tetrachloroethane, halogenated hydrocarbons such as chlorobenzene or trichlorobenzene, fluorobenzene, difluro Fluorine-containing aromatic hydrocarbons such as rhobenzene, hexafluorobenzene, trifluoromethylbenzene, metaxylene hexafluoride, fluorine-containing aliphatic hydrocarbons such as perfluorohexane, fluorine-containing aliphatic cyclic hydrocarbons such as perfluorocyclodecalin, or Examples include fluorine-containing ethers such as perfluoro-2-butyltetrahydrofuran. These may be used alone or in combination of two or more.

モノマーの開環メタセシス重合では、該モノマーの反応性および重合溶剤ヘの溶解性によっても異なるが、モノマー溶液に対するモノマーの濃度は5〜100質量%であることが好ましく、10〜60質量%であることがより好ましい。また、反応温度は、−30〜150℃であることが好ましく、30〜100℃であることがより好ましい。また、反応時間は、10分〜120時間であることが好ましく、30分〜48時間であることがより好ましい。さらに、ブチルアルデヒド等のアルデヒド類、アセトン等のケトン類、メタノール等のアルコール類、水等の失活剤で反応を停止し、重合体の溶液を得ることができる。   In the ring-opening metathesis polymerization of the monomer, the concentration of the monomer with respect to the monomer solution is preferably 5 to 100% by mass, and preferably 10 to 60% by mass, depending on the reactivity of the monomer and solubility in the polymerization solvent. It is more preferable. Moreover, it is preferable that reaction temperature is -30-150 degreeC, and it is more preferable that it is 30-100 degreeC. The reaction time is preferably 10 minutes to 120 hours, more preferably 30 minutes to 48 hours. Furthermore, the reaction can be stopped with an aldehyde such as butyraldehyde, a ketone such as acetone, an alcohol such as methanol, or a quenching agent such as water, to obtain a polymer solution.

開環メタセシス重合で得られたポリマーの主鎖の二重結合部を水素添加するための触媒は、水素添加できる触媒であれば、均一系金属錯体触媒でも不均一系の金属担持触媒のいずれであってもよい。均一系金属錯体触媒として、例えば、クロロトリス(トリフェニルホスフィン)ロジウム、ジクロロトリス(トリフェニルホスフィン)オスミウム、ジクロロヒドリドビス(トリフェニルホスフィン)イリジウム、ジクロロトリス(トリフェニルホスフィン)ルテニウム、ジクロロテトラキス(トリフェニルホスフィン)ルテニウム、クロロヒドリドカルボニルトリス(トリフェニルホスフィン)ルテニウム、ジクロロトリス(トリメチルホスフィン)ルテニウム等が挙げられ、また、不均一系金属担持触媒として、例えば、活性炭担持パラジウム、アルミナ担持パラジウム、活性炭担持ロジウム、アルミナ担持ロジウム、活性炭担持ルテニウム、アルミナ担持ルテニウム等が挙げられる。これら水添触媒は、単独で用いてもよく、または二種類以上を組合せて使用することもできる。   The catalyst for hydrogenating the double bond part of the main chain of the polymer obtained by ring-opening metathesis polymerization can be either a homogeneous metal complex catalyst or a heterogeneous metal supported catalyst as long as it can be hydrogenated. There may be. Examples of homogeneous metal complex catalysts include chlorotris (triphenylphosphine) rhodium, dichlorotris (triphenylphosphine) osmium, dichlorohydridobis (triphenylphosphine) iridium, dichlorotris (triphenylphosphine) ruthenium, dichlorotetrakis (triphenyl) Phosphine) ruthenium, chlorohydridocarbonyltris (triphenylphosphine) ruthenium, dichlorotris (trimethylphosphine) ruthenium and the like, and examples of heterogeneous metal-supported catalysts include palladium on activated carbon, palladium on alumina, and rhodium on activated carbon. , Alumina-supported rhodium, activated carbon-supported ruthenium, alumina-supported ruthenium, and the like. These hydrogenation catalysts may be used alone or in combination of two or more.

水素添加に用いられる溶剤としては、ポリマーを溶解し、かつ、溶剤自身が水素添加されないものであれば特に制限はなく、例えば、テトラヒドロフラン、ジエチルエーテル、ジブチルエーテル、ジメトキシエタンなどのエーテル類、酢酸エチル、酢酸プロピルまたは酢酸ブチル等のエステル類、ベンゼン、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素、ペンタン、ヘキサン、ヘプタンなどの脂肪族炭化水素、シクロペンタン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、デカリンなどの脂肪族環状炭化水素、メチレンジクロリド、クロロホルム、ジクロロエタン、ジクロロエチレン、テトラクロロエタン、クロロベンゼン、トリクロロベンゼンなどのハロゲン化炭化水素、フルオロベンゼン、ジフルオロベンゼン、ヘキサフルオロベンゼン、トリフルオロメチルベンゼン、メタキシレンヘキサフルオライド等のフッ素含有芳香族炭化水素、ペルフルオロヘキサン等のフッ素含有脂肪族炭化水素、ペルフルオロシクロデカリン等のフッ素含有脂肪族環状炭化水素、ペルフルオロ−2−ブチルテトラヒドロフラン等のフッ素含有エーテル類等が挙げられる。これらは単独で用いてもよく、2種以上を組合せて使用してもよい。   The solvent used for hydrogenation is not particularly limited as long as it dissolves the polymer and the solvent itself is not hydrogenated. For example, ethers such as tetrahydrofuran, diethyl ether, dibutyl ether, dimethoxyethane, ethyl acetate, etc. , Esters such as propyl acetate or butyl acetate, aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, aliphatic hydrocarbons such as pentane, hexane, heptane, cyclopentane, cyclohexane, methylcyclohexane, dimethylcyclohexane, decalin, etc. Aliphatic cyclic hydrocarbons, methylene dichloride, chloroform, dichloroethane, dichloroethylene, tetrachloroethane, chlorobenzene, trichlorobenzene and other halogenated hydrocarbons, fluorobenzene, difluro Fluorine-containing aromatic hydrocarbons such as rhobenzene, hexafluorobenzene, trifluoromethylbenzene, metaxylene hexafluoride, fluorine-containing aliphatic hydrocarbons such as perfluorohexane, fluorine-containing aliphatic cyclic hydrocarbons such as perfluorocyclodecalin, perfluoro And fluorine-containing ethers such as 2-butyltetrahydrofuran. These may be used alone or in combination of two or more.

上記の主鎖のオレフィン部の水素添加反応は、水素圧力が常圧〜10MPaであることが好ましく、0.5〜8MPaであることがより好ましく、2〜5MPaであることがとくに好ましい。また、反応温度は、0〜200℃の温度であることが好ましく、室温〜150℃であることがより好ましく、50〜100℃であることがとくに好ましい。水素添加反応の実施様式は、特に制限はないが、例えば、触媒を溶剤中に分散または溶解して行う方法、触媒をカラムなどに充填し、固定相としてポリマー溶液を流通させて行う方法などが挙げられる。   In the hydrogenation reaction of the olefin portion of the main chain, the hydrogen pressure is preferably normal pressure to 10 MPa, more preferably 0.5 to 8 MPa, and particularly preferably 2 to 5 MPa. Moreover, it is preferable that reaction temperature is the temperature of 0-200 degreeC, It is more preferable that it is room temperature-150 degreeC, It is especially preferable that it is 50-100 degreeC. The mode of carrying out the hydrogenation reaction is not particularly limited. For example, there are a method in which the catalyst is dispersed or dissolved in a solvent, a method in which the catalyst is packed in a column and the polymer solution is circulated as a stationary phase, and the like. Can be mentioned.

さらに、主鎖のオレフィン部の水素添加処理は、水素添加処理前のポリマーの重合溶液を貧溶剤に析出させポリマーを単離した後に、再度溶剤に溶解して水素添加処理を行なっても、重合溶液からポリマーを単離することなく、上記の水添触媒で水素添加処理を行なってもよく、特に制限はない。   Furthermore, the hydrogenation treatment of the olefin portion of the main chain can be carried out by polymerizing the polymer solution before the hydrogenation treatment in a poor solvent and isolating the polymer, then dissolving it in the solvent again and performing the hydrogenation treatment. The hydrogenation treatment may be performed with the above hydrogenation catalyst without isolating the polymer from the solution, and there is no particular limitation.

また、ポリマーのオレフィン部の水素添加率は50%以上であることが好ましく、70〜100%であることがより好ましく、90〜100%であることがとくに好ましい。水素添加率を上記下限値以上とすることにより、オレフィン部において、光吸収に起因した劣化や成形時の加熱に起因した酸化が生じることを抑制し、基材との接着性を良好なものとすることができる。   Moreover, it is preferable that the hydrogenation rate of the olefin part of a polymer is 50% or more, It is more preferable that it is 70 to 100%, It is especially preferable that it is 90 to 100%. By setting the hydrogenation rate to the above lower limit value or more, in the olefin part, it is possible to suppress deterioration due to light absorption and oxidation due to heating during molding, and to have good adhesion to the substrate. can do.

水添後、特に、活性炭担持パラジウム、アルミナ担持パラジウムなどの固体触媒を好ましく用いる場合のポリマー溶液からポリマーを取得する方法は、特に制限はないが、例えば、ろ過、遠心分離、デカンテーション等の方法でポリマーを取得し、撹拌下の貧溶剤に反応溶液を排出する方法、反応溶液中にスチームを吹き込むスチームストリッピング等の方法によってポリマーを析出させる方法、または、反応溶液から溶剤を加熱等によって蒸発除去する方法等が挙げられる。   The method for obtaining the polymer from the polymer solution after hydrogenation, especially when a solid catalyst such as activated carbon-supported palladium or alumina-supported palladium is preferably used is not particularly limited. For example, filtration, centrifugation, decantation, etc. The polymer is obtained by the method, the reaction solution is discharged into a poor solvent under stirring, the polymer is precipitated by a method such as steam stripping in which steam is blown into the reaction solution, or the solvent is evaporated from the reaction solution by heating or the like. The method of removing etc. are mentioned.

また、不均一系金属担持触媒を利用して水添反応を実施した場合は、合成液をろ過して金属担持触媒をろ別した後に、上記した方法でポリマーを取得する事もできる。なお、粒径の大きな触媒成分を予めデカンテーション、延伸分離などの方法でポリマー溶液中に沈降させ、上澄みを採取し、触媒成分を粗取りした溶液をろ過し、上記した方法でポリマーを取得しても良い。特に、触媒成分を精密ろ過することが、好適であり、ろ過フィルターの目開きは、好ましくは、10μm〜0.05μm、特に好ましくは、10μm〜0.10μm、さらに好ましくは、5μm〜0.10μmである。   In addition, when the hydrogenation reaction is performed using a heterogeneous metal-supported catalyst, the polymer can be obtained by the above-described method after the synthesis solution is filtered to separate the metal-supported catalyst. In addition, a catalyst component having a large particle diameter is preliminarily settled in a polymer solution by a method such as decantation or stretch separation, a supernatant is collected, a solution obtained by roughly removing the catalyst component is filtered, and a polymer is obtained by the method described above. May be. In particular, it is suitable to microfilter the catalyst component, and the opening of the filter is preferably 10 μm to 0.05 μm, particularly preferably 10 μm to 0.10 μm, and more preferably 5 μm to 0.10 μm. It is.

本実施形態において水添後のポリマー溶液からフッ素含有ポリマー(C)を回収した後に再度溶剤に溶解して、光硬化性化合物(A)と混合して光硬化性組成物としても、直接、光硬化性化合物(A)に溶解して光硬化性組成物としても、フッ素含有ポリマー(C)を回収することなく水添後のポリマー溶液をそのまま光硬化性化合物(A)と混合して光硬化性組成物としても良い。水添後のポリマーの溶液からフッ素含有ポリマー(C)を回収する方法は、特に制限はないが、例えば、撹拌下の貧溶剤に反応溶液を排出する方法、反応溶液中にスチームを吹き込むスチームストリッピングの方法等の方法によりポリマーを析出させ、濾過、遠心分離、デカンテーション等の方法でポリマーを回収する方法、または反応溶液から溶剤を加熱等により蒸発除去する方法等が挙げられる。また、本発明の目的を損なわない範囲で回収したポリマーに紫外線吸収剤、酸化防止剤、難燃剤、帯電防止剤、レべリング剤等の公知の各種添加剤を配合することができる。   In this embodiment, the fluorine-containing polymer (C) is recovered from the polymer solution after hydrogenation, and then dissolved again in a solvent, mixed with the photocurable compound (A), and directly as a photocurable composition. The photocured composition can be dissolved in the curable compound (A), and the hydrogenated polymer solution can be directly mixed with the photocurable compound (A) without recovering the fluorine-containing polymer (C). It is good also as a sex composition. The method for recovering the fluorine-containing polymer (C) from the polymer solution after hydrogenation is not particularly limited. For example, a method of discharging the reaction solution into a poor solvent under stirring, a steam stroking steam into the reaction solution, and the like. Examples thereof include a method of precipitating a polymer by a method such as a ripping method and recovering the polymer by a method such as filtration, centrifugation, decantation, or a method of evaporating and removing a solvent from a reaction solution by heating. Moreover, well-known various additives, such as a ultraviolet absorber, antioxidant, a flame retardant, an antistatic agent, and a leveling agent, can be mix | blended with the polymer collect | recovered in the range which does not impair the objective of this invention.

接着剤のワニスを調製する為に上記のフッ素含有ポリマー(C)を溶剤に溶解することもできる。例えば、メタキシレンヘキサフロライド、ベンゾトリフロライド、フルオロベンゼン、ジフルオロベンゼン、ヘキサフルオロベンゼン、トリフルオロメチルベンゼン、ビス(トリフルオロメチル)ベンゼン、メタキシレンヘキサフルオリド等のフッ素含有芳香族炭化水素、ペルフルオロヘキサン、ペルフルオロオクタン等のフッ素含有脂肪族炭化水素、ペルフルオロシクロデカリン等のフッ素含有脂肪族環状炭化水素、ペルフルオロ−2−ブチルテトラヒドロフラン等のフッ素含有エーテル類、クロロホルム、クロルベンゼン、トリクロルベンゼンなどのハロゲン化炭化水素、テトラヒドロフラン、ジブチルエーテル、1,2−ジメトキシエタン、ジオキサン、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のエーテル類、酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル類、または、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、メタノール、エタノール、イソプロピルアルコール、2−メトキシエタノール、3−メトキシプロパノール等のアルコール類などが挙げられる。これらのうちから溶解性、製膜性を考慮して選択でき、フッ素含有ポリマー(C)を溶解する有機溶剤と同一でも異なってもよく、単独でも2種類以上の溶剤を用いてもよい。   In order to prepare an adhesive varnish, the above-mentioned fluorine-containing polymer (C) can also be dissolved in a solvent. For example, fluorine-containing aromatic hydrocarbons such as metaxylene hexafluoride, benzotrifluoride, fluorobenzene, difluorobenzene, hexafluorobenzene, trifluoromethylbenzene, bis (trifluoromethyl) benzene, metaxylene hexafluoride, Fluorine-containing aliphatic hydrocarbons such as perfluorohexane and perfluorooctane, fluorine-containing aliphatic cyclic hydrocarbons such as perfluorocyclodecalin, fluorine-containing ethers such as perfluoro-2-butyltetrahydrofuran, halogens such as chloroform, chlorobenzene, and trichlorobenzene Hydrocarbon, tetrahydrofuran, dibutyl ether, 1,2-dimethoxyethane, dioxane, propylene glycol monomethyl ether, dipropylene glycol monomethyl Ethers, ethers such as propylene glycol monomethyl ether acetate, esters such as ethyl acetate, propyl acetate and butyl acetate, or ketones such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, methanol, ethanol, isopropyl alcohol, 2-methoxyethanol And alcohols such as 3-methoxypropanol. Among these, it can be selected in consideration of solubility and film-forming property, and may be the same as or different from the organic solvent for dissolving the fluorine-containing polymer (C), or may be used alone or in combination of two or more kinds.

特に、フッ素含有ポリマー(C)溶液に、光硬化性化合物(A)および光硬化開始剤(B)を添加して本発明の光硬化性組成物を調製する際は、製膜性の観点から大気圧下で70℃以上の沸点をもつ溶剤が好ましい。
このような沸点の溶剤を用いることで、蒸発速度を適切な速度に制御することができ、接着層の膜厚を所望の範囲に制御しやすくなる。またこれにより、光照射硬化後の接着強度を高めることができる。
In particular, when preparing the photocurable composition of the present invention by adding the photocurable compound (A) and the photocuring initiator (B) to the fluorine-containing polymer (C) solution, from the viewpoint of film forming properties. A solvent having a boiling point of 70 ° C. or higher under atmospheric pressure is preferred.
By using a solvent having such a boiling point, the evaporation rate can be controlled to an appropriate rate, and the thickness of the adhesive layer can be easily controlled within a desired range. Thereby, the adhesive strength after light irradiation hardening can be raised.

フッ素含有ポリマー(C)を溶解させる濃度は、1.0〜99.0質量%であることが好ましく、5.0〜90.0質量%であることがより好ましく、10.0〜80.0質量%であることがとくに好ましい。濃度は、ポリマーの溶解性、ろ過プロセスへの適応性、光硬化性組成物を調製するプロセス適応性を考慮して選択してもよい。   The concentration at which the fluorine-containing polymer (C) is dissolved is preferably 1.0 to 99.0% by mass, more preferably 5.0 to 90.0% by mass, and 10.0 to 80.0%. It is especially preferable that it is mass%. The concentration may be selected considering the solubility of the polymer, the adaptability to the filtration process, and the process adaptability to prepare the photocurable composition.

<自身は光硬化しない溶剤(D)>
本実施形態の光硬化性組成物には、必要に応じて、自身は光硬化しない溶剤(D)が含まれる。
この溶剤としては、フッ素含有ポリマー(C)を溶解することのできる溶媒を選択することが好ましい。また、フッ素含有ポリマー(C)を製造する際の反応において用いられた溶剤をそのまま用いても、粘度調整のために濃縮して用いても良い。
また、溶剤の具体例としては、前記、接着剤のワニスを調製するために用いられる溶剤と等しい種類の溶剤が用いられ、同一でも異なってもよく、単独でも2種類以上の溶剤を用いてもよい。
<Solvent that does not cure itself (D)>
In the photocurable composition of this embodiment, the solvent (D) which does not self-harden is contained as needed.
As this solvent, it is preferable to select a solvent capable of dissolving the fluorine-containing polymer (C). Further, the solvent used in the reaction for producing the fluorine-containing polymer (C) may be used as it is, or may be concentrated for viscosity adjustment.
As specific examples of the solvent, the same type of solvent as that used for preparing the adhesive varnish is used, which may be the same or different, and may be used alone or in combination of two or more types. Good.

[光硬化性組成物の調製方法]
本実施形態において、光硬化性化合物(A)、光硬化開始剤(B)、フッ素含有ポリマー(C)を混合する方法としては、上述のフッ素含有ポリマー(C)溶液に光硬化性化合物(A)および光硬化開始剤(B)を添加して混合しても、フッ素含有ポリマー(C)を光硬化性化合物(A)に直接溶解して混合してもよい。さらに、本発明の目的を損なわない範囲で、光硬化性組成物に紫外線吸収剤、酸化防止剤、難燃剤、帯電防止剤、レべリング剤等の公知の各種添加剤を配合することができる。
[Method for Preparing Photocurable Composition]
In this embodiment, as a method of mixing the photocurable compound (A), the photocuring initiator (B), and the fluorine-containing polymer (C), the photocurable compound (A) is added to the above-mentioned fluorine-containing polymer (C) solution. ) And the photocuring initiator (B) may be added and mixed, or the fluorine-containing polymer (C) may be directly dissolved and mixed in the photocurable compound (A). Furthermore, various known additives such as an ultraviolet absorber, an antioxidant, a flame retardant, an antistatic agent, and a leveling agent can be blended in the photocurable composition within a range not impairing the object of the present invention. .

光硬化性化合物(A)、光硬化開始剤(B)、フッ素含有ポリマー(C)を混合した光硬化性組成物の樹脂成分濃度は、0.5〜99.5質量%であることが好ましく、1〜99質量%であることがより好ましく、2〜98質量%であることがとくに好ましい。樹脂成分濃度は、溶液ろ過プロセスへの適応性、塗工性、接着層の膜厚を考慮して適宜調整することができる。   The resin component concentration of the photocurable composition obtained by mixing the photocurable compound (A), the photocuring initiator (B), and the fluorine-containing polymer (C) is preferably 0.5 to 99.5% by mass. 1 to 99% by mass is more preferable, and 2 to 98% by mass is particularly preferable. The resin component concentration can be appropriately adjusted in consideration of adaptability to the solution filtration process, coating properties, and the thickness of the adhesive layer.

調製した光硬化性組成物はフィルターを通過させてろ過することができる。その目的として光硬化性組成物から異物等を低減する必要がある場合は、特に好ましい。ろ過により、接着剤の基材間での接触不良を防止し、安定的に積層構造物を得ることができる。   The prepared photocurable composition can be filtered through a filter. This is particularly preferred when it is necessary to reduce foreign matter or the like from the photocurable composition for that purpose. By filtration, contact failure between adhesive base materials can be prevented, and a laminated structure can be stably obtained.

ここで用いられるろ過フィルターの目開きは、好ましくは、10μm〜0.05μm、特に好ましくは、10μm〜0.1μm、さらに好ましくは、5μm〜0.1μmである。ろ過のプロセスは、孔径の大きなフィルターから小さなフィルターへポリマー溶液を送る多段プロセスでも、直接、孔径の小さなフィルターへ光硬化性組成物を送る単一プロセスでも良い。フィルターの材質は、テフロン(登録商標)、ポリプロピレン(PP)、ポリエーテルスルホン(PES)、セルロースなどの有機材料からなるものでも、ガラス繊維、金属などの無機材料からなるものでも良く、光硬化性組成物の特性、プロセス適応性から好適に選ぶことができる。   The opening of the filtration filter used here is preferably 10 μm to 0.05 μm, particularly preferably 10 μm to 0.1 μm, and further preferably 5 μm to 0.1 μm. The filtration process may be a multi-stage process in which the polymer solution is sent from a filter with a large pore size to a small filter, or a single process in which the photocurable composition is sent directly to a filter with a small pore size. The material of the filter may be made of an organic material such as Teflon (registered trademark), polypropylene (PP), polyethersulfone (PES), or cellulose, or may be made of an inorganic material such as glass fiber or metal. It can be suitably selected from the characteristics of the composition and process adaptability.

また、光硬化性組成物をフィルターへ送る方法としては、圧力差を利用する方法でも、スクリューなどを介して機械的な駆動によって光硬化性組成物をフィルターへ送液する方法でも良い。さらに、ろ過の温度は、フィルター性能、光硬化性化合物の安定性、光硬化性組成物の粘度、ポリマーの溶解性を考慮した範囲で選ばれ、室温〜200℃であることが好ましく、室温〜150℃であることがより好ましく、室温〜100℃であることが特に好ましい。   Moreover, as a method of sending the photocurable composition to the filter, a method using a pressure difference or a method of sending the photocurable composition to the filter by mechanical driving via a screw or the like may be used. Further, the filtration temperature is selected within the range considering the filter performance, the stability of the photocurable compound, the viscosity of the photocurable composition, and the solubility of the polymer, and is preferably room temperature to 200 ° C. It is more preferable that it is 150 degreeC, and it is especially preferable that it is room temperature-100 degreeC.

[積層構造物の製造方法]
続いて、本実施形態に係る積層構造物の製造方法について説明する。
本実施形態の積層構造物の製造方法は、無機材料または有機材料で構成される第1の基材と、無機材料または有機材料で構成される第2の基材と、前記第1の基材と前記第2の基材とを接着する接着層とを備える積層構造物の製造方法であって、積層構造物に備えられる前記第1の基材と、前記第2の基材のうち、少なくともいずれか一方は、光硬化性化合物の光照射硬化に必要なだけの光透過性を有する基材であることを特徴とする。
また、当該積層構造物の製造方法は、第1の基材と前記第2の基材のうち少なくともいずれか一方の表面に、上記の光硬化性組成物を塗布する塗布工程と、前記光硬化性組成物を塗布した表面を介して、前記第1の基材と前記第2の基材とを貼り合せる積層工程と、前記光透過性を有する基材を介して光を照射する光照射工程と、を含むことを特徴とする。
[Manufacturing method of laminated structure]
Then, the manufacturing method of the laminated structure concerning this embodiment is demonstrated.
The manufacturing method of the laminated structure of the present embodiment includes a first base material composed of an inorganic material or an organic material, a second base material composed of an inorganic material or an organic material, and the first base material. And a bonding layer that adheres the second base material, wherein the first base material provided in the laminated structure and the second base material are at least one of the first base material and the second base material. Either one is characterized in that it is a base material having a light transmittance required for light irradiation curing of the photocurable compound.
Moreover, the manufacturing method of the said laminated structure is the application | coating process which apply | coats said photocurable composition to the surface of at least any one among a 1st base material and a said 2nd base material, and the said photocuring. A laminating step of bonding the first base material and the second base material through a surface coated with a conductive composition, and a light irradiation step of irradiating light through the light-transmitting base material It is characterized by including these.

本実施形態の積層構造物の製造方法に用いることのできる第1の基材11と第2の基材12は、前述の基材のなかから適宜選択すればよい。ただし、第1の基材11と、第2の基材12のうち、少なくともいずれか一方は、光透過性を有する基材である。   What is necessary is just to select suitably the 1st base material 11 and the 2nd base material 12 which can be used for the manufacturing method of the laminated structure of this embodiment from the above-mentioned base materials. However, at least one of the first base material 11 and the second base material 12 is a light-transmitting base material.

(塗布工程)
本実施形態の積層構造物の製造方法における塗布工程の方法としては、特に制限はないが、例えば、前述の光硬化性組成物を、テーブルコート、スピンコート、ディップコート、ダイコート、スプレーコート、バーコート、ロールコート、カーテンフローコートなどにより基材に塗布する方法が挙げられる。
(Coating process)
The method for the coating process in the method for producing a laminated structure of the present embodiment is not particularly limited. For example, the above-mentioned photocurable composition is applied to a table coat, spin coat, dip coat, die coat, spray coat, bar. The method of apply | coating to a base material by a coat | court, a roll coat, curtain flow coat etc. is mentioned.

さらに、基材に塗布した光硬化性組成物は、自身は光硬化しない有機溶剤を含む場合は、塗工した基材をヒートプレート、加熱炉や熱風などの方法で加熱しても良く、これらを組み合わせたプロセスを利用して加熱し、有機溶剤を除去して用いられる。この加熱温度は、基材によるが、通常は、室温〜250℃であることが好ましく、40〜220℃であることがより好ましく、特に好ましくは、60〜200℃である。また、これらの温度は、光硬化性化合物の安定性、光硬化性組成物の特性、塗布層(接着層)の厚み、基材の耐熱性を考慮して選ぶことができる。さらに、加熱時間は通常、1秒〜2時間であり、好ましくは30秒〜1時間であり、さらに好ましくは30秒〜10分である。温度、時間の設定はそれぞれを2種類以上の多段の条件で乾燥させても良く、塗膜を乾燥する時間は、溶剤の沸点、接着層の厚み、プロセス要件を考慮した条件から選択する事ができる。これらによって、基材上に塗布層が形成される。   Furthermore, when the photocurable composition applied to the base material contains an organic solvent that is not photocured by itself, the coated base material may be heated by a method such as a heat plate, a heating furnace, or hot air. It is used by removing the organic solvent by heating using a combined process. Although this heating temperature depends on the substrate, it is usually preferably room temperature to 250 ° C, more preferably 40 to 220 ° C, and particularly preferably 60 to 200 ° C. These temperatures can be selected in consideration of the stability of the photocurable compound, the characteristics of the photocurable composition, the thickness of the coating layer (adhesive layer), and the heat resistance of the substrate. Furthermore, the heating time is usually 1 second to 2 hours, preferably 30 seconds to 1 hour, and more preferably 30 seconds to 10 minutes. Each temperature and time may be dried under two or more multi-stage conditions, and the time for drying the coating film may be selected from conditions that take into consideration the boiling point of the solvent, the thickness of the adhesive layer, and process requirements. it can. By these, a coating layer is formed on a base material.

塗布層の厚みは、好ましくは0.1μm〜50μm、より好ましくは0.5μm〜30μm、さらに好ましくは1μm〜10μmであり、基材間を強固に接着するために必要な厚みであれば、プロセス適応性を考慮して好適に選ばれる。また、接着機能の他に、例えば、光学利用の屈折率調整、環境安定性を付与するガスバリヤなどの機能を付与する目的に応じた厚みを設定しても良い。   The thickness of the coating layer is preferably 0.1 μm to 50 μm, more preferably 0.5 μm to 30 μm, and further preferably 1 μm to 10 μm. If the thickness is necessary to firmly bond the substrates, the process It is preferably selected in consideration of adaptability. In addition to the adhesive function, for example, the thickness may be set in accordance with the purpose of providing a function such as a refractive index adjustment for optical use and a gas barrier for providing environmental stability.

(積層工程)
本実施形態の積層構造物の製造方法における積層工程は、光硬化性組成物を塗布した表面を介して、第1の基材11と第2の基材12とを貼り合せることで行われる。その方法としては、例えばローラーを押し当てる方法、両面を上下から挟み圧力を印加して押し付ける方法、塗布層を形成した基材を送りながら別の基材を載せて送りロールの周速度差を利用して押し付ける方法などが挙げられ、積層構造物の形態、プロセス適応性を考慮して好適に選ばれる。また、2種類以上の方法を併用して用いてもよく、加熱を併用してもよい。
(Lamination process)
The lamination process in the manufacturing method of the laminated structure of this embodiment is performed by bonding the 1st base material 11 and the 2nd base material 12 through the surface which apply | coated the photocurable composition. As a method, for example, a method of pressing a roller, a method of pressing both sides by applying pressure from above and below, and using a difference in peripheral speed of a feed roll by placing another substrate while feeding a substrate on which a coating layer is formed For example, a method of pressing and the like can be used, and the method is suitably selected in consideration of the form of the laminated structure and process adaptability. Two or more methods may be used in combination, or heating may be used in combination.

(光照射工程)
本実施形態の積層構造物の製造方法における光照射工程は、光透過性を有する基材を介して光を照射することで行われる。
このとき、無機材料または/および有機材料から構成される基材間に存在する光硬化性組成物を、必要に応じて加圧してもよい。この光照射工程における光源としては、波長400nm以下の光線、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、発光ダイオード、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯およびメタルハライドランプ、i線、g線、KrFエキシマレーザ光、ArFエキシマレーザ光を用いることができる。
(Light irradiation process)
The light irradiation process in the manufacturing method of the laminated structure of this embodiment is performed by irradiating light through the base material which has a light transmittance.
At this time, you may pressurize the photocurable composition which exists between the base materials comprised from an inorganic material or / and an organic material as needed. As a light source in this light irradiation process, light having a wavelength of 400 nm or less, for example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a light emitting diode, a chemical lamp, a black light lamp, a microwave excited mercury lamp and a metal halide lamp, i Line, g-line, KrF excimer laser light, ArF excimer laser light can be used.

光硬化性組成物への照射強度は、目的とする製品毎に制御されるものであって特に限定されるものではない。例えば、光硬化開始剤の活性化に有効な光波長領域(光硬化開始剤によって異なるが、通常200〜420nmの光が用いられる)の光照射強度が0.1〜100mW/cmであることが好ましい。組成物への照射強度を0.1mW/cm以上とすることで硬化時間を短縮することができ、100mW/cm以下とすることで光硬化性組成物及びその硬化物、また、基材を劣化させることなく、硬化を行うことができる。 The irradiation intensity to the photocurable composition is controlled for each target product and is not particularly limited. For example, the light irradiation intensity in the light wavelength region effective for activation of the photocuring initiator (which varies depending on the photocuring initiator, but usually 200 to 420 nm is used) is 0.1 to 100 mW / cm 2. Is preferred. By setting the irradiation intensity to the composition to 0.1 mW / cm 2 or more, the curing time can be shortened, and by setting the irradiation intensity to 100 mW / cm 2 or less, the photocurable composition and its cured product, and the substrate Curing can be carried out without degrading.

この光の照射時間は、目的とする製品毎に制御されるものであって特に限定されるものではないが、光波長領域での光照射強度と光照射時間の積として表される、光硬化性組成物に対する積算光量が通常20〜1000mJ/cmに設定することが出来る。更に好ましくは50〜1000mJ/cmであり、特に好ましくは100〜1000mJ/cmである。
光硬化性組成物に対する積算光量を上記範囲に設定することで、得られる硬化物の特性を低下や変色を招くことなく、安定的に硬化を行うことができる。
また、光照射時に加熱しながら光照射しても良く、光照射後に加熱しても良い。
光照射時または光照射後の加熱温度は、通常、室温以上であり、好ましくは30〜100℃が好ましく、より好ましくは50〜100℃である。
The light irradiation time is controlled for each target product and is not particularly limited, but is represented by the product of the light irradiation intensity and the light irradiation time in the light wavelength region. The integrated light quantity with respect to the composition can usually be set to 20 to 1000 mJ / cm 2 . More preferably from 50~1000mJ / cm 2, particularly preferably 100~1000mJ / cm 2.
By setting the integrated light quantity with respect to the photocurable composition within the above range, the cured product can be stably cured without causing deterioration or discoloration.
Further, light irradiation may be performed while heating at the time of light irradiation, or heating may be performed after the light irradiation.
The heating temperature at the time of light irradiation or after light irradiation is usually room temperature or higher, preferably 30 to 100 ° C, more preferably 50 to 100 ° C.

なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。   It should be noted that the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.

以下、実施例において、本発明を説明するが、本発明はこれらの例によって何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited at all by these examples.

まず、本実施例で得られたポリマーの物性、光硬化性組成物の性能等については以下の項目に基づき分析・評価を行った。   First, the physical properties of the polymer obtained in this example, the performance of the photocurable composition, and the like were analyzed and evaluated based on the following items.

[重量平均分子量(Mw)、分子量分布(Mw/Mn)]
下記の条件下でゲルパーミュエーションクロマトグラフィー(GPC)を使用して、テトラヒドロフラン(THF)に溶解したポリマーの重量平均分子量(Mw)および数平均分子量(Mn)を以下の条件で、ポリスチレンスタンダードによって分子量を較正して測定した。検出器:日本分光製RI−2031および875−UV、直列連結カラム:Shodex K−806M,804,803,802.5、カラム温度:40℃、流量:1.0ml/分、試料濃度:3.0mg/ml
[Weight average molecular weight (Mw), molecular weight distribution (Mw / Mn)]
Using gel permeation chromatography (GPC) under the following conditions, the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polymer dissolved in tetrahydrofuran (THF) were measured according to polystyrene standards under the following conditions. The molecular weight was calibrated and measured. Detector: RI-2031 and 875-UV manufactured by JASCO, Series connection column: Shodex K-806M, 804, 803, 802.5, column temperature: 40 ° C., flow rate: 1.0 ml / min, sample concentration: 3. 0 mg / ml

[ポリマーの水素添加率]
水素添加反応を行った開環メタセシス重合体の粉末を重水素化クロロホルム、または重水素化テトラヒドロフランに溶解し、日本電子社製核磁気共鳴装置を用いて270MHz−H−NMRスペクトルを測定し、δ=4.5〜7.0ppmの主鎖の二重結合炭素に結合する水素に由来するシグナルの積分値より水素添加率を算出した。
[Polymer hydrogenation rate]
The hydrogenated ring-opening metathesis polymer powder was dissolved in deuterated chloroform or deuterated tetrahydrofuran, and a 270 MHz- 1 H-NMR spectrum was measured using a nuclear magnetic resonance apparatus manufactured by JEOL Ltd. The hydrogenation rate was calculated from the integrated value of the signal derived from hydrogen bonded to the double bond carbon of the main chain at δ = 4.5 to 7.0 ppm.

[ガラス転移温度]
島津製作所社製DSC−50を用い、測定試料を窒素雰囲下で10℃/分の昇温速度で加熱し測定した。
[Glass-transition temperature]
Using a DSC-50 manufactured by Shimadzu Corporation, the measurement sample was heated and measured at a heating rate of 10 ° C./min in a nitrogen atmosphere.

[光硬化性組成物の光線透過率の測定]
光硬化性組成物の光線透過率は、島津製作所社製分光光度計UV3100Sを使用して、波長300nmの透過率を測定し、液膜高さの計測値から1μmあたりの透過率を評価した。
[Measurement of light transmittance of photocurable composition]
The light transmittance of the photocurable composition was determined by measuring the transmittance at a wavelength of 300 nm using a spectrophotometer UV3100S manufactured by Shimadzu Corporation, and evaluating the transmittance per 1 μm from the measured value of the liquid film height.

[収縮率の評価方法]
基材の貼り合わせる前の面積をA1とし、UV照射硬化して貼り合わせた後の基材の法線方向から見た面積をA2(カールなど変形している場合であっても、法線方向から見た二次元の面積を計測して算出する)として、以下の数式により収縮率を算出した。
収縮率(%)=(A1−A2)/A1×100
[Evaluation method of shrinkage]
The area before bonding of the base material is A1, and the area viewed from the normal direction of the base material after UV radiation curing and bonding is A2 (the normal direction even when the curl is deformed or the like) The shrinkage rate was calculated by the following mathematical formula.
Shrinkage rate (%) = (A1-A2) / A1 × 100

[フィルムの密着性試験]
JIS K 5600 5−6「クロスカット法」に準拠して、貼り合わせたフィルムの片面を2mm×2mmのサイズで100マスを碁盤目状にカットしたフィルムに、ニチバン社製セロハンテープを貼り付け剥離し、残膜数をカウントして評価した。
[Film adhesion test]
In accordance with JIS K 5600 5-6 “Cross-cut method”, a cellophane tape made by Nichiban Co., Ltd. is applied to a film in which one side of the laminated film is cut into a grid of 2 mm × 2 mm and peeled off. Then, the number of remaining films was counted and evaluated.

[製造例1] ポリマー1の合成
5,5,6−トリフルオロ−6−(トリフルオロメチル)ビシクロ[2.2.1]ヘプト−2−エン(100g)と1−ヘキセン(0.268g)のテトラヒドロフラン溶液に、Mo(N−2,6−Pr )(CHCMePh)(OBut(50mg)のテトラヒドロフラン溶液を添加し、70℃にて開環メタセシス重合を行った。得られたポリマーのオレフィン部を、パラジウムアルミナ(5g)によって120℃で水素添加反応を行い、ポリ(1,1,2−トリフルオロ−2−トリフルオロメチル−3,5−シクロペンチレンエチレン)のテトラヒドロフラン溶液を得た。
溶液をメタノールに加え、白色のポリマーをろ別、乾燥し99gのフッ素含有ポリマー(C)のポリマー1を得た。水素添加率は100%、重量平均分子量(Mw)は83000、分子量分布(Mw/Mn)は1.73、ガラス転移温度は109℃であった。
[Production Example 1] Synthesis of polymer 1 5,5,6-trifluoro-6- (trifluoromethyl) bicyclo [2.2.1] hept-2-ene (100 g) and 1-hexene (0.268 g) in tetrahydrofuran solution was added a tetrahydrofuran solution of Mo (N-2,6-Pr i 2 C 6 H 3) (CHCMe 2 Ph) (OBu t) 2 (50mg), a ring-opening metathesis polymerization at 70 ° C. went. The olefin part of the obtained polymer was subjected to hydrogenation reaction at 120 ° C. with palladium alumina (5 g) to obtain poly (1,1,2-trifluoro-2-trifluoromethyl-3,5-cyclopentylene ethylene). A tetrahydrofuran solution was obtained.
The solution was added to methanol, and the white polymer was filtered and dried to obtain 99 g of polymer 1 of a fluorine-containing polymer (C). The hydrogenation rate was 100%, the weight average molecular weight (Mw) was 83000, the molecular weight distribution (Mw / Mn) was 1.73, and the glass transition temperature was 109 ° C.

[実施例1]
製造例1で合成したポリマー1を30質量%濃度で溶解したメチルイソブチルケトン溶液100gに、光硬化性化合物(A)として3−エチル−3{[(3−エチルオキセタン−3−イル)メトキシ]メチル}オキセタンと1,7−オクタジエンジエポキシドの質量比9/1の混合物を7.5g[(A)/(C)=20/80]、および光硬化開始剤(B)として(アデカオプトマーSP−172、旭電化社製)を0.4g加えた溶液を調製し、孔径1μmのフィルターで加圧ろ過し、次いで0.1μmのフィルターでろ過して光硬化性組成物1を調製した。液膜の高さ30μmで作製した光硬化性組成物1の300nmの光線透過率は92.7%/μmであった。
次いで、基材として厚み100μmのPETフィルム(ルミラー、東レ社製)を10cm×10cmのサイズに切り出し、バーコーターを用いて光硬化性組成物1をフィルム全面にコートした。その後、PETフィルムを50℃で1分間加熱し、放冷した後、10cm×10cmのサイズで切り出した厚み75μmのアクリルフィルム(アクリプレン、三菱レイヨン社製)を、光硬化性組成物1のコート面に載せクライムプロダクツ社製ラミネーターSE650UVを使用して、0.3MPaの圧力を印加しながら基材全面にローラーを走査して均一に圧着し、PETフィルムの背面から高輝度発光ダイオード(365nm)のUV光を200mJ/cmの積算光量で照射し光硬化性組成物1を硬化させて、PETフィルムとアクリルフィルムを接着した積層構造物を作製した。接着層の厚みはNIKON社製デジマイクロMH−15M+TC−101用いて、積層構造物の任意の10箇所の厚みを測定して平均し、その平均値から基材の厚みの合計値を差し引いた値を積層構造物の接着層として求めた。その厚みは3.1μmであった。クロスカット法で試験した密着性は100/100で良好な密着性を示し、収縮率は0.2%であった。
[Example 1]
3-ethyl-3 {[(3-ethyloxetane-3-yl) methoxy] as a photocurable compound (A) was added to 100 g of a methyl isobutyl ketone solution in which the polymer 1 synthesized in Production Example 1 was dissolved at a concentration of 30% by mass. 7.5 g [(A) / (C) = 20/80] of a mixture of methyl} oxetane and 1,7-octadiene diepoxide at a mass ratio of 9/1, and (Adekaopt) as a photocuring initiator (B) Marp SP-172 (manufactured by Asahi Denka Co., Ltd.) was prepared, and a photocurable composition 1 was prepared by pressure-filtering with a filter having a pore size of 1 μm and then filtering with a 0.1 μm filter. . The light transmittance at 300 nm of the photocurable composition 1 produced with a liquid film height of 30 μm was 92.7% / μm.
Next, a PET film having a thickness of 100 μm (Lumirror, manufactured by Toray Industries, Inc.) as a substrate was cut into a size of 10 cm × 10 cm, and the entire surface of the film was coated with the photocurable composition 1 using a bar coater. Thereafter, the PET film was heated at 50 ° C. for 1 minute, allowed to cool, and then a 75 μm thick acrylic film (Acryprene, manufactured by Mitsubishi Rayon Co., Ltd.) cut out in a size of 10 cm × 10 cm was applied to the coated surface of the photocurable composition 1 Using a Laminator SE650UV made by Climb Products, applying a pressure of 0.3 MPa, scanning the roller over the entire surface of the substrate and pressing it uniformly, UV of the high-intensity light emitting diode (365 nm) from the back of the PET film The photocurable composition 1 was cured by irradiating light with an integrated light amount of 200 mJ / cm 2 to produce a laminated structure in which a PET film and an acrylic film were bonded. The thickness of the adhesive layer is a value obtained by measuring and averaging the thickness of any 10 locations of the laminated structure using Digimicro MH-15M + TC-101 manufactured by NIKON, and subtracting the total value of the thicknesses of the base materials from the average value. Was obtained as an adhesive layer of the laminated structure. Its thickness was 3.1 μm. The adhesion tested by the cross-cut method was 100/100, indicating good adhesion, and the shrinkage rate was 0.2%.

[実施例2]
光硬化性化合物(A)として3−エチル−3{[(3−エチルオキセタン−3−イル)メトキシ]メチル}オキセタンと1,7−オクタジエンジエポキシドの質量比9/1の混合物に、無溶剤でポリマー1を溶解した光硬化性組成物2[(A)/(C)=90/10]を調製した。液膜の高さ22.1μmで作製した光硬化性組成物2の300nmの光線透過率は78.4%/μmであった。
次いで、接着剤として光硬化性組成物2を使用したこと以外は、実施例1と同様の方法でPETフィルムとアクリルフィルムを接着した積層構造物を作製した。実施例1と同様に測定した接着層の厚みは1.7μmであり、クロスカット法で試験した密着性は100/100で良好な密着性を示し、収縮率は0.5%であった。
[Example 2]
As a photocurable compound (A), a mixture of 3-ethyl-3 {[((3-ethyloxetane-3-yl) methoxy] methyl} oxetane and 1,7-octadiene diepoxide in a mass ratio of 9/1 was used. A photocurable composition 2 [(A) / (C) = 90/10] in which the polymer 1 was dissolved with a solvent was prepared. The light transmittance at 300 nm of the photocurable composition 2 produced at a liquid film height of 22.1 μm was 78.4% / μm.
Subsequently, the laminated structure which adhere | attached PET film and the acrylic film by the method similar to Example 1 except having used the photocurable composition 2 as an adhesive agent was produced. The thickness of the adhesive layer measured in the same manner as in Example 1 was 1.7 μm, the adhesiveness tested by the cross-cut method was 100/100, showing good adhesiveness, and the shrinkage rate was 0.5%.

[実施例3]
フッ素含有モノマーの種類を5,6−ジフルオロ−5−ペンタフルオロエチル−6−トリフルオロメチルビシクロ[2.2.1]ヘプト−2−エンに変更したこと以外は、製造例1と同様の方法で98gのポリマー2を得た。次いで、ポリマー2を30質量%濃度でメチルエチルケトンに溶解し、光硬化性化合物とポリマー2の比率を(A)/(C)=10/90に変更したこと以外は実施例1と同様の方法で光硬化性組成物3を調製した。液膜の高さ40.2μmで作製した光硬化性組成物3の300nmの光線透過率は93.6%/μmであった。
次いで、光硬化性組成物3を接着剤に用いたこと以外は実施例1と同様の方法でPETフィルムとアクリルフィルムを接着した積層構造物を作製した。接着層の厚みは4.1μmであり、クロスカット法で試験した密着性は100/100で良好な密着性を示し、収縮率は0.4%であった。
[Example 3]
The same method as in Production Example 1, except that the type of fluorine-containing monomer was changed to 5,6-difluoro-5-pentafluoroethyl-6-trifluoromethylbicyclo [2.2.1] hept-2-ene Yielded 98 g of polymer 2. Next, polymer 2 was dissolved in methyl ethyl ketone at a concentration of 30% by mass, and the same method as in Example 1 except that the ratio of the photocurable compound to polymer 2 was changed to (A) / (C) = 10/90. A photocurable composition 3 was prepared. The light transmittance at 300 nm of the photocurable composition 3 produced at a liquid film height of 40.2 μm was 93.6% / μm.
Subsequently, the laminated structure which adhere | attached PET film and the acrylic film by the method similar to Example 1 except having used the photocurable composition 3 for the adhesive agent was produced. The thickness of the adhesive layer was 4.1 μm, the adhesion tested by the cross-cut method was 100/100, showing good adhesion, and the shrinkage rate was 0.4%.

[実施例4]
フッ素含有モノマーの種類を5,6−ジフルオロ−5,6−ビストリフルオロメチル−7−オキサ−ビシクロ[2.2.1]ヘプト−2−エンに変更したこと以外は、製造例1と同様の方法で99gのポリマー3を得た。次いで、ポリマー3を30質量%濃度でメチルエチルケトンに溶解し、光硬化性化合物とポリマー3の比率を(A)/(C)=40/60に変更したこと以外は実施例1と同様の方法で光硬化性組成物4を調製した。液膜の高さ19.8μmで作製した光硬化性組成物4の300nmの光線透過率は90.2%/μmであった。
次いで、光硬化性組成物4を接着剤に用いたこと以外は実施例1と同様の方法でPETフィルムとアクリルフィルムを接着した積層構造物を作製した。接着層の厚みは0.8μmであり、クロスカット法で試験した密着性は100/100で良好な密着性を示し、収縮率は0.3%であった。
[Example 4]
The same as in Production Example 1 except that the type of the fluorine-containing monomer was changed to 5,6-difluoro-5,6-bistrifluoromethyl-7-oxa-bicyclo [2.2.1] hept-2-ene. 99 g of polymer 3 were obtained by the method. Next, polymer 3 was dissolved in methyl ethyl ketone at a concentration of 30% by mass, and the same method as in Example 1 except that the ratio of the photocurable compound to polymer 3 was changed to (A) / (C) = 40/60. A photocurable composition 4 was prepared. The light transmittance at 300 nm of the photocurable composition 4 produced at a liquid film height of 19.8 μm was 90.2% / μm.
Subsequently, the laminated structure which adhere | attached PET film and the acrylic film by the method similar to Example 1 except having used the photocurable composition 4 for the adhesive agent was produced. The thickness of the adhesive layer was 0.8 μm, the adhesion tested by the cross-cut method was 100/100, showing good adhesion, and the shrinkage rate was 0.3%.

[実施例5]
光硬化性化合物(A)の種類を3−エチル−3−(ヘキシルオキシメチル)オキセタンと1,7−オクタジエンジエポキシドの質量比9/1の混合物に、光硬化開始剤(B)をCPI−100P(サンアプロ社製)に変更したこと以外は実施例1と同様に光硬化性組成物5[(A)/(C)=20/80]を調製した。液膜の高さ22.4μmで作製した光硬化性組成物5の300nmの光線透過率は92.6%/μmであった。
次いで、光硬化性組成物5を接着剤に用いたこと以外は実施例1と同様の方法でPETフィルムとアクリルフィルムを接着した積層構造物を作製した。接着層の厚みは2.5μmであり、クロスカット法で試験した密着性は100/100で良好な密着性を示し、収縮率は0.4%であった。
[Example 5]
The kind of the photocurable compound (A) is changed to a mixture of 3-ethyl-3- (hexyloxymethyl) oxetane and 1,7-octadiene diepoxide in a mass ratio of 9/1, and the photocuring initiator (B) is added to CPI. A photocurable composition 5 [(A) / (C) = 20/80] was prepared in the same manner as in Example 1 except that it was changed to -100P (manufactured by San Apro). The light transmittance at 300 nm of the photocurable composition 5 produced at a liquid film height of 22.4 μm was 92.6% / μm.
Subsequently, the laminated structure which adhere | attached PET film and the acrylic film by the method similar to Example 1 except having used the photocurable composition 5 for the adhesive agent was produced. The thickness of the adhesive layer was 2.5 μm, the adhesion tested by the cross-cut method was 100/100, showing good adhesion, and the shrinkage rate was 0.4%.

[実施例6]
光硬化性化合物(A)の種類を1,4−ビス[{(3−エチル−3−オキセタニル)メトキシ}メチル]ベンゼンと1,7−オクタジエンジエポキシドの質量比9/1の混合物に、光硬化開始剤(B)をイルガキュアー 290(BASF社製)に変更したこと以外は実施例1と同様に光硬化性組成物6[(A)/(C)=20/80]を調製した。液膜の高さ30.1μmで作製した光硬化性組成物6の300nmの光線透過率は92.4%/μmであった。
次いで、光硬化性組成物6を接着剤に用いたこと以外は実施例1と同様の方法でPETフィルムとアクリルフィルムを接着した積層構造物を作製した。接着層の厚みは3.4μmであり、クロスカット法で試験した密着性は100/100で良好な密着性を示し、収縮率は0.2%であった。
[Example 6]
The kind of the photocurable compound (A) is changed to a mixture of 1,4-bis [{(3-ethyl-3-oxetanyl) methoxy} methyl] benzene and 1,7-octadiene diepoxide in a mass ratio of 9/1. A photocurable composition 6 [(A) / (C) = 20/80] was prepared in the same manner as in Example 1 except that the photocuring initiator (B) was changed to Irgacure 290 (BASF). . The light transmittance at 300 nm of the photocurable composition 6 produced with a liquid film height of 30.1 μm was 92.4% / μm.
Subsequently, the laminated structure which adhere | attached PET film and the acrylic film by the method similar to Example 1 except having used the photocurable composition 6 for the adhesive agent was produced. The thickness of the adhesive layer was 3.4 μm, the adhesion tested by the cross-cut method was 100/100, showing good adhesion, and the shrinkage rate was 0.2%.

[実施例7]
光硬化性化合物(A)の種類を3−エチル−3{[(3−エチルオキセタン−3−イル)メトキシ]メチル}オキセタンと1−tert−ブトキシ−2,3−エポキシプロパンの質量比9/1の混合物に変更したこと以外は実施例1と同様に光硬化性組成物7[(A)/(C)=20/80]を調製した。液膜の高さ25.9μmで作製した光硬化性組成物7の300nmの光線透過率は92.6%/μmであった。
次いで、光硬化性組成物7を接着剤に用いたこと以外は実施例1と同様の方法でPETフィルムとアクリルフィルムを接着した積層構造物を作製した。接着層の厚みは2.7μmであり、クロスカット法で試験した密着性は100/100で良好な密着性を示し、収縮率は0.3%であった。
[Example 7]
The type of the photocurable compound (A) was changed to a mass ratio of 3-ethyl-3 {[(3-ethyloxetane-3-yl) methoxy] methyl} oxetane and 1-tert-butoxy-2,3-epoxypropane of 9 / A photocurable composition 7 [(A) / (C) = 20/80] was prepared in the same manner as in Example 1 except that the mixture was changed to the mixture of No. 1. The light transmittance at 300 nm of the photocurable composition 7 produced at a liquid film height of 25.9 μm was 92.6% / μm.
Subsequently, the laminated structure which adhere | attached PET film and the acrylic film by the method similar to Example 1 except having used the photocurable composition 7 for the adhesive agent was produced. The thickness of the adhesive layer was 2.7 μm, the adhesion tested by the cross-cut method was 100/100, showing good adhesion, and the shrinkage rate was 0.3%.

[実施例8]
基材として製造例1で合成したポリマー1から形成した厚み30μmのフィルムを使用し、接着剤として実施例1の光硬化性組成物の溶剤をシクロヘキサノンに変更し光硬化性組成物8とした以外は、実施例1と同様の方法でPETフィルムとポリマー1のフィルムを接着した積層構造物を作製した。接着層の厚みは3.5μmであり、クロスカット法で試験した密着性は100/100で良好な密着性を示し、収縮率は0.2%であった。
[Example 8]
A film having a thickness of 30 μm formed from the polymer 1 synthesized in Production Example 1 was used as a substrate, and the photocurable composition solvent of Example 1 was changed to cyclohexanone as an adhesive to obtain a photocurable composition 8. Produced a laminated structure in which a PET film and a polymer 1 film were bonded in the same manner as in Example 1. The thickness of the adhesive layer was 3.5 μm, the adhesion tested by the cross-cut method was 100/100, showing good adhesion, and the shrinkage rate was 0.2%.

[実施例9]
基材として厚み3mm、サイズが10cm×10cmの石英ガラスに、実施例1で調製した光硬化性組成物1を全面にコートした。その後、石英ガラスを90℃で1分間加熱し、放冷した後、10cm×10cmのサイズで切り出した厚み75μmのアクリルフィルム(アクリプレン、三菱レイヨン社製)を、光硬化性組成物1のコート面に載せて実施例1と同様の方法で石英ガラスの背面からUV照射し、石英ガラスとアクリルフィルムを接着した積層構造物を作製した。接着層の厚みは1.5μmであり、クロスカット法で試験した密着性は100/100で良好な密着性を示し、収縮率は0%であった。
[Example 9]
The photocurable composition 1 prepared in Example 1 was coated on the entire surface of quartz glass having a thickness of 3 mm and a size of 10 cm × 10 cm as a substrate. Thereafter, the quartz glass was heated at 90 ° C. for 1 minute, allowed to cool, and then a 75 μm thick acrylic film (Acryprene, manufactured by Mitsubishi Rayon Co., Ltd.) cut out in a size of 10 cm × 10 cm was applied to the coated surface of the photocurable composition 1 A laminated structure in which the quartz glass and the acrylic film were bonded together was irradiated with UV from the back surface of the quartz glass in the same manner as in Example 1. The thickness of the adhesive layer was 1.5 μm, the adhesion tested by the cross-cut method was 100/100, indicating good adhesion, and the shrinkage rate was 0%.

[実施例10]
基材として厚み800μm、サイズが10cm×10cmのアルミニウムシートに実施例1で調製した光硬化性組成物1を全面にコートした。その後、アルミニウムシートを90℃で1分間加熱し、放冷した後、10cm×10cmのサイズで切り出した厚み100μmのPETフィルム(ルミラー、東レ社製)を、光硬化性組成物1のコート面に載せて実施例1と同様の方法でPETフィルム背面からUV照射し、アルミニウムシートとPETフィルムを接着した積層構造物を作製した。接着層の厚みは2.4μmであり、クロスカット法で試験した密着性は100/100で良好な密着性を示し、収縮率は0%であった。
[Example 10]
The photocurable composition 1 prepared in Example 1 was coated on the entire surface of an aluminum sheet having a thickness of 800 μm and a size of 10 cm × 10 cm as a base material. Thereafter, the aluminum sheet was heated at 90 ° C. for 1 minute, allowed to cool, and then a 100 μm-thick PET film (Lumirror, manufactured by Toray Industries, Inc.) cut into a size of 10 cm × 10 cm was applied to the coated surface of the photocurable composition 1. The laminated structure which mounted and irradiated UV from the back surface of PET film by the method similar to Example 1, and bonded the aluminum sheet and PET film was produced. The thickness of the adhesive layer was 2.4 μm, the adhesiveness tested by the cross-cut method was 100/100, showing good adhesiveness, and the shrinkage rate was 0%.

[実施例11]
サイズが10cm×10cmでライン幅200nm、スペース幅100nm、ピッチ300nm、高さ200nmのライン&スペース形状を賦型したニッケルモールドのパターン面に、製造例1で合成したポリマー1を35質量%濃度で溶解したメチルイソブチルケトン溶液を載せバーコーターで全面にコートし、ニッケルモールドを120℃で2時間加熱した。
次いで、基材として10cm×10cmのサイズに切り出した厚み100μmのPETフィルム(ルミラー、東レ社製)にバーコーターを用いて実施例1で調製した光硬化性組成物1をPETフィルム全面にコートした。その後、PETフィルムを90℃で1分間加熱し、放冷した後、加熱後のニッケルモールドに接して積層された凹凸構造を賦型したポリマー1のフィルムの裏面に、PETフィルムの光硬化性組成物1のコート面が接触するように載せて、実施例1と同様の方法でPETフィルム背面からUV照射し、ニッケルモールドとポリマー1のフィルムを剥離することで、ライン幅100nm、スペース幅200nm、ピッチ300nm、高さ200nmのライン&スペースパターン形状を賦型した積層構造物を作製した。接着層の厚みは3.3μmであり、クロスカット法で試験した密着性は100/100で良好な密着性を示し、収縮率は0.2%であった。
[Example 11]
The polymer 1 synthesized in Production Example 1 at a concentration of 35% by mass is formed on the pattern surface of a nickel mold having a size of 10 cm × 10 cm and a line and space shape having a line width of 200 nm, a space width of 100 nm, a pitch of 300 nm, and a height of 200 nm. The dissolved methyl isobutyl ketone solution was placed and coated on the entire surface with a bar coater, and the nickel mold was heated at 120 ° C. for 2 hours.
Next, the entire surface of the PET film was coated with the photocurable composition 1 prepared in Example 1 using a bar coater on a 100 μm thick PET film (Lumirror, manufactured by Toray Industries, Inc.) cut into a size of 10 cm × 10 cm as a base material. . Thereafter, the PET film was heated at 90 ° C. for 1 minute, allowed to cool, and then the photocurable composition of the PET film was formed on the back surface of the polymer 1 film having a concavo-convex structure laminated in contact with the heated nickel mold. The coated surface of the product 1 is placed in contact with each other, irradiated with UV from the back surface of the PET film in the same manner as in Example 1, and the nickel mold and the polymer 1 film are peeled off, so that the line width is 100 nm, the space width is 200 nm, A laminated structure having a shape of a line and space pattern having a pitch of 300 nm and a height of 200 nm was produced. The thickness of the adhesive layer was 3.3 μm, the adhesion tested by the cross-cut method was 100/100, showing good adhesion, and the shrinkage rate was 0.2%.

[実施例12]
光硬化性化合物(A)と製造例1で合成したポリマー1の組成比を(A)/(C)=40/60に変更した以外は、実施例1と同様の方法で光硬化性組成物9を調製した。次に、サイズが20cm×20cmの4種類のマイクロレンズアレーパターンを有する石英モールドにおいて、パターンサイズが、10μm、15μm、20μm、25μmで、かつ、高さ10μmの石英モールドに光硬化性組成物9を塗布して、バーコーターで全面にコートし、120℃で加熱し、冷却後、積算光量で200mJ/cmのUV光を照射した。これにより、石英モールド上に光硬化性組成物9を硬化させた、凹凸構造を賦型したフィルムから構成される層を形成させた。
次いで、実施例11と同様の方法で光硬化性組成物1を接着剤に使用して、剥離前の凹凸構造を賦型したフィルムの裏面とPETフィルムを接着した後、石英モールドを剥離してサイズが20cm×20cmの4種類のマイクロレンズアレーパターンを有する反転パターンを賦型したフィルムが積層された構造物を作製した。接着層の厚みは4.6μmであり、クロスカット法で試験した密着性は100/100で良好な密着性を示し、収縮率は0.2%であった。
[Example 12]
The photocurable composition was prepared in the same manner as in Example 1 except that the composition ratio of the photocurable compound (A) and the polymer 1 synthesized in Production Example 1 was changed to (A) / (C) = 40/60. 9 was prepared. Next, in a quartz mold having four types of microlens array patterns having a size of 20 cm × 20 cm, the photocurable composition 9 is applied to a quartz mold having a pattern size of 10 μm, 15 μm, 20 μm, and 25 μm and a height of 10 μm. Was coated on the entire surface with a bar coater, heated at 120 ° C., cooled, and then irradiated with 200 mJ / cm 2 of UV light in an integrated light amount. Thereby, the layer comprised from the film which shape | cured the uneven structure which hardened the photocurable composition 9 on the quartz mold was formed.
Next, using the photocurable composition 1 as an adhesive in the same manner as in Example 11, the back surface of the film formed with the uneven structure before peeling and the PET film were bonded, and then the quartz mold was peeled off. A structure in which a film formed with a reverse pattern having four types of microlens array patterns having a size of 20 cm × 20 cm was laminated. The thickness of the adhesive layer was 4.6 μm, the adhesion tested by the cross-cut method was 100/100, showing good adhesion, and the shrinkage rate was 0.2%.

[実施例13]
実施例12に記載した石英モールドと等しいサイズ、形状のモールドを2枚用いて、それぞれ、実施例12と同様に、光硬化性組成物9の凹凸構造を賦型したフィルムから構成される層を形成させた石英モールドを2枚作製した。(これらは何れも剥離前の状態であり、接着剤をコートする石英モールド上に硬化性組成物9の凹凸構造を形成させた基材をIとし、接着層に被せる基材をIIとする。)
次いで、基材Iに実施例2で調製した光硬化性組成物2をバーコーターで全面にコートした。その後、基材Iの接着層に基材IIを被せ実施例1と同様な方法で密着させ、基材Iの石英モールドの背面から積算光量で200mJ/cmのUV光を照射して基材Iと基材IIを接着した。基材Iと基材IIそれぞれの石英モールドを剥離して、両面にマイクロレンズアレーパターンを有する反転パターンを賦型した積層構造物を作製した。接着層の厚みは1.1μmであり、クロスカット法で試験した密着性は100/100で良好な密着性を示し、収縮率は0.1%であった。
[Example 13]
Using two molds having the same size and shape as the quartz mold described in Example 12, layers similar to Example 12 were respectively formed from films formed with the concavo-convex structure of the photocurable composition 9. Two formed quartz molds were produced. (These are all in a state before peeling, and a base material on which a concavo-convex structure of the curable composition 9 is formed on a quartz mold coated with an adhesive is denoted by I, and a base material covered on the adhesive layer is denoted by II. )
Next, the entire surface of the substrate I was coated with the photocurable composition 2 prepared in Example 2 with a bar coater. Thereafter, the base material II is placed on the adhesive layer of the base material I and adhered in the same manner as in Example 1, and 200 mJ / cm 2 of UV light is irradiated from the back surface of the quartz mold of the base material I with a cumulative amount of light. I and substrate II were adhered. The quartz mold of each of the base material I and the base material II was peeled off to prepare a laminated structure in which a reversal pattern having a microlens array pattern on both sides was formed. The thickness of the adhesive layer was 1.1 μm, the adhesion tested by the cross-cut method was 100/100, showing good adhesion, and the shrinkage rate was 0.1%.

[実施例14]
製造例1で合成したポリマー1から作製した厚み50μm、サイズ10cm×10cmのフィルムを実施例11で使用したニッケルモールドのパターン面に載せて130℃に加熱し、10MPaの圧力で加熱溶融圧着して、室温まで冷却した。
これにより、ニッケルモールド上に、ライン&スペース形状を賦型したフィルムから構成される層を形成させた。
次いで、実施例11と同様の方法で光硬化性組成物1を接着剤に使用して、剥離前の凹凸構造を賦型したフィルムの裏面とPETフィルムを接着した後、石英モールドを剥離してライン幅100nm、ピッチ300nm、高さ200nmのライン&スペースパターン形状を賦型した積層構造物を作製した。接着層の厚みは3.8μmであり、クロスカット法で試験した密着性は100/100で良好な密着性を示し、収縮率は0.4%であった。
[Example 14]
A film having a thickness of 50 μm and a size of 10 cm × 10 cm prepared from the polymer 1 synthesized in Production Example 1 was placed on the pattern surface of the nickel mold used in Example 11, heated to 130 ° C., and heated and melt-bonded at a pressure of 10 MPa. And cooled to room temperature.
Thereby, the layer comprised from the film which shape | molded the line & space shape was formed on the nickel mold.
Next, using the photocurable composition 1 as an adhesive in the same manner as in Example 11, the back surface of the film formed with the uneven structure before peeling and the PET film were bonded, and then the quartz mold was peeled off. A laminated structure in which a line & space pattern shape having a line width of 100 nm, a pitch of 300 nm, and a height of 200 nm was formed was produced. The thickness of the adhesive layer was 3.8 μm, the adhesion tested by the cross-cut method was 100/100, showing good adhesion, and the shrinkage rate was 0.4%.

[実施例15]耐環境安定性の試験
実施例1、3、5で作製した積層構造物を恒温恒湿オーブンに入れて、60℃、95%(湿度)の条件に2000時間暴露した後の外観検査、密着性評価した。3種何れの積層構造物も、濁り、変形、接着層の割れなど無く、クロスカット法による密着性も100/100で良好な密着性を維持していた。
[Example 15] Environmental stability test After the laminated structures prepared in Examples 1, 3, and 5 were placed in a constant temperature and humidity oven and exposed to conditions of 60 ° C and 95% (humidity) for 2000 hours, Appearance inspection and adhesion evaluation were performed. All three types of laminated structures were free from turbidity, deformation, cracking of the adhesive layer, and the adhesion by the cross-cut method was 100/100, and good adhesion was maintained.

[比較例1]
光硬化開始剤(B)として光カチオン開始剤(アデカオプトマーSP−172、旭電化社製)を0.4g及び光硬化性化合物(A)として1,4−ビス[{(3−エチル−3−オキセタニル)メトキシ}メチル]ベンゼンと1,7−オクタジエンジエポキシドの質量比9/1の混合物を調製し、光硬化性組成物10[(A)/(C)=100/0]とした。液膜の高さ23.5μmで作製した光硬化性組成物10の300nmの光線透過率は42.1%/μmであり、UV照射して硬化させた光硬化性組成物10は脆く割れ、フィルムとしての形状を保てなかった。
[Comparative Example 1]
0.4 g of photocationic initiator (Adekaoptomer SP-172, manufactured by Asahi Denka Co., Ltd.) as the photocuring initiator (B) and 1,4-bis [{(3-ethyl- A mixture of 3-oxetanyl) methoxy} methyl] benzene and 1,7-octadiene diepoxide in a mass ratio of 9/1 was prepared, and a photocurable composition 10 [(A) / (C) = 100/0] did. The photocurable composition 10 prepared at a liquid film height of 23.5 μm has a light transmittance of 300 nm of 42.1% / μm, and the photocurable composition 10 cured by UV irradiation is brittle and cracked. The shape as a film could not be maintained.

[比較例2]
比較例1の光硬化性組成物10を使用して、実施例2と同様な方法でPETフィルムとアクリルフィルムを接着した積層構造物は、接着層の厚み3.8μmであり、接着層の一部にヒビが見られ、クロスカット法で試験した密着性は80/100で一部が剥離し、収縮率は4.2%であった。
[Comparative Example 2]
A laminate structure in which a PET film and an acrylic film are bonded in the same manner as in Example 2 using the photocurable composition 10 of Comparative Example 1 has an adhesive layer thickness of 3.8 μm. Cracks were observed in the part, the adhesion tested by the cross-cut method was 80/100, partly peeled, and the shrinkage rate was 4.2%.

[比較例3]
2−メチル−2−プロペン酸メチル5gに光ラジカル硬化開始剤(エサキュアー KTO46、ランベルティー社製)を50質量%濃度で溶解した2−メトキシエタノール溶液0.3gを添加した光硬化性組成物11を調製した。液膜の高さ4.3μmで作製した光硬化性組成物11の300nmの光線透過率は20.3%/μmであり、次いで、実施例2と同様の方法でPETフィルムとアクリルフィルムを接着した積層構造物を作製した。接着層の厚みは4.0μmであり、クロスカット法で試験した密着性は77/100で一部が剥離した。積層構造物は、アクリルフィルム側に反りがあり、収縮率は13.5%であった。
[Comparative Example 3]
Photocurable composition 11 in which 0.3 g of 2-methoxyethanol solution in which photoradical curing initiator (Esacure KTO46, manufactured by Lamberti Co., Ltd.) is dissolved at a concentration of 50% by mass is added to 5 g of methyl 2-methyl-2-propenoate. Was prepared. The light curable composition 11 produced with a liquid film height of 4.3 μm has a light transmittance of 300 nm of 20.3% / μm. Then, the PET film and the acrylic film are bonded in the same manner as in Example 2. A laminated structure was prepared. The thickness of the adhesive layer was 4.0 μm, and the adhesiveness tested by the cross-cut method was 77/100, and a part was peeled off. The laminated structure was warped on the acrylic film side, and the shrinkage rate was 13.5%.

本発明の特定の構造を有するフッ素含有ポリマー(C)、光硬化性化合物(A)および光硬化開始剤(B)を含有する光硬化性組成物を基材間を接着させる接着剤として利用することで、光硬化性組成物の硬化収縮を生じず、反り、歪みの無い積層構造物を作製することが可能になる。また、この光硬化性組成物の透明性は高く、光透過を必要とする用途にも適応可能であり、情報、電子、光学、医療などの各種に関連した部材に適応でき有用である。   A photocurable composition containing a fluorine-containing polymer (C) having a specific structure, a photocurable compound (A) and a photocuring initiator (B) according to the present invention is used as an adhesive for bonding substrates. Thus, it becomes possible to produce a laminated structure free from warping and distortion without causing curing shrinkage of the photocurable composition. In addition, the photocurable composition has high transparency and can be applied to applications that require light transmission, and can be applied to various related members such as information, electronics, optics, and medicine.

11 第1の基材
12 第2の基材
13 接着層
100 積層構造物
11 First base material 12 Second base material 13 Adhesive layer 100 Laminated structure

Claims (10)

無機材料または有機材料で構成される第1の基材と、無機材料または有機材料で構成される第2の基材と、前記第1の基材と前記第2の基材とを接着する接着層とを備える積層構造物であって、
前記接着層は、光硬化性化合物(A)、光硬化開始剤(B)および下記一般式(1)で表される構造単位を有するフッ素含有ポリマー(C)を含有し、かつ質量比(A)/(C)が95/5〜25/75の範囲である光硬化性組成物を硬化させることにより形成される、積層構造物であって、
前記光硬化性化合物(A)が、エポキシ化合物、及び、オキセタン化合物を含む、積層構造物
Figure 0006386370

(式(1)中、R〜Rは、フッ素、フッ素を含有する炭素数1〜10のアルキル基、フッ素を含有する炭素数1〜10のアルコキシ基、またはフッ素を含有する炭素数2〜10のアルコキシアルキル基のいずれかである。R〜Rは互いに同一であっても異なっていてもよい。R〜Rは互いに結合して環構造を形成していてもよく、XはCHまたはOから選ばれる。)
A first base material composed of an inorganic material or an organic material, a second base material composed of an inorganic material or an organic material, and adhesion for bonding the first base material and the second base material A laminated structure comprising layers,
The adhesive layer contains a photocurable compound (A), a photocuring initiator (B), and a fluorine-containing polymer (C) having a structural unit represented by the following general formula (1), and a mass ratio (A ) / (C) is a laminated structure formed by curing a photocurable composition having a range of 95/5 to 25/75 ,
The laminated structure in which the said photocurable compound (A) contains an epoxy compound and an oxetane compound .
Figure 0006386370

(In Formula (1), R 1 to R 4 are fluorine, a C 1-10 alkyl group containing fluorine, a C 1-10 alkoxy group containing fluorine, or a carbon number 2 containing fluorine. Or R 1 to R 4 may be the same or different from each other, R 1 to R 4 may be bonded to each other to form a ring structure, X is selected from CH 2 or O.)
請求項1に記載の積層構造物であって、
前記第1の基材が、表面に凹凸の構造を有するフィルムであり、当該フィルムの裏面が前記接着層と接していることを特徴とする積層構造物。
The laminated structure according to claim 1 ,
The first substrate is a film having an uneven structure on the surface, and the back surface of the film is in contact with the adhesive layer.
前記光硬化性化合物(A)が、カチオン重合可能な開環重合性化合物であることを特徴とする、請求項1に記載の積層構造物。 The laminated structure according to claim 1, wherein the photocurable compound (A) is a cationically polymerizable ring-opening polymerizable compound. 光硬化性化合物(A)、光硬化開始剤(B)、下記一般式(1)で表される構造単位を有するフッ素含有ポリマー(C)、および自身は光硬化しない溶剤(D)を含有し、かつ質量比(A)/(C)が95/5〜5/95の範囲であり、さらに質量比[(A)+(C)]/(D)が80/20〜5/95である光硬化性組成物であって、
前記光硬化性化合物(A)が、エポキシ化合物、及び、オキセタン化合物を含む、光硬化性組成物
Figure 0006386370

(式(1)中、R〜Rは、フッ素、フッ素を含有する炭素数1〜10のアルキル基、フッ素を含有する炭素数1〜10のアルコキシ基、またはフッ素を含有する炭素数2〜10のアルコキシアルキル基のいずれかである。R〜Rは互いに同一であっても異なっていてもよい。R〜Rは互いに結合して環構造を形成していてもよく、XはCHまたはOから選ばれる。)
It contains a photocurable compound (A), a photocuring initiator (B), a fluorine-containing polymer (C) having a structural unit represented by the following general formula (1), and a solvent (D) that itself does not photocure. And the mass ratio (A) / (C) is in the range of 95/5 to 5/95, and the mass ratio [(A) + (C)] / (D) is 80/20 to 5/95. a photocurable composition,
The photocurable composition in which the photocurable compound (A) contains an epoxy compound and an oxetane compound .
Figure 0006386370

(In Formula (1), R 1 to R 4 are fluorine, a C 1-10 alkyl group containing fluorine, a C 1-10 alkoxy group containing fluorine, or a carbon number 2 containing fluorine. Or R 1 to R 4 may be the same or different from each other, R 1 to R 4 may be bonded to each other to form a ring structure, X is selected from CH 2 or O.)
光硬化性化合物(A)、光硬化開始剤(B)および下記一般式(1)で表される構造単位を有するフッ素含有ポリマー(C)を含有し、かつ質量比(A)/(C)が95/5〜25/75の範囲である光硬化性組成物であって、
前記光硬化性化合物(A)が、エポキシ化合物、及び、オキセタン化合物を含む、光硬化性組成物
Figure 0006386370

(式(1)中、R〜Rは、フッ素、フッ素を含有する炭素数1〜10のアルキル基、フッ素を含有する炭素数1〜10のアルコキシ基、またはフッ素を含有する炭素数2〜10のアルコキシアルキル基のいずれかである。R〜Rは互いに同一であっても異なっていてもよい。R〜Rは互いに結合して環構造を形成していてもよく、XはCHまたはOから選ばれる。)
Contains a photocurable compound (A), a photocuring initiator (B), and a fluorine-containing polymer (C) having a structural unit represented by the following general formula (1), and a mass ratio (A) / (C) Is a photocurable composition in the range of 95/5 to 25/75 ,
The photocurable composition in which the photocurable compound (A) contains an epoxy compound and an oxetane compound .
Figure 0006386370

(In Formula (1), R 1 to R 4 are fluorine, a C 1-10 alkyl group containing fluorine, a C 1-10 alkoxy group containing fluorine, or a carbon number 2 containing fluorine. Or R 1 to R 4 may be the same or different from each other, R 1 to R 4 may be bonded to each other to form a ring structure, X is selected from CH 2 or O.)
自身は光硬化しない溶媒(D)を実質的に含まない、請求項に記載の光硬化性組成物。 6. The photocurable composition according to claim 5 , which is substantially free of a solvent (D) that does not photocure itself. 前記光硬化性化合物(A)が、カチオン重合可能な開環重合性化合物である、請求項4ないし6のいずれか一項に記載の光硬化性組成物。 The photocurable composition according to any one of claims 4 to 6 , wherein the photocurable compound (A) is a cationically polymerizable ring-opening polymerizable compound. 光照射時における300nmの光線透過率が50%/μm以上である、請求項4ないし6のいずれか一項に記載の光硬化性組成物。 The photocurable composition according to any one of claims 4 to 6 , wherein the light transmittance at 300 nm during light irradiation is 50% / µm or more. 無機材料または有機材料で構成される第1の基材と、無機材料または有機材料で構成される第2の基材と、前記第1の基材と前記第2の基材とを接着する接着層とを備える積層構造物の製造方法であって、
前記積層構造物に備えられる前記第1の基材と、前記第2の基材のうち、少なくともいずれか一方は、光透過性を有する基材であり、
前記積層構造物の製造方法は、
前記第1の基材と前記第2の基材のうち少なくともいずれか一方の表面に、請求項に記載の光硬化性組成物を塗布する塗布工程と、
前記光硬化性組成物を塗布した基材を加熱して溶剤を蒸発させる工程と、
前記光硬化性組成物を塗布した表面を介して、前記第1の基材と前記第2の基材とを貼り合せる積層工程と、
前記光透過性を有する基材を介して光を照射する光照射工程と、
を含むことを特徴とする、積層構造物の製造方法。
A first base material composed of an inorganic material or an organic material, a second base material composed of an inorganic material or an organic material, and adhesion for bonding the first base material and the second base material A method for producing a laminated structure comprising a layer,
At least one of the first base material and the second base material provided in the laminated structure is a light-transmitting base material,
The manufacturing method of the laminated structure is as follows:
The application | coating process which apply | coats the photocurable composition of Claim 4 to the surface of at least any one among a said 1st base material and a said 2nd base material,
Heating the substrate coated with the photocurable composition to evaporate the solvent;
A laminating step of bonding the first base material and the second base material through the surface coated with the photocurable composition;
A light irradiation step of irradiating light through the substrate having the light transmission property;
The manufacturing method of a laminated structure characterized by including.
無機材料または有機材料で構成される第1の基材と、無機材料または有機材料で構成される第2の基材と、前記第1の基材と前記第2の基材とを接着する接着層とを備える積層構造物の製造方法であって、
前記積層構造物に備えられる前記第1の基材と、前記第2の基材のうち、少なくともいずれか一方は、光透過性を有する基材であり、
前記積層構造物の製造方法は、
前記第1の基材と前記第2の基材のうち少なくともいずれか一方の表面に、請求項5または6に記載の光硬化性組成物を塗布する塗布工程と、
前記光硬化性組成物を塗布した表面を介して、前記第1の基材と前記第2の基材とを貼り合せる積層工程と、
前記光透過性を有する基材を介して光を照射する光照射工程と、
を含むことを特徴とする、積層構造物の製造方法。
A first base material composed of an inorganic material or an organic material, a second base material composed of an inorganic material or an organic material, and adhesion for bonding the first base material and the second base material A method for producing a laminated structure comprising a layer,
At least one of the first base material and the second base material provided in the laminated structure is a light-transmitting base material,
The manufacturing method of the laminated structure is as follows:
The application | coating process which apply | coats the photocurable composition of Claim 5 or 6 to the surface of at least any one among a said 1st base material and a said 2nd base material,
A laminating step of bonding the first base material and the second base material through the surface coated with the photocurable composition;
A light irradiation step of irradiating light through the substrate having the light transmission property;
The manufacturing method of a laminated structure characterized by including.
JP2014262759A 2014-12-25 2014-12-25 Laminated structure, photocurable composition, and method for producing laminated structure Active JP6386370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014262759A JP6386370B2 (en) 2014-12-25 2014-12-25 Laminated structure, photocurable composition, and method for producing laminated structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014262759A JP6386370B2 (en) 2014-12-25 2014-12-25 Laminated structure, photocurable composition, and method for producing laminated structure

Publications (2)

Publication Number Publication Date
JP2016120683A JP2016120683A (en) 2016-07-07
JP6386370B2 true JP6386370B2 (en) 2018-09-05

Family

ID=56326459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014262759A Active JP6386370B2 (en) 2014-12-25 2014-12-25 Laminated structure, photocurable composition, and method for producing laminated structure

Country Status (1)

Country Link
JP (1) JP6386370B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220100993A (en) * 2016-08-08 2022-07-18 세키스이가가쿠 고교가부시키가이샤 Curable resin composition and sealing agent for organic electroluminescent display elements
JP2019154294A (en) * 2018-03-12 2019-09-19 三井化学株式会社 Medical instrument member, medical instrument and method for producing radiation-sterilized medical instrument
CN114653283B (en) * 2022-03-08 2023-10-31 衢州市食品药品检验研究院(衢州市医疗器械质量监督检验所) Reagent adding device and method based on thin layer chromatography
WO2023188956A1 (en) * 2022-03-30 2023-10-05 株式会社巴川製紙所 Sheet-shaped heater and fluorine-based adhesive used in same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101121671B1 (en) * 2003-08-12 2012-03-14 미쓰이 가가쿠 가부시키가이샤 Photo-curable resin composition and sealing agent for flat panel display using the same
JP4251058B2 (en) * 2003-10-15 2009-04-08 東亞合成株式会社 Cationic curable resin composition
US8211984B2 (en) * 2006-07-21 2012-07-03 Mitsui Chemicals, Inc. Ring-opening metathesis polymer, hydrogenated product thereof, method for preparing the same, and use thereof

Also Published As

Publication number Publication date
JP2016120683A (en) 2016-07-07

Similar Documents

Publication Publication Date Title
US10000633B2 (en) Fluorine-containing cyclic olefin polymer composition, imprint product obtained using the composition, and method for producing the same
TWI746948B (en) Method for manufacturing polyorganosilsesquioxane, curable composition containing polyorganosilsesquioxane, hard coating film, adhesive sheet, laminate, and hard coating film
CN102449005B (en) Fluorine-containing hyper branched polymer and the resin combination comprising this polymkeric substance
JP5301648B2 (en) Transfer body and method for producing the same
JP6386370B2 (en) Laminated structure, photocurable composition, and method for producing laminated structure
TW201444924A (en) Hardened material, film, coating film, compact and resin composition
JP6846516B2 (en) Manufacturing method of substrate with fine uneven pattern, resin composition and laminate
JP6418672B2 (en) Resin composition for optical parts and optical part using the same
JP2013138158A (en) Image pickup device, pigment-containing lens, and lens molding resin composition
JP6144756B2 (en) Optical film and manufacturing method thereof
JP7284820B2 (en) Photocurable composition, method for producing concave-convex structure, method for forming fine concave-convex pattern, and concave-convex structure
JP2007197623A (en) Film comprising addition polymer of norbornene compound
WO2019142528A1 (en) Method for manufacturing concave-convex structure, laminate to be used in method for manufacturing concave-convex structure, and method for manufacturing said laminate
JP6418673B2 (en) Resin composition for optical parts and optical part using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180809

R150 Certificate of patent or registration of utility model

Ref document number: 6386370

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250