JP6383479B1 - Ethylene polymer and molded body - Google Patents

Ethylene polymer and molded body Download PDF

Info

Publication number
JP6383479B1
JP6383479B1 JP2017232007A JP2017232007A JP6383479B1 JP 6383479 B1 JP6383479 B1 JP 6383479B1 JP 2017232007 A JP2017232007 A JP 2017232007A JP 2017232007 A JP2017232007 A JP 2017232007A JP 6383479 B1 JP6383479 B1 JP 6383479B1
Authority
JP
Japan
Prior art keywords
ethylene polymer
temperature
less
ethylene
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017232007A
Other languages
Japanese (ja)
Other versions
JP2018141136A (en
Inventor
望月 信介
信介 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Application granted granted Critical
Publication of JP6383479B1 publication Critical patent/JP6383479B1/en
Publication of JP2018141136A publication Critical patent/JP2018141136A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0459Cells or batteries with folded separator between plate-like electrodes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/046Elimination of a polymeric phase
    • C08J2201/0462Elimination of a polymeric phase using organic solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/134Phenols containing ester groups
    • C08K5/1345Carboxylic esters of phenolcarboxylic acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

【課題】成形(例えば、薄膜成形などの成膜)の際に優れた耐酸化性、及び耐収縮性を付与できるエチレン系重合体、及びこのエチレン系重合体を含む成形体を提供する。
【解決手段】
極限粘度(η)が11以上28以下であり、
示差走査熱量計(DSC)を用いた下記(1)〜(3)の測定条件によって得られる2回目の昇温過程のDSC曲線において、2回目の昇温過程の融解熱量(ΔH2)に対して融点(Tm2)より高い領域の融解熱量(ΔHb)の割合(ΔHb/ΔH2×100)が18%以上であるエチレン系重合体。

(DSC測定条件)
(1)50℃で1分間保持後、10℃/minの昇温速度で180℃まで昇温。
(2)180℃で5分間保持後、10℃/minの降温速度で50℃まで降温。
(3)50℃で5分間保温後、10℃/minの昇温速度で180℃まで昇温。

【選択図】なし
An ethylene polymer capable of imparting excellent oxidation resistance and shrinkage resistance during molding (for example, film formation such as thin film molding) and a molded body including the ethylene polymer are provided.
[Solution]
The intrinsic viscosity (η) is 11 or more and 28 or less,
In the DSC curve of the second temperature raising process obtained by the following measurement conditions (1) to (3) using a differential scanning calorimeter (DSC), with respect to the heat of fusion (ΔH 2 ) of the second temperature raising process An ethylene polymer having a ratio (ΔH b / ΔH 2 × 100) of heat of fusion (ΔH b ) in a region higher than the melting point (Tm 2 ) of 18% or more.

(DSC measurement conditions)
(1) After holding at 50 ° C. for 1 minute, the temperature is raised to 180 ° C. at a temperature rising rate of 10 ° C./min.
(2) After holding at 180 ° C. for 5 minutes, the temperature is decreased to 50 ° C. at a temperature decreasing rate of 10 ° C./min.
(3) After holding at 50 ° C. for 5 minutes, the temperature is raised to 180 ° C. at a temperature rising rate of 10 ° C./min.

[Selection figure] None

Description

本発明は、エチレン系重合体及び成形体に関する。   The present invention relates to an ethylene polymer and a molded body.

ポリエチレンは、従来から、フィルム、シート、微多孔膜、繊維、成形体等様々な用途に使用されている。特に、鉛蓄電池やリチウムイオン電池に代表される二次電池用のセパレータを構成する微多孔膜の原料として、分子量の高いポリエチレンが用いられている。鉛蓄電池用の微多孔膜に求められる特性としては、正極と負極との隔離性、電解液の含浸性及び拡散性、低電気抵抗性、耐酸化性、及び機械強度等が挙げられる。特に近年、アイドリングストップ車の普及により、鉛蓄電池の小型化、高容量化、及び高出力化が検討されており、微多孔膜のより一層の薄膜化が求められている(例えば、特許文献1参照)。しかしながら、微多孔膜を薄膜化することに起因して膜の耐酸化性が低下し、電池の寿命が低下する。このため、耐酸化性を高める方法として、従来から種々の方法が提案されている(例えば、特許文献2、3参照)。   Polyethylene has been conventionally used for various applications such as films, sheets, microporous membranes, fibers, and molded articles. In particular, polyethylene having a high molecular weight is used as a raw material for a microporous film constituting a separator for a secondary battery represented by a lead storage battery or a lithium ion battery. The characteristics required for the microporous membrane for a lead-acid battery include isolation between the positive electrode and the negative electrode, electrolyte impregnation and diffusibility, low electrical resistance, oxidation resistance, mechanical strength, and the like. Particularly in recent years, lead-acid batteries are being reduced in size, increased in capacity, and increased in output due to the widespread use of idling stop vehicles, and further reduction in the thickness of microporous membranes is required (for example, Patent Document 1). reference). However, the oxidation resistance of the film is lowered due to the thinning of the microporous film, and the life of the battery is reduced. For this reason, various methods have been conventionally proposed as methods for improving the oxidation resistance (see, for example, Patent Documents 2 and 3).

特表2013−541162号公報Special table 2013-541162 gazette 特許第4583551号公報Japanese Patent No. 4583551 特許第5830187号公報Japanese Patent No. 5830187

二次電池用のセパレータを薄膜化するためには、微多孔膜を単独で使用することが好ましい。一方、一般的に、微多孔膜などの膜の耐酸化性を高める方法としては、原料として用いるポリエチレンの分子量を高くする方法等が挙げられる。しかしながら、分子量の高いポリエチレンは、粘度が高く、分散性が悪いだけでなく、膜の収縮、厚みムラ、たわみが生じるおそれがあり、電極との接触等により、局所的な酸化を誘発することに起因して耐酸化性が低下する問題がある。このため、分子量の高いポリエチレンと分子量の低いポリエチレンとをブレンドする方法等が考えられるが、微多孔膜全体のポリエチレンの分子量が低下し、微多孔膜の強度を十分に大きくすることができないだけでなく、耐酸化性が不十分になるという問題がある。   In order to reduce the thickness of the separator for a secondary battery, it is preferable to use a microporous film alone. On the other hand, generally, as a method for increasing the oxidation resistance of a film such as a microporous film, a method for increasing the molecular weight of polyethylene used as a raw material can be mentioned. However, polyethylene with a high molecular weight not only has high viscosity and poor dispersibility, but also may cause film shrinkage, uneven thickness, and deflection, and induces local oxidation by contact with the electrode. As a result, there is a problem that the oxidation resistance is lowered. For this reason, a method of blending polyethylene having a high molecular weight and polyethylene having a low molecular weight can be considered, but the molecular weight of polyethylene in the entire microporous membrane is lowered, and the strength of the microporous membrane cannot be sufficiently increased. There is a problem that the oxidation resistance is insufficient.

そこで本発明は、成形(例えば、薄膜成形などの成膜)の際に優れた耐酸化性、及び耐収縮性を付与できるエチレン系重合体、及びこのエチレン系重合体を含む成形体(例えば、微多孔膜)を提供することを目的とする。   Therefore, the present invention provides an ethylene-based polymer capable of imparting excellent oxidation resistance and shrinkage resistance during molding (for example, film formation such as thin film molding), and a molded body containing the ethylene-based polymer (for example, The object is to provide a microporous membrane.

本発明者らは、上述した従来技術の課題を解決するべく鋭意研究を進めた結果、極限粘度が所定範囲内にあり、かつ示差走査熱量計(DSC)の特定の測定条件により得られる融解熱量の特定の割合が特定の下限値以上であるエチレン系重合体が、上記の課題を解決することができることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-described problems of the prior art, the inventors of the present invention have an intrinsic viscosity within a predetermined range, and the heat of fusion obtained under specific measurement conditions of a differential scanning calorimeter (DSC). It has been found that an ethylene polymer having a specific ratio of not less than a specific lower limit can solve the above-mentioned problems, and has completed the present invention.

すなわち、本発明は以下の通りである。
[1]
極限粘度(η)が11以上28以下であり、
示差走査熱量計(DSC)を用いた下記(1)〜(3)の測定条件によって得られる2回目の昇温過程のDSC曲線において、2回目の昇温過程の融解熱量(ΔH2)に対して融点(Tm2)より高い領域の融解熱量(ΔHb)の割合(ΔHb/ΔH2×100)が18%以上であるエチレン系重合体。

(DSC測定条件)
(1)50℃で1分間保持後、10℃/minの昇温速度で180℃まで昇温。
(2)180℃で5分間保持後、10℃/minの降温速度で50℃まで降温。
(3)50℃で5分間保温後、10℃/minの昇温速度で180℃まで昇温。

[2]
前記DSCを用いた測定条件の降温過程における、発熱ピークの半値幅が3.0以上6.0以下である、前項[1]に記載のエチレン系重合体。
[3]
下記(1)〜(3)の加工条件により得られるプレスシート密度が910kg/m3以上940kg/m3以下である、前項[1]又は[2]に記載のエチレン系重合体。

(加工条件)
(1)200℃、0.1MPaの条件で900秒間予熱。
(2)200℃、15MPaの条件で300秒間加圧。
(3)25℃、10MPaの条件で600秒間冷却。

[4]
チタン含有量が、エチレン系重合体全体に対し、重量換算で3ppm以下である、前項[1]から[3]のいずれかに記載のエチレン系重合体。
[5]
塩素含有量が、エチレン系重合体全体に対し、重量換算で10ppm以下である、前項[1]から[4]のいずれかに記載のエチレン系重合体。
[6]
前項[1]から[5]のいずれかに記載のエチレン系重合体を含む、成形体。
[7]
微多孔膜である、前項[6]記載の成形体。
That is, the present invention is as follows.
[1]
The intrinsic viscosity (η) is 11 or more and 28 or less,
In the DSC curve of the second temperature raising process obtained by the following measurement conditions (1) to (3) using a differential scanning calorimeter (DSC), with respect to the heat of fusion (ΔH 2 ) of the second temperature raising process An ethylene polymer having a ratio (ΔH b / ΔH 2 × 100) of heat of fusion (ΔH b ) in a region higher than the melting point (Tm 2 ) of 18% or more.

(DSC measurement conditions)
(1) After holding at 50 ° C. for 1 minute, the temperature is raised to 180 ° C. at a temperature rising rate of 10 ° C./min.
(2) After holding at 180 ° C. for 5 minutes, the temperature is decreased to 50 ° C. at a temperature decreasing rate of 10 ° C./min.
(3) After holding at 50 ° C. for 5 minutes, the temperature is raised to 180 ° C. at a temperature rising rate of 10 ° C./min.

[2]
The ethylene polymer according to [1], wherein the half-value width of the exothermic peak is 3.0 or more and 6.0 or less in the temperature lowering process under the measurement conditions using the DSC.
[3]
The ethylene polymer according to [1] or [2] above, wherein a press sheet density obtained under the following processing conditions (1) to (3) is from 910 kg / m 3 to 940 kg / m 3 .

(Processing conditions)
(1) Preheating for 900 seconds under the conditions of 200 ° C. and 0.1 MPa.
(2) Pressurization for 300 seconds under conditions of 200 ° C. and 15 MPa.
(3) Cooling for 600 seconds under conditions of 25 ° C. and 10 MPa.

[4]
The ethylene polymer according to any one of [1] to [3], wherein the titanium content is 3 ppm or less in terms of weight with respect to the whole ethylene polymer.
[5]
The ethylene polymer according to any one of [1] to [4] above, wherein the chlorine content is 10 ppm or less in terms of weight with respect to the entire ethylene polymer.
[6]
A molded article comprising the ethylene polymer according to any one of [1] to [5].
[7]
The molded product according to [6] above, which is a microporous membrane.

本発明によれば、成形(例えば、薄膜成形などの成膜)の際に、優れた耐酸化性及び耐収縮性を付与できるエチレン系重合体、及びこのエチレン系重合体を含む成形体(例えば、微多孔膜)を提供可能である。
さらに、本発明のエチレン系重合体は、成膜(例えば、薄膜成形)する際に、優れた耐酸化性及び耐収縮性を付与できるので、例えば、二次電池用のセパレータを構成する微多孔膜として好適に用いることができる。より詳細には、本発明のエチレン系重合体を用いて得られる微多孔膜は、耐酸化性試験後の膜の収縮が抑制されるため、電池の寿命をさらに延ばすことができる。
According to the present invention, an ethylene polymer capable of imparting excellent oxidation resistance and shrinkage resistance during molding (for example, film formation such as thin film molding), and a molded body containing the ethylene polymer (for example, , A microporous membrane) can be provided.
Furthermore, since the ethylene-based polymer of the present invention can provide excellent oxidation resistance and shrinkage resistance during film formation (for example, thin film molding), for example, the microporous material constituting a separator for a secondary battery. It can be suitably used as a film. More specifically, the microporous film obtained by using the ethylene polymer of the present invention can further extend the battery life because shrinkage of the film after the oxidation resistance test is suppressed.

以下、本発明を実施するための形態(以下、「本実施形態」という。)について、詳細に説明する。なお、本発明は以下の記載に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。   Hereinafter, a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail. In addition, this invention is not limited to the following description, It can implement by changing variously within the range of the summary.

〔エチレン系重合体〕
本実施形態のエチレン系重合体は、極限粘度(η)が11以上28以下であり、示差走査熱量計(DSC)を用いた下記(1)〜(3)の測定条件によって得られる2回目の昇温過程のDSC曲線において、2回目の昇温過程の融解熱量(ΔH2)に対して融点(Tm2)より高い領域の融解熱量(ΔHb)の割合(ΔHb/ΔH2×100で表される。以下、「融解熱量の特定の割合」ともいう。)が18%以上である。本実施形態のエチレン系重合体は、極限粘度が上記範囲内にあり、かつ融解熱量の特定の割合が特定の下限値以上であることにより、成形(例えば、薄膜成形などの成膜)の際に、優れた耐酸化性及び耐収縮性を付与できる。また、本実施形態のエチレン系重合体は、極限粘度を上記範囲内とし、融解熱量の特定の割合を、特定の下限値以上とすることにより、薄膜成形などに成膜の際、膜の均一性が高く、オイル抽出時の残留オイルのムラ、収縮ムラが小さい傾向にある。このため、本実施形態のエチレン系重合体を用いて成膜すると、膜のたわみが小さく、巻しわや巻ずれが発生しにくくなる傾向にあり、膜の品位が向上する。

(DSC測定条件)
(1)50℃で1分間保持後、10℃/minの昇温速度で180℃まで昇温。
(2)180℃で5分間保持後、10℃/minの降温速度で50℃まで降温。
(3)50℃で5分間保温後、10℃/minの昇温速度で180℃まで昇温。
[Ethylene polymer]
The ethylene polymer of the present embodiment has an intrinsic viscosity (η) of 11 or more and 28 or less, and is obtained for the second time obtained under the following measurement conditions (1) to (3) using a differential scanning calorimeter (DSC). In the DSC curve of the temperature raising process, the ratio of the heat of fusion (ΔH b ) in the region higher than the melting point (Tm 2 ) to the heat of fusion (ΔH 2 ) of the second temperature raising process (ΔH b / ΔH 2 × 100 Hereinafter, it is also referred to as “specific ratio of heat of fusion”)) of 18% or more. The ethylene-based polymer of the present embodiment has an intrinsic viscosity within the above range, and a specific ratio of the heat of fusion is a specific lower limit value or more, so that it can be molded (for example, film formation such as thin film molding). In addition, excellent oxidation resistance and shrinkage resistance can be imparted. In addition, the ethylene polymer of the present embodiment has an intrinsic viscosity within the above range, and a specific ratio of the heat of fusion is not less than a specific lower limit value. It has a high property, and there is a tendency that the residual oil unevenness and shrinkage unevenness during oil extraction are small. For this reason, when the film is formed using the ethylene-based polymer of the present embodiment, the film is less likely to be bent and less likely to be wound or misaligned, thereby improving the quality of the film.

(DSC measurement conditions)
(1) After holding at 50 ° C. for 1 minute, the temperature is raised to 180 ° C. at a temperature rising rate of 10 ° C./min.
(2) After holding at 180 ° C. for 5 minutes, the temperature is decreased to 50 ° C. at a temperature decreasing rate of 10 ° C./min.
(3) After holding at 50 ° C. for 5 minutes, the temperature is raised to 180 ° C. at a temperature rising rate of 10 ° C./min.

以下、本実施形態のエチレン系重合体の要件について説明する。   Hereinafter, the requirements for the ethylene polymer of this embodiment will be described.

(極限粘度)
本実施形態のエチレン系重合体の極限粘度(η)は、11以上28以下であり、好ましくは13以上26以下であり、より好ましくは15以上25以下である。極限粘度(η)が11以上であると、成形(例えば、薄膜成形などの成膜)の際に、最低限の耐酸化性を付与できる。また、薄膜に成形した際に、良好な膜強度を付与できる。一方で、極限粘度(η)が28以下であると、成形後の膜の収縮が抑制される。
(Intrinsic viscosity)
The intrinsic viscosity (η) of the ethylene polymer of the present embodiment is 11 or more and 28 or less, preferably 13 or more and 26 or less, and more preferably 15 or more and 25 or less. When the intrinsic viscosity (η) is 11 or more, a minimum oxidation resistance can be imparted during molding (for example, film formation such as thin film molding). Moreover, when shape | molded into a thin film, favorable film | membrane strength can be provided. On the other hand, when the intrinsic viscosity (η) is 28 or less, shrinkage of the film after molding is suppressed.

本実施形態のエチレン系重合体の極限粘度(η)は、後述するオレフィン系重合用触媒を用いて、重合条件等を適宜調整することで制御できる。具体的には、重合系に水素を存在させたり、重合温度を変化させたりすること等によって極限粘度(η)を制御できる。   The intrinsic viscosity (η) of the ethylene polymer of the present embodiment can be controlled by appropriately adjusting the polymerization conditions and the like using an olefin polymerization catalyst described later. Specifically, the intrinsic viscosity (η) can be controlled by allowing hydrogen to be present in the polymerization system or changing the polymerization temperature.

本実施形態のエチレン系重合体の極限粘度(η)は、具体的には、例えば、デカリン中にエチレン系重合体を異なる濃度で溶解した溶液を用意し、当該溶液の135℃における溶液粘度を測定し、測定された溶液粘度から計算される還元粘度を濃度0に外挿して求めることができる。より詳細には、実施例に記載の方法が用いられる。   Specifically, the intrinsic viscosity (η) of the ethylene polymer of this embodiment is prepared by, for example, preparing solutions in which ethylene polymer is dissolved in decalin at different concentrations, and determining the solution viscosity at 135 ° C. of the solution. It can be determined by extrapolating the reduced viscosity calculated from the measured solution viscosity to a concentration of zero. More specifically, the method described in the examples is used.

(融解熱量の特定の割合)
融解熱量の特定の割合は、18%以上(例えば、18%以上26%以下)であり、好ましくは19%以上25以下、より好ましくは20%以上25%以下である。融解熱量の特定の割合が、18%以上であると、エチレン系重合体中の結晶サイズ、厚みの大きいポリエチレン成分が多くなり、成形(例えば、薄膜成形などの成膜)する際、優れた耐酸化性を付与できる。一方で、融解熱量の特定の割合が26%以下であると、有機溶剤(例えば、流動パラフィンなど)に対する一層優れた溶解性を有するエチレン系重合体が得られ、成形(例えば、薄膜成形などの成膜)する際、優れた外観を付与できる。なお、融解熱量の特定の割合は、後述する実施例に記載の方法により測定できる。
(Specific ratio of heat of fusion)
The specific ratio of the heat of fusion is 18% or more (for example, 18% or more and 26% or less), preferably 19% or more and 25 or less, more preferably 20% or more and 25% or less. When the specific ratio of the heat of fusion is 18% or more, the polyethylene component having a large crystal size and thickness in the ethylene-based polymer increases, and has excellent acid resistance when molding (for example, film formation such as thin film molding). Can be imparted. On the other hand, when the specific ratio of the heat of fusion is 26% or less, an ethylene polymer having better solubility in an organic solvent (for example, liquid paraffin) can be obtained, and molding (for example, thin film molding) When forming a film, an excellent appearance can be imparted. In addition, the specific ratio of heat of fusion can be measured by the method described in Examples described later.

本実施形態のエチレン系重合体の融解熱量の特定の割合は、粘度平均分子量を調整したり、オレフィン系重合用触媒の活性種のサイズを大きくしたり、重合系にごく微量のアルコール成分を添加したりすることにより制御可能である。重合系にごく微量のアルコール成分を添加する具体的な方法としては、例えば、重合系内に重合レート(重合速度)10kg/hrに対して、1ppm/hrの添加速度でノルマルブタノールを添加する方法が挙げられる。重合系にごく微量のアルコール成分を添加すると、エチレン系重合体の結晶の成長を阻害するようなわずかな低分子量成分を生成させる活性点を失活させることができ、ΔHbの割合を高めることができる。一方、粘度平均分子量を調整したり、オレフィン系重合用触媒の活性種のサイズを制御したりすることにより、ΔHbの割合を低くすることができる。 The specific ratio of the heat of fusion of the ethylene polymer of the present embodiment adjusts the viscosity average molecular weight, increases the size of the active species of the olefin polymerization catalyst, or adds a very small amount of alcohol component to the polymerization system. It can be controlled by doing. As a specific method of adding a very small amount of alcohol component to the polymerization system, for example, a method of adding normal butanol at an addition rate of 1 ppm / hr to a polymerization rate (polymerization rate) of 10 kg / hr in the polymerization system. Is mentioned. The addition of only alcohol component traces to the polymerization system, it is possible to deactivate the active sites to produce a slight low molecular weight components such as to inhibit the growth of crystals of the ethylene polymer, to increase the ratio of [Delta] H b Can do. On the other hand, the ratio of ΔH b can be lowered by adjusting the viscosity average molecular weight or controlling the size of the active species of the olefin polymerization catalyst.

(DSCの発熱ピークの半値幅)
前記DSCの測定条件の降温過程における、発熱ピークの半値幅は、好ましくは3.0以上6.0以下であり、より好ましくは3.0以上5.5以下、さらに好ましくは3.0以上5.0以下であり、特に好ましくは3.0以上4.3以下である。発熱ピークの半値幅が3.0以上であると、一般的なポリエチレンと同様に比較的容易に成形(例えば、成膜)できる。一方で、発熱ピークの半値幅が6.0以下であれば、成膜(例えば、薄膜成形)の際に膜の均一性が一層良好となり、厚みムラが一層抑制される。なお、前記発熱ピークの半値幅は、後述する実施例に記載の方法により測定できる。
(Half width of DSC exothermic peak)
The half-value width of the exothermic peak in the temperature lowering process under the DSC measurement conditions is preferably 3.0 or more and 6.0 or less, more preferably 3.0 or more and 5.5 or less, and further preferably 3.0 or more and 5 or less. 0.0 or less, particularly preferably 3.0 or more and 4.3 or less. When the half-value width of the exothermic peak is 3.0 or more, it can be molded (for example, film formation) relatively easily as in the case of general polyethylene. On the other hand, when the half-value width of the exothermic peak is 6.0 or less, the uniformity of the film is further improved during film formation (for example, thin film forming), and thickness unevenness is further suppressed. In addition, the half value width of the said exothermic peak can be measured by the method as described in the Example mentioned later.

上記発熱ピークの半値幅は、分子量分布を調整したり、単位触媒に含まれるチタンあたりの生産性を高くしたり、重合反応後に得られるエチレン系重合体を高温(例えば、70℃以上)のメタノールで洗浄したりすることにより制御可能である。特に、エチレン系重合体を高温のメタノールで洗浄すると、結晶化の起点になるような不純物を除去でき、エチレン系重合体の結晶化が均一に進むため、発熱ピークの半値幅を小さくすることができる。一方、分子量分布を調整したり、単位触媒に含まれるチタンあたりの生産性を制御したりすることにより、発熱ピークの半値幅を大きくすることができる。   The half-value width of the exothermic peak adjusts the molecular weight distribution, increases the productivity per titanium contained in the unit catalyst, or converts the ethylene polymer obtained after the polymerization reaction to methanol at a high temperature (eg, 70 ° C. or higher). It can be controlled by washing with. In particular, when an ethylene polymer is washed with high-temperature methanol, impurities that can be the starting point of crystallization can be removed, and the crystallization of the ethylene polymer proceeds uniformly, so that the half-value width of the exothermic peak can be reduced. it can. On the other hand, the half width of the exothermic peak can be increased by adjusting the molecular weight distribution or controlling the productivity per titanium contained in the unit catalyst.

(プレスシート密度)
本実施形態の下記(1)〜(3)の加工条件によって得られるエチレン系重合体のプレスシート密度は、好ましくは910kg/m3以上940kg/m3以下であり、より好ましくは915kg/m3以上935kg/m3以下であり、さらに好ましくは920kg/m3以上935kg/m3以下である。プレスシート密度が910kg/m3以上であると、ポリエチレンの結晶性が十分に高く、成形(例えば、薄膜成形などの成膜)の際に、より一層優れた耐酸化性を付与できる傾向にある。一方でプレスシート密度が940kg/m3以下であると、ポリエチレンの粘度平均分子量が十分に高く、成形(例えば、成膜)の際に一層優れた強度(例えば、膜強度)を付与できる傾向にある。

(1)200℃、0.1MPaの条件で900秒間予熱。
(2)200℃、15MPaの条件で300秒間加圧。
(3)25℃、10MPaの条件で600秒間冷却。
(Press sheet density)
The press sheet density of the ethylene polymer obtained by the following processing conditions (1) to (3) of the present embodiment is preferably 910 kg / m 3 or more and 940 kg / m 3 or less, more preferably 915 kg / m 3. It is 935 kg / m 3 or less, more preferably 920 kg / m 3 or more and 935 kg / m 3 or less. When the press sheet density is 910 kg / m 3 or more, the crystallinity of polyethylene is sufficiently high, and there is a tendency that even better oxidation resistance can be imparted during molding (for example, film formation such as thin film molding). . On the other hand, when the press sheet density is 940 kg / m 3 or less, the viscosity-average molecular weight of polyethylene is sufficiently high, and it tends to be able to impart more excellent strength (for example, film strength) during molding (for example, film formation). is there.

(1) Preheating for 900 seconds under the conditions of 200 ° C. and 0.1 MPa.
(2) Pressurization for 300 seconds under conditions of 200 ° C. and 15 MPa.
(3) Cooling for 600 seconds under conditions of 25 ° C. and 10 MPa.

本実施形態のエチレン系重合体のプレスシート密度は、粘度平均分子量を調整したり、ポリエチレン鎖中に分岐を導入したりすることにより制御可能である。   The press sheet density of the ethylene-based polymer of this embodiment can be controlled by adjusting the viscosity average molecular weight or introducing a branch in the polyethylene chain.

(エチレン系重合体)
本実施形態のエチレン系重合体としては、以下に限定されないが、エチレン単独重合体、又はエチレンと、他の1種以上のモノマーとの共重合体(例えば、二元又は三元共重合体)が挙げられる。共重合体の結合形式は、ランダムでもブロックであってもよい。他のモノマーとしては、以下に限定されないが、例えば、α−オレフィン、ビニル化合物が挙げられ、前記α−オレフィンとしては、以下に限定されないが、例えば、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセン、1−オクテン、1−ノネン、1−デセン、1−ウンデセン、1−ドデセン、1−トリデセン、1−テトラデセン等の炭素数3〜20のα−オレフィンが挙げられ、前記ビニル化合物としては、以下に限定されないが、例えば、ビニルシクロヘキサン、スチレン及びその誘導体等が挙げられる。また、必要に応じて、他のモノマーとして、1,5−ヘキサジエン、1,7−オクタジエン等の非共役ポリエンを使用できる。これらの他のモノマーは1種を単独で、又は2種以上を組み合わせて用いることができる。
(Ethylene polymer)
The ethylene polymer of the present embodiment is not limited to the following, but is an ethylene homopolymer or a copolymer of ethylene and one or more other monomers (for example, a binary or ternary copolymer). Is mentioned. The bond type of the copolymer may be random or block. Examples of other monomers include, but are not limited to, α-olefins and vinyl compounds. Examples of the α-olefin include, but are not limited to, propylene, 1-butene, 4-methyl-1 -Α-olefins having 3 to 20 carbon atoms such as pentene, 1-hexene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, etc. Examples of the vinyl compound include, but are not limited to, vinylcyclohexane, styrene, and derivatives thereof. If necessary, non-conjugated polyenes such as 1,5-hexadiene and 1,7-octadiene can be used as other monomers. These other monomers can be used individually by 1 type or in combination of 2 or more types.

本実施形態のエチレン系重合体は、オレフィン系重合用触媒由来の残留金属成分を含む場合があり、残留金属成分としては、例えば、チタン、塩素が挙げられる。   The ethylene polymer of this embodiment may contain a residual metal component derived from an olefin polymerization catalyst, and examples of the residual metal component include titanium and chlorine.

(エチレン系重合体中のチタン含有量)
本実施形態のエチレン系重合体に含まれるチタン含有量は、エチレン系重合体全体に対し、重量換算で、好ましくは3ppm以下であり、より好ましくは1ppm以下であり、さらに好ましくは0.5ppm以下である。チタン含有量が3ppm以下であると、ポリエチレンの結晶サイズを大きくすることができ、成形(例えば、薄膜などの成膜)の際により優れた耐酸化性を付与できる傾向にある。なお、チタン含有量は、後述する実施例に記載の方法により測定できる。
(Titanium content in ethylene polymer)
The titanium content contained in the ethylene polymer of the present embodiment is preferably 3 ppm or less, more preferably 1 ppm or less, and even more preferably 0.5 ppm or less, in terms of weight with respect to the entire ethylene polymer. It is. When the titanium content is 3 ppm or less, the polyethylene crystal size can be increased, and excellent oxidation resistance tends to be imparted during molding (for example, film formation such as a thin film). In addition, titanium content can be measured by the method as described in the Example mentioned later.

本実施形態のエチレン系重合体に含まれるチタン含有量は、後述するオレフィン系重合用触媒を用いるか、単位触媒あたりの生産性を高めることで低減できる。   The titanium content contained in the ethylene polymer of the present embodiment can be reduced by using an olefin polymerization catalyst described later or by increasing the productivity per unit catalyst.

(エチレン系重合体中の塩素含有量)
本実施形態のエチレン系重合体に含まれる塩素含有量は、エチレン系重合体全体に対し、重量換算で、好ましくは10ppm以下であり、より好ましくは5ppm以下であり、さらに好ましくは2ppm以下である。塩素含有量が10ppm以下であると、酸水溶液中でのエチレン系重合体の劣化を抑制でき、成形(例えば、薄膜などの成膜)の際により一層優れた耐酸化性を付与できる傾向にある。なお、塩素含有量は、後述する実施例に記載の方法により測定できる。
(Chlorine content in ethylene polymer)
The chlorine content contained in the ethylene polymer of the present embodiment is preferably 10 ppm or less, more preferably 5 ppm or less, and further preferably 2 ppm or less in terms of weight with respect to the entire ethylene polymer. . When the chlorine content is 10 ppm or less, deterioration of the ethylene-based polymer in the acid aqueous solution can be suppressed, and more excellent oxidation resistance tends to be imparted during molding (for example, film formation such as a thin film). . In addition, chlorine content can be measured by the method as described in the Example mentioned later.

エチレン系重合体に含まれる塩素含有量は、後述する触媒を用いるか、単位触媒あたりの生産性を高めることで含有量を低減できる。   The chlorine content contained in the ethylene-based polymer can be reduced by using a catalyst described later or by increasing the productivity per unit catalyst.

(添加剤)
さらに、本実施形態のエチレン系重合体は、中和剤、酸化防止剤、及び耐光安定剤等の添加剤を含有してもよい。
(Additive)
Furthermore, the ethylene-based polymer of the present embodiment may contain additives such as a neutralizing agent, an antioxidant, and a light stabilizer.

中和剤はエチレン系重合体中に含まれる塩素キャッチャー、又は成形加工助剤等として使用される。中和剤としては、以下に限定されないが、例えば、カルシウム、マグネシウム、バリウム等のアルカリ土類金属のステアリン酸塩が挙げられる。中和剤の含有量は、特に限定されないが、エチレン系重合体全体に対し、重量換算で、好ましくは5000ppm以下であり、より好ましくは4000ppm以下、さらに好ましくは3000ppm以下である。   The neutralizing agent is used as a chlorine catcher or a molding processing aid contained in the ethylene polymer. Examples of the neutralizing agent include, but are not limited to, stearates of alkaline earth metals such as calcium, magnesium, and barium. The content of the neutralizing agent is not particularly limited, but is preferably 5000 ppm or less, more preferably 4000 ppm or less, and still more preferably 3000 ppm or less in terms of weight with respect to the entire ethylene polymer.

酸化防止剤としては、以下に限定されないが、例えば、ジブチルヒドロキシトルエン、ペンタエリスチル−テトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート等のフェノール系酸化防止剤が挙げられる。酸化防止剤の含有量は、特に限定されないが、エチレン系重合体全体に対し、重量換算で、5,000ppm以下が好ましく、より好ましくは4,000ppm以下であり、さらに好ましくは3,000ppm以下である。   Examples of the antioxidant include, but are not limited to, dibutylhydroxytoluene, pentaerythryl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], octadecyl-3- ( And phenolic antioxidants such as 3,5-di-t-butyl-4-hydroxyphenyl) propionate. The content of the antioxidant is not particularly limited, but is preferably 5,000 ppm or less, more preferably 4,000 ppm or less, and still more preferably 3,000 ppm or less in terms of weight with respect to the whole ethylene polymer. is there.

耐光安定剤としては、以下に限定されないが、例えば、2−(5−メチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−(3−t−ブチル−5−メチル−2−ヒドロキシフェニル)−5−クロロベンゾトリアゾール等のベンゾトリアゾール系耐光安定剤;ビス(2,2,6,6−テトラメチル−4−ピペリジン)セバケート、ポリ[{6−(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル}{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}]等のヒンダードアミン系耐光安定剤が挙げられる。耐光安定剤の含有量は、特に限定されないが、エチレン系重合体全体に対し、重量換算で、好ましくは5000ppm以下であり、より好ましくは4000ppm以下、さらに好ましくは3000ppm以下である。   Examples of the light-resistant stabilizer include, but are not limited to, 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- (3-t-butyl-5-methyl-2-hydroxyphenyl) -5 Benzotriazole light stabilizers such as chlorobenzotriazole; bis (2,2,6,6-tetramethyl-4-piperidine) sebacate, poly [{6- (1,1,3,3-tetramethylbutyl) amino -1,3,5-triazine-2,4-diyl} {(2,2,6,6-tetramethyl-4-piperidyl) imino} hexamethylene {(2,2,6,6-tetramethyl-4 Hindered amine light-resistant stabilizers such as -piperidyl) imino}]. Although content of a light-resistant stabilizer is not specifically limited, Preferably it is 5000 ppm or less in weight conversion with respect to the whole ethylene polymer, More preferably, it is 4000 ppm or less, More preferably, it is 3000 ppm or less.

本実施形態では、上記のような各成分以外にもエチレン系重合体の製造に有用な他の公知の成分を含むことができる。   In the present embodiment, in addition to the above-described components, other known components useful for the production of an ethylene polymer can be included.

本実施形態のエチレン系重合体は、1種のエチレン系重合体(例えば、ポリエチレン)で構成されてもよく、異なる2種以上のエチレン系重合体(例えば、2種以上のポリエチレン)で構成されてもよい。2種以上の場合には、例えば、粘度平均分子量が異なるエチレン系重合体(例えば、ポリエチレン)を組み合わせてもよい。また、本実施形態のエチレン系重合体を構成するポリエチレンとしては、超高分子量ポリエチレンが好ましく、エチレン系重合体は、ポリエチレンとして超高分子量ポリエチレン単独で構成してもよく、超高分子量ポリエチレンと、他の樹脂とを組み合わせてもよい。他の樹脂としては、特に限定されず、低密度ポリエチレン、線状低密度ポリエチレンなどの他のポリエチレン、ポリプロピレン、ポリスチレンなどが挙げられる。これらの他の樹脂は、一種を単独で、又は2種以上を組み合わせてもよい。   The ethylene polymer of this embodiment may be composed of one type of ethylene polymer (for example, polyethylene), or may be composed of two or more different types of ethylene polymers (for example, two or more types of polyethylene). May be. In the case of two or more types, for example, ethylene polymers (for example, polyethylene) having different viscosity average molecular weights may be combined. In addition, as the polyethylene constituting the ethylene polymer of the present embodiment, ultrahigh molecular weight polyethylene is preferable, and the ethylene polymer may be composed of ultrahigh molecular weight polyethylene alone as polyethylene, You may combine with other resin. Other resins are not particularly limited, and examples include other polyethylenes such as low density polyethylene and linear low density polyethylene, polypropylene, and polystyrene. These other resins may be used alone or in combination of two or more.

本実施形態のエチレン系重合体の形態としては、特に限定されないが、例えば、パウダー状(粒子状)の形態、ペレット状の形態であってもよく、これらの形態であれば、良好な取り扱い性が得られる。パウダー状のエチレン系重合体は、懸濁重合法や気相重合法を適用することにより得られ、ペレット状のエチレン系重合体は、重合により得られたエチレン系重合体を溶融混練後、ストランドを裁断することにより得られる。   Although it does not specifically limit as a form of the ethylene-type polymer of this embodiment, For example, a powder form (particulate form) and a pellet form may be sufficient, and if it is these forms, favorable handleability Is obtained. The powdery ethylene polymer is obtained by applying a suspension polymerization method or a gas phase polymerization method, and the pellet-like ethylene polymer is obtained by melting and kneading the ethylene polymer obtained by polymerization, and then stranding. Is obtained by cutting.

(エチレン系重合体の製造方法)
以下、本実施形態のエチレン系重合体の製造方法について説明する。
(Method for producing ethylene polymer)
Hereinafter, the manufacturing method of the ethylene polymer of this embodiment is demonstrated.

(重合工程)
本実施形態のエチレン系重合体の製造方法は、例えば、オレフィン重合用触媒の存在下に少なくともエチレンを含む単量体を重合させてエチレン系重合体(エチレン単独重合体又はエチレン共重合体)を得る重合工程を含む。
(Polymerization process)
The method for producing an ethylene polymer of the present embodiment includes, for example, polymerizing a monomer containing at least ethylene in the presence of an olefin polymerization catalyst to produce an ethylene polymer (ethylene homopolymer or ethylene copolymer). A resulting polymerization step.

本実施形態における重合工程では、エチレンを単独で重合させ、エチレン単独重合体を得てもよく、エチレンと、他の1種以上のモノマーとを共重合させて、エチレン共重合体を得てもよい。前記モノマーとしては、エチレン系重合体の項で例示した他のモノマーが例示できる。   In the polymerization step in the present embodiment, ethylene may be polymerized alone to obtain an ethylene homopolymer, or ethylene may be copolymerized with one or more other monomers to obtain an ethylene copolymer. Good. As said monomer, the other monomer illustrated by the term of the ethylene-type polymer can be illustrated.

本実施形態の重合工程に用いられるオレフィン重合用触媒としては、例えば、公知のチーグラー・ナッタ触媒、メタロセン触媒を使用できる。   As the olefin polymerization catalyst used in the polymerization step of the present embodiment, for example, a known Ziegler-Natta catalyst or metallocene catalyst can be used.

チーグラー・ナッタ触媒としては、例えば、特開平10−2189334号公報に記載のオレフィン系重合用触媒、特許第5782558号の〔ポリエチレンパウダーの製造方法〕の項で例示されたチーグラー・ナッタ触媒、特許第5829257号の[ポリエチレンの重合方法]で例示されたチーグラー・ナッタ触媒などが例示できる。より詳細には有機マグネシウム化合物とチタン化合物との反応により製造される固体触媒成分と、有機金属化合物成分(助触媒)とを組み合わせて得られる触媒、あるいは有機マグネシウム成分と塩素化剤との反応により調製された担体に、有機マグネシウム化合物とチタン化合物を担持することにより製造される触媒などが例示できる。   As the Ziegler-Natta catalyst, for example, an olefin polymerization catalyst described in JP-A-10-2189334, a Ziegler-Natta catalyst exemplified in the section of [Method for producing polyethylene powder] of Japanese Patent No. 578558, Patent No. Examples include the Ziegler-Natta catalyst exemplified in [Polymerization polymerization method] of No. 5829257. More specifically, a catalyst obtained by combining a solid catalyst component produced by a reaction between an organomagnesium compound and a titanium compound and an organometallic compound component (co-catalyst), or a reaction between the organomagnesium component and a chlorinating agent. Examples thereof include a catalyst produced by supporting an organomagnesium compound and a titanium compound on the prepared carrier.

メタロセン触媒としては、例えば、特許第5782558号の〔ポリエチレンパウダーの製造方法〕の項で例示されたメタロセン系触媒、特許第4868853号の超高分子量エチレン系重合体を製造する方法の項で例示されたメタロセン触媒などが例示できる。より詳細には、触媒成分として、環状η結合性アニオン配位子を有する遷移金属化合物と、この遷移金属化合物と反応して触媒活性を発現する錯体を形成可能な活性化剤とを組み合わせたメタロセン系触媒が例示できる。特許第5782558号に記載されているように、これらの触媒成分は、固体成分(例えば、シリカなど)に担持して担持型触媒として用いてもよく、さらに他の触媒成分として、有機アルミニウム化合物を組み合わせてもよい。また、前記遷移金属化合物と、前記活性化剤と、不純物又は不活性化合物のスカベンジャーとして用いられる液体成分とを組み合わせてもよい。前記液体成分としては、特開2015−180716号公報に記載された液体成分が例示できる。さらに、メタロセン系触媒とともに水素化剤を使用してもよく、さらに水素添加能を有する化合物を添加してもよい。水素化剤、水素添加能を有する化合物としては、特許第5782558号に記載された水素化剤、水素添加能を有する化合物が例示できる。   As the metallocene catalyst, for example, the metallocene catalyst exemplified in the section of [Method of producing polyethylene powder] of Japanese Patent No. 5582558, and the method of producing an ultrahigh molecular weight ethylene polymer of Japanese Patent No. 4868853 are exemplified. Examples thereof include metallocene catalysts. More specifically, as a catalyst component, a metallocene in which a transition metal compound having a cyclic η-bonding anion ligand and an activator capable of forming a complex that reacts with the transition metal compound and exhibits catalytic activity are combined. A system catalyst can be illustrated. As described in Japanese Patent No. 5784558, these catalyst components may be supported on a solid component (for example, silica) and used as a supported catalyst, and an organoaluminum compound may be used as another catalyst component. You may combine. Moreover, you may combine the said transition metal compound, the said activator, and the liquid component used as a scavenger of an impurity or an inactive compound. Examples of the liquid component include liquid components described in JP-A-2015-180716. Further, a hydrogenating agent may be used together with the metallocene catalyst, and a compound having hydrogenation ability may be added. Examples of the hydrogenating agent and the compound having hydrogenation ability include the hydrogenating agent and the compound having hydrogenation ability described in Japanese Patent No. 5784558.

本実施形態の重合方法としては、特に限定されないが、懸濁重合法、気相重合法が挙げられ、重合熱を効率的に除熱できる観点から懸濁重合法が好ましい。   Although it does not specifically limit as a polymerization method of this embodiment, Suspension polymerization method and a gas phase polymerization method are mentioned, Suspension polymerization method is preferable from a viewpoint which can remove heat of polymerization efficiently.

懸濁重合法においては、媒体として不活性炭化水素媒体を用いることができ、さらにオレフィン自身を溶媒として用いることもできる。   In the suspension polymerization method, an inert hydrocarbon medium can be used as a medium, and the olefin itself can also be used as a solvent.

前記不活性炭化水素媒体としては、以下に限定されないが、例えば、プロパン、ブタン、イソブタン、ペンタン、イソペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;エチルクロライド、クロルベンゼン、ジクロロメタン等のハロゲン化炭化水素又はこれらの混合物等が挙げられる。   Examples of the inert hydrocarbon medium include, but are not limited to, aliphatic hydrocarbons such as propane, butane, isobutane, pentane, isopentane, hexane, heptane, octane, decane, dodecane, and kerosene; cyclopentane, cyclohexane, Examples thereof include alicyclic hydrocarbons such as methylcyclopentane; aromatic hydrocarbons such as benzene, toluene and xylene; halogenated hydrocarbons such as ethyl chloride, chlorobenzene and dichloromethane, or mixtures thereof.

本実施形態の重合工程における重合温度は、通常、30℃以上100℃以下が好ましく、35℃以上90℃以下がより好ましく、40℃以上80℃以下がさらに好ましい。重合温度が30℃以上であれば、工業的に効率的な製造が可能であり、重合温度が100℃以下であれば、連続的に安定運転が可能である。一方、エチレン系重合体の極限粘度を制御する観点から、重合温度は、30℃以上85℃以下であることが好ましく、40℃以上80℃以下であることがより好ましく、50℃以上80℃以下であることがさらに好ましい。   The polymerization temperature in the polymerization step of the present embodiment is usually preferably from 30 ° C. to 100 ° C., more preferably from 35 ° C. to 90 ° C., and further preferably from 40 ° C. to 80 ° C. If the polymerization temperature is 30 ° C. or higher, industrially efficient production is possible, and if the polymerization temperature is 100 ° C. or lower, continuous stable operation is possible. On the other hand, from the viewpoint of controlling the intrinsic viscosity of the ethylene polymer, the polymerization temperature is preferably 30 ° C. or higher and 85 ° C. or lower, more preferably 40 ° C. or higher and 80 ° C. or lower, and 50 ° C. or higher and 80 ° C. or lower. More preferably.

本実施形態の重合工程における重合圧力は、通常、常圧以上2MPa以下が好ましく、より好ましくは0.1MPa以上1.5MPa以下、さらに好ましくは0.1MPa以上1.0MPa以下である。常圧以上であることにより残留金属量が低いエチレン系重合体が得られる傾向にあり、2MPa以下であることにより、塊状のスケールを発生させることがなく、エチレン系重合体を安定的に生産できる傾向にある。   The polymerization pressure in the polymerization step of the present embodiment is usually preferably from normal pressure to 2 MPa, more preferably from 0.1 MPa to 1.5 MPa, and even more preferably from 0.1 MPa to 1.0 MPa. When the pressure is normal pressure or more, an ethylene polymer having a low residual metal amount tends to be obtained. When the pressure is 2 MPa or less, an ethylene polymer can be stably produced without generating a lump scale. There is a tendency.

本実施形態の重合工程では、重合系内にごく微量のアルコール成分を添加することが好ましい。ごく微量のアルコール成分を添加すると、得られるポリエチレンの結晶の成長を阻害するようなごく微量の低分子量成分の生成を抑制でき、ごく微量の不純物を除去できるため、[エチレン系重合体]の項で前述した融解熱量の特定の割合を制御できる。アルコール成分としては、ノルマルブタノール、メタノール、エタノール、ノルマルプロパノール、イソプロパノール、イソブタノール、ターシャリーブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノールなどが例示できる。アルコール成分の添加速度は、重合速度10kg/hrに対して、好ましくは0を超え、1質量ppm/hr以下であり、より好ましくは0.8質量ppm/hr以下、さらに好ましくは0.5質量ppm/hr以下である。添加速度が1質量ppm/hr以下とすると、生産性を損なわずに、融解熱量の特定の割合を制御しつつ、エチレン系重合体を得ることができる傾向にある。   In the polymerization step of this embodiment, it is preferable to add a very small amount of alcohol component in the polymerization system. The addition of a very small amount of an alcohol component can suppress the formation of a very small amount of low molecular weight component that inhibits the growth of the resulting polyethylene crystal and can remove a very small amount of impurities. The specific ratio of the heat of fusion described above can be controlled. Examples of the alcohol component include normal butanol, methanol, ethanol, normal propanol, isopropanol, isobutanol, tertiary butanol, pentanol, hexanol, heptanol, octanol and the like. The addition rate of the alcohol component is preferably more than 0 and 1 mass ppm / hr or less, more preferably 0.8 mass ppm / hr or less, and even more preferably 0.5 mass with respect to a polymerization rate of 10 kg / hr. It is below ppm / hr. When the addition rate is 1 mass ppm / hr or less, the ethylene polymer tends to be obtained while controlling a specific ratio of the heat of fusion without impairing productivity.

また、得られるエチレン系重合体(例えば、ポリエチレン)の結晶の成長を阻害するようなごく微量の低分子量成分の生成を抑制できるという観点からは、他の手段としては重合触媒を窒素雰囲気下、不活性炭化水素媒体中で熱処理する方法や重合触媒を重合器に供給(フィード)する前にアルコールと接触させる方法も挙げられる。重合触媒を窒素雰囲気下、不活性炭化水素媒体中で熱処理する方法としては、80℃以上で処理することが好ましく、より好ましくは90℃以上である。また、100℃以下であれば触媒活性を損なわずに融解熱量の特定の割合を制御しつつ、エチレン系重合体を得ることができる傾向にある。重合触媒を重合器に供給(フィード)する前にアルコールと接触させる方法として、アルコール成分としては、ノルマルブタノール、メタノール、エタノール、ノルマルプロパノール、イソプロパノール、イソブタノール、ターシャリーブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノールなどが例示できる。アルコール成分の添加量は触媒重量に対して好ましくは0を超え、0.1質量ppb以下であり、より好ましくは0.08質量ppb以下、さらに好ましくは0.05質量ppb以下である。   In addition, from the viewpoint that it is possible to suppress the production of a very small amount of low molecular weight components that inhibit crystal growth of the resulting ethylene polymer (for example, polyethylene), as another means, a polymerization catalyst is used in a nitrogen atmosphere. Examples thereof include a method of heat treatment in an inert hydrocarbon medium and a method of bringing a polymerization catalyst into contact with alcohol before feeding (feeding) the polymerization catalyst to the polymerization vessel. As a method of heat-treating the polymerization catalyst in an inert hydrocarbon medium in a nitrogen atmosphere, the treatment is preferably performed at 80 ° C. or higher, more preferably 90 ° C. or higher. Moreover, if it is 100 degrees C or less, it exists in the tendency which can obtain an ethylene-type polymer, controlling the specific ratio of heat of fusion, without impairing catalyst activity. As a method of bringing the polymerization catalyst into contact with the alcohol before feeding (feeding) the polymerization catalyst, the alcohol component includes normal butanol, methanol, ethanol, normal propanol, isopropanol, isobutanol, tertiary butanol, pentanol, hexanol, heptanol. And octanol. The addition amount of the alcohol component is preferably more than 0 and 0.1 mass ppb or less, more preferably 0.08 mass ppb or less, and still more preferably 0.05 mass ppb or less with respect to the catalyst weight.

本実施形態の重合工程において、エチレン系重合体の極限粘度を制御する観点から、重合系に水素を連続的に供給させてもよい。   In the polymerization step of the present embodiment, hydrogen may be continuously supplied to the polymerization system from the viewpoint of controlling the intrinsic viscosity of the ethylene polymer.

(分離工程)
本実施形態のエチレン系重合体の製造方法は、重合工程において、溶媒が供給された場合には、重合工程の後に、重合スラリーから溶媒を分離する分離工程を含むことが好ましい。具体的な分離方法としては、デカンテーション法、遠心分離法、フィルター濾過法等が挙げられ、エチレン系重合体と溶媒との分離効率が高い観点から、遠心分離法が好ましい。
(Separation process)
The method for producing an ethylene-based polymer of the present embodiment preferably includes a separation step of separating the solvent from the polymerization slurry after the polymerization step when the solvent is supplied in the polymerization step. Specific examples of the separation method include a decantation method, a centrifugal separation method, a filter filtration method, and the like. From the viewpoint of high separation efficiency between the ethylene polymer and the solvent, the centrifugal separation method is preferable.

(失活工程)
本実施形態のエチレン系重合体の製造方法は、重合工程の後に、前記オレフィン重合用触媒を失活させる失活工程を含むことが好ましい。本実施形態のエチレン系重合体を合成するために使用したオレフィン重合用触媒の失活方法は、特に限定されないが、分離工程の後に実施することが好ましい。エチレン系重合体(例えば、ポリエチレン)と溶媒とを分離した後にオレフィン重合用触媒を失活させるための薬剤を導入すると、溶媒中に含まれる低分子量成分や触媒成分等の析出を低減できるため好ましい。前記薬剤としては、特に限定されないが、酸素、水、アルコール類、グリコール類、フェノール類、一酸化炭素、二酸化炭素、エーテル類、カルボニル化合物、アルキン類などが挙げられる。
(Deactivation process)
It is preferable that the manufacturing method of the ethylene-type polymer of this embodiment includes the deactivation process which deactivates the said catalyst for olefin polymerization after a superposition | polymerization process. The method for deactivating the olefin polymerization catalyst used for synthesizing the ethylene-based polymer of the present embodiment is not particularly limited, but is preferably performed after the separation step. It is preferable to introduce an agent for deactivating the olefin polymerization catalyst after separating the ethylene polymer (for example, polyethylene) and the solvent because precipitation of low molecular weight components and catalyst components contained in the solvent can be reduced. . Examples of the drug include, but are not limited to, oxygen, water, alcohols, glycols, phenols, carbon monoxide, carbon dioxide, ethers, carbonyl compounds, alkynes, and the like.

(洗浄工程)
本実施形態のエチレン系重合体の製造方法は、[エチレン系重合体]の項で前述した発熱ピークの半値幅を制御する観点から、分離工程の後に、高温のメタノールでエチレン系重合体(例えば、ポリエチレン)を洗浄することが好ましい。洗浄するメタノールの温度は60℃以上であり、より好ましくは70℃以上である。メタノールの温度が60℃以上であると、結晶化の起点になるような不純物を除去でき、エチレン系重合体の結晶化が均一に進むため、発熱ピークの半値幅を制御できる。
(Washing process)
From the viewpoint of controlling the half-value width of the exothermic peak described above in the section [Ethylene polymer], the ethylene polymer production method of the present embodiment is an ethylene polymer (for example, with high-temperature methanol after the separation step). , Polyethylene) is preferably washed. The temperature of the methanol to be washed is 60 ° C. or higher, more preferably 70 ° C. or higher. When the temperature of methanol is 60 ° C. or higher, impurities that can be a starting point for crystallization can be removed, and the crystallization of the ethylene-based polymer proceeds uniformly, so that the half-value width of the exothermic peak can be controlled.

(乾燥工程)
本実施形態のエチレン系重合体の製造方法は、分離工程の後に、エチレン系重合体を乾燥させる乾燥工程を含むことが好ましい。乾燥工程における乾燥温度は、通常、50℃以上150℃以下が好ましく、50℃以上130℃以下がより好ましく、50℃以上100℃以下がさらに好ましい。乾燥温度が50℃以上であると、効率的な乾燥が可能である。一方、乾燥温度が150℃以下であると、エチレン系重合体の分解や架橋を抑制した状態で乾燥できる。
(Drying process)
It is preferable that the manufacturing method of the ethylene polymer of this embodiment includes the drying process which dries an ethylene polymer after a isolation | separation process. The drying temperature in the drying step is usually preferably 50 ° C or higher and 150 ° C or lower, more preferably 50 ° C or higher and 130 ° C or lower, and further preferably 50 ° C or higher and 100 ° C or lower. When the drying temperature is 50 ° C. or higher, efficient drying is possible. On the other hand, when the drying temperature is 150 ° C. or lower, drying can be performed in a state where decomposition and crosslinking of the ethylene-based polymer are suppressed.

(分級工程)
本実施形態のエチレン系重合体の製造方法は、乾燥工程の後に、エチレン系重合体を所定の目開きサイズ(例えば、425μm)の篩を用いて分級し、パウダー状(粒子状)の形態としてもよい。
(Classification process)
In the method for producing an ethylene polymer according to the present embodiment, after the drying step, the ethylene polymer is classified using a sieve having a predetermined mesh size (for example, 425 μm) to form a powder (particulate) form. Also good.

(成形体)
本実施形態の成形体は、本実施形態のエチレン系重合体を含むことを特徴とする。成形体としては、延伸成形体、微多孔膜、高強度繊維、ゲル紡糸などが挙げられ、微多孔膜が好ましい。本実施形態の微多孔膜は、二次電池用セパレータ(例えば、鉛蓄電池用セパレータ)として好適に用いられる。なお、これらの成形体は、公知の方法に準じて製造できる。
(Molded body)
The molded body of the present embodiment is characterized by including the ethylene polymer of the present embodiment. Examples of the molded body include stretched molded bodies, microporous membranes, high-strength fibers, gel spinning, and the like, and microporous membranes are preferred. The microporous membrane of this embodiment is suitably used as a secondary battery separator (for example, a lead storage battery separator). In addition, these molded objects can be manufactured according to a well-known method.

以下、実施例及び比較例を用いて本発明をさらに詳しく説明するが、本発明は以下の実施例により何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail using an Example and a comparative example, this invention is not limited at all by the following examples.

〔実施例、比較例において用いた各種特性及び物性の測定方法〕
((1)極限粘度の測定)
実施例及び比較例で製造したエチレン重合体の極限粘度を、以下に示す方法によって求めた。
まず、溶解管にエチレン重合体10mgを秤量し、溶解管を窒素置換した後、20mLのデカヒドロナフタレン(2,6−ジ−t−ブチル−4−メチルフェノールを1g/L加えたもの)を加え、150℃で2時間攪拌してエチレン重合体を溶解させた。その溶液を135℃の恒温槽で、ウベローデタイプの粘度計を用いて、標線間の落下時間(ts)を測定した。同様に、エチレン重合体の質量を変えて3点の溶液を作製し、落下時間を測定した。ブランクとしてエチレン重合体を入れていないデカリンのみの落下時間(tb)を測定した。
以下の式(1)に従って求めたポリマーの還元粘度(ηsp/C)をそれぞれプロットして濃度(C)(単位:g/dL)とポリマーの還元粘度(ηsp/C)の直線式を導き、濃度0に外挿した極限粘度(η)を求めた。

(ηsp/C)=(ts/tb−1)/C (単位:dL/g) (1)
[Methods for measuring various properties and physical properties used in Examples and Comparative Examples]
((1) Measurement of intrinsic viscosity)
The intrinsic viscosity of the ethylene polymers produced in the examples and comparative examples was determined by the method shown below.
First, 10 mg of ethylene polymer was weighed in a dissolution tube, and the dissolution tube was purged with nitrogen, and then 20 mL of decahydronaphthalene (with 1 g / L of 2,6-di-t-butyl-4-methylphenol added). In addition, the mixture was stirred at 150 ° C. for 2 hours to dissolve the ethylene polymer. The dropping time (ts) between the marked lines was measured for the solution in a thermostatic bath at 135 ° C. using an Ubbelohde type viscometer. Similarly, three-point solutions were prepared by changing the mass of the ethylene polymer, and the drop time was measured. The fall time (tb) of only decalin not containing an ethylene polymer as a blank was measured.
By plotting the reduced viscosity (ηsp / C) of the polymer determined according to the following formula (1), respectively, a linear expression of the concentration (C) (unit: g / dL) and the reduced viscosity (ηsp / C) of the polymer was derived. The intrinsic viscosity (η) extrapolated to a concentration of 0 was determined.

(Ηsp / C) = (t s / t b −1) / C (unit: dL / g) (1)

((2)ΔHb/ΔH2×100および発熱ピークの半値幅)
DSC(パーキンエルマー社製、商品名:DSC8000)を用いて測定を行なった。8〜10mgのエチレン重合体をアルミニウムパンに挿填し、DSCに設置した後、以下の(1)〜(3)の測定条件で測定を行った。

(1)50℃で1分間保持後、10℃/minの昇温速度で180℃まで昇温。
(2)180℃で5分間保持後、10℃/minの降温速度で50℃まで降温。
(3)50℃で5分間保温後、10℃/minの昇温速度で180℃まで昇温。

2回目の昇温過程で得られた吸熱ピークにおいて60℃から150℃の範囲から融解熱量ΔH2、融点Tm2、及びΔH2における融点Tm2よりも高温側(高い領域)の融解熱量ΔHbを測定し、ΔHb/ΔH2×100を求めた。また、降温過程で得られた発熱ピークから半値幅を求めた。
((2) ΔH b / ΔH 2 × 100 and half-value width of exothermic peak)
Measurement was performed using DSC (trade name: DSC8000, manufactured by Perkin Elmer). 8-10 mg of ethylene polymer was inserted into an aluminum pan and placed on the DSC, and then measured under the following measurement conditions (1) to (3).

(1) After holding at 50 ° C. for 1 minute, the temperature is raised to 180 ° C. at a temperature rising rate of 10 ° C./min.
(2) After holding at 180 ° C. for 5 minutes, the temperature is decreased to 50 ° C. at a temperature decreasing rate of 10 ° C./min.
(3) After holding at 50 ° C. for 5 minutes, the temperature is raised to 180 ° C. at a temperature rising rate of 10 ° C./min.

Heat of fusion [Delta] H b of the second heat of fusion [Delta] H 2 from the range of 60 ° C. of 0.99 ° C. in an endothermic peak obtained in the temperature raising process, the melting point Tm 2, and the high temperature side than the melting point Tm 2 in [Delta] H 2 (high region) Was measured to obtain ΔH b / ΔH 2 × 100. Moreover, the half width was calculated | required from the exothermic peak obtained in the temperature fall process.

((3)プレスシート密度)
厚さ5mmの平滑な鉄板に厚さ0.1mmのアルミニウム板を載せ、さらにセロファンでコーティングされていない厚さ50μmのポリエチレンテレフタレートフィルム(東レ株式会社製ルミラー)を載せた。この上に縦60mm、横60mm、厚み2mmの金型を載せ、これに8gのエチレン重合体を入れ、この上に前述のポリエチレンテレフタレートフィルムを載せ、さらに前述のアルミニウム板を載せ、さらに前述の鉄板を載せた。これを200℃に温度調節された圧縮成型機(株式会社神藤金属工業所製 SFA−37)に入れ、200℃、0.1MPaで900秒間予熱後、5秒間エアー抜き(10MPa)を行い、200℃、15MPaで300秒間加圧を行った。加圧終了後サンプルを取り出し、取り出してから5秒後に25℃に温度調節された圧縮成型機(株式会社神藤金属工業所製 SFA−37)に入れ、25℃、10MPaにて600秒間加圧しながら15±2℃/分の冷却速度で冷却した。冷却速度は金型を厚紙で挟むことにより調節した。冷却後、取り出したプレスシートを120℃で1時間アニールし、密度を測定した。
((3) Press sheet density)
An aluminum plate having a thickness of 0.1 mm was placed on a smooth iron plate having a thickness of 5 mm, and a polyethylene terephthalate film having a thickness of 50 μm that was not coated with cellophane (Lumirror manufactured by Toray Industries, Inc.) was placed thereon. A 60 mm long, 60 mm wide, 2 mm thick mold is placed thereon, 8 g of ethylene polymer is placed thereon, the above polyethylene terephthalate film is placed thereon, the above aluminum plate is further placed thereon, and the above iron plate is further placed. I put. This was put into a compression molding machine (SFA-37 manufactured by Shindo Metal Industry Co., Ltd.) whose temperature was adjusted to 200 ° C., preheated at 200 ° C. and 0.1 MPa for 900 seconds, and then vented for 5 seconds (10 MPa). Pressurization was performed at 15 ° C. for 300 seconds. After completion of pressurization, the sample is taken out, and after 5 seconds from taking out, it is put into a compression molding machine (SFA-37 manufactured by Shindo Metal Industries Co., Ltd.) whose temperature is adjusted to 25 ° C., and pressurizing at 25 ° C. and 10 MPa for 600 seconds. Cooling was performed at a cooling rate of 15 ± 2 ° C./min. The cooling rate was adjusted by sandwiching the mold with cardboard. After cooling, the removed press sheet was annealed at 120 ° C. for 1 hour, and the density was measured.

((4)エチレン重合体に含まれるチタン含有量)
エチレン重合体0.2gをテフロン(登録商標)製分解容器に秤取り、高純度硝酸を加えてマイルストーンゼネラル社製マイクロウェーブ分解装置ETHOS−TCにて加圧分解後、日本ミリポア社製超純水製造装置で精製した純水で全量を50mLとしたものを検液として使用した。上記検液に対し、サーモフィッシャーサイエンティフィック社製誘導結合プラズマ質量分析装置(ICP−MS)Xシリーズ2を使用して、内標準法でチタンの定量を行った。
((4) Titanium content contained in ethylene polymer)
0.2 g of ethylene polymer was weighed in a Teflon (registered trademark) decomposition vessel, high-purity nitric acid was added, and after pressure decomposition with Milestone General's microwave decomposition apparatus ETHOS-TC, ultrapure manufactured by Nihon Millipore Pure water purified with a water production apparatus with a total volume of 50 mL was used as a test solution. Using the inductively coupled plasma mass spectrometer (ICP-MS) X series 2 manufactured by Thermo Fisher Scientific, titanium was quantified by the internal standard method for the above test solution.

((5)エチレン重合体に含まれる塩素含有量)
エチレン重合体を自動試料燃焼装置(三菱化学アナリテック社製 AQF−100)で燃焼後、吸収液(Na2CO3とNaHCO3との混合溶液)に吸収させ、その吸収液をイオンクロマトグラフ装置(ダイオネクス社製、ICS1500、カラム(分離カラム:AS12A、ガードカラム:AG12A)サプレッサー ASRS300)に注入させ全塩素量を測定した。
((5) Chlorine content in ethylene polymer)
The ethylene polymer is burned with an automatic sample combustion device (AQF-100 manufactured by Mitsubishi Chemical Analytech Co., Ltd.) and then absorbed into an absorption liquid (mixed solution of Na 2 CO 3 and NaHCO 3 ), and the absorption liquid is ion chromatographed. The total chlorine amount was measured by injection into a ICS1500, manufactured by Dionex Corporation (column (separation column: AS12A, guard column: AG12A) suppressor ASRS300).

((6)オイル抽出後の収縮率)
流動パラフィンを抽出する前の膜から100mm×100mmの試験片を切り出し、ヘキサン含浸後の収縮率を測定した。収縮率は抽出前の試験片の対角線の長さL0とし、抽出後の試験片の対角線の長さをL1としたときに、(L0−L1)/L0×100として計算し、2本の対角線から得られた収縮率の平均値により、オイル抽出後の収縮率を評価した。評価基準は、以下のとおりである。

◎:収縮率が2%未満
○:収縮率が2%以上4%未満
△:収縮率が4%以上5%未満
×:収縮率が5%以上
((6) Shrinkage after oil extraction)
A test piece of 100 mm × 100 mm was cut out from the membrane before extracting liquid paraffin, and the shrinkage rate after impregnation with hexane was measured. The shrinkage rate is calculated as (L0−L1) / L0 × 100, where L0 is the diagonal length of the test specimen before extraction and L1 is the diagonal length of the test specimen after extraction. The shrinkage rate after oil extraction was evaluated by the average value of the shrinkage rate obtained from the above. The evaluation criteria are as follows.

◎: Shrinkage rate is less than 2% ○: Shrinkage rate is 2% or more and less than 4% △: Shrinkage rate is 4% or more and less than 5% ×: Shrinkage rate is 5% or more

((7)厚みムラ)
微多孔膜から100mm×100mmの試験片を切り出し、任意の10点の厚みを東洋精機製の微小測厚器(タイプKBM(登録商標))を用いて室温23℃で測定し、最も厚い部分と薄い部分の差を求め、厚みムラを評価した。評価基準は以下のとおりである。

◎:最も厚い部分と薄い部分との差が1μm以下
○:最も厚い部分と薄い部分との差が1μmを超え、3μm以下
△:最も厚い部分と薄い部分との差が3μmを超え、5μm以下
×:最も厚い部分と薄い部分との差が5μm以上
((7) thickness unevenness)
A test piece of 100 mm × 100 mm was cut out from the microporous membrane, and the thickness of any 10 points was measured at room temperature 23 ° C. using a micro-thickness meter (type KBM (registered trademark)) manufactured by Toyo Seiki. The difference in the thin portion was determined and the thickness unevenness was evaluated. The evaluation criteria are as follows.

◎: The difference between the thickest part and the thin part is 1 μm or less ○: The difference between the thickest part and the thin part exceeds 1 μm and 3 μm or less △: The difference between the thickest part and the thin part exceeds 3 μm and 5 μm or less X: The difference between the thickest part and the thinnest part is 5 μm or more

((8)膜の耐酸化性)
微多孔膜からダンベル型試験片を切り出し、比重1.5の希硫酸中で80℃、80時間含浸させ、JIS K 7127に従って含浸前後の引張伸びの保持率を以下の条件で測定し、膜の耐酸化性を評価した。評価基準は以下のとおりである。

装置:エーアンドデイ社製 テンシロン
サンプル形状:試験片タイプ5
チャック間距離:80mm
引張速度:300mm/min

◎:引張伸びの保持率が90%以上
○:引張伸びの保持率が80%以上90%未満
△:引張伸びの保持率が70%以上80%未満
×:引張伸びの保持率が70%未満
((8) Oxidation resistance of film)
A dumbbell-shaped test piece was cut out from the microporous membrane, impregnated in dilute sulfuric acid having a specific gravity of 1.5 at 80 ° C. for 80 hours, and the tensile elongation retention before and after the impregnation was measured according to JIS K 7127 under the following conditions. The oxidation resistance was evaluated. The evaluation criteria are as follows.

Apparatus: Tensilon sample made by A & D, Inc. Sample shape: Specimen type 5
Distance between chucks: 80mm
Tensile speed: 300 mm / min

◎: Retention rate of tensile elongation is 90% or more ○: Retention rate of tensile elongation is 80% or more and less than 90% △: Retention rate of tensile elongation is 70% or more and less than 80% ×: Retention rate of tensile elongation is less than 70%

((9)耐酸化性試験後の収縮率)
微多孔膜から100mm×100mmの試験片を切り出し、比重1.5の希硫酸中で80℃80時間含浸させた後に、(6)の方法と同様により耐酸化試験後の収縮率を測定した。評価基準は以下のとおりである。

◎:収縮率が3%未満
○:収縮率が3%以上5%未満
△:収縮率が5%以上10%未満
×:収縮率が10%以上
((9) Shrinkage after oxidation resistance test)
A test piece of 100 mm × 100 mm was cut out from the microporous membrane and impregnated in dilute sulfuric acid with a specific gravity of 1.5 at 80 ° C. for 80 hours, and then the shrinkage after the oxidation resistance test was measured in the same manner as in the method (6). The evaluation criteria are as follows.

◎: Shrinkage rate is less than 3% ○: Shrinkage rate is 3% or more and less than 5% Δ: Shrinkage rate is 5% or more and less than 10% ×: Shrinkage rate is 10% or more

〔触媒合成例〕
以下に本実施例及び比較例で用いた触媒について説明する。
[Example of catalyst synthesis]
The catalysts used in the examples and comparative examples are described below.

〔固体触媒成分[A]の調製〕
充分に窒素置換された8Lステンレス製オートクレーブにヘキサン1,600mLを添加した。40℃で攪拌しながら1mol/Lの四塩化チタンヘキサン溶液800mLと1mol/Lの組成式AlMg5(C4911(OSi(C25)H)2で表される有機マグネシウム化合物のヘキサン溶液800mLとを2時間かけて同時に添加した。添加後、ゆっくりと昇温し、40℃で1時間反応を継続させた。反応終了後、上澄み液を1600mL除去し、ヘキサン1,600mLで4回洗浄することにより、固体触媒成分[A]を調製した。
[Preparation of solid catalyst component [A]]
1,600 mL of hexane was added to an 8 L stainless steel autoclave sufficiently purged with nitrogen. An organomagnesium compound represented by 800 mL of a 1 mol / L titanium tetrachloride hexane solution with stirring at 40 ° C. and a composition formula of AlMg 5 (C 4 H 9 ) 11 (OSi (C 2 H 5 ) H) 2 of 1 mol / L Of hexane was added at the same time over 2 hours. After the addition, the temperature was raised slowly, and the reaction was continued at 40 ° C. for 1 hour. After completion of the reaction, 1600 mL of the supernatant was removed, and the solid catalyst component [A] was prepared by washing 4 times with 1,600 mL of hexane.

〔固体触媒成分[B]の調製〕
(1)(B−1)担体の合成
担体(B−1)の前駆体として、平均粒径9.5μm、比表面積480m2/gのシリカを用いた。
窒素置換した容量8Lオートクレーブに加熱処理後のシリカ(130g)をヘキサン2500mL中に分散させ、スラリーを得た。得られたスラリーに、攪拌下20℃にて、ルイス酸性化合物であるトリエチルアルミニウムのヘキサン溶液(濃度1M)を195mL加えた。その後、2時間攪拌し、トリエチルアルミニウムとシリカの表面水酸基とを反応させて、トリエチルアルミニウムを吸着させた(B−1)担体のヘキサンスラリー2695mLを調製した。
[Preparation of solid catalyst component [B]]
(1) (B-1) Synthesis of Support As a precursor of the support (B-1), silica having an average particle size of 9.5 μm and a specific surface area of 480 m 2 / g was used.
Silica (130 g) after heat treatment was dispersed in 2500 mL of hexane in a nitrogen-substituted 8 L autoclave to obtain a slurry. To the obtained slurry, 195 mL of a hexane solution (concentration 1 M) of triethylaluminum, which is a Lewis acidic compound, was added at 20 ° C. with stirring. Thereafter, the mixture was stirred for 2 hours to react triethylaluminum with the surface hydroxyl group of silica to prepare 2695 mL of hexane slurry of (B-1) carrier on which triethylaluminum was adsorbed.

(遷移金属化合物成分[C]の調製)
遷移金属化合物(C−1)として、[(N−t−ブチルアミド)(テトラメチル−η5−シクロペンタジエニル)ジメチルシラン]チタニウム−1,3−ペンタジエン(以下、「錯体1」と略称する)を使用した。また、有機マグネシウム化合物(C−2)として、組成式Mg(C25)(C49)(以下、「Mg1」と略称する)を使用した。
200mmolの錯体1をイソパラフィン炭化水素(エクソンモービル社製アイソパーE)1000mLに溶解し、これにMg1のヘキサン溶液(濃度1M)を40mL加え、更にヘキサンを加えて錯体1の濃度を0.1Mに調整し、遷移金属化合物成分[C]を得た。
(Preparation of transition metal compound component [C])
As the transition metal compound (C-1), [(Nt-butylamide) (tetramethyl-η5-cyclopentadienyl) dimethylsilane] titanium-1,3-pentadiene (hereinafter abbreviated as “complex 1”) It was used. Further, as the organomagnesium compound (C-2), a composition formula Mg (C 2 H 5 ) (C 4 H 9 ) (hereinafter abbreviated as “Mg 1”) was used.
200 mmol of Complex 1 is dissolved in 1000 mL of isoparaffin hydrocarbon (Isopar E manufactured by ExxonMobil), 40 mL of hexane solution of Mg1 (concentration 1M) is added thereto, and further hexane is added to adjust the concentration of complex 1 to 0.1M. As a result, a transition metal compound component [C] was obtained.

(活性化剤[D]の調製)
ボレート化合物(D−1)として、ビス(水素化タロウアルキル)メチルアンモニウム−テトラキス(ペンタフルオロフェニル)ボレート(以下、「ボレート」と略称する)17.8gをトルエン156mLに添加して溶解し、ボレートの100mmol/Lトルエン溶液を得た。このボレートのトルエン溶液に(D−2)としてエトキシジエチルアルミニウムの1mol/Lヘキサン溶液15.6mLを室温で加え、さらにトルエンを加えて溶液中のボレート濃度が70mmol/Lとなるように調整した。その後、室温で1時間攪拌し、ボレートを含む活性化剤[D]を調製した。
(Preparation of activator [D])
As a borate compound (D-1), 17.8 g of bis (hydrogenated tallow alkyl) methylammonium-tetrakis (pentafluorophenyl) borate (hereinafter abbreviated as “borate”) was added to 156 mL of toluene and dissolved, and borate Of 100 mmol / L in toluene was obtained. To this toluene solution of borate, 15.6 mL of a 1 mol / L hexane solution of ethoxydiethylaluminum was added as (D-2) at room temperature, and further toluene was added to adjust the borate concentration in the solution to 70 mmol / L. Then, it stirred at room temperature for 1 hour and prepared activator [D] containing a borate.

(固体触媒[E]の調製)
上記操作により得られた担体(B−1)のスラリー2695mLに、5℃にて500rpmで撹拌しながら、上記操作により得られた活性化剤[D]219mLと、遷移金属化合物成分[C]175mLと、を別のラインから定量ポンプを用い、同時に添加し、添加時間30分で、その後、3時間反応を継続することにより、固体触媒[E]を調製した。
(Preparation of solid catalyst [E])
While stirring 2500 mL of the carrier (B-1) obtained by the above operation at 500 rpm at 5 ° C., 219 mL of the activator [D] obtained by the above operation and 175 mL of the transition metal compound component [C] Were added at the same time from a separate line using a metering pump, and the reaction was continued for 30 minutes and then for 3 hours to prepare a solid catalyst [E].

(液体成分[F]の調製)
有機マグネシウム化合物(F−1)として、組成式AlMg6(C253(C4912(以下、「Mg2」と略称する)を使用した。
200mLのフラスコに、ヘキサン40mLとMg2を、MgとAlの総量として38.0mmolを攪拌しながら添加し、20℃でメチルヒドロポリシロキサン(25℃における粘度20センチストークス;以下、「シロキサン化合物」と略称する)2.27g(37.8mmol)を含有するヘキサン40mLを攪拌しながら添加し、その後80℃に温度を上げて3時間、攪拌下で反応させることにより、液体成分[F]を調製した。
(Preparation of liquid component [F])
As the organomagnesium compound (F-1), a composition formula AlMg 6 (C 2 H 5 ) 3 (C 4 H 9 ) 12 (hereinafter abbreviated as “Mg 2”) was used.
To a 200 mL flask, 40 mL of hexane and Mg2 and 38.0 mmol of Mg and Al as a total amount were added with stirring. At 20 ° C., methylhydropolysiloxane (viscosity at 25 ° C., 20 centistokes; hereinafter referred to as “siloxane compound”) (Abbreviated) Liquid component [F] was prepared by adding 40 mL of hexane containing 2.27 g (37.8 mmol) with stirring, then raising the temperature to 80 ° C. and reacting with stirring for 3 hours. .

(水添触媒[G]の調製)
窒素置換した攪拌機付の容量2.0LのSUSオートクレーブに、チタノセンジクロライド37.3gをヘキサン1Lで導入した。500rpmで撹拌しながら、トリイソブチルアルミニウムとジイソブチルアルミニウムハイドライドの(9:1)の混合物0.7mol/L、429mLを室温で、1時間かけてポンプで添加した。添加後71mLのヘキサンでラインを洗浄した。1時間撹拌を継続し、濃青色の均一な100mM/L溶液[G]を得た。
(Preparation of hydrogenation catalyst [G])
37.3 g of titanocene dichloride was introduced in 1 L of hexane into a 2.0 L SUS autoclave equipped with a stirrer substituted with nitrogen. While stirring at 500 rpm, a 0.7 mol / L, 429 mL mixture of triisobutylaluminum and diisobutylaluminum hydride (9: 1) was added at room temperature over 1 hour. After the addition, the line was washed with 71 mL of hexane. Stirring was continued for 1 hour to obtain a dark blue uniform 100 mM / L solution [G].

(固体触媒成分[H]の調製)
<(1)(H−1)担体の合成>
充分に窒素置換された8Lステンレス製オートクレーブに2mol/Lのヒドロキシトリクロロシランのヘキサン溶液1,000mLを仕込み、65℃で攪拌しながら組成式AlMg5(C4911(OC492で表される有機マグネシウム化合物のヘキサン溶液2,550mL(マグネシウム2.68mol相当)を4時間かけて滴下し、さらに65℃で1時間攪拌しながら反応を継続させた。
反応終了後、上澄み液を除去し、1,800mLのヘキサンで4回洗浄し(H−1)担体を得た。
<(2)固体触媒成分[H]の調製>
上記(H−1)担体110gを含有するヘキサンスラリー1,970mLに65℃で攪拌しながら1mol/Lの四塩化チタンヘキサン溶液110mLと1mol/Lの組成式AlMg5(C4911(OC492で表される有機マグネシウム化合物のヘキサン溶液110mLとを同時に1時間かけて添加した。
添加後、65℃で1時間反応を継続させた。
反応終了後、上澄み液を1100mL除去し、ヘキサン1,100mLで4回洗浄することにより、固体触媒成分[H]を調製した。
(Preparation of solid catalyst component [H])
<(1) Synthesis of (H-1) Support>
Into an 8 L stainless steel autoclave thoroughly purged with nitrogen, 1,000 mL of a 2 mol / L hydroxytrichlorosilane hexane solution was charged, and stirred at 65 ° C., compositional formula AlMg 5 (C 4 H 9 ) 11 (OC 4 H 9 ) 2,550 mL of an organic magnesium compound represented by 2 (corresponding to 2.68 mol of magnesium) was added dropwise over 4 hours, and the reaction was continued with stirring at 65 ° C. for 1 hour.
After completion of the reaction, the supernatant was removed and washed 4 times with 1,800 mL of hexane to obtain (H-1) carrier.
<(2) Preparation of solid catalyst component [H]>
While stirring at 65 ° C. in 1,970 mL of hexane slurry containing 110 g of the above (H-1) carrier, 110 mL of 1 mol / L titanium tetrachloride hexane solution and 1 mol / L composition formula AlMg 5 (C 4 H 9 ) 11 ( 110 mL of a hexane solution of an organomagnesium compound represented by OC 4 H 9 ) 2 was simultaneously added over 1 hour.
After the addition, the reaction was continued at 65 ° C. for 1 hour.
After completion of the reaction, 1100 mL of the supernatant was removed, and the solid catalyst component [H] was prepared by washing 4 times with 1,100 mL of hexane.

〔実施例1〕
(エチレン重合体の製造方法)
ヘキサン、エチレン、水素、及び触媒を、攪拌装置が付いたベッセル型300L重合反応器に平均滞留時間2時間の条件で連続的に供給した。重合圧力は0.35MPaであった。重合温度はジャケット冷却により75℃に保った。前記触媒としては、固体触媒成分[A]と、助触媒としてトリイソブチルアルミニウムとを使用した。トリイソブチルアルミニウムは10mmol/hrの速度で重合器に添加した。固体触媒成分[A]は、エチレン重合体の重合速度(製造速度)が10kg/hrとなるように供給した。水素を、気相濃度が2000ppmになるようにポンプで連続的に供給した。ノルマルブタノールの100mmol/Lヘキサン溶液をノルマルブタノールの量が重合速度(製造速度)10kg/hrに対して1ppm/hrとなるように供給し、重合スラリーを得た。得られた重合スラリーを遠心分離機に送り、ポリマー(ポリエチレン)とそれ以外の溶媒等を分離した後に、ポリマーと、60℃のメタノールとを1時間撹拌しながら接触させた。ポリマー及びメタノールを含む重合スラリーを遠心分離機に送り、ポリマーとそれ以外の溶媒等を分離し、エチレン重合体を得た。分離されたエチレン重合体は、70℃で窒素ブローしながら乾燥した。これにより得られたエチレン重合体を目開き425μmの篩を用いて、篩を通過しなかったものを除去することでパウダー状(粒子状)のエチレン重合体を得た。
得られたパウダー状のエチレン重合体の特性を、上述した方法により測定した。測定結果を下記表1に示す。
[Example 1]
(Method for producing ethylene polymer)
Hexane, ethylene, hydrogen, and catalyst were continuously fed to a vessel type 300 L polymerization reactor equipped with a stirrer under conditions of an average residence time of 2 hours. The polymerization pressure was 0.35 MPa. The polymerization temperature was kept at 75 ° C. by jacket cooling. As the catalyst, a solid catalyst component [A] and triisobutylaluminum as a cocatalyst were used. Triisobutylaluminum was added to the polymerization vessel at a rate of 10 mmol / hr. The solid catalyst component [A] was supplied so that the polymerization rate (production rate) of the ethylene polymer was 10 kg / hr. Hydrogen was continuously supplied by a pump so that the gas phase concentration was 2000 ppm. A 100 mmol / L hexane solution of normal butanol was supplied so that the amount of normal butanol was 1 ppm / hr with respect to a polymerization rate (production rate) of 10 kg / hr to obtain a polymerization slurry. The obtained polymerization slurry was sent to a centrifuge to separate the polymer (polyethylene) from other solvents and the like, and then the polymer was brought into contact with methanol at 60 ° C. with stirring for 1 hour. The polymerization slurry containing the polymer and methanol was sent to a centrifuge, and the polymer and other solvents were separated to obtain an ethylene polymer. The separated ethylene polymer was dried while blowing nitrogen at 70 ° C. A powdery (particulate) ethylene polymer was obtained by removing the ethylene polymer obtained by using a sieve having an opening of 425 μm and removing the ethylene polymer that did not pass through the sieve.
The characteristics of the obtained powdery ethylene polymer were measured by the method described above. The measurement results are shown in Table 1 below.

(微多孔膜の製造方法)
100mLのポリカップにパウダー状のエチレン重合体3.7g、流動パラフィン(松村石油(株)製P−350(商標))26.6g、シリカ(PPG製HiSil233)9.5g、カーボンブラック0.02g、酸化防止剤としてペンタエリスリチル−テトラキス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]0.02gを加えて薬さじで撹拌することにより、エチレン重合体を含む混合物(ポリエチレン混合物)を得た。
(Method for producing microporous membrane)
In a 100 mL polycup, 3.7 g of powdery ethylene polymer, 26.6 g of liquid paraffin (P-350 (trademark) manufactured by Matsumura Oil Co., Ltd.), 9.5 g of silica (HiSil 233 manufactured by PPG), 0.02 g of carbon black, An ethylene polymer is contained by adding 0.02 g of pentaerythrityl-tetrakis- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] as an antioxidant and stirring with a spoon. A mixture (polyethylene mixture) was obtained.

得られたポリエチレン混合物を東洋精機製作所製ラボプラストミルミキサー(本体型式:4C150、ミキサー形式:R−60)に仕込み、回転数を50rpmに設定して200℃で10分間混練した。混練物をただちに250mm×250mm、厚み0.1mmの金型を用いて200℃10MPaの条件で300秒間加圧し、25℃10Mpaの条件で600秒間冷却することで、黒色膜を得た。   The obtained polyethylene mixture was charged into a lab plast mill mixer (main body model: 4C150, mixer type: R-60) manufactured by Toyo Seiki Seisakusho, and the number of revolutions was set to 50 rpm and kneaded at 200 ° C. for 10 minutes. The kneaded material was immediately pressurized for 300 seconds at 200 ° C. and 10 MPa using a 250 mm × 250 mm, 0.1 mm thick mold, and cooled for 600 seconds at 25 ° C. and 10 MPa, thereby obtaining a black film.

この黒色膜をヘキサンに10分間含浸させて流動パラフィンを抽出し、乾燥させることにより、微多孔膜を得た。   The black membrane was impregnated with hexane for 10 minutes to extract liquid paraffin and dried to obtain a microporous membrane.

得られた微多孔膜の物性を、上述した方法により測定した。測定結果を下記表1に示す。   The physical properties of the obtained microporous membrane were measured by the method described above. The measurement results are shown in Table 1 below.

〔実施例2〕
重合工程において、固体触媒成分[A]及びトリイソブチルアルミニウムに代えて、固体触媒成分[E]を用いたこと、液体成分[F]をMgとAlの総量として6mmol/hrで供給したこと、重合圧力を0.8MPaGとしたこと水素は固体触媒成分[E]のフィード配管に2NL/hrで供給し、このフィード配管に、別途水添触媒[G]を反応器内濃度が1.1μmol/Lとなるように供給したこと以外は、実施例1と同様にしてエチレン重合体を得た。微多孔膜は、実施例1と同様にして製造した。
[Example 2]
In the polymerization process, instead of the solid catalyst component [A] and triisobutylaluminum, the solid catalyst component [E] was used, the liquid component [F] was supplied at a total amount of Mg and Al of 6 mmol / hr, The pressure was set to 0.8 MPaG. Hydrogen was supplied to the solid catalyst component [E] feed pipe at 2 NL / hr, and the hydrogenated catalyst [G] was separately supplied to the feed pipe at a concentration of 1.1 μmol / L. An ethylene polymer was obtained in the same manner as in Example 1 except that it was supplied so that The microporous membrane was produced in the same manner as in Example 1.

〔実施例3〕
重合工程において、固体触媒成分[A]に代えて、固体触媒成分[H]を用いたこと、重合温度を73℃とし、水素を供給しなかったこと以外は、実施例1と同様にしてエチレン重合体を得た。微多孔膜は、実施例1と同様にして製造した。
Example 3
In the polymerization step, ethylene was used in the same manner as in Example 1 except that the solid catalyst component [H] was used instead of the solid catalyst component [A], the polymerization temperature was 73 ° C., and no hydrogen was supplied. A polymer was obtained. The microporous membrane was produced in the same manner as in Example 1.

〔実施例4〕
重合工程において、水添触媒[G]を反応器内濃度が1.6μmol/Lとなるように供給したこと以外は、実施例2と同様にして、エチレン重合体を得た。微多孔膜は、実施例1と同様にして製造した。
Example 4
In the polymerization step, an ethylene polymer was obtained in the same manner as in Example 2 except that the hydrogenation catalyst [G] was supplied so that the concentration in the reactor was 1.6 μmol / L. The microporous membrane was produced in the same manner as in Example 1.

〔実施例5〕
重合工程において、水添触媒[G]を反応器内濃度が1.8μmol/Lとなるように供給したこと、1−ブテンを気相部の濃度が1.0mol%になるように供給したこと以外は、実施例2と同様にして、エチレン重合体を得た。微多孔膜は、実施例1と同様にして製造した。
Example 5
In the polymerization step, the hydrogenation catalyst [G] was supplied so that the concentration in the reactor was 1.8 μmol / L, and 1-butene was supplied so that the concentration in the gas phase was 1.0 mol%. Except for the above, an ethylene polymer was obtained in the same manner as in Example 2. The microporous membrane was produced in the same manner as in Example 1.

〔実施例6〕
重合工程において、重合温度を65℃とし、重合圧力を0.45MPaとし、水素を供給しなかったこと、メタノールと接触させなかったこと以外は、実施例1と同様にして、エチレン重合体を得た。微多孔膜は、実施例1と同様にして製造した。
Example 6
In the polymerization step, an ethylene polymer was obtained in the same manner as in Example 1 except that the polymerization temperature was 65 ° C., the polymerization pressure was 0.45 MPa, hydrogen was not supplied, and no contact was made with methanol. It was. The microporous membrane was produced in the same manner as in Example 1.

〔実施例7〕
重合工程において、重合温度を70℃としたこと、水添触媒[G]を反応器内濃度が2.4μmol/Lとなるように供給したこと以外は、実施例2と同様にして、エチレン重合体を得た。微多孔膜は、実施例1と同様にして製造した。
Example 7
In the polymerization step, ethylene heavy was obtained in the same manner as in Example 2, except that the polymerization temperature was 70 ° C. and the hydrogenation catalyst [G] was supplied so that the concentration in the reactor was 2.4 μmol / L. Coalescence was obtained. The microporous membrane was produced in the same manner as in Example 1.

〔実施例8〕
重合工程において、固体触媒成分[A]をそのまま用いたことに代えて、固体触媒成分[A]を窒素雰囲気下、90℃のヘキサン中で1時間撹拌した形態でを用いたこと、重合温度を75℃に代えて、70℃としたこと、水素を供給しなかったこと、さらには重合系内にノルマルブタノールの100mmol/Lヘキサン溶液を添加しなかったこと以外は、実施例1と同様にして、エチレン重合体を得た。微多孔膜は、実施例1と同様にして製造した。
Example 8
In the polymerization step, instead of using the solid catalyst component [A] as it is, the solid catalyst component [A] was used in a form of being stirred in hexane at 90 ° C. for 1 hour in a nitrogen atmosphere, and the polymerization temperature was changed. Instead of 75 ° C., the temperature was set to 70 ° C., hydrogen was not supplied, and a 100 mmol / L hexane solution of normal butanol was not added into the polymerization system. An ethylene polymer was obtained. The microporous membrane was produced in the same manner as in Example 1.

〔比較例1〕
重合工程において、重合温度を74℃としたこと、水素を供給しなかったこと、重合系内にノルマルブタノールを添加しなかったこと以外は、実施例1と同様にして、エチレン重合体を得た。微多孔膜は、実施例1と同様にして製造した。
[Comparative Example 1]
In the polymerization step, an ethylene polymer was obtained in the same manner as in Example 1, except that the polymerization temperature was set to 74 ° C., hydrogen was not supplied, and normal butanol was not added to the polymerization system. . The microporous membrane was produced in the same manner as in Example 1.

〔比較例2〕
重合工程において、重合温度を60℃とし、重合圧力を0.8MPaとしたこと、重合系内にノルマルブタノールを添加しなかったこと以外は、実施例3と同様にして、エチレン重合体を得た。微多孔膜は、実施例1と同様にして製造した。
[Comparative Example 2]
In the polymerization step, an ethylene polymer was obtained in the same manner as in Example 3, except that the polymerization temperature was 60 ° C., the polymerization pressure was 0.8 MPa, and no normal butanol was added in the polymerization system. . The microporous membrane was produced in the same manner as in Example 1.

〔比較例3〕
重合工程において、重合温度を73℃に代えて、75℃としたこと、水素を3000ppm供給したこと以外は、実施例3と同様にして、エチレン重合体を得た。微多孔膜は、実施例1と同様にして製造した。
[Comparative Example 3]
In the polymerization step, an ethylene polymer was obtained in the same manner as in Example 3 except that the polymerization temperature was changed to 73 ° C. and 75 ° C., and 3000 ppm of hydrogen was supplied. The microporous membrane was produced in the same manner as in Example 1.

〔比較例4〕
重合工程において、重合温度を75℃に代えて、60℃としたこと、重合圧力を0.35MPaに代えて、0.5MPaとしたこと、水素を供給しなかったこと、さらには重合系内にノルマルブタノールの100mmol/Lヘキサン溶液を添加しなかったこと以外は、実施例1と同様にして、エチレン重合体を得た。微多孔膜は、実施例1と同様にして製造した。
[Comparative Example 4]
In the polymerization step, the polymerization temperature was changed to 75 ° C., 60 ° C., the polymerization pressure was changed to 0.35 MPa, 0.5 MPa, hydrogen was not supplied, and An ethylene polymer was obtained in the same manner as in Example 1 except that a 100 mmol / L hexane solution of normal butanol was not added. The microporous membrane was produced in the same manner as in Example 1.

本実施形態のエチレン系重合体は、種々の成形体に利用でき、成形体としては、高強度繊維、ゲル紡糸、微多孔膜が挙げられる。特にエチレン系重合体を微多孔膜として好適に用いられ、この微多孔膜は、二次電池用セパレータ、特に、鉛蓄電池セパレータなどに利用できる。   The ethylene polymer of this embodiment can be used for various molded products, and examples of the molded product include high-strength fibers, gel spinning, and microporous membranes. In particular, an ethylene-based polymer is suitably used as a microporous membrane, and this microporous membrane can be used for a secondary battery separator, particularly a lead storage battery separator.

Claims (7)

極限粘度(η)が11dL/g以上28dL/g以下であり、
示差走査熱量計(DSC)を用いた下記(1)〜(3)の測定条件によって得られる2回目の昇温過程のDSC曲線において、2回目の昇温過程の融解熱量(ΔH2)に対して融点(Tm2)より高い領域の融解熱量(ΔHb)の割合(ΔHb/ΔH2×100)が18%以上であるエチレン系重合体。

(DSC測定条件)
(1)50℃で1分間保持後、10℃/minの昇温速度で180℃まで昇温。
(2)180℃で5分間保持後、10℃/minの降温速度で50℃まで降温。
(3)50℃で5分間保温後、10℃/minの昇温速度で180℃まで昇温。
The intrinsic viscosity (η) is 11 dL / g or more and 28 dL / g or less,
In the DSC curve of the second temperature raising process obtained by the following measurement conditions (1) to (3) using a differential scanning calorimeter (DSC), with respect to the heat of fusion (ΔH 2 ) of the second temperature raising process An ethylene polymer having a ratio (ΔH b / ΔH 2 × 100) of heat of fusion (ΔH b ) in a region higher than the melting point (Tm 2 ) of 18% or more.

(DSC measurement conditions)
(1) After holding at 50 ° C. for 1 minute, the temperature is raised to 180 ° C. at a temperature rising rate of 10 ° C./min.
(2) After holding at 180 ° C. for 5 minutes, the temperature is decreased to 50 ° C. at a temperature decreasing rate of 10 ° C./min.
(3) After holding at 50 ° C. for 5 minutes, the temperature is raised to 180 ° C. at a temperature rising rate of 10 ° C./min.
前記DSCを用いた測定条件の降温過程における、発熱ピークの半値幅が3.0以上6.0以下である、請求項1に記載のエチレン系重合体。 2. The ethylene-based polymer according to claim 1, wherein a half-value width of an exothermic peak is 3.0 ° C. or more and 6.0 ° C. or less in a temperature lowering process under the measurement conditions using the DSC. 下記(1)〜(3)の加工条件により得られるプレスシート密度が910kg/m3以上940kg/m3以下である、請求項1又は請求項2に記載のエチレン系重合体。

(加工条件)
(1)200℃、0.1MPaの条件で900秒間予熱。
(2)200℃、15MPaの条件で300秒間加圧。
(3)25℃、10MPaの条件で600秒間冷却。
The ethylene polymer according to claim 1 or 2, wherein a press sheet density obtained under the following processing conditions (1) to (3) is 910 kg / m 3 or more and 940 kg / m 3 or less.

(Processing conditions)
(1) Preheating for 900 seconds under the conditions of 200 ° C. and 0.1 MPa.
(2) Pressurization for 300 seconds under conditions of 200 ° C. and 15 MPa.
(3) Cooling for 600 seconds under conditions of 25 ° C. and 10 MPa.
チタン含有量が、エチレン系重合体全体に対し、重量換算で3ppm以下である、請求項1から3のいずれか一項に記載のエチレン系重合体。   The ethylene polymer according to any one of claims 1 to 3, wherein the titanium content is 3 ppm or less in terms of weight with respect to the entire ethylene polymer. 塩素含有量が、エチレン系重合体全体に対し、重量換算で10ppm以下である、請求項1から4のいずれか一項に記載のエチレン系重合体。   The ethylene polymer according to any one of claims 1 to 4, wherein the chlorine content is 10 ppm or less in terms of weight with respect to the whole ethylene polymer. 請求項1から5のいずれか一項に記載のエチレン系重合体を含む、成形体。   The molded object containing the ethylene-type polymer as described in any one of Claim 1 to 5. 微多孔膜である、請求項6記載の成形体。   The molded article according to claim 6, which is a microporous film.
JP2017232007A 2017-02-24 2017-12-01 Ethylene polymer and molded body Active JP6383479B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017033667 2017-02-24
JP2017033667 2017-02-24

Publications (2)

Publication Number Publication Date
JP6383479B1 true JP6383479B1 (en) 2018-08-29
JP2018141136A JP2018141136A (en) 2018-09-13

Family

ID=63229948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017232007A Active JP6383479B1 (en) 2017-02-24 2017-12-01 Ethylene polymer and molded body

Country Status (3)

Country Link
JP (1) JP6383479B1 (en)
KR (1) KR101886993B1 (en)
CN (1) CN108503923B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3932956A4 (en) * 2019-03-01 2022-05-11 Asahi Kasei Kabushiki Kaisha Polyethylene powder and shaped object obtained by shaping same
JP7440296B2 (en) * 2020-02-28 2024-02-28 帝人株式会社 Separators for non-aqueous secondary batteries and non-aqueous secondary batteries

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5830187A (en) 1981-08-17 1983-02-22 松下電器産業株式会社 Both-side printed board and method of connecting same
JPH06506245A (en) * 1991-03-29 1994-07-14 ビー・ピー・アイ・エンバイロンメンタル・インコーポレイテツド Polymer materials and transparent films made from polymer materials
JPH06136195A (en) * 1992-09-08 1994-05-17 Mitsui Petrochem Ind Ltd Ethylene copolymer composition
JP4583551B2 (en) 2000-05-29 2010-11-17 日本板硝子株式会社 Rib separator for lead-acid battery and method for producing the same
US20070015876A1 (en) * 2003-10-27 2007-01-18 Daisuke Inagaki Microporous polyolefin film
US7241620B2 (en) * 2004-01-09 2007-07-10 Chevron Phillips Chemical Company Lp Ultra high molecular weight polyethylene fractions having narrow molecular weight distributions and methods of making and using the same
JP2009120748A (en) * 2007-11-16 2009-06-04 Asahi Kasei Chemicals Corp Ethylene based polymer and manufacturing method
CN102272207B (en) * 2009-01-07 2013-06-05 三井化学株式会社 Polypropylene resin composition for microporous film formation
CN107834010B (en) 2010-09-22 2021-07-13 达拉米克有限责任公司 Improved lead acid battery separators, batteries, and related methods
JP5695869B2 (en) * 2010-09-28 2015-04-08 日本ポリエチレン株式会社 Ziegler-Natta catalyst reforming method, modified Ziegler-Natta catalyst, olefin polymerization method using the same, and obtained olefin polymer
CA2862245C (en) * 2011-12-28 2016-10-25 Prime Polymer Co., Ltd. Ethylene polymer composition and shaped article of the same
JP2013227545A (en) * 2012-03-28 2013-11-07 Japan Polyethylene Corp Polyethylene for pipe and joint, and molded product thereof
JP6044309B2 (en) * 2012-12-07 2016-12-14 東洋紡株式会社 Polyethylene tape, polyethylene split yarn and method for producing them
JP5829258B2 (en) * 2012-12-11 2015-12-09 旭化成ケミカルズ株式会社 Ethylene polymer powder, molded product, and separator for lithium ion secondary battery
WO2014095911A1 (en) * 2012-12-17 2014-06-26 Borealis Ag Process for the preparation of a high density polyethylene blend
JP6349843B2 (en) * 2014-03-26 2018-07-04 東ソー株式会社 Ultra high molecular weight polyethylene rolled compact
JP6520248B2 (en) * 2014-03-26 2019-05-29 東ソー株式会社 Ultrahigh molecular weight polyethylene oriented microporous membrane
EP3269761B1 (en) * 2015-03-13 2019-08-28 Kaneka Corporation Polypropylene resin foamed particles and method for producing same
JP6711022B2 (en) * 2015-03-18 2020-06-17 東ソー株式会社 Ultra high molecular weight polyethylene porous sintered body
JP6340448B1 (en) * 2017-03-21 2018-06-06 旭化成株式会社 Polyethylene polymer powder and method for producing the same

Also Published As

Publication number Publication date
CN108503923A (en) 2018-09-07
KR101886993B1 (en) 2018-08-08
JP2018141136A (en) 2018-09-13
CN108503923B (en) 2019-11-08

Similar Documents

Publication Publication Date Title
JP5774084B2 (en) Polyethylene powder
CN110637039B (en) Polyethylene powder, molded body, and microporous film
CN114051503B (en) Polyethylene powder, molded article
JP6892737B2 (en) Polyethylene powder and its manufacturing method
CN113544165B (en) Polyethylene powder and molded article obtained by molding the polyethylene powder
JP6383479B1 (en) Ethylene polymer and molded body
JP6487591B1 (en) Ultra high molecular weight ethylene polymer powder and molded product using ultra high molecular weight ethylene polymer powder
CN111848844A (en) Ethylene polymer particles and molded body
JP6454823B2 (en) Ethylene polymer, stretched molded body and microporous membrane
JP6867187B2 (en) Polyethylene particles and moldings
JP7330304B2 (en) Polyethylene powder and its molding
JP7171354B2 (en) Polyethylene polymer powder and lithium ion secondary battery separator
WO2022270571A1 (en) Polyethylene powder and molded body thereof
KR102511906B1 (en) Polyethylene resin for secondary battery separator, its manufacturing method, and separator employing the same
JP2018076401A (en) Ethylene polymer, stretch molded article and microporous film
CN116391296A (en) Polyethylene powder and molded article
CN113004446A (en) Polyethylene resin for secondary battery separator and secondary battery separator comprising same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180803

R150 Certificate of patent or registration of utility model

Ref document number: 6383479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350