JP6382593B2 - Welding method - Google Patents

Welding method Download PDF

Info

Publication number
JP6382593B2
JP6382593B2 JP2014129417A JP2014129417A JP6382593B2 JP 6382593 B2 JP6382593 B2 JP 6382593B2 JP 2014129417 A JP2014129417 A JP 2014129417A JP 2014129417 A JP2014129417 A JP 2014129417A JP 6382593 B2 JP6382593 B2 JP 6382593B2
Authority
JP
Japan
Prior art keywords
welding
base material
thickness
gap
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014129417A
Other languages
Japanese (ja)
Other versions
JP2016007620A (en
Inventor
康仁 上條
康仁 上條
浅井 知
知 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2014129417A priority Critical patent/JP6382593B2/en
Publication of JP2016007620A publication Critical patent/JP2016007620A/en
Application granted granted Critical
Publication of JP6382593B2 publication Critical patent/JP6382593B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Description

本発明の実施形態は、溶接方法に関する。 Embodiments of the present invention relates to a welding how.

従来、建設業、自動車産業、造船、橋梁、発電機器などの大型構造物の製造には、接合プロセスの一つである溶接が、必要不可欠な基盤技術として適用されている。特に、上記した大型構造物に用いられる厚板鋼板の溶接においては、溶け込みの深い溶接方法を適用することが製造工数の削減につながる。   Conventionally, welding, which is one of the joining processes, has been applied as an indispensable basic technology for manufacturing large structures such as the construction industry, the automobile industry, shipbuilding, bridges, and power generation equipment. In particular, in the welding of thick steel plates used in the large structures described above, applying a deep penetration welding method leads to a reduction in manufacturing man-hours.

ここで、深い溶け込みが得られる溶接方法として種々のものが開発されている。例えば、第1の溶接方法は、ステンレス鋼材又は低炭素鋼材からなる継手部の表面又は裏面に溶け込み促進剤を塗布し、非消耗電極方式のアーク溶接を用いることによって、両面溶接を可能とする。これにより、第1の溶接方法は、開先加工を施さない、いわゆるI型継手又はT型継手のままで、接合不足のない完全溶け込み溶接を行う。   Here, various methods have been developed as welding methods capable of obtaining deep penetration. For example, the first welding method enables double-sided welding by applying a melting accelerator to the front or back surface of a joint portion made of stainless steel or low-carbon steel and using non-consumable electrode arc welding. As a result, the first welding method performs complete penetration welding with no joint shortage while maintaining a so-called I-type joint or T-type joint that is not subjected to groove processing.

また、第2の溶接方法は、例えば、ステンレス鋼材からなるT型継手に対し、非消耗電極方式のアーク溶接にて、溶け込み深さ促進性のフラックス材が充填されたフラックス入りワイヤをアーク溶接部分に送給しながら、貫通溶接することを可能とする。これにより、第2の溶接方法は、開先加工を施さないT型継手のままで、接合不足のない完全溶け込み溶接を行う。   Further, the second welding method is, for example, that a flux-cored wire filled with a flux material that promotes penetration depth is arc-welded to a T-shaped joint made of stainless steel by non-consumable electrode arc welding. It is possible to perform through-welding while feeding the wire. Thereby, a 2nd welding method performs complete penetration welding without joining shortage with the T type joint which does not give a groove processing.

特開2007−196266号公報JP 2007-196266 A 特許第5153368号公報Japanese Patent No. 5153368

しかしながら、第1の溶接方法は、前述したように、溶け込み促進剤を継手部に塗布する必要があるため、溶け込み促進剤の購入にかかる材料費の増加、及び塗布作業に要する工数の増加を招く。しかも、溶け込み促進剤を塗布する量や塗布する範囲のばらつきによって、溶け込み深さが変動するリスクが高い。さらに、第1の溶接方法は、消耗電極方式であるマグ溶接と比べて溶け込み深さの浅い非消耗電極方式のアーク溶接を用いるため、この溶接に適用可能な鋼材の厚さは、一般には6mm以下となる。   However, as described above, since the first welding method needs to apply the penetration accelerator to the joint portion, the material cost for purchasing the penetration accelerator increases and the man-hour required for the application work increases. . In addition, there is a high risk that the penetration depth varies depending on the amount of the penetration accelerator applied and the variation in the application range. Furthermore, since the first welding method uses arc welding of a non-consumable electrode method having a shallow penetration depth compared to mag welding, which is a consumable electrode method, the thickness of the steel material applicable to this welding is generally 6 mm. It becomes as follows.

一方、第2の溶接方法も、非消耗電極方式のアーク溶接を用いるため、溶接に適用可能な鋼材の厚さは、同様に6mm以下である。さらに、第2の溶接方法は、溶け込み促進性を有するフラックス材が充填されたフラックス入りワイヤが必要となり、製造コストの増大を余儀なくされる。   On the other hand, since the second welding method also uses non-consumable electrode type arc welding, the thickness of the steel material applicable to welding is similarly 6 mm or less. Furthermore, the second welding method requires a flux-cored wire filled with a flux material having a penetration promoting property, which necessitates an increase in manufacturing cost.

本発明が解決しようとする課題は、比較的低い入熱で深い溶け込みが得られる溶接方法を提供することである。 An object of the present invention is to provide is to provide welded how the that deep penetration at relatively low heat input is obtained.

実施の形態に係る溶接方法は、配置工程及び溶接工程を有する。配置工程では、溶接の対象となる第1の母材と第2の母材とをギャップを空けてT型継手として配置する。溶接工程では、前記配置された第1及び第2の母材どうしを、25kJ/cm以下の入熱により埋れアークの状態で、マグ溶接法を用いて完全溶け込み溶接する。また、前記第1の母材の厚さは、6mm以上、20mm以下の範囲内にある。さらに、前記第2の母材の厚さは、4mm以上、24mm以下の範囲内にある。前記溶接工程では、前記T型継手として前記第2の母材と共に配置された前記第1の母材の第1の面側とその背面側に位置する第2の面側とからそれぞれ1パスずつ溶接操作を行う。また、前記第1及び第2の面側からの1パスずつの溶接操作によってそれぞれ得られる溶け込み深さは、少なくとも前記第1の母材の厚さの0.5倍以上、0.9倍以下の範囲内にある。さらに、前記第1及び第2の面側からの溶け込みによって形成される各ビードは、互いに重なり合っている。また、前記ギャップは、前記第1の母材の厚さの0.1倍以上、0.2倍以下の範囲内にある。 The welding method according to the embodiment includes an arrangement process and a welding process. In the placement step, the first base material and the second base material to be welded are placed as a T-shaped joint with a gap therebetween. In the welding process, the first and second base metals arranged are completely penetration welded using a mag welding method in a state of a buried arc with a heat input of 25 kJ / cm or less. The thickness of the first base material is in the range of 6 mm or more and 20 mm or less. Furthermore, the thickness of the second base material is in the range of 4 mm or more and 24 mm or less. In the welding process, one pass each from the first surface side of the first base material arranged together with the second base material as the T-shaped joint and the second surface side located on the back side thereof. Perform the welding operation. Further, the penetration depth obtained by the welding operation for each pass from the first and second surface sides is at least 0.5 times and not more than 0.9 times the thickness of the first base material. It is in the range. Further, the beads formed by the penetration from the first and second surface sides overlap each other. The gap is in a range of 0.1 to 0.2 times the thickness of the first base material.

第1の実施形態に係る溶接方法の配置工程を説明するための断面図。Sectional drawing for demonstrating the arrangement | positioning process of the welding method which concerns on 1st Embodiment. 図1Aに示す溶接方法において第1及び第2の母材の第1の面側からの溶接工程を説明するための断面図。Sectional drawing for demonstrating the welding process from the 1st surface side of the 1st and 2nd preform | base_material in the welding method shown to FIG. 1A. 図1Aに示す溶接方法において第1及び第2の母材の第2の面側からの溶接工程を説明するための断面図。Sectional drawing for demonstrating the welding process from the 2nd surface side of the 1st and 2nd preform | base_material in the welding method shown to FIG. 1A. 比較例1の溶接方法を説明するための断面図。Sectional drawing for demonstrating the welding method of the comparative example 1. FIG. 第2の実施形態に係る溶接方法の配置工程を説明するための断面図。Sectional drawing for demonstrating the arrangement | positioning process of the welding method which concerns on 2nd Embodiment. 図3Aの溶接方法における溶接工程を説明するための断面図。Sectional drawing for demonstrating the welding process in the welding method of FIG. 3A. 第3の実施形態に係る溶接方法の配置工程を説明するための断面図。Sectional drawing for demonstrating the arrangement | positioning process of the welding method which concerns on 3rd Embodiment. 図4Aに示す溶接方法において第1の母材の第1の面側からの溶接工程を説明するための断面図。Sectional drawing for demonstrating the welding process from the 1st surface side of a 1st preform | base_material in the welding method shown to FIG. 4A. 図4Aに示す溶接方法において第1の母材の第2の面側からの溶接工程を説明するための断面図。Sectional drawing for demonstrating the welding process from the 2nd surface side of a 1st preform | base_material in the welding method shown to FIG. 4A. 比較例2の溶接方法を説明するための断面図。Sectional drawing for demonstrating the welding method of the comparative example 2. FIG. 第4の実施形態に係る溶接方法の配置工程を説明するための断面図。Sectional drawing for demonstrating the arrangement | positioning process of the welding method which concerns on 4th Embodiment. 図6Aの溶接方法における溶接工程を説明するための断面図。Sectional drawing for demonstrating the welding process in the welding method of FIG. 6A. 第1〜第4の実施形態とは構成の異なる他の実施形態の溶接方法として、突起部を含むT型継手について説明するための正面図。The front view for demonstrating the T-type coupling containing a projection part as a welding method of other embodiment from which a structure differs from the 1st-4th embodiment. 図7Aに示すT型継手をA方向からみた矢視図。The arrow view which looked at the T type joint shown in Drawing 7A from the A direction. 図7Bに示すT型継手とは突起部の構造が異なる他の実施形態に係るT型継手の側面図。The side view of the T-shaped coupling which concerns on other embodiment from which the structure of a projection part differs from the T-shaped coupling shown in FIG. 7B. 第1〜第4の実施形態、図7A、図8に示す実施形態とは構成の異なる他の実施形態の溶接方法として、突起部を含むI型継手について説明するための正面図。The front view for demonstrating the I-type coupling containing a projection part as a welding method of other embodiment from which composition is different from the embodiment shown in the 1st-the 4th embodiment and Drawing 7A and Drawing 8. 図9Aに示すI型継手をB方向からみた矢視図。FIG. 9B is an arrow view of the I-shaped joint illustrated in FIG. 9A as viewed from the B direction. 図9Bに示すI型継手とは突起部の構造が異なる他の実施形態に係るI型継手の側面図。FIG. 9B is a side view of an I-shaped joint according to another embodiment in which the structure of the protrusion is different from that of the I-shaped joint illustrated in FIG. 9B. 実施例1のI型継手における断面のマクロ写真。The macro photograph of the cross section in the I-type joint of Example 1. 比較例3のI型継手における断面のマクロ写真。The macro photograph of the section in the I type joint of comparative example 3. 比較例4のI型継手における断面のマクロ写真。The macro photograph of the section in the I type joint of comparative example 4. 実施例3のT型継手における断面のマクロ写真。5 is a macro photograph of a cross section of a T-shaped joint of Example 3. FIG. 実施例4のT型継手における断面のマクロ写真。The macro photograph of the section in the T type joint of Example 4.

以下、実施の形態を図面に基づき説明する。後述する第1〜第4の実施形態の溶接方法は、次の条件を満たす配置工程及び溶接工程をそれぞれ有している。配置工程では、溶接の対象となる第1の母材と第2の母材とをギャップ(隙間)を空けて配置する。溶接工程では、前記配置された第1及び第2の母材どうしを、25kJ/cm以下の入熱により埋れアークの状態で、マグ溶接法(消耗電極式のアーク溶接技術のうちで、シールドガスに不活性ガスと炭酸ガスとを混合して使う溶接技術)を用いて完全溶け込み溶接する。   Hereinafter, embodiments will be described with reference to the drawings. The welding method of the 1st-4th embodiment mentioned later has the arrangement | positioning process and welding process which satisfy | fill the following conditions, respectively. In the placement step, the first base material and the second base material to be welded are placed with a gap (gap) therebetween. In the welding process, the first and second base metals arranged are buried in a state of an arc with a heat input of 25 kJ / cm or less, and a mag welding method (among the consumable electrode type arc welding technology, shield gas). Complete penetration welding using a welding technique that uses a mixture of inert gas and carbon dioxide gas.

第1及び第2の母材は、例えばステンレス鋼などの合金鋼や、炭素鋼といった鋼材である。溶接工程では、溶接姿勢を下向姿勢又は横向姿勢とする。なお、その他の溶接姿勢として、立向姿勢、上向姿勢などが挙げられるが、溶接時にビードが垂れて健全な溶け込み深さが得られなくなる可能性があるため好ましくない。   The first and second base materials are, for example, alloy steels such as stainless steel and steel materials such as carbon steel. In the welding process, the welding posture is a downward posture or a horizontal posture. Other welding postures include a vertical posture, an upward posture, and the like, which are not preferable because a bead may hang down during welding and a sound penetration depth may not be obtained.

前述した第1及び第2の母材の厚さは、4mm以上、24mm以下の範囲内にある。また、ギャップは、第1及び第2の母材の厚さの0.05倍以上、0.4倍以下の範囲内にある。なお、埋れアークの状態とは、溶接ワイヤを、アークで掘られた溶融池(アークなどの熱によって形成された溶融金属のたまり)の中まで突っ込んだ状態である。   The thicknesses of the first and second base materials described above are in the range of 4 mm or more and 24 mm or less. The gap is in the range of 0.05 to 0.4 times the thickness of the first and second base materials. The state of the buried arc is a state in which the welding wire is thrust into a molten pool dug by the arc (a molten metal pool formed by heat of the arc or the like).

ここで、第1及び第2の母材の厚さ(板厚)が4mmより薄いと、溶け込み深さを所定深さに止めることが難しく、溶融金属がギャップの裏側から溶け落ちてしまう可能性があるので好ましくない。一方、第1及び第2の母材の厚さが24mmより厚いと、溶け込み深さの不足により、完全溶け込み溶接が得られなくなる可能性があるので好ましくない。   Here, if the thickness (plate thickness) of the first and second base materials is less than 4 mm, it is difficult to stop the penetration depth at a predetermined depth, and the molten metal may melt from the back side of the gap. This is not preferable. On the other hand, if the thickness of the first and second base materials is greater than 24 mm, it is not preferable because complete penetration welding may not be obtained due to insufficient penetration depth.

また、母材どうしの間のギャップは、母材の厚さに応じた適正な値に設定されることで、健全な完全溶け込み溶接を得ることが可能となる。このギャップが母材の厚さの0.05倍未満になると、溶接時のアークがギャップに入り込むことが困難となり、溶け込み深さが減少する。一方、ギャップが母材の厚さの0.4倍よりも大きくなると、溶着に必要な金属の量の増加を招き、また、片方の側からの溶接操作に複数回のパスが必要となる可能性があるうえ、溶融金属がギャップの裏側から溶け落ちる可能性があり好ましくない。   In addition, by setting the gap between the base materials to an appropriate value according to the thickness of the base material, it is possible to obtain a sound complete penetration welding. When this gap is less than 0.05 times the thickness of the base material, it becomes difficult for the arc during welding to enter the gap, and the penetration depth decreases. On the other hand, if the gap is larger than 0.4 times the thickness of the base metal, the amount of metal required for welding will increase, and multiple passes may be required for the welding operation from one side. In addition, there is a possibility that the molten metal melts from the back side of the gap.

<第1の実施の形態>
第1の実施形態の溶接方法は、配置工程及び溶接工程をそれぞれ行う際に前述した条件を満たすことに加え、さらに、配置工程では、図1Aに示すように、母材(第1の母材)1と母材(第2の母材)2とをI型継手(突合せ継手)8として配置する。ここで、本実施形態のようなI型継手8を溶接する場合には、母材1、2の厚さ(第1の面1a、2aと第2の面1b、2bとの間の厚さ)T1は、6mm以上、24mm以下(6mm≦T1≦24mm)の範囲内にあることがより好ましい。さらに、本実施形態のようなI型継手8を溶接する場合には、ギャップG1は、母材1、2の厚さT1の0.05倍以上、0.1倍以下(0.05×T1mm≦G1≦0.1×T1mm)の範囲内にあることがより好ましい。
<First Embodiment>
In the welding method of the first embodiment, in addition to satisfying the above-described conditions when performing the placement step and the welding step, respectively, in the placement step, as shown in FIG. 1A, a base material (first base material) ) 1 and the base material (second base material) 2 are arranged as an I-type joint (butt joint) 8. Here, when welding the I-type joint 8 as in the present embodiment, the thicknesses of the base materials 1 and 2 (thickness between the first surfaces 1a and 2a and the second surfaces 1b and 2b). ) T1 is more preferably in the range of 6 mm or more and 24 mm or less (6 mm ≦ T1 ≦ 24 mm). Furthermore, when welding the I-type joint 8 as in the present embodiment, the gap G1 is 0.05 times or more and 0.1 times or less (0.05 × T1 mm) of the thickness T1 of the base materials 1 and 2. ≦ G1 ≦ 0.1 × T1 mm) is more preferable.

また、溶接工程では、前述したように、25kJ/cm以下の入熱により埋れアークの状態で、図1B、図1Cに示すように、I型継手8における第1の面1a、2a側とその背面側に位置する第2の面1b、2b側とからそれぞれ1パスずつ溶接操作を行う。つまり、図1Bに示すように、まず、I型継手8における第1の面1a、2a側から、1パスで溶け込み深さH1まで、マグ溶接してビード(1回のパスによって作られる溶融凝固した溶接金属)3を形成する。   Further, in the welding process, as described above, in the state of a buried arc by heat input of 25 kJ / cm or less, as shown in FIG. 1B and FIG. The welding operation is performed for each pass from the second surfaces 1b and 2b located on the back side. That is, as shown in FIG. 1B, first, from the first surface 1a, 2a side of the I-type joint 8 to the penetration depth H1 by one pass, the bead (melt solidification made by one pass) is performed. Weld metal) 3 is formed.

さらに、図1Cに示すように、I型継手8における第2の面1b、2b側から、1パスで溶け込み深さH2までマグ溶接して、ビード4を形成する。詳述すると、図1Cに示すように、I型継手8の第1の面1a、2a及び第2の面1b、2b側からの1パスずつの溶接操作によってそれぞれ得られる溶け込み深さH1、H2は、母材1、2の厚さT1の0.5倍以上、0.9倍以下の範囲内にある。さらに、I型継手8の第1の面1a、2a側及び第2の面1b、2b側からの溶け込みによって形成されるビード3及びビード4は、母材1、2の厚さ方向の中央部分又はその近傍で、互いに重なり合っている。これによって、完全溶け込み溶接された溶接構造物10(溶接されたI型継手8)を得る。   Further, as shown in FIG. 1C, the bead 4 is formed by mag welding from the second surfaces 1b and 2b side of the I-type joint 8 to the penetration depth H2 in one pass. More specifically, as shown in FIG. 1C, the penetration depths H1 and H2 respectively obtained by welding operations for each pass from the first surfaces 1a and 2a and the second surfaces 1b and 2b of the I-type joint 8. Is in the range of 0.5 to 0.9 times the thickness T1 of the base materials 1 and 2. Further, the bead 3 and the bead 4 formed by melting from the first surface 1a, 2a side and the second surface 1b, 2b side of the I-type joint 8 are the central portions of the base materials 1 and 2 in the thickness direction. Or in the vicinity, they overlap each other. As a result, a welded structure 10 (welded I-type joint 8) that is completely penetration welded is obtained.

上述した溶け込み深さH1や溶け込み深さH2が、母材1、2の厚さT1の0.5倍未満であると、母材1、2の第1及び第2の面のそれぞれの側から1パスずつ溶接操作を行ったとしても、母材1、2の厚さ方向の中央まで材料が溶けていないことになるから、溶接不足が発生する可能性があり好ましくない。一方、溶け込み深さH1、H2が、厚さT1の0.9倍より大きいと、溶融金属がギャップの裏側(パスしている面とは逆側の面)まで溶け落ちる可能性があるので好ましくない。   When the penetration depth H1 and the penetration depth H2 described above are less than 0.5 times the thickness T1 of the base materials 1 and 2, from the respective sides of the first and second surfaces of the base materials 1 and 2. Even if the welding operation is performed one pass at a time, the material is not melted to the center in the thickness direction of the base materials 1 and 2, which may cause insufficient welding. On the other hand, if the penetration depths H1 and H2 are larger than 0.9 times the thickness T1, the molten metal may be melted down to the back side of the gap (the side opposite to the passing surface). Absent.

また、本実施形態のようなI型継手8を溶接する場合、母材1、2の厚さT1が6mmより薄いと、溶け込み深さを所定深さに止めることが難しく、溶融金属がギャップの裏側から溶け落ちてしまう可能性がある。一方、厚さT1が24mmより厚いと、溶け込み深さの不足により、完全溶け込み溶接が得られなくなる可能性がある。   Further, when welding the I-type joint 8 as in this embodiment, if the thicknesses T1 of the base materials 1 and 2 are thinner than 6 mm, it is difficult to stop the penetration depth to a predetermined depth, and the molten metal has gaps. There is a possibility of melting from the back side. On the other hand, if the thickness T1 is thicker than 24 mm, there is a possibility that complete penetration welding cannot be obtained due to lack of penetration depth.

さらに、ギャップG1が、厚さT1の0.05倍未満であると、前述したように、溶接時のアークがギャップ内に入り込むことが困難となり、溶け込み深さが減少する。また、本実施形態のようなI型継手8の場合、ギャップG1が厚さT1の0.1倍よりも大きくなると、溶着に必要な金属の量が増加し、しかも、第1の面1a、2a側及び第2の面1b、2b側からのそれぞれの溶接操作に複数回ずつのパスが必要となる可能性があるうえ、溶融金属がギャップの裏側から溶け落ちる可能性もある。   Furthermore, if the gap G1 is less than 0.05 times the thickness T1, as described above, it becomes difficult for the arc during welding to enter the gap, and the penetration depth decreases. Further, in the case of the I-type joint 8 as in this embodiment, when the gap G1 is larger than 0.1 times the thickness T1, the amount of metal required for welding increases, and the first surface 1a, Multiple passes may be required for each welding operation from the 2a side and the second surface 1b, 2b side, and the molten metal may melt from the back side of the gap.

ここで、比較例1の溶接方法を図2に基づき説明する。比較例1の溶接方法は、図2に示すように、マグ溶接を用いて、例えば厚さT1aが、20mmの母材1c、2cを突合せ溶接する場合を例示している。このような母材1c、2cを突合せ溶接する際には、例えば45°程度の開先角度を持たせたレ型開先、V型開先、X型開先などを設けたうえでマグ溶接する必要がある。さらに、これらの開先を完全溶け込み溶接するためには、図2に示すように、例えば10パス程度の溶接パス(多数回にわたってビート3aを形成すること)が必要となる。このため、比較例1の溶接方法は、多くの溶接施工時間を要する結果となる。   Here, the welding method of the comparative example 1 is demonstrated based on FIG. As shown in FIG. 2, the welding method of the comparative example 1 has illustrated the case where the base materials 1c and 2c whose thickness T1a is 20 mm are butt-welded using MAG welding, for example. When such base materials 1c and 2c are butt welded, for example, a grooving groove having a groove angle of about 45 °, a V-shaped groove, an X-shaped groove, etc. are provided, and then mag welding is performed. There is a need to. Furthermore, in order to completely melt and weld these grooves, as shown in FIG. 2, for example, about 10 passes of welding (forming the beat 3a many times) are required. For this reason, the welding method of Comparative Example 1 results in a long welding operation time.

また、一般に、溶接時の入熱と溶け込み深さには相関関係があり、入熱を増加させることで溶け込み深さが増加することが知られている。したがって、入熱の増加には、定格出力電流の大きい溶接電源を準備する必要があるうえ、溶接ワイヤが自動で送給されかつ溶接時の電流が400Aを超える半自動マグ溶接の場合、市販されている汎用の溶接電源では、溶接欠陥を誘発し、健全な溶接部を得ることが難しい。さらに、溶接時の電流が400Aを超えるこのような半自動マグ溶接では、溶融金属の溶着量の増加に伴いビードの余盛が増加する一方で、溶け込み深さは増加せず、このため、例えば24mm程度の厚さの母材を、少ないパス数で完全溶け込み溶接させることは極めて困難となる。   In general, there is a correlation between the heat input during welding and the penetration depth, and it is known that the penetration depth increases by increasing the heat input. Therefore, in order to increase the heat input, it is necessary to prepare a welding power source with a large rated output current. In addition, it is commercially available in the case of semi-automatic MAG welding where the welding wire is automatically fed and the welding current exceeds 400A. In general-purpose welding power sources, it is difficult to induce a weld defect and obtain a sound weld. Further, in such a semi-automatic MAG welding in which the current during welding exceeds 400 A, the bead build-up increases with the increase in the amount of welded molten metal, but the penetration depth does not increase. It is extremely difficult to completely melt and weld a base material having a thickness of a certain degree with a small number of passes.

このような実情を踏まえたうえで、本実施形態の溶接方法は、図1A〜図1Cに示すように、I型継手8となる母材1、2の厚さT1及びギャップG1を適宜設定し、さらに25kJ/cm以下の比較的低い入熱により、埋れアークの状態で、I型継手8の第1の面1a、2a側と第2の面1b、2b側との片側1パスずつのマグ溶接によって、完全溶け込み溶接を実現するものである。つまり、本実施形態の溶接方法では、開先加工が不要であると共にパス数を低減できることから、溶接施工時間の短縮化を図ることができる。なお、埋れアークの状態でマグ溶接を実施する場合、アーク長の変動に対する電流変化の応答性が良好なマグ溶接電源を用いることが好ましい。   In consideration of such a situation, the welding method of the present embodiment appropriately sets the thickness T1 and the gap G1 of the base materials 1 and 2 to be the I-type joint 8, as shown in FIGS. 1A to 1C. In addition, with a relatively low heat input of 25 kJ / cm or less, in the state of a buried arc, the magnet of one pass on each side of the first surface 1a, 2a side and the second surface 1b, 2b side of the I-type joint 8 By welding, complete penetration welding is realized. That is, in the welding method of the present embodiment, groove processing is not necessary and the number of passes can be reduced, so that the welding time can be shortened. In addition, when implementing mag welding in the state of a buried arc, it is preferable to use a mag welding power source with good responsiveness to changes in current with respect to variations in arc length.

既述したように、第1の実施形態によれば、例えば市販されている汎用の溶接材料(母材)を適用し、25kJ/cm以下の比較的低い入熱で、深い溶け込みが得られる溶接方法、及びこの溶接方法を用いて溶接された溶接構造物10を提供するができる。   As described above, according to the first embodiment, for example, a commercially available general-purpose welding material (base material) is applied, and welding with which a deep penetration can be obtained with a relatively low heat input of 25 kJ / cm or less. A method and a welded structure 10 welded using this welding method can be provided.

<第2の実施の形態>
次に、第2の実施の形態を図3A、図3Bに基づき説明する。第2の実施形態の溶接方法は、配置工程及び溶接工程をそれぞれ行う際に、第1〜第4の実施形態共通の前述した条件を満たすことに加え、さらに、配置工程では、図3Aに示すように、母材(第1の母材)21と母材(第2の母材)22とを、裏当て金25と共にI型継手28として配置する。
<Second Embodiment>
Next, a second embodiment will be described with reference to FIGS. 3A and 3B. In the welding method of the second embodiment, in addition to satisfying the above-mentioned conditions common to the first to fourth embodiments when performing the placement step and the welding step, respectively, the placement step is shown in FIG. 3A. As described above, the base material (first base material) 21 and the base material (second base material) 22 are arranged as the I-type joint 28 together with the backing metal 25.

ここで、本実施形態のようなI型継手28を溶接する場合には、母材21、22の厚さ(第1の面21a、22aと第2の面21b、22bとの間の厚さ)T2は、4mm以上、12mm以下(4mm≦T2≦12mm)の範囲内にあることがより好ましい。さらに、本実施形態のようなI型継手28を溶接する場合には、ギャップG2は、母材21、22における厚さT2の0.2倍以上、0.4倍以下(0.2×T2mm≦G2≦0.4×T2mm)の範囲内にあることがより好ましい。   Here, when welding the I-type joint 28 as in the present embodiment, the thicknesses of the base materials 21 and 22 (thickness between the first surfaces 21a and 22a and the second surfaces 21b and 22b). ) T2 is more preferably in the range of 4 mm or more and 12 mm or less (4 mm ≦ T2 ≦ 12 mm). Furthermore, when welding the I-type joint 28 as in the present embodiment, the gap G2 is 0.2 times or more and 0.4 times or less (0.2 × T2 mm) of the thickness T2 of the base materials 21 and 22. ≦ G2 ≦ 0.4 × T2 mm) is more preferable.

また、溶接工程では、25kJ/cm以下の入熱により埋れアークの状態で、図3Bに示すように、I型継手28として配置された母材21、22についての裏当て金25をあてがう第2の面(裏当て金25の被接触面)21b、22bの背面側に位置する第1の面21a、22a側から、1パスの溶接操作にてマグ溶接し、母材21と母材22と裏当て金25とを互いに溶着するビード23を形成する。これにより、完全溶け込み溶接された溶接構造物20(溶接されたI型継手28)を得る。   Further, in the welding process, as shown in FIG. 3B, a second metal is applied to a backing metal 25 for the base materials 21 and 22 arranged as an I-type joint 28 in a state of a buried arc with a heat input of 25 kJ / cm or less. Surface (the contacted surface of the backing metal 25) 21b, from the first surface 21a, 22a side located on the back side of 22b, by a one-pass welding operation, the base material 21 and the base material 22 A bead 23 for welding the backing metal 25 to each other is formed. As a result, a welded structure 20 (welded I-type joint 28) that has been completely melt-welded is obtained.

ここで、本実施形態のようなI型継手28を溶接する場合、母材21、22の厚さT2が4mmより薄いときには、消耗電極方式のアーク溶接の一つである例えばティグ溶接などによって、当該I型継手28を溶接することが可能となる。さらに、1パスでI型継手28を溶接する本実施形態のような溶接方法の場合、厚さT2が12mmより厚いと、溶け込み深さの不足により、完全溶け込み溶接が得られなくなる可能性がある。   Here, when welding the I-type joint 28 as in the present embodiment, when the thickness T2 of the base materials 21 and 22 is thinner than 4 mm, for example, by TIG welding, which is one of consumable electrode type arc welding, The I-type joint 28 can be welded. Further, in the case of the welding method as in the present embodiment in which the I-type joint 28 is welded in one pass, if the thickness T2 is greater than 12 mm, there is a possibility that complete penetration welding cannot be obtained due to insufficient penetration depth. .

また、本実施形態のようなI型継手28の場合、ギャップG2が母材21、22の厚さT2の0.2倍未満であると、溶接時のアークがギャップ内に入り込むことが困難となり、溶け込み深さが減少する場合がある。さらに、本実施形態のようなI型継手28の場合、ギャップG2が厚さT2の0.4倍よりも大きくなると、溶着に必要な金属の量が増加し、さらに、第1の面21a、22a側からの溶接操作が多数回必要になる可能性がある。   Further, in the case of the I-type joint 28 as in the present embodiment, if the gap G2 is less than 0.2 times the thickness T2 of the base materials 21 and 22, it becomes difficult for the arc during welding to enter the gap. , The penetration depth may decrease. Furthermore, in the case of the I-type joint 28 as in the present embodiment, when the gap G2 is larger than 0.4 times the thickness T2, the amount of metal required for welding increases, and further, the first surface 21a, The welding operation from the 22a side may be required many times.

つまり、本実施形態の溶接方法は、図3A、図3Bに示すように、I型継手28となる母材21、22の厚さT2及びギャップG2を適宜設定し、さらに25kJ/cm以下の比較的低い入熱により、埋れアークの状態で、I型継手28における第1の面21a、22a側から1パスのマグ溶接によって、完全溶け込み溶接を実現するものである。したがって、第2の実施形態に係る溶接方法においても、比較的低い入熱で深い溶け込みを得ることができる。   That is, according to the welding method of the present embodiment, as shown in FIGS. 3A and 3B, the thickness T2 and the gap G2 of the base materials 21 and 22 that become the I-type joint 28 are appropriately set, and a comparison of 25 kJ / cm or less is further performed. Due to the relatively low heat input, complete penetration welding is realized by one-pass mag welding from the first surface 21a, 22a side of the I-type joint 28 in the state of a buried arc. Therefore, also in the welding method according to the second embodiment, deep penetration can be obtained with relatively low heat input.

<第3の実施の形態>
次に、第3の実施の形態を図4A〜図4Cに基づき説明する。第3の実施形態の溶接方法は、配置工程及び溶接工程をそれぞれ行う際に、第1〜第4の実施形態共通の前述した条件を満たすことに加え、さらに、配置工程では、図4Aに示すように、母材(第1の母材)31と母材(第2の母材)32とをT型継手38として配置する。
<Third Embodiment>
Next, a third embodiment will be described based on FIGS. 4A to 4C. In addition to satisfying the above-described conditions common to the first to fourth embodiments, the welding method of the third embodiment is shown in FIG. In this way, the base material (first base material) 31 and the base material (second base material) 32 are arranged as a T-shaped joint 38.

ここで、本実施形態のようなT型継手38を溶接する場合には、少なくとも母材31の厚さ(第1の面31aと第2の面31bとの間の厚さ)T3は、6mm以上、20mm以下(6mm≦T3≦20mm)の範囲内にあることがより好ましい。さらに、本実施形態のようなT型継手38を溶接する場合には、ギャップG3は、母材31の厚さT3の0.1倍以上、0.2倍以下(0.1×T3mm≦G3≦0.2×T3mm)の範囲内にあることがより好ましい。なお、本実施形態では、母材31の厚さと母材32の厚さは、同じ厚さである。   Here, when welding the T-shaped joint 38 as in the present embodiment, at least the thickness of the base material 31 (the thickness between the first surface 31a and the second surface 31b) T3 is 6 mm. As mentioned above, it is more preferable that it exists in the range of 20 mm or less (6 mm <= T3 <= 20mm). Furthermore, when welding the T-shaped joint 38 as in this embodiment, the gap G3 is not less than 0.1 times and not more than 0.2 times the thickness T3 of the base material 31 (0.1 × T3 mm ≦ G3). ≦ 0.2 × T3 mm) is more preferable. In the present embodiment, the thickness of the base material 31 and the thickness of the base material 32 are the same.

また、溶接工程では、25kJ/cm以下の入熱により埋れアークの状態で、図4B、図4Cに示すように、T型継手38として母材32と共に配置された母材31の第1の面31a側とその背面側に位置する第2の面31b側とからそれぞれ1パスずつ溶接操作を行う。つまり、図4Bに示すように、まず、T型継手38における母材31の第1の面31a側から、1パスで溶け込み深さH31まで、マグ溶接して、母材31の第1の面31aと母材32との間の境界部分にビード33を形成する。   In the welding process, as shown in FIGS. 4B and 4C, the first surface of the base material 31 arranged together with the base material 32 as a T-shaped joint 38 in a state of a buried arc with a heat input of 25 kJ / cm or less. A welding operation is performed for each pass from the 31a side and the second surface 31b side located on the back side. That is, as shown in FIG. 4B, first, the first surface of the base material 31 is subjected to mag welding from the first surface 31a side of the base material 31 in the T-shaped joint 38 to the penetration depth H31 in one pass. A bead 33 is formed at a boundary portion between 31 a and the base material 32.

さらに、図4Cに示すように、母材31の第2の面31b側から、1パスで溶け込み深さH32までマグ溶接して、ビード34を形成する。より具体的には、図4B、図4Cに示すように、T型継手38の第1の面31a及び第2の面31b側からの1パスずつの溶接操作によってそれぞれ得られる溶け込み深さH31、H32は、母材31、32の厚さT3の0.5倍以上、0.9倍以下の範囲内にある。さらに、T型継手38の第1の面31a側及び第2の面31b側からの溶け込みによって形成されたビード33及びビード34は、母材31の厚さ方向の中央部分又はその近傍で、互いに重なり合っている。これにより、完全溶け込み溶接された溶接構造物30(溶接されたT型継手38)を得る。   Further, as shown in FIG. 4C, the bead 34 is formed by mag welding from the second surface 31b side of the base material 31 to the penetration depth H32 in one pass. More specifically, as shown in FIGS. 4B and 4C, the penetration depths H31 obtained by welding operations for each pass from the first surface 31a and the second surface 31b side of the T-shaped joint 38, H32 is in the range of 0.5 to 0.9 times the thickness T3 of the base materials 31 and 32. Further, the bead 33 and the bead 34 formed by the melting from the first surface 31a side and the second surface 31b side of the T-shaped joint 38 are mutually in the central portion in the thickness direction of the base material 31 or in the vicinity thereof. They are overlapping. As a result, a welded structure 30 (welded T-type joint 38) that is completely melt-welded is obtained.

上述した溶け込み深さH31や溶け込み深さH32が、例えば厚さT3の0.5倍未満であると、母材31の第1及び第2の面のそれぞれの側から1パスずつ溶接操作を行ったとしても、母材31の厚さ方向の中央まで材料が溶けていないことになり、溶接不足が懸念される。一方、溶け込み深さH31、H32が、厚さT3の0.9倍より大きいと、溶融金属がギャップの裏側(パスしている面とは逆側の面)まで溶け落ちる可能性があるので好ましくない。   When the penetration depth H31 and the penetration depth H32 are less than 0.5 times the thickness T3, for example, the welding operation is performed one pass at a time from each side of the first and second surfaces of the base material 31. Even so, the material has not melted to the center of the base material 31 in the thickness direction, and there is a concern about insufficient welding. On the other hand, if the penetration depths H31 and H32 are larger than 0.9 times the thickness T3, the molten metal may be melted down to the back side of the gap (the surface opposite to the passing surface). Absent.

また、本実施形態のようなT型継手38を溶接する場合、母材31の厚さT3が6mmより薄いと、溶け込み深さを所定深さに止めることが難しく、溶融金属がギャップの裏側(パスしている面とは逆側の面)から溶け落ちてしまう可能性がある。さらに、本実施形態のようなT型継手38を溶接する場合、厚さT3が20mmより厚いと、溶け込み深さの不足により、完全溶け込み溶接が得られなくなる可能性がある。   Further, when welding the T-shaped joint 38 as in this embodiment, if the thickness T3 of the base material 31 is less than 6 mm, it is difficult to stop the penetration depth at a predetermined depth, and the molten metal is behind the gap ( It may melt away from the surface opposite to the passing surface. Furthermore, when welding the T-shaped joint 38 as in the present embodiment, if the thickness T3 is greater than 20 mm, there is a possibility that complete penetration welding cannot be obtained due to lack of penetration depth.

また、本実施形態のようなT型継手38の場合、ギャップG3が厚さT3の0.1倍未満であると、溶接時のアークがギャップ内に入り込むことが困難となり、溶け込み深さが減少する場合がある。さらに、本実施形態のようなT型継手38の場合、ギャップG3が厚さT3の0.2倍よりも大きくなると、溶着に必要な金属の量が増加し、しかも、第1の面31a側及び第2の面31b側からのそれぞれの溶接操作に複数回ずつのパスが必要となる可能性があるうえ、溶融金属がギャップの裏側から溶け落ちる可能性もある。   Further, in the case of the T-shaped joint 38 as in this embodiment, if the gap G3 is less than 0.1 times the thickness T3, it becomes difficult for the arc during welding to enter the gap, and the penetration depth is reduced. There is a case. Furthermore, in the case of the T-shaped joint 38 as in the present embodiment, when the gap G3 is larger than 0.2 times the thickness T3, the amount of metal required for welding increases, and the first surface 31a side. In addition, a plurality of passes may be required for each welding operation from the second surface 31b side, and the molten metal may melt from the back side of the gap.

ここで、比較例2の溶接方法を図5に基づき説明する。比較例2の溶接方法は、図5に示すように、マグ溶接を用いて、例えば厚さT3aが、20mmの母材31c、32cをT型継手として溶接する場合を例示している。これらの母材31c、32cをすみ肉溶接して所望の強度を得るために、一般に、母材31c、32cの厚さT3aの0.7倍程度の脚長(この場合、14mm程度の脚長)H3aを設ける必要がある。つまり、例えば、14mmの脚長H3aを形成するには、母材31cの第1の面31e側と第2の面31f側とで例えば6パスずつの合計12パスの溶接操作(合計12回のビード33a、34aの形成)が必要となる。このため、比較例2の溶接方法は、多くの溶接施工時間を要する結果となる。   Here, the welding method of the comparative example 2 is demonstrated based on FIG. As shown in FIG. 5, the welding method of the comparative example 2 illustrates the case where the base materials 31c and 32c whose thickness T3a is 20 mm are welded as T-shaped joints using mag welding, for example. In order to obtain a desired strength by fillet welding these base materials 31c and 32c, generally a leg length of about 0.7 times the thickness T3a of the base materials 31c and 32c (in this case, a leg length of about 14 mm) H3a It is necessary to provide. That is, for example, in order to form a leg length H3a of 14 mm, a total of 12 passes of welding operations (for example, 12 passes in total for 6 passes on the first surface 31e side and the second surface 31f side of the base material 31c). 33a and 34a) is required. For this reason, the welding method of the comparative example 2 is a result which requires much welding construction time.

これに対して、本実施形態の溶接方法は、図4A〜図4Cに示すように、母材32と共にT型継手38となる母材31の厚さT3と、ギャップG3とを適宜設定し、さらに25kJ/cm以下の比較的低い入熱により、埋れアークの状態で、母材31の第1の面31a側からと第2の面31b側からとの片側1パスずつのマグ溶接によって、完全溶け込み溶接を達成するものである。つまり、本実施形態の溶接方法では、パス数の低減により溶接施工時間を短縮でき、しかも低入熱にて深い溶け込みの得られる溶接が可能となる。   On the other hand, in the welding method of the present embodiment, as shown in FIGS. 4A to 4C, the thickness T3 of the base material 31 that becomes the T-shaped joint 38 together with the base material 32 and the gap G3 are set as appropriate. Further, with a relatively low heat input of 25 kJ / cm or less, in the state of a buried arc, complete welding is performed by one-pass mag welding from the first surface 31a side and the second surface 31b side of the base material 31. It achieves penetration welding. That is, in the welding method of the present embodiment, the welding operation time can be shortened by reducing the number of passes, and further, welding with deep penetration can be obtained with low heat input.

<第4の実施の形態>
次に、第4の実施の形態を図6A、図6Bに基づき説明する。第4の実施形態の溶接方法は、配置工程及び溶接工程をそれぞれ行う際に、第1〜第4の実施形態共通の前述した条件を満たすことに加え、さらに、配置工程では、図6Aに示すように、母材(第1の母材)41と母材(第2の母材)42とをT型継手48として配置する。
<Fourth embodiment>
Next, a fourth embodiment will be described with reference to FIGS. 6A and 6B. In the welding method of the fourth embodiment, when performing the placement step and the welding step, in addition to satisfying the above-described conditions common to the first to fourth embodiments, the placement step is shown in FIG. 6A. As described above, the base material (first base material) 41 and the base material (second base material) 42 are arranged as a T-shaped joint 48.

ここで、本実施形態のようなT型継手48を溶接する場合には、少なくとも母材41の厚さ(第1の面41aと第2の面41bとの間の厚さ)T4は、4mm以上、12mm以下(4mm≦T4≦12mm)の範囲内にあることがより好ましい。さらに、本実施形態のようなT型継手48を溶接する場合には、ギャップG4は、母材41の厚さT4の0.2倍以上、0.3倍以下(0.2×T4mm≦G4≦0.3×T4mm)の範囲内にあることがより好ましい。   Here, when welding the T-shaped joint 48 as in the present embodiment, at least the thickness of the base material 41 (thickness between the first surface 41a and the second surface 41b) T4 is 4 mm. As mentioned above, it is more preferable that it exists in the range of 12 mm or less (4 mm <= T4 <= 12mm). Furthermore, when welding the T-shaped joint 48 as in the present embodiment, the gap G4 is not less than 0.2 times and not more than 0.3 times the thickness T4 of the base material 41 (0.2 × T4 mm ≦ G4). ≦ 0.3 × T4 mm) is more preferable.

また、溶接工程では、25kJ/cm以下の入熱により埋れアークの状態で、図6A、図6Bに示すように、T型継手48として母材42と共に配置された母材41における第2の面41bの背面側に位置する第1の面41a側から、1パスの溶接操作を行う。つまり、図6Bに示すように、母材41の第1の面41a側から1パスでマグ溶接して、母材41の溶接対象の端面全体と母材42との間の境界部分にビード43を形成する。これにより、完全溶け込み溶接された溶接構造物40(溶接されたT型継手48)を得る。   In the welding process, as shown in FIGS. 6A and 6B, the second surface of the base material 41 arranged together with the base material 42 as a T-shaped joint 48 in a state of a buried arc with a heat input of 25 kJ / cm or less. One-pass welding operation is performed from the first surface 41a side located on the back side of 41b. That is, as shown in FIG. 6B, a bead 43 is welded to the boundary portion between the entire end surface of the base material 41 to be welded and the base material 42 by performing one-pass mag welding from the first surface 41 a side of the base material 41. Form. As a result, a welded structure 40 (welded T-type joint 48) that has been completely melt-welded is obtained.

ここで、本実施形態のようなT型継手48を溶接する場合、母材41の厚さT4が4mmより薄いと、溶け込み深さを所定深さに止めることが難しく、溶融金属がギャップの裏側(パスしている第1の面41aとは逆側の第2の面41b側)から溶け落ちてしまう可能性がある。さらに、1パスでT型継手48を溶接する本実施形態のような溶接方法の場合、厚さT4が12mmより厚いと、溶け込み深さの不足により、完全溶け込み溶接が得られなくなる可能性がある。   Here, when welding the T-shaped joint 48 as in this embodiment, if the thickness T4 of the base material 41 is less than 4 mm, it is difficult to stop the penetration depth at a predetermined depth, and the molten metal is behind the gap. There is a possibility that it will melt away from the second surface 41b side opposite to the passing first surface 41a. Further, in the case of the welding method as in the present embodiment in which the T-shaped joint 48 is welded in one pass, if the thickness T4 is thicker than 12 mm, there is a possibility that complete penetration welding cannot be obtained due to lack of penetration depth. .

また、本実施形態のようなT型継手48の場合、ギャップG4が厚さT4の0.2倍未満であると、溶接時のアークがギャップ内に入り込むことが困難となり、溶け込み深さが減少する場合がある。さらに、本実施形態のようなT型継手48の場合、ギャップG4が厚さT4の0.3倍よりも大きくなると、溶着に必要な金属の量が増加し、さらに、母材41の第1の面41a側からのパスが多数回必要になる可能性がある。   Further, in the case of the T-shaped joint 48 as in the present embodiment, if the gap G4 is less than 0.2 times the thickness T4, it becomes difficult for the arc during welding to enter the gap and the penetration depth is reduced. There is a case. Furthermore, in the case of the T-shaped joint 48 as in the present embodiment, when the gap G4 is larger than 0.3 times the thickness T4, the amount of metal required for welding increases, and further, the first base material 41 has a first amount. There is a possibility that many passes from the surface 41a side are required.

本実施形態の溶接方法は、図6A、図6Bに示すように、母材42と共にT型継手48として配置される母材41の厚さT4と、ギャップG4とを適宜設定し、さらに25kJ/cm以下の比較的低い入熱により、埋れアークの状態で、T型継手48における第1の面41a側から1パスのマグ溶接によって、完全溶け込み溶接を実現するものである。したがって、第4の実施形態に係る溶接方法においても、比較的低い入熱で深い溶け込みを得ることができる。   In the welding method of the present embodiment, as shown in FIGS. 6A and 6B, the thickness T4 of the base material 41 arranged as the T-shaped joint 48 together with the base material 42 and the gap G4 are appropriately set, and further 25 kJ / With a relatively low heat input of cm or less, complete penetration welding is realized by one-pass mag welding from the first surface 41a side of the T-shaped joint 48 in the state of a buried arc. Therefore, also in the welding method according to the fourth embodiment, deep penetration can be obtained with relatively low heat input.

例えば第1〜第4の実施形態の溶接方法に適用されるギャップG1〜G4は、I型継手8、28及びT型継手38、48の構成部品となるそれぞれ一対の母材のうちの少なくとも一方に設けられた突起部によって構成されてもよい。つまり、図7A、図7Bに示すように、例えば、母材(第2の母材)52と共にT型継手58として配置される母材(第1の母材)51は、その端部(底部)に複数の突起部57を備えている。   For example, the gaps G1 to G4 applied to the welding methods of the first to fourth embodiments are at least one of a pair of base materials that are components of the I-type joints 8 and 28 and the T-type joints 38 and 48, respectively. You may comprise by the projection part provided in. That is, as shown in FIGS. 7A and 7B, for example, a base material (first base material) 51 disposed as a T-shaped joint 58 together with a base material (second base material) 52 has an end portion (bottom portion). ) Is provided with a plurality of protrusions 57.

複数の突起部57は、図7Bに示すように、それぞれ直方体状に構成されており、例えば5mmの幅W1を有している。また、複数の突起部57は、幅L5(例えば300mm)で構成された母材51の幅方向に沿って所定の間隔(ピッチP1)をおいて配置されている。母材51における各突起部57の先端面(底面)は、母材52の平面部分(上面)と接触する位置に配置される。したがって、各突起部57の突出量は、母材51と母材52との間に確保されるギャップの量となる。このような構成によって、T型継手58には、ギャップG5が形成されている。   As shown in FIG. 7B, each of the plurality of protrusions 57 is configured in a rectangular parallelepiped shape, and has a width W1 of, for example, 5 mm. Further, the plurality of protrusions 57 are arranged at a predetermined interval (pitch P1) along the width direction of the base material 51 configured with a width L5 (for example, 300 mm). The front end surface (bottom surface) of each protrusion 57 in the base material 51 is disposed at a position in contact with the flat portion (upper surface) of the base material 52. Therefore, the protrusion amount of each protrusion 57 is an amount of a gap secured between the base material 51 and the base material 52. With such a configuration, a gap G <b> 5 is formed in the T-shaped joint 58.

また、図8に示すように、複数の突起部67を備えたT型継手68を構成してもよい。T型継手68において、複数の突起部67は、母材(第2の母材)62の平面部分(上面)と接触する母材(第1の母材)61の端部(底部)に設けられている。各突起部67は、母材61の厚さ方向からみて、基端部側から先端部側へ向けて例えば90°の角度をなし、先端部分が先鋭となっている。複数の突起部67は、幅L6(例えば300mm)で構成された母材61の幅方向に沿って所定の間隔(ピッチP1)をおいて配置されている。このような構成によって、T型継手68には、ギャップG6が形成されている。   Moreover, as shown in FIG. 8, you may comprise the T-shaped coupling 68 provided with the some projection part 67. As shown in FIG. In the T-shaped joint 68, the plurality of protrusions 67 are provided at the end (bottom) of the base material (first base material) 61 that comes into contact with the flat surface (upper surface) of the base material (second base material) 62. It has been. Each protrusion 67 has an angle of, for example, 90 ° from the base end side to the tip end side when viewed from the thickness direction of the base material 61, and the tip end portion is sharp. The plurality of protrusions 67 are arranged at a predetermined interval (pitch P1) along the width direction of the base material 61 having a width L6 (for example, 300 mm). With such a configuration, a gap G <b> 6 is formed in the T-shaped joint 68.

さらに、図9A、図9Bに示すように、複数の突起部77を備えたI型継手78を構成してもよい。I型継手78において、複数の突起部77は、母材(第2の母材)72の端部と接触する母材(第1の母材)71の端部に設けられている。複数の突起部77は、図9Bに示すように、それぞれ直方体状に構成されており、例えば5mmの幅W1を有している。また、複数の突起部77は、幅L7(例えば300mm)で構成された母材71の幅方向に沿って所定の間隔(ピッチP1)をおいて配置されている。このような構成によって、I型継手78には、ギャップG7が形成されている。   Furthermore, as shown in FIGS. 9A and 9B, an I-type joint 78 including a plurality of protrusions 77 may be configured. In the I-shaped joint 78, the plurality of protrusions 77 are provided at the end portion of the base material (first base material) 71 that contacts the end portion of the base material (second base material) 72. As shown in FIG. 9B, each of the plurality of protrusions 77 is formed in a rectangular parallelepiped shape, and has a width W1 of, for example, 5 mm. The plurality of protrusions 77 are arranged at a predetermined interval (pitch P1) along the width direction of the base material 71 having a width L7 (for example, 300 mm). With such a configuration, a gap G7 is formed in the I-type joint 78.

また、図10に示すように、複数の突起部87を備えたT型継手88を構成してもよい。T型継手88において、複数の突起部87は、母材(第2の母材)82の端部と接触する母材(第1の母材)81の端部に設けられている。各突起部87は、母材81の厚さ方向からみて、基端部側から先端部側へ向けて90°の角度をなし、先端部分が先鋭となっている。複数の突起部87は、幅L8(例えば300mm)で構成された母材81の幅方向に沿って所定の間隔(ピッチP1)をおいて配置されている。このような構成によって、I型継手88には、ギャップG8が形成されている。   Moreover, as shown in FIG. 10, you may comprise the T-type coupling 88 provided with the some projection part 87. As shown in FIG. In the T-shaped joint 88, the plurality of protrusions 87 are provided at the end portion of the base material (first base material) 81 that contacts the end portion of the base material (second base material) 82. Each protrusion 87 has an angle of 90 ° from the base end side to the tip end side when viewed from the thickness direction of the base material 81, and the tip end portion is sharp. The plurality of protrusions 87 are arranged at a predetermined interval (pitch P1) along the width direction of the base material 81 having a width L8 (for example, 300 mm). With such a configuration, a gap G8 is formed in the I-type joint 88.

例えば母材自体を切断加工して溶接材料とする際などに、図7A、図7B、図8、図9A、図9B、図10に示したように、少なくとも一方の母材に突起部を形成しておくことで、比較的大型の溶接継手に対しても、所定量のギャップを容易に確保することが可能となる。   For example, when the base material itself is cut into a welding material, as shown in FIGS. 7A, 7B, 8, 9A, 9B, and 10, projections are formed on at least one base material. By doing so, a predetermined amount of gap can be easily secured even for a relatively large welded joint.

次に実施例について説明する。
<実施例1>
実施例1では、図1A〜図1Cに示した第1の実施形態に係るI型継手8の溶接方法を適用し、さらに次の詳細な条件を追加して配置工程及び溶接工程を実施した。
Next, examples will be described.
<Example 1>
In Example 1, the welding method for the I-type joint 8 according to the first embodiment shown in FIGS. 1A to 1C was applied, and the following detailed conditions were added to perform the placement step and the welding step.

≪実施例1の溶接条件≫
・溶接方法:半自動マグ溶接,両側各1パス溶接
・母材1、2:炭素鋼鋼材(JIS G3101 SS400,縦300mm×横300mm×厚さ20mm)
・溶接ワイヤ:AWS A5.18 ER70S-G,直径1.2mm
・溶接電流:300A
・溶接電圧:27V
・溶接速度:300mm/min
・入熱:16.2kJ/cm
・母材1、2の厚さT1:20mm
・ギャップG1:1.5mm
<< Welding conditions of Example 1 >>
・ Welding method: Semi-automatic mag welding, 1-pass welding on both sides ・ Base materials 1, 2: Carbon steel (JIS G3101 SS400, length 300mm x width 300mm x thickness 20mm)
・ Welding wire: AWS A5.18 ER70S-G, diameter 1.2mm
・ Welding current: 300A
・ Welding voltage: 27V
-Welding speed: 300 mm / min
-Heat input: 16.2 kJ / cm
・ Thickness T1: 20mm of base materials 1 and 2
・ Gap G1: 1.5mm

図11は、実施例1に係るI型継手8の溶接結果を示している。図1C及び図11に示すように、母材1、2の第1の面1a、2a側から形成されたビード3の深さ(溶け込み深さH1)は、12〜13mmであった。一方、母材1、2の第2の面1b、2b側から形成されたビード4の深さ(溶け込み深さH2)も、12〜13mmであった。つまり、実施例1は、図11に示すように、一方の側のビードと他方の側のビードとが互いに重なっており、完全溶け込み溶接が達成されている。なお、上記した16.2kJ/cmの入熱を、25kJ/cm以下の範囲内で適宜変更することで、厚さT1が例えば24mmの母材に対しても完全溶け込み溶接が可能である。   FIG. 11 shows the welding result of the I-type joint 8 according to the first embodiment. As shown in FIGS. 1C and 11, the depth (melting depth H1) of the beads 3 formed from the first surfaces 1a and 2a side of the base materials 1 and 2 was 12 to 13 mm. On the other hand, the depth (melting depth H2) of the beads 4 formed from the second surfaces 1b and 2b of the base materials 1 and 2 was 12 to 13 mm. That is, in Example 1, as shown in FIG. 11, the bead on one side and the bead on the other side overlap each other, and complete penetration welding is achieved. In addition, complete penetration welding is possible also to a base material whose thickness T1 is 24 mm, for example, by changing the above-mentioned 16.2 kJ / cm heat input appropriately within a range of 25 kJ / cm or less.

一方、図12、図13は、比較例3、4によるI型継手の溶接結果を示している。図12、図13に示すように、比較例3、4は、母材の厚さが、第1の実施形態(実施例1)の条件の範囲外となる厚さ25mmの母材を適用して、I型継手を溶接したものである。なお、比較例3は、母材の厚さ以外の溶接条件は実施例1と同じである。また、比較例4は、溶接条件のうちの上記した母材の厚さ、溶接電圧及び入熱が実施例1とは異なる。比較例4は、溶接電圧が32Vであり、入熱が19.2kJ/cmである。比較例4のその他の溶接条件は、実施例1と同じである。ここで、比較例3、4は、図12、図13に示すように、いずれも、一方の側のビードが他方の側のビードと重なっておらず、溶接不足を確認することができる。   On the other hand, FIGS. 12 and 13 show the welding results of the I-type joints of Comparative Examples 3 and 4. FIG. As shown in FIGS. 12 and 13, Comparative Examples 3 and 4 apply a base material having a thickness of 25 mm that is outside the range of the conditions of the first embodiment (Example 1). The I-type joint is welded. In Comparative Example 3, the welding conditions other than the thickness of the base material are the same as those in Example 1. Moreover, the comparative example 4 differs from Example 1 in the thickness of a base material mentioned above among welding conditions, a welding voltage, and heat input. In Comparative Example 4, the welding voltage is 32 V and the heat input is 19.2 kJ / cm. Other welding conditions of Comparative Example 4 are the same as those of Example 1. Here, as shown in FIGS. 12 and 13, in Comparative Examples 3 and 4, the bead on one side does not overlap the bead on the other side, and it is possible to confirm the lack of welding.

<実施例2>
実施例2では、図2A、図2Bに示した第2の実施形態に係るI型継手28の溶接方法を適用し、さらに次の詳細な条件を追加して配置工程及び溶接工程を実施した。
<Example 2>
In Example 2, the welding method of the I-type joint 28 according to the second embodiment shown in FIGS. 2A and 2B was applied, and further, the following detailed conditions were added to perform the placement process and the welding process.

≪実施例2の溶接条件≫
・溶接方法:半自動マグ溶接,片側1パス溶接
・母材21,22:炭素鋼鋼材(JIS G3101 SS400,縦300mm×横300mm×厚さ10mm)
・溶接ワイヤ:AWS A5.18 ER70S-G,直径1.2mm
・溶接電流:300A
・溶接電圧:27V
・溶接速度:300mm/min
・入熱:16.2kJ/cm
・母材21,22の厚さT2:10mm
・ギャップG2:2.5mm
<< Welding conditions of Example 2 >>
・ Welding method: Semi-automatic mag welding, one-pass welding on one side ・ Base materials 21, 22: Carbon steel (JIS G3101 SS400, length 300mm × width 300mm × thickness 10mm)
・ Welding wire: AWS A5.18 ER70S-G, diameter 1.2mm
・ Welding current: 300A
・ Welding voltage: 27V
-Welding speed: 300 mm / min
-Heat input: 16.2 kJ / cm
-Thickness T2 of base materials 21 and 22: 10 mm
・ Gap G2: 2.5mm

実施例2は、16.2kJ/cmの入熱により埋れアークの状態で、図3Bに示すように、母材21、22の裏当て金25をあてがった第2の面21b、22bとは逆側の第1の面21a、22a側から1パスでマグ溶接を行うことにより、母材21と母材22と裏当て金25とを互いに溶着するビード23を介して完全溶け込み溶接を実現した。なお、上記した16.2kJ/cmの入熱を、25kJ/cm以下の範囲内で適宜変更することで、例えば厚さT2が12mmの母材に対しても完全溶け込み溶接が可能となる。   The second embodiment is opposite to the second surfaces 21b and 22b to which the backing metal 25 of the base materials 21 and 22 is applied, as shown in FIG. 3B, in a state of a buried arc with a heat input of 16.2 kJ / cm. By performing mag welding in one pass from the first surfaces 21a and 22a side, complete penetration welding was realized through the bead 23 that welds the base material 21, the base material 22, and the backing metal 25 to each other. Note that, by appropriately changing the above-described 16.2 kJ / cm heat input within a range of 25 kJ / cm or less, complete penetration welding is possible even for a base material having a thickness T2 of 12 mm, for example.

<実施例3>
実施例3では、図4A〜図4Cに示した第3の実施形態に係るT型継手38の溶接方法を適用し、さらに次の詳細な条件を追加して配置工程及び溶接工程を実施した。
<Example 3>
In Example 3, the welding method for the T-shaped joint 38 according to the third embodiment shown in FIGS. 4A to 4C was applied, and further, the following detailed conditions were added to perform the placement process and the welding process.

≪実施例3の溶接条件≫
・溶接方法:半自動マグ溶接,両側各1パス溶接
・母材31,32:炭素鋼鋼材(JIS G3101 SS400,縦300mm×横300mm×厚さ16mm)
・溶接ワイヤ:AWS A5.18 ER70S-G,直径1.2mm
・溶接電流:320A
・溶接電圧:29V
・溶接速度:300mm/min
・入熱:18.56kJ/cm
・母材31(及び母材32)の厚さT3:16mm
・ギャップG3:2.5mm
<< Welding conditions of Example 3 >>
・ Welding method: Semi-automatic mag welding, 1-pass welding on both sides ・ Base materials 31 and 32: Carbon steel (JIS G3101 SS400, length 300mm x width 300mm x thickness 16mm)
・ Welding wire: AWS A5.18 ER70S-G, diameter 1.2mm
・ Welding current: 320A
・ Welding voltage: 29V
-Welding speed: 300 mm / min
・ Heat input: 18.56kJ / cm
-Base material 31 (and base material 32) thickness T3: 16 mm
・ Gap G3: 2.5mm

図14は、実施例3に係るT型継手38の溶接結果を示している。図4C及び図14に示すように、母材31、32の第1の面31a、32a側から形成されたビード33の深さ(溶け込み深さH31)は、9〜10mmであった。一方、母材31、32の第2の面31b、32b側から形成されたビード34の深さ(溶け込み深さH32)も、9〜10mmであった。つまり、図14に示すように、実施例3は、一方の側のビードと他方の側のビードとが互いに重なっており、完全溶け込み溶接が達成されている。なお、上記した18.56kJ/cmの入熱を、25kJ/cm以下の範囲内で適宜変更することで、厚さT3が例えば20mmの母材に対しても完全溶け込み溶接が可能となる。   FIG. 14 shows the welding result of the T-shaped joint 38 according to the third embodiment. As shown in FIGS. 4C and 14, the depth of the beads 33 formed from the first surfaces 31 a and 32 a side of the base materials 31 and 32 (penetration depth H31) was 9 to 10 mm. On the other hand, the depth of the beads 34 (melting depth H32) formed from the second surfaces 31b and 32b of the base materials 31 and 32 was 9 to 10 mm. That is, as shown in FIG. 14, in Example 3, the bead on one side and the bead on the other side overlap each other, and complete penetration welding is achieved. In addition, complete penetration welding can be performed even for a base material having a thickness T3 of, for example, 20 mm by appropriately changing the above-described heat input of 18.56 kJ / cm within a range of 25 kJ / cm or less.

<実施例4>
実施例4では、図6A〜図6Bに示した第4の実施形態に係るT型継手48の溶接方法を適用し、さらに次の詳細な条件を追加して配置工程及び溶接工程を実施した。
<Example 4>
In Example 4, the welding method for the T-shaped joint 48 according to the fourth embodiment shown in FIGS. 6A to 6B was applied, and the following detailed conditions were added to perform the placement process and the welding process.

≪実施例4の溶接条件≫
・溶接方法:半自動マグ溶接,片側1パス溶接
・母材41、42:炭素鋼鋼材(JIS G3101 SS400,縦300mm×横300mm×厚さ10mm)
・溶接ワイヤ:AWS A5.18 ER70S-G,直径1.2mm
・溶接電流:320A
・溶接電圧:29V
・溶接速度:300mm/min
・入熱:18.56kJ/cm
・母材41(及び母材42)の厚さT4:10mm
・ギャップG4:2.5mm
<< Welding conditions of Example 4 >>
・ Welding method: Semi-automatic mag welding, one-pass welding on one side ・ Base materials 41 and 42: Carbon steel (JIS G3101 SS400, length 300mm × width 300mm × thickness 10mm)
・ Welding wire: AWS A5.18 ER70S-G, diameter 1.2mm
・ Welding current: 320A
・ Welding voltage: 29V
-Welding speed: 300 mm / min
・ Heat input: 18.56kJ / cm
-Base material 41 (and base material 42) thickness T4: 10 mm
・ Gap G4: 2.5mm

図15は、実施例4に係るT型継手48の溶接結果を示している。図6B及び図15に示すように、母材41の厚さ方向(溶け込みの深さ方向)の全領域(母材41の端面全体)にわたって、ビード(ビード43)が形成されていた。つまり、図15に示すように、実施例4では、完全溶け込み溶接の達成を確認できた。なお、上記した18.56kJ/cmの入熱を、25kJ/cm以下の範囲内で適宜変更することで、厚さT4が例えば12mmの母材に対しても完全溶け込み溶接が可能となる。   FIG. 15 shows the welding result of the T-shaped joint 48 according to the fourth embodiment. As shown in FIGS. 6B and 15, a bead (bead 43) was formed over the entire region (the entire end surface of the base material 41) in the thickness direction of the base material 41 (the penetration depth direction). That is, as shown in FIG. 15, in Example 4, it was confirmed that complete penetration welding was achieved. In addition, complete penetration welding can be performed even for a base material having a thickness T4 of, for example, 12 mm by appropriately changing the above-described heat input of 18.56 kJ / cm within a range of 25 kJ / cm or less.

以上説明した少なくとも一つの実施形態によれば、比較的低い入熱で深い溶け込みが得られる。   According to at least one embodiment described above, deep penetration can be obtained with relatively low heat input.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施することが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形例は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1,21,31,41,51,61,71,81…母材(第1の母材)、2,22,32,42,52,62,72,82…母材(第2の母材)、1a,2a,21a,22a,31a,32a,41a,42a…第1の面、1b,21b,31b,41b,2b,22b,32b,42b…第2の面、3,4,23,33,34,43…ビード、8,28,78,88…I型継手、10,20,30,40…溶接構造物、25…裏当て金、38,48,58,68…T型継手、57,67,77,87…突起部、T1,T2,T3,T4…母材の厚さ、G1,G2,G3,G4,G5,G6,G7,G8…ギャップ、H1,H2,H31,H32…溶け込み深さ。   1, 21, 31, 41, 51, 61, 71, 81 ... base material (first base material), 2, 22, 32, 42, 52, 62, 72, 82 ... base material (second base material) ) 1a, 2a, 21a, 22a, 31a, 32a, 41a, 42a ... first surface, 1b, 21b, 31b, 41b, 2b, 22b, 32b, 42b ... second surface, 3, 4, 23, 33, 34, 43 ... beads, 8, 28, 78, 88 ... I type joints, 10, 20, 30, 40 ... welded structures, 25 ... backing metal, 38, 48, 58, 68 ... T type joints, 57, 67, 77, 87 ... protrusion, T1, T2, T3, T4 ... thickness of base material, G1, G2, G3, G4, G5, G6, G7, G8 ... gap, H1, H2, H31, H32 ... depth of penetration.

Claims (7)

溶接の対象となる第1の母材と第2の母材とをギャップを空けてT型継手として配置する配置工程と、
前記配置された第1及び第2の母材どうしを、25kJ/cm以下の入熱により埋れアークの状態で、マグ溶接法を用いて完全溶け込み溶接する溶接工程と、を有し、
前記第1の母材の厚さは、6mm以上、20mm以下の範囲内にあり、
前記第2の母材の厚さは、4mm以上、24mm以下の範囲内にあり、
前記溶接工程では、前記T型継手として前記第2の母材と共に配置された前記第1の母材の第1の面側とその背面側に位置する第2の面側とからそれぞれ1パスずつ溶接操作を行い、
前記第1及び第2の面側からの1パスずつの溶接操作によってそれぞれ得られる溶け込み深さは、少なくとも前記第1の母材の厚さの0.5倍以上、0.9倍以下の範囲内にあり、
前記第1及び第2の面側からの溶け込みによって形成される各ビードは、互いに重なり合っており、
前記ギャップは、前記第1の母材の厚さの0.1倍以上、0.2倍以下の範囲内にある、溶接方法。
An arrangement step of arranging a first base material and a second base material to be welded as a T-shaped joint with a gap;
A welding step in which the first and second base metals arranged are filled by heat input of 25 kJ / cm or less and are fully arc welded using a mag welding method in a state of an arc.
The thickness of the first base material is in the range of 6 mm or more and 20 mm or less,
The thickness of the second base material is in the range of 4 mm or more and 24 mm or less,
In the welding process, one pass each from the first surface side of the first base material arranged together with the second base material as the T-shaped joint and the second surface side located on the back side thereof. Welding operation,
The penetration depth obtained by the welding operation for each pass from the first and second surface sides is at least 0.5 times and 0.9 times or less the thickness of the first base material. In
Each bead formed by melting from the first and second surface sides overlaps each other,
The welding method, wherein the gap is in a range of 0.1 to 0.2 times the thickness of the first base material.
溶接の対象となる第1の母材と第2の母材とをギャップを空けてT型継手として配置する配置工程と、
前記配置された第1及び第2の母材どうしを、25kJ/cm以下の入熱により埋れアークの状態で、マグ溶接法を用いて完全溶け込み溶接する溶接工程と、を有し、
前記第1の母材の厚さは、4mm以上、12mm以下の範囲内にあり、
前記第2の母材の厚さは、4mm以上、24mm以下の範囲内にあり、
前記溶接工程では、前記T型継手として前記第2の母材と共に配置された前記第1の母材における第2の面の背面側に位置する第1の面側から、1パスの溶接操作を行い、
前記ギャップは、前記第1の母材の厚さの0.2倍以上、0.3倍以下の範囲内にある、溶接方法。
An arrangement step of arranging a first base material and a second base material to be welded as a T-shaped joint with a gap;
A welding step in which the first and second base metals arranged are filled by heat input of 25 kJ / cm or less and are fully arc welded using a mag welding method in a state of an arc.
The thickness of the first base material is in the range of 4 mm or more and 12 mm or less,
The thickness of the second base material is in the range of 4 mm or more and 24 mm or less,
In the welding step, a one-pass welding operation is performed from the first surface side located on the back side of the second surface of the first base material arranged together with the second base material as the T-shaped joint. Done
The welding method, wherein the gap is in a range of 0.2 times to 0.3 times the thickness of the first base material.
溶接の対象となる第1の母材と第2の母材とをギャップを空けてI型継手として配置する配置工程と、
前記配置された第1及び第2の母材どうしを、25kJ/cm以下の入熱により埋れアークの状態で、マグ溶接法を用いて完全溶け込み溶接する溶接工程と、を有し、
前記第1及び第2の母材の厚さは、mm以上、24mm以下の範囲内にあり、
前記溶接工程では、前記I型継手として配置された前記第1及び第2の母材の第1の面側とその背面側に位置する第2の面側とからそれぞれ1パスずつ溶接操作を行い、
前記第1及び第2の面側からの1パスずつの溶接操作によってそれぞれ得られる溶け込み深さは、少なくとも前記第1の母材の厚さの0.5倍以上、0.9倍以下の範囲内にあり、
前記第1及び第2の面側からの溶け込みによって形成される各ビードは、互いに重なり合っており、
前記ギャップは、前記第1及び第2の母材の厚さの0.05倍以上、0.1倍以下の範囲内にある、溶接方法。
An arrangement step of arranging the first base material and the second base material to be welded as an I-shaped joint with a gap;
A welding step in which the first and second base metals arranged are filled by heat input of 25 kJ / cm or less and are fully arc welded using a mag welding method in a state of an arc.
The thicknesses of the first and second base materials are in the range of 6 mm or more and 24 mm or less,
In the welding step, a welding operation is performed for each pass from the first surface side of the first and second base materials arranged as the I-type joint and the second surface side positioned on the back surface side. ,
The penetration depth obtained by the welding operation for each pass from the first and second surface sides is at least 0.5 times and 0.9 times or less the thickness of the first base material. In
Each bead formed by melting from the first and second surface sides overlaps each other,
The welding method, wherein the gap is in a range of 0.05 to 0.1 times the thickness of the first and second base materials.
溶接の対象となる第1の母材と第2の母材とをギャップを空けて裏当て金と共にI型継手として配置する配置工程と、
前記配置された第1及び第2の母材どうしを、25kJ/cm以下の入熱により埋れアークの状態で、マグ溶接法を用いて完全溶け込み溶接する溶接工程と、を有し、
前記溶接工程では、前記I型継手として配置された前記第1及び第2の母材についての前記裏当て金をあてがう第2の面の背面側に位置する第1の面側から、1パスの溶接操作を行い、
前記第1及び第2の母材の厚さは、4mm以上、12mm以下の範囲内にあり、
前記ギャップは、前記第1及び第2の母材の厚さの0.2倍以上、0.4倍以下の範囲内にある、溶接方法。
An arrangement step of arranging a first base material and a second base material to be welded as an I-type joint together with a backing metal with a gap;
A welding step in which the first and second base metals arranged are filled by heat input of 25 kJ / cm or less and are fully arc welded using a mag welding method in a state of an arc.
In the welding step, one pass is made from the first surface side located on the back side of the second surface to which the backing metal for the first and second base materials arranged as the I-type joint is applied. Welding operation,
The thickness of the first and second base materials is in the range of 4 mm or more and 12 mm or less,
The welding method, wherein the gap is in a range of 0.2 to 0.4 times the thickness of the first and second base materials.
前記溶接工程では、溶接姿勢を下向姿勢又は横向姿勢とする、請求項1ないしのいずれか1項に記載の溶接方法。 The welding method according to any one of claims 1 to 4 , wherein in the welding step, the welding posture is a downward posture or a horizontal posture. 前記ギャップは、前記第1及び第2の母材のうちの少なくとも一方に設けられた突起部によって構成される、請求項1ないしのいずれか1項に記載の溶接方法。 Said gap, said first and constituted by projections provided on at least one of the second base member, the welding method according to any one of claims 1 to 5. 前記第1及び第2の母材は、炭素鋼又はステンレス鋼である、請求項1ないしのいずれか1項に記載の溶接方法。 The welding method according to any one of claims 1 to 6 , wherein the first and second base materials are carbon steel or stainless steel.
JP2014129417A 2014-06-24 2014-06-24 Welding method Active JP6382593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014129417A JP6382593B2 (en) 2014-06-24 2014-06-24 Welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014129417A JP6382593B2 (en) 2014-06-24 2014-06-24 Welding method

Publications (2)

Publication Number Publication Date
JP2016007620A JP2016007620A (en) 2016-01-18
JP6382593B2 true JP6382593B2 (en) 2018-08-29

Family

ID=55225588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014129417A Active JP6382593B2 (en) 2014-06-24 2014-06-24 Welding method

Country Status (1)

Country Link
JP (1) JP6382593B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6352986B2 (en) * 2016-07-21 2018-07-04 日本パーカライジング株式会社 Metal surface treatment agent for electrolytic treatment, method for producing metal surface treatment agent for electrolytic treatment, and surface treatment method for metal material
JP6885755B2 (en) * 2016-10-27 2021-06-16 株式会社ダイヘン Arc welding method
KR101974012B1 (en) * 2017-02-14 2019-04-30 한국기술교육대학교 산학협력단 Method of Welding Dissimilar Metals of Stainless Steel and Carbon Steel and Weld Metal by the same
JP2018203174A (en) * 2017-06-08 2018-12-27 いすゞ自動車株式会社 Front underrun protector

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002210559A (en) * 2001-01-19 2002-07-30 Mitsubishi Heavy Ind Ltd Carbon dioxide butt welding method for sheet metal stock

Also Published As

Publication number Publication date
JP2016007620A (en) 2016-01-18

Similar Documents

Publication Publication Date Title
US8546720B2 (en) Hybrid welding apparatus and system and method of welding
MX359097B (en) Method for welding overlapped part, method for manufacturing lap weld member, lap weld member, and component for automobile.
JP6382593B2 (en) Welding method
JP2013006203A (en) Hybrid welding method for t-joint using laser beam welding and arc welding
JP6354941B2 (en) Method for suppressing groove shrinkage in automatic TIG back wave welding
JP6025620B2 (en) Submerged arc welding method, method of manufacturing steel pipe using the submerged arc welding method, welded joint, and steel pipe having the welded joint
CN109641306B (en) Vertical narrow groove gas shielded arc welding method
JP2016030283A (en) Metallic member and method of manufacturing the same
US20190358725A1 (en) Single-sided submerged arc welding method and single-sided submerged arc welding device
JP2006231359A (en) Welding method and structure welded by the method
JP6119948B1 (en) Vertical narrow groove gas shielded arc welding method
JP2007090386A (en) Two-sided welding process and welded structure formed thereby
JP2007196266A (en) Both-side welding method and weld structure thereby
KR20180031046A (en) Vertical narrowing improvement Gas shield arc welding method
JP2010167425A (en) Welding method of vertical t-shaped joint, vertical t-shaped weld joint, and welded structure using the same
JP2008200750A (en) One side arc spot welding method
JP2010046671A (en) Welding method of lap joint
JP4871747B2 (en) Double-side welding method
JP6787800B2 (en) Single-sided submerged arc welding method
JP5997562B2 (en) Groove structure in laser-arc hybrid butt welding
JP2006088174A (en) Method for joining dissimilar materials
JP5580788B2 (en) Laser welding method for thick steel
US7371994B2 (en) Buried arc welding of integrally backed square butt joints
JP5483553B2 (en) Laser-arc combined welding method
JP2005000989A (en) Method of bonding iron based material and aluminum based material, and bonding joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170223

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171201

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180802

R150 Certificate of patent or registration of utility model

Ref document number: 6382593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150