JP6382121B2 - Setting method of fertilizer supply container - Google Patents

Setting method of fertilizer supply container Download PDF

Info

Publication number
JP6382121B2
JP6382121B2 JP2015012998A JP2015012998A JP6382121B2 JP 6382121 B2 JP6382121 B2 JP 6382121B2 JP 2015012998 A JP2015012998 A JP 2015012998A JP 2015012998 A JP2015012998 A JP 2015012998A JP 6382121 B2 JP6382121 B2 JP 6382121B2
Authority
JP
Japan
Prior art keywords
stone
fertilizer
supply container
container
fertilizer supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015012998A
Other languages
Japanese (ja)
Other versions
JP2016136870A (en
Inventor
知佳 小杉
知佳 小杉
加藤 敏朗
敏朗 加藤
晴彦 篠崎
晴彦 篠崎
正信 渋谷
正信 渋谷
幸生 渋谷
幸生 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2015012998A priority Critical patent/JP6382121B2/en
Publication of JP2016136870A publication Critical patent/JP2016136870A/en
Application granted granted Critical
Publication of JP6382121B2 publication Critical patent/JP6382121B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Artificial Fish Reefs (AREA)

Description

この発明は、藻類の施肥材が充填された施肥材供給容器を海域、淡水域、汽水域等の水域底部に沈設するための施肥材供給容器の沈設方法に関する。   The present invention relates to a method for laying a fertilizer supply container for sinking a fertilizer supply container filled with an algal fertilizer at the bottom of a water area such as a sea area, a fresh water area, and a brackish water area.

近年、海域、淡水域、汽水域等の水域では、生物の生育に必要な鉄分の不足による生物生産量の低下が問題となっている。例えば、日本各地の海域の沿岸部では、磯焼けと呼ばれる現象が発生しており、コンブやワカメ、その他多種の海藻群落が減少して不毛状態となってしまう。   In recent years, in water areas such as sea areas, fresh water areas and brackish water areas, there has been a problem of a decrease in biological production due to a lack of iron necessary for the growth of organisms. For example, a phenomenon called firewood burning has occurred in the coastal areas of various sea areas in Japan, and the number of kombu, wakame, and various other seaweed communities has decreased and become barren.

このような磯焼けの原因としては、海水温の上昇や水質汚濁といった環境変化の他に、海に流れ込む河川の上流における木々の伐採によって、それまでは落ち葉が堆積してできていた腐植土中の腐植酸と土壌中の鉄が結合した腐植酸鉄ができ難くなり、藻類の生育に必要な鉄分の海への供給が減少したことが理由のひとつと考えられる。   In addition to environmental changes such as rising seawater temperature and water pollution, the cause of such burning is in the humus soil, where fallen leaves had previously accumulated due to the cutting of trees upstream of the river that flows into the sea. One reason for this is thought to be that iron humate, which is a combination of humic acid and soil iron, becomes difficult to produce, and the supply of iron necessary for algae growth to the sea has decreased.

そこで、FeOやFe34のような鉄分を含有する製鋼スラグとフルボ酸等の腐植を含有する物質とを混ぜたスラグ系施肥材を透水性の袋体に入れて、鉄筋又は鉄骨のような重りを縛り付けて海域に設置したり、この袋体を多数の割石や捨石と共に籠に詰め込み海域に設置する方法が提案されている(特許文献1参照)。また、上記のようなスラグ系施肥材の入れられた透水性の袋体をH形鋼等で作られた鋼製箱に収容し、海底に沈設する方法もある(特許文献2及び3参照)。 Therefore, a slag fertilizer mixed with steelmaking slag containing iron such as FeO and Fe 3 O 4 and a substance containing humus such as fulvic acid is put in a water-permeable bag body, like a rebar or steel frame. A method has been proposed in which a heavy weight is bound and installed in the sea area, or the bag body is stuffed together with a large number of crushed stones and rubble into a coral and installed in the sea area (see Patent Document 1). Further, there is a method in which a water-permeable bag body containing the slag fertilizer as described above is accommodated in a steel box made of H-shaped steel or the like and set on the sea floor (see Patent Documents 2 and 3). .

これらの方法によれば、製鋼スラグ中の二価鉄がフルボ酸や有機錯体と結合して安定的なフルボ酸鉄等になり、水域に二価の鉄イオンを効率的に供給することができる。すなわち、通常、生物が摂取可能な二価の鉄イオン(Fe2+)を溶出させても水中の酸素によって酸化されて即座に固体状鉄(Fe2O3、Fe(OH)3)として沈降し、生物が摂取することは不可能となってしまうが、上記のようなスラグ系施肥材を使用することで、腐植酸鉄として鉄分を安定して供給することができるようになる。 According to these methods, divalent iron in steelmaking slag is combined with fulvic acid or an organic complex to form stable fulvic acid iron or the like, and divalent iron ions can be efficiently supplied to the water area. . In other words, even if divalent iron ions (Fe 2+ ) that can be ingested by organisms are eluted, they are oxidized by oxygen in water and immediately settled as solid iron (Fe 2 O 3 , Fe (OH) 3 ). However, it is impossible for the organism to ingest, but by using the slag fertilizer as described above, iron can be stably supplied as humic acid iron.

特開2006−212036号公報JP 2006-212036 A 特開2007−330254号公報JP 2007-330254 A 特開2013−236571号公報JP 2013-236571 A

上記のような方法によれば、水域環境に鉄分を安定して供給することができ、例えば、スラグ系施肥材の入った袋体を収容した鋼製箱を製鋼スラグ固化体からなる割石や天然岩石等からなる藻場造成用のブロック体と共に設置することで、藻場を急速に造成することができるとする(特許文献2の段落0072、特許文献3の段落0046参照)。しかしながら、本発明者らが更なる検討を進めたところ、藻類の生育密度をより高めて藻場を造成するために、これら従来技術に改良の余地があることが分かった。   According to the method as described above, iron can be stably supplied to the aquatic environment. For example, a steel box containing a bag body containing a slag fertilizer is used to convert a steel box made of steel slag solidified material or natural stone. It is assumed that the algae beds can be rapidly created by installing together with the block for algae bed construction made of rocks or the like (see paragraph 0072 of Patent Document 2 and paragraph 0046 of Patent Document 3). However, as a result of further studies by the present inventors, it has been found that there is room for improvement in these conventional techniques in order to further increase the growth density of algae and to create a seaweed bed.

したがって、本発明の目的は、施肥材からの肥料成分を藻類に対して効率的に供給して、生育密度の高い藻場を効果的に造成することができる施肥材供給容器の沈設方法を提供することにある。   Therefore, an object of the present invention is to provide a method for setting a fertilizer supply container that can efficiently supply fertilizer components from a fertilizer to algae and effectively create an algal bed with a high growth density. There is to do.

本発明者らは、上記課題を解決するために鋭意検討した結果、施肥材が収容された施肥材供給容器の容器本体の移動や揺動を規制するための移動規制用の石材組みを構築すると共に、この移動規制用の石材組みには、容器本体の上壁部上面での水の流れを緩和する水流規制用の石材組みを構築して、容器本体の上壁部上方に水流規制用の石材組みによって形成された石材窪地を設けることで、従来よりも生育密度の高い藻場を効果的に造成できることを見出し、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventors construct a stone structure for movement restriction for restricting movement and swinging of the container body of the fertilizer supply container in which the fertilizer is accommodated. At the same time, in this stone set for restricting movement, a stone set for restricting water flow that relaxes the flow of water on the upper surface of the upper wall of the container body is constructed, It has been found that by providing a stone depression formed by a stone assembly, it is possible to effectively create a seaweed bed having a higher growth density than before, and the present invention has been completed.

すなわち、本発明の要旨は次のとおりである。
(1)容器本体の内部には藻類の施肥材が充填されていると共に、少なくとも容器本体の上壁部には前記施肥材から供給される肥料成分の供給孔を有する施肥材供給容器を、海域、淡水域、汽水域等の水域底部に沈設するための施肥材供給容器の沈設方法であり、
前記容器本体の側壁部外周には、この施肥材供給容器の水平方向の移動及び/又は揺動を規制するための移動規制用の石材組みを構築すると共に、前記移動規制用の石材組みには、前記容器本体の上壁部上面を超えて上方に突出し、上壁部上面での水の水平方向の流れを緩和する水流規制用の石材組みを構築して、前記容器本体の上壁部上方に該水流規制用の石材組みによる石材窪地を備えるようにしたことを特徴とする施肥材供給容器の沈設方法。
(2)前記容器本体の上壁部上面は閉塞されることなく、前記水流規制用の石材組みが構築される(1)に記載の施肥材供給容器の沈設方法。
(3)所定の間隔を設けて複数の施肥材供給容器を水域底部に配置し、それぞれに移動規制用の石材組みを構築すると共に、水流規制用の石材組みを構築して、水流規制用の石材組みを介して互いに隣接する施肥材供給容器に対応する石材窪地が併設されるようにする(1)又は(2)に記載の施肥材供給容器の沈設方法。
(4)前記移動規制用の石材組み及び水流規制用の石材組みが、製鋼スラグを骨材に使用した水和固化体からなる石材を用いて構築される(1)〜(3)のいずれかに記載の施肥材供給容器の沈設方法。
(5)前記施肥材が、鉄鋼スラグと腐植物質とを混合したスラグ系施肥材である(1)〜(4)のいずれかに記載の施肥材供給容器の沈設方法。
That is, the gist of the present invention is as follows.
(1) The container body is filled with algae fertilizer, and at least an upper wall portion of the container body is provided with a fertilizer supply container having a fertilizer component supply hole supplied from the fertilizer. , A method for setting fertilizer supply containers for setting at the bottom of freshwater areas, brackish water areas, etc.
On the outer periphery of the side wall of the container main body, a stone assembly for movement restriction for restricting the movement and / or swinging of the fertilizer supply container in the horizontal direction is constructed. The upper wall of the container body protrudes upward beyond the upper surface of the upper wall portion, and a stone structure for restricting water flow that relaxes the horizontal flow of water on the upper surface of the upper wall portion is constructed. A method for sinking a fertilizer supply container, comprising: a stone depression made of a stone assembly for regulating water flow.
(2) The method for laying a fertilizer supply container according to (1), in which the upper surface of the upper wall portion of the container main body is not blocked, and the stone structure for water flow regulation is constructed.
(3) A plurality of fertilizer supply containers are arranged at the bottom of the water area with a predetermined interval, and a stone set for water regulation is constructed for each, and a stone set for water flow regulation is constructed for each. The method for laying a fertilizer supply container according to (1) or (2), wherein stone depressions corresponding to the fertilizer supply containers adjacent to each other are provided side by side through a stone assembly.
(4) Any one of (1) to (3), wherein the stone structure for movement restriction and the stone structure for water flow restriction are constructed using a stone made of a hydrated solidified body using steelmaking slag as an aggregate. The settling method of the fertilizer supply container of description.
(5) The settling method of the fertilizer supply container according to any one of (1) to (4), wherein the fertilizer is a slag fertilizer in which steel slag and humic substances are mixed.

本発明の施肥材供給容器の沈設方法によれば、施肥材の肥料成分を藻類に対して効率的に供給できて、生育密度の高い藻場を効果的に造成することができるようになる。   According to the settling method of the fertilizer supply container of the present invention, the fertilizer component of the fertilizer can be efficiently supplied to the algae, and an alga bed with a high growth density can be effectively created.

図1は、本発明の方法によって水域底部に施肥材供給容器を沈設する例(a)〜(c)を示す断面模式図である。FIG. 1 is a schematic cross-sectional view showing examples (a) to (c) in which a fertilizer supply container is set at the bottom of a water area by the method of the present invention. 図2は、本発明の方法によって複数の施肥材供給容器を沈設する例を示す断面模式図である。FIG. 2 is a schematic cross-sectional view showing an example in which a plurality of fertilizer supply containers are set by the method of the present invention. 図3は、実施例で使用した施肥材供給容器の容器本体を示す平面図(a)及び側面図(b)である。FIG. 3: is the top view (a) and side view (b) which show the container main body of the fertilizer supply container used in the Example. 図4は、実施例1及び比較例1で施肥材供給容器を海域底部に沈設し、それぞれ5か月経過した様子を撮影した写真である(対照区を含む)。FIG. 4 is a photograph in which a fertilizer supply container is sunk in the bottom of the sea area in Example 1 and Comparative Example 1, and each of them has been photographed for 5 months (including a control zone). 図5は、実施例1及び比較例1で生育した海藻の湿重量を示すグラフである。FIG. 5 is a graph showing the wet weight of seaweed grown in Example 1 and Comparative Example 1. 図6は、実施例1及び比較例1で施肥材供給容器を海域底部に沈設して5か月経過した時点でのFe濃度を示すグラフである(対照区を含む)。FIG. 6 is a graph showing the Fe concentration when the fertilizer supply container is set at the bottom of the sea area in Example 1 and Comparative Example 1 and five months have passed (including the control zone). 図7は、比較例として施肥材供給容器を沈設する例を示す断面模式図である。FIG. 7 is a schematic cross-sectional view showing an example in which a fertilizer supply container is set as a comparative example.

以下、本発明について詳細に説明する。
本発明では、藻類の施肥材が充填された容器本体を備えて、少なくともこの容器本体の上壁部には施肥材から供給される肥料成分の供給孔を有する施肥材供給容器を海域、淡水域、汽水域等の水域の底部に沈設するにあたり、容器本体の側壁部外周に移動規制用の石材組みを構築すると共に、この移動規制用の石材組みに対して水流規制用の石材組みを構築して、容器本体の上壁部上方に石材窪地を設けるようにする。
Hereinafter, the present invention will be described in detail.
In the present invention, a container body filled with algae fertilizer is provided, and a fertilizer supply container having a supply hole for fertilizer components supplied from the fertilizer is provided at least on the upper wall portion of the container body. In addition, when sinking to the bottom of a water body such as a brackish water area, a stone assembly for restricting movement is constructed on the outer periphery of the side wall of the container body, and a stone assembly for regulating water flow is constructed for this stone assembly for restricting movement. Thus, a stone depression is provided above the upper wall of the container body.

このうち、移動規制用の石材組みについては、水域底部に配置された施肥材供給容器が波浪や潮流等によって水平方向に移動したり(すなわち水域底部に沿って横ずれしたり)、施肥材供給容器が揺動したり(すなわち水域底部に対して傾いたり)するのを防ぐことができればよく、少なくともこのような水平方向の移動や水中での揺動のいずれか一方、好ましくは両方を規制するものであって、施肥材供給容器の容器本体の大きさやその形状に応じて、石材の量や設置面積等を適宜設定して石材を組むことができる。   Among these, as for stone assembly for movement restriction, the fertilizer supply container placed at the bottom of the water area moves horizontally due to waves, tides, etc. (that is, shifts laterally along the bottom of the water area), or the fertilizer supply container Can be prevented from swinging (i.e., tilting with respect to the bottom of the water area), and at least one of such horizontal movement and underwater swinging, preferably both are regulated. And according to the magnitude | size of the container main body of a fertilizer supply container, and its shape, the amount of stones, an installation area, etc. can be set suitably, and a stone can be assembled.

また、水流規制用の石材組みは、施肥材供給容器の容器本体の上壁部上面を超えて上方に突出し、容器本体の上壁部上面での水の水平方向の流れを緩和するものであり、これによって容器本体の上壁部上方に石材窪地が形成されるようにする。すなわち、移動規制用の石材組み及び水流規制用の石材組みを構築して水域底部に施肥材供給容器を沈設した後には、施肥材供給容器の容器本体の上壁部の供給孔から供給された肥料成分がこの石材窪地に一時的に滞留できるようになる。そして、石材窪地に滞留した肥料成分は、その窪地内を漂って窪地内壁にあたる移動規制用の石材組みの石材に着生した藻類の生育を促進させたり、石材の隙間を通じて漂流し、窪地外壁にあたる移動規制用の石材組みの石材に着生した藻類の生育を促進させて、藻類を増殖させることができる。   Moreover, the stone assembly for regulating water flow protrudes upward beyond the upper surface of the upper wall of the container body of the fertilizer supply container, and relaxes the horizontal flow of water on the upper surface of the upper wall of the container body. As a result, a stone depression is formed above the upper wall of the container body. That is, after constructing a stone assembly for movement restriction and a stone assembly for water flow restriction and setting a fertilizer supply container at the bottom of the water area, it was supplied from the supply hole in the upper wall portion of the container body of the fertilizer supply container Fertilizer components can temporarily stay in this stone depression. Then, the fertilizer component staying in the stone depression promotes the growth of algae that drifts through the depression and hits the inner wall of the depression, and drifts through the gap between stones and hits the outer wall of the depression The algae can be propagated by promoting the growth of algae grown on the stone of the stone set for movement restriction.

水流規制用の石材組みによって形成される石材窪地の形状については特に制限されないが、例えば、図1(a)〜(c)に示したような形状を例示することができる。すなわち、図1(a)の例は、水域底部が砂地のような場合であり、石材2を水域底部に敷設した上で施肥材供給容器1を配置して、その容器本体1aの側壁部外周を取り囲むように石材2を並べて移動規制用の石材組み3を構築し、この移動規制用の石材組み3に更に石材2を積み重ねて水流規制用の石材組み4を構築して、容器本体1aの上壁部上方に水流規制用の石材組み4により形成された石材窪地5が設けられている。この図1(a)では、石材窪地5が略垂直な内壁で囲まれるようにしながら、ほぼ同じ壁厚となるように石材2を積み重ねて水流規制用の石材組み4を構築しているが、図1(b)のように、石材窪地5の外側(外壁)に傾斜を設けて水流規制用の石材組み4を構築してもよく、図1(c)のように、内壁に傾斜を設けて石材窪地5がすり鉢状になるように水流規制用の石材組み4を構築してもよい。   Although it does not restrict | limit in particular about the shape of the stone depression formed by the stone set for water flow regulation, For example, the shape as shown to Fig.1 (a)-(c) can be illustrated. That is, the example of FIG. 1A is a case where the bottom of the water area is sandy, and the fertilizer supply container 1 is arranged after the stone material 2 is laid on the bottom of the water area, and the outer periphery of the side wall of the container main body 1a. A stone assembly 3 for restricting movement is constructed by arranging the stone members 2 so as to surround the container, and a stone assembly 4 for restricting water flow is constructed by further stacking the stone member 2 on the stone assembly 3 for restricting movement. A stone depression 5 formed by a stone assembly 4 for regulating water flow is provided above the upper wall. In FIG. 1 (a), while the stone depression 5 is surrounded by a substantially vertical inner wall, the stone material 2 is built up by stacking the stone materials 2 so as to have substantially the same wall thickness. As shown in FIG. 1 (b), a stone assembly 4 for restricting water flow may be constructed by providing an inclination on the outside (outer wall) of the stone depression 5, and an inclination is provided on the inner wall as shown in FIG. 1 (c). Thus, the stone assembly 4 for restricting water flow may be constructed so that the stone depression 5 becomes a mortar shape.

また、本発明においては、図2に示したように、複数の施肥材供給容器1を所定の間隔を設けて水域底部に配置し、それぞれの施肥材供給容器1に移動規制用の石材組み3及び水流規制用の石材組み4を構築して、水流規制用の石材組み4を介して互いに隣接する施肥材供給容器1に対応する石材窪地5が並ぶように併設してもよく、これによってより大きな藻場の造成ができるようになる。   In the present invention, as shown in FIG. 2, a plurality of fertilizer supply containers 1 are arranged at the bottom of the water area with a predetermined interval, and each fertilizer supply container 1 has a stone assembly 3 for movement restriction. Further, a stone assembly 4 for restricting water flow may be constructed so that stone depressions 5 corresponding to the fertilizer supply containers 1 adjacent to each other are arranged side by side through the stone assembly 4 for restricting water flow. A large seaweed bed can be created.

ところで、先の図1に示した例を含めて、本発明では、図2に示したように施肥材供給容器1の容器本体1aの上壁部上面に石材2を並べるようにしてもよい。但し、これにより藻類6の生育場所を更に確保することができるようになるが、容器本体1aの上壁部上面に配置する石材2は上壁部上方に最低限の高さで並べるようにし、石材2を積み重ねるのは避けるようにするのが望ましい。すなわち、石材を積み上げたときに、表面に露出している以外の石材に藻類が着生し、たとえ肥料成分が供給されても、そこまで届く光の量が少なければ十分な生育が望めないからである。加えて、容器本体1aの上壁部上面に石材2を積み上げる分だけ、容器本体の供給孔から容器本体の上壁部上方に向かって供給される肥料成分の流れが阻害されることから、好ましくは、容器本体1aの上壁部上面は、石材等で閉塞されることなく水流規制用の石材組み4が構築されるのがよい。なお、図1や図2に示した例では石材2を水域底部に敷設した上で施肥材供給容器1を配置しているが、水域底部の状況に応じて直に施肥材供給容器1を配置するようにしても勿論構わない。   By the way, including the example shown in FIG. 1, in the present invention, the stones 2 may be arranged on the upper surface of the upper wall portion of the container body 1a of the fertilizer supply container 1 as shown in FIG. However, this makes it possible to further secure the place where the algae 6 grows, but the stone 2 placed on the upper surface of the upper wall portion of the container body 1a is arranged at a minimum height above the upper wall portion, It is desirable to avoid stacking the stone 2. In other words, when stones are stacked, algae grow on stones other than those exposed on the surface, and even if fertilizer components are supplied, sufficient growth cannot be expected unless the amount of light reaching there is small It is. In addition, since the flow of the fertilizer component supplied from the supply hole of the container body toward the upper part of the upper wall part of the container body is hindered by the amount of the stone material 2 stacked on the upper surface of the upper wall part of the container body 1a, preferably The upper surface of the upper wall portion of the container main body 1a is preferably constructed of the stone material set 4 for restricting water flow without being blocked by a stone material or the like. In the example shown in FIGS. 1 and 2, the fertilizer supply container 1 is arranged after the stone material 2 is laid on the bottom of the water area, but the fertilizer supply container 1 is arranged directly according to the situation of the bottom of the water area. Of course, it does not matter.

また、本発明においては、水流規制用の石材組み4を構築するにあたり、例えば、石材窪地内に供給される肥料成分の量(濃度)に着目したり、施肥材供給容器1を設置する水域底部での水流や潮流等の水の流れ、特に水流規制用の石材組み4に対する横方向からの水の流れ(図1(b)中に示した矢印f)を考慮しながら、石材窪地内での肥料成分の滞留時間(期間)に着目して、水流規制用の石材組み4の高さや形状を設計するようにしてもよい。   Further, in the present invention, in constructing the stone material set 4 for restricting water flow, for example, attention is paid to the amount (concentration) of fertilizer components supplied into the stone depression, or the bottom of the water area where the fertilizer supply container 1 is installed. In consideration of the flow of water such as water flow and tidal current, particularly the flow of water from the lateral direction with respect to the stone assembly 4 for regulating water flow (arrow f shown in FIG. 1 (b)), Focusing on the residence time (period) of the fertilizer component, the height and shape of the stone assembly 4 for water flow regulation may be designed.

ただし、施肥材供給容器1及び石材を施用するにあたって、流速や潮流を測定することが困難な場合は、最低でも施肥材供給容器1の上壁部上面よりも石材の短径1個分以上の高さとなるように石材を積み上げればよい。それ以上積み上げることによって、施肥材から供給される肥料成分が滞留する空間が大きくなり、肥料成分の効果範囲は拡大するので、施用する水深と規模によって積み上げる石材の高さを制限しない。
水流規制用の石材組み4の構築については、施肥材供給容器1の外周を全て囲うように組まれることが最も望ましいが、施肥材からの溶出成分が水流によって流失することを抑制できるのであれば、必ずしも施肥材の上部全周を囲う必要はない。例えば、使用する石材の短径1個分未満の隙間であれば、施肥材供給容器1からの溶出成分が即時に流出することはないので、石材窪地の機能は十分に果たすものと考える。また、施肥材供給容器1を複数個ならべ、その上部に一つの石材窪地を作製してもよい。その場合には、石材窪地の面積が広くなり、施肥材からの溶出成分が流失しやすくなるため、水流規制用の石材組み4を施肥材供給容器1が1個の場合よりも高く組んだ方がよい。
However, when applying the fertilizer supply container 1 and the stone material, when it is difficult to measure the flow velocity or the tidal current, at least one minor axis of the stone is larger than the upper surface of the upper wall portion of the fertilizer supply container 1 Stones can be stacked up to a height. By stacking more than that, the space in which the fertilizer component supplied from the fertilizer is retained increases, and the effective range of the fertilizer component is expanded. Therefore, the height of the stone to be stacked is not limited by the depth and scale of application.
As for the construction of the stone material set 4 for water flow regulation, it is most desirable to set the stone material set 4 so as to surround the entire outer periphery of the fertilizer supply container 1, but as long as the elution component from the fertilizer can be suppressed from being washed away by the water flow. It is not always necessary to surround the entire upper periphery of the fertilizer. For example, if the gap is less than one minor axis of the stone material to be used, the elution component from the fertilizer supply container 1 does not flow out immediately, so it is considered that the function of the stone depression is sufficiently fulfilled. Alternatively, a plurality of fertilizer supply containers 1 may be arranged, and a single stone depression may be formed on the top. In that case, the area of the stone depression becomes wide and the elution component from the fertilizer tends to be washed away, so that the stone assembly 4 for water flow regulation is assembled higher than the case where there is only one fertilizer supply container 1 Is good.

また、本発明において、移動規制用の石材組みや水流規制用の石材組みに用いられる石材については特に制限されず、例えば、天然石、人工石、コンクリート製ブロック、消波ブロック、石材等をつめた土嚢等を挙げることができ、これらの1種又は2種以上を組み合わせることができるが、好ましくは、製鋼スラグを骨材に使用した水和固化体からなる石材であるのがよい。このような水和固化体からなる石材は、表面に微細な凹凸があるため藻類が着生し易いほか、製鋼スラグ由来の成分により二価の鉄イオンの溶出量を増やすことができるメリットがある。また、施肥材から供給される肥料成分が流動可能なように、これらの石材は形状が不定形であって石材同士の間に隙間が形成されるものであるのが望ましく、例えば、上記のような水和固化体や天然石等の割石を石材として用いるようにしてもよい。但し、その大きさが小さくなると水中で移動してしまうおそれがあることから、特に水の流れや波浪等の影響を受けやすい水域では長径が30cm以上のものが適している。更には、窪地を作製するために、上記に挙げた石材のみを使用するのではなく、既存の海底の地形(***や天然石によるマウンドの一部、崖の壁面)や土嚢等の建築土木資材を活用してもよい。   Further, in the present invention, there is no particular limitation on the stone material used for the stone assembly for movement restriction and the stone assembly for water flow restriction, for example, natural stone, artificial stone, concrete block, wave-dissipating block, stone material, etc. A sandbag or the like can be mentioned, and one or more of these can be combined. Preferably, it is a stone made of a hydrated solidified body using steelmaking slag as an aggregate. Stone made of such a hydrated solid has the advantage that the algae can easily grow due to fine irregularities on the surface, and the elution amount of divalent iron ions can be increased by components derived from steelmaking slag. . Further, it is desirable that these stone materials have an irregular shape and a gap is formed between the stone materials so that the fertilizer components supplied from the fertilizer can flow. A hydrated solidified product or calcite such as natural stone may be used as the stone. However, when the size is small, there is a possibility of moving in the water. Therefore, those having a major axis of 30 cm or more are particularly suitable in water areas that are easily affected by the flow of water or waves. Furthermore, not only the stones listed above are used to create the depressions, but also existing civil engineering materials such as the existing seabed topography (parts of mounds made of uplift and natural stone, cliff walls) and sandbags. It may be used.

また、本発明で用いる施肥材については公知のものを使用することができ、特に制限されないが、水域環境に鉄分を安定して供給することができることから、好ましくは、鉄鋼スラグと腐植物質とを混合したスラグ系施肥材であるのがよい。ここで、腐植物質とは、腐植土(腐葉土)等の落ち葉や倒木、間伐材などの植物リターが、それをエネルギー源とする土壌微生物によって分解されてゆく過程で出来てくる暗色で不定形の有機物の総称であり、腐植物質は鉄のキレーターとなる腐植酸を多分に含有していることから、鉄鋼スラグと混ぜて使用することでスラグから溶出した鉄分は腐植酸と錯体を形成し、長時間水域中で溶存態として存在して、藻類が鉄分を摂取することが可能になる。   In addition, known fertilizers used in the present invention can be used, and are not particularly limited. However, since iron can be stably supplied to the water environment, preferably steel slag and humic substances. It should be a mixed slag fertilizer. Here, humic substances are dark and irregular shapes that are produced in the process of plant litter such as fallen leaves such as humus soil (humus soil), fallen trees, and thinned wood being decomposed by soil microorganisms that use it as an energy source. It is a general term for organic substances, and humic substances contain a lot of humic acid, which is an iron chelator, so when mixed with steel slag, iron eluted from slag forms a complex with humic acid, and is long. It exists as a dissolved state in water for hours, allowing algae to ingest iron.

また、腐植物質については、上記のような腐植土のほかに、食品残渣などの有機物や、魚介類の水産加工残渣等を発酵させ得られて、無機態の窒素やリンを豊富に含んだ魚かす等を用いることもできる。例えば、魚かすの発酵の過程では、有機物はバクテリアによって分解されて無機物となり、得られた腐植物質中には、海藻類が一般的に栄養塩として容易に摂取しうる無機態窒素(硝酸態窒素、アンモニア態窒素)やリン酸態リンが多量に含まれることから、これらの栄養塩類が溶出し、窒素、リンの供給源となる。   As for humic substances, in addition to humus soil as described above, organic substances such as food residues, fishery processing residues of seafood, etc. can be fermented and fish rich in inorganic nitrogen and phosphorus. A dregs etc. can also be used. For example, in the process of fermentation of fish meal, organic matter is decomposed by bacteria to become inorganic matter, and in the obtained humic substances, inorganic nitrogen (nitrate nitrogen) that seaweeds can generally ingest easily as nutrient salts. , Ammonia nitrogen) and phosphate phosphorus are contained in large amounts, so that these nutrient salts are eluted and become a source of nitrogen and phosphorus.

一方、鉄鋼スラグとして、好ましくは製鋼スラグを用いるのがよく、鉄分含有量が高炉スラグ(約0.4質量%)に比べて高い製鋼スラグ(約20質量%)の方が鉄分供給の点で優れている。この製鋼スラグのなかでも、転炉系の製鋼スラグは、電気炉系製鋼スラグと比較して成分組成が安定していることから、より好ましくは転炉系の製鋼スラグである。また、転炉前後の工程(溶銑予備処理、2次精錬)を付加された高級鋼製造工程から生成する溶銑予備処理スラグや2次精錬スラグも、転炉系スラグと同様により好ましい。なお、製鋼スラグを用いる場合には、予め炭酸化処理を施した炭酸化製鋼スラグであるのが望ましい。   On the other hand, steel slag is preferably used as steel slag, and steel slag (about 20% by mass), which has a higher iron content than blast furnace slag (about 0.4% by mass), is superior in terms of iron supply. Yes. Among these steelmaking slags, the converter steelmaking slag is more preferably a converter steelmaking slag because its component composition is more stable than that of an electric furnace steelmaking slag. Also, hot metal pretreatment slag and secondary refining slag generated from a high-grade steel manufacturing process to which processes before and after the converter (hot metal pretreatment, secondary refining) are added are more preferable as in the converter system slag. In addition, when using steelmaking slag, it is desirable that it is the carbonation steelmaking slag which performed the carbonation process previously.

また、本発明で用いる施肥材供給容器については、藻類の施肥材が充填される容器本体を有し、この施肥材からの肥料成分が石材窪地に供給(拡散)可能なように、少なくとも容器本体の上壁部には肥料成分の供給孔を備えるようにする。このような施肥材供給容器としては、例えば、H形鋼等を用いて容器本体の側壁部を形成し、鋼板等を用いて容器本体の上壁部及び底壁部を形成して箱型の鋼製容器とすることができるほか、容器本体の上壁部を半球状に突出させたりしてもよい。また、容器本体に施肥材を充填するにあたり、施肥材をいくつかに分けて透水性の袋体に入れて、これらの袋体を容器本体に収容するようにしてもよく、更には、容器本体の側壁部や底壁部にも孔を設けて通水や肥料成分の供給が可能となるようにしてもよい。   The fertilizer supply container used in the present invention has a container main body filled with algae fertilizer, and at least the container main body so that the fertilizer component from the fertilizer can be supplied (diffused) to the stone depression. The upper wall portion is provided with a fertilizer component supply hole. As such a fertilizer supply container, for example, a H-shaped steel or the like is used to form the side wall portion of the container body, and a steel plate or the like is used to form the top and bottom wall portions of the container body. In addition to the steel container, the upper wall portion of the container body may protrude in a hemispherical shape. In addition, when filling the container body with the fertilizer, the fertilizer may be divided into several parts and placed in a water-permeable bag, and these bags may be accommodated in the container body. A hole may also be provided in the side wall portion and the bottom wall portion so that water can be supplied and fertilizer components can be supplied.

なお、本発明における水流規制用の石材組みは、容器本体の上壁部上面での水の水平方向の流れを緩和して、肥料成分の瞬時の散逸を防止するものである。そのため、施肥材供給容器の容器本体が箱型容器からなる場合であれば、容器本体の上壁部の平らな上面を超えて上方に突出した水流規制用の石材組みでればよい。一方、容器本体の上壁部を半球状にしたような場合には、曲面を有した上壁部上面の全てを超えるように上方に突出した水流規制用の石材組みであるのが望ましい。   In addition, the stone material set | regulation for water flow in this invention eases the horizontal flow of the water on the upper wall part upper surface of a container main body, and prevents the instantaneous dissipation of a fertilizer component. Therefore, if the container main body of the fertilizer supply container is a box-shaped container, it may be a stone structure for water flow restriction that protrudes upward beyond the flat upper surface of the upper wall portion of the container main body. On the other hand, when the upper wall portion of the container body is hemispherical, it is desirable that the stone is for water flow restriction protruding upward so as to exceed all of the upper surface of the upper wall portion having a curved surface.

本発明における施肥材供給容器の沈設方法は、海域、淡水域、汽水域(河口域)等の水域底部で適用することができる。すなわち、海域であれば、例えば、コンブ、ホンダワラ類、カジメ、アラメ、ワカメ、スサビノリ、ヒロメ等の各種海藻類の生育を促進させることができ、また、淡水や汽水域であれば、例えば、カワモズク、カワノリ、珪藻、スジアオノリ、ヒトエグサ等の藻類の生育を促進させることができる。その際、施肥材供給容器を沈設するタイミングとして、繁茂を期待する藻類の成熟時期に合わせると効果的である。例えば、コンブの場合は8〜11月、ホンダワラ類の場合には4〜6月が成熟を迎える種が多いことから、これらにあわせて施工時期を決めるとよい。また、これらに加えて、本発明によれば、施肥材から溶出した肥料成分が石材窪地に滞留することで、例えば、海水中に浮遊する植物プランクトンの増殖にも作用すると考えられる。更には、水域底部に大型藻類が繁茂したり、植物プランクトンの増殖によって、魚類の住処やえさ場の創出も期待できる。   The settling method of the fertilizer supply container in the present invention can be applied to the bottom of a water area such as a sea area, a fresh water area, and a brackish water area (estuary area). That is, in the sea area, for example, it can promote the growth of various seaweeds such as kombu, hondawala, kajime, arame, wakame, sasabinori, hirome, and in the fresh water or brackish water area, It is possible to promote the growth of algae such as kawanori, diatom, siaoonori, and human rush. At that time, it is effective to set the fertilizer supply container in accordance with the maturity of the algae expected to grow. For example, since there are many species that mature in August-November in the case of kombu and in April-June in the case of Honda Wallaceae, the construction time may be determined according to these species. In addition to these, according to the present invention, it is considered that the fertilizer component eluted from the fertilizer is also retained in the stone depression, for example, to act on the growth of phytoplankton floating in seawater. In addition, large algae grow at the bottom of the water area, and the growth of phytoplankton can be expected to create a place for fish and food.

以下、実施例に基づき本発明をより具体的に説明する。なお、本発明はこれらの内容に制限されるものではない。   Hereinafter, based on an Example, this invention is demonstrated more concretely. The present invention is not limited to these contents.

(実施例1)
施肥材供給容器を長崎県の沿岸部海域に沈設して、海藻の生育状況を確認する実地試験を行った。
図3には、この試験に用いた施肥材供給容器1の容器本体1aが示されている。すなわち、4つのH形鋼(500×200×10/16)11を用いて容器本体1aの側壁部とすると共に、縦1.4m×横1.4m×厚さ6mmの鋼板12を上蓋及び下蓋としてH形鋼にねじ留めして、容器本体1aの上壁部及び底壁部として、外径寸法が縦1.7m×横1.7m×高さ0.5mであって、内部容積が縦1.4m×横1.4m×高さ0.5mの箱型鋼製容器からなる容器本体1aを作製した。このうち、容器本体1aの上壁部及び底壁部を形成する鋼板12には、それぞれ全面にわたって等間隔で並ぶ直径1cmの供給孔(肥料成分の供給孔)12aが合計で169個設けられている。また、容器本体1aの上壁部には、その四隅に吊り金具13がそれぞれ取り付けられている。
Example 1
A field test was conducted to confirm the growth of seaweed by laying fertilizer supply containers in the coastal area of Nagasaki Prefecture.
FIG. 3 shows a container body 1a of the fertilizer supply container 1 used in this test. That is, four H-section steel (500 × 200 × 10/16) 11 is used as a side wall portion of the container body 1a, and a steel plate 12 having a length of 1.4 m × width of 1.4 m × thickness of 6 mm is used as an upper lid and a lower Screwed onto H-shaped steel as a lid, the outer diameter of the container body 1a is 1.7m long x 1.7m wide x 0.5m high, and the internal volume is A container body 1a made of a box-shaped steel container having a length of 1.4 m, a width of 1.4 m, and a height of 0.5 m was produced. Among them, the steel plate 12 forming the upper wall portion and the bottom wall portion of the container main body 1a is provided with a total of 169 supply holes (fertilizer component supply holes) 12a having a diameter of 1 cm arranged at equal intervals over the entire surface. Yes. In addition, hanging metal fittings 13 are attached to the four corners of the upper wall portion of the container body 1a.

また、容器本体1aに充填する施肥材としては、粒径25mm以下の炭酸化製鋼スラグと廃木材や間伐材のチップからなる腐植物質とを質量比(製鋼スラグ:腐植物質)2:1で混合したスラグ系施肥材を使用し、ナイロン製のメッシュ袋1つあたりにこのスラグ系施肥材を50kg入れて、合計20つのメッシュ袋を容器本体1aに収容した。なお、ここで用いた炭酸化製鋼スラグは、転炉系製鋼スラグを炭酸化処理したものである。   In addition, as fertilizer to be filled in the container body 1a, carbonized steelmaking slag having a particle size of 25 mm or less and humic substances made of waste wood and thinned wood chips are mixed at a mass ratio (steelmaking slag: humic substance) 2: 1. The slag fertilizer was used, 50 kg of this slag fertilizer was put per nylon mesh bag, and a total of 20 mesh bags were accommodated in the container body 1a. In addition, the carbonation steelmaking slag used here is a carbonization treatment of converter steelmaking slag.

更には、製鋼スラグを骨材に使用した水和固化体を破砕した割石(新日鐵住金社製商品名ビバリー(登録商標)ロック)を石材として用いて、図1(b)に示したような移動規制用の石材組み3及び水流規制用の石材組み4を構築して、上記の施肥材供給容器1を海域底部に沈設した。ここで、これらの石材組みには、短径が40〜90cm程度の割石を用いるようにした。   In addition, as shown in FIG. 1 (b), quarry stone (trade name Beverly (registered trademark) manufactured by Nippon Steel & Sumikin Co., Ltd.) obtained by crushing a hydrated solid body using steelmaking slag as an aggregate is used as a stone. A stone assembly 3 for restricting movement and a stone assembly 4 for restricting water flow were constructed, and the fertilizer supply container 1 was set at the bottom of the sea area. Here, the stones having a minor axis of about 40 to 90 cm are used for these stones.

すなわち、沿岸部から沖合およそ240mであって、水深およそ10mの海域底部に施肥材供給容器1を沈設するにあたり、先ずは、略水平な砂地の上に上記の石材(割石)2を敷設し、その上に施肥材供給容器1を配置した。次いで、施肥材供給容器1の容器本体1aを取り囲むようにしながら、容器本体1aの側壁部外周に石材2を積み重ねて移動規制用の石材組み3を構築した。更に、この移動規制用の石材組み3に石材2を積み重ねて水流規制用の石材組み4を構築し、容器本体1aの上壁部上方に水流規制用の石材組み4による石材窪地5が形成されるようにした。その際、石材窪地5が容器本体1aの上壁部上面に対して略垂直な石材の内壁で囲まれるようにすると共に、石材窪地5の外壁側には傾斜を設けるようにした。上記の施工は、当該海域に繁茂が予想されるアラメやカジメの胞子体が成熟する10〜11月に実施した。   That is, when submerging the fertilizer supply container 1 at the bottom of a sea area of about 240 m offshore from the coastal area, first, the above stone material (sparing stone) 2 is laid on a substantially horizontal sand, The fertilizer supply container 1 was arrange | positioned on it. Next, while surrounding the container main body 1a of the fertilizer supply container 1, the stone material 2 was stacked on the outer periphery of the side wall portion of the container main body 1a to construct the stone assembly 3 for movement restriction. Further, the stone material 2 is stacked on the stone member 3 for restricting movement to construct a stone member 4 for restricting water flow, and a stone depression 5 is formed by the stone member 4 for restricting water flow above the upper wall portion of the container body 1a. It was to so. At that time, the stone depression 5 is surrounded by the inner wall of the stone substantially perpendicular to the upper surface of the upper wall portion of the container main body 1a, and an inclination is provided on the outer wall side of the stone depression 5. The above construction was carried out in October-November when spores of larvae and cajime, which are expected to grow in the sea area, mature.

上記のようにして、施肥材供給容器1を中心におよそ縦10m×横10mの沈設エリアで移動規制用の石材組み3を構築すると共に、容器本体1aの上壁部上面から高さ約0.5m(石材1個分の高さ)となるように水流規制用の石材組み4を構築した。これによって容器本体1aの上壁部上方におよそ縦1.7m×横1.7m×深さ0.5mの石材窪地5が形成されたことになる。
そして、施肥材供給容器1を海域底部に沈設してから5か月後にその様子を確認したところ、容器本体1aの設置位置が横ずれしたり、傾いたりした形跡は特に確認されなかった。また、これと併せて以下で説明する各種評価を行った。
As described above, the stone assembly 3 for restricting movement is constructed in a settling area of approximately 10 m in length and 10 m in width around the fertilizer supply container 1, and the height from the upper surface of the upper wall portion of the container body 1a is about 0. A stone assembly 4 for restricting water flow was constructed to be 5 m (height of one stone). As a result, a stone depression 5 having a length of 1.7 m, a width of 1.7 m, and a depth of 0.5 m is formed above the upper wall portion of the container body 1a.
And when the state was confirmed five months after the fertilizer supply container 1 was laid at the bottom of the sea area, there was no evidence that the installation position of the container body 1a was laterally shifted or inclined. In addition to this, various evaluations described below were performed.

(比較例1)
実施例1と同様の施肥材供給容器1を用意し、図7に示したように、水流規制用の石材組み4を設けないようにした以外は実施例1と同様にして、施肥材供給容器1を海域底部に沈設した。なお、施工は、実施例1の施工場所からの海流の影響を受けることのない、約50m離れた箇所に、実施例1と同時期に実施した。
そして、実施例1と同様、施肥材供給容器1を沈設してから5か月後の様子を確認したところ、容器本体1aの設置位置の横ずれや傾きの形跡は特に確認されなかった。また、これと併せて以下の評価を行った。
(Comparative Example 1)
A fertilizer supply container 1 similar to that of the first embodiment is prepared, and as shown in FIG. 7, a fertilizer supply container is provided in the same manner as in the first embodiment except that the stone material set 4 for restricting water flow is not provided. 1 was sunk at the bottom of the sea area. In addition, construction was performed at the same time as Example 1 at a location about 50 m away from the influence of the ocean current from the construction site of Example 1.
And like Example 1, when the state of five months after substituting the fertilizer supply container 1 was confirmed, the trace of the lateral shift and inclination of the installation position of the container main body 1a was not confirmed especially. In addition to this, the following evaluation was performed.

[海藻の生育観察]
上記実施例1及び比較例1のようにして、施肥材供給容器1を海域底部に沈設してから5か月経過した時点で撮影した写真を図4に示す。図4(a)は比較例1の場合、図4(b)は実施例1の場合であり、写真のほぼ中央が施肥材供給容器1にあたる場所である。これらの写真から分かるように、いずれの場合も施肥材供給容器1の周囲にカジメのような海藻が繁茂しているが、実施例1の沈設方法によれば、比較例1に比べて海藻の生育密度が高いことが確認された。
[Observation of seaweed growth]
FIG. 4 shows a photograph taken when five months have passed since the fertilizer supply container 1 was laid on the bottom of the sea area as in Example 1 and Comparative Example 1. FIG. 4A shows the case of Comparative Example 1, and FIG. 4B shows the case of Example 1. The center of the photograph corresponds to the fertilizer supply container 1. As can be seen from these photographs, seaweeds such as scabs thrive around the fertilizer supply container 1 in all cases, but according to the settling method of Example 1, the seaweeds were compared to Comparative Example 1. It was confirmed that the growth density was high.

ちなみに、図4(c)は、実施例1及び比較例1に係る施肥材供給容器1の沈設エリアから海岸沿いに約100m離れた位置の対照区での様子を示す写真である。この対照区では、施肥材供給容器1を沈設せずに、約2m×5mの範囲に天然石を積み重ねてマウンドを形成したところ、5か月経過した時点でカジメ等の生育が確認されたが、マウンド全体で見渡した場合、その生育密度は比較例1の場合よりも低いものであった。   Incidentally, FIG.4 (c) is a photograph which shows the mode in the control zone of the position about 100 m away from the sedimentation area of the fertilizer supply container 1 which concerns on Example 1 and Comparative Example 1 along the coast. In this control group, without depositing the fertilizer supply container 1, the mound was formed by stacking natural stones in the range of about 2m x 5m. When observed over the entire mound, the growth density was lower than that of Comparative Example 1.

[海藻の坪刈り評価]
また、実施例1及び比較例1について、それぞれの沈設エリアの3地点、すなわち、i)施肥材供給用器1付近、ii)移動規制用の石材組み3地点、iii)水流規制用の石材組み4地点において、それぞれで0.5mの方形枠を当てて、着生した海藻の坪刈りを行った。採取された海藻全ての湿重量を測定し、平均値を求めた。縦10m×横10mの沈設エリア面積(施肥材供給容器1の配置面積を含む)を基準にして、それぞれ単位面積あたりで採取された海藻の湿重量を図5に示した。実施例1の沈設方法によれば、比較例1の場合に比べて海藻の生育密度が約2.4倍に達していることが確認された。なお、比較例1では主な海藻がカジメのみであったのに対し、実施例1の方法ではカジメに加えてアラメが生育していたが、これは周辺海域における個体数がカジメ>アラメであり、これを反映した結果と考えられる。実施例1の方が、より繁茂しやすい環境であったと推察される。
[Evaluation of seaweed plowing]
In addition, for Example 1 and Comparative Example 1, three points in each settling area, i) in the vicinity of the fertilizer supply device 1, ii) three stones for moving regulation, iii) stones for regulating water flow At 4 points, each of the aerial seaweeds was trimmed by applying a 0.5 m square frame. The wet weight of all the collected seaweeds was measured, and the average value was obtained. The wet weight of the seaweed collected per unit area is shown in FIG. 5 on the basis of the set area area of 10 m in length and 10 m in width (including the arrangement area of the fertilizer supply container 1). According to the settling method of Example 1, it was confirmed that the growth density of seaweed reached about 2.4 times that of Comparative Example 1. In Comparative Example 1, the main seaweed was only Kajime, whereas in the method of Example 1, arame was growing in addition to Kajime, but this was because the number of individuals in the surrounding sea area was Kajime> Arame. This is probably the result of reflecting this. It is inferred that Example 1 was a more prosperous environment.

[Fe濃度の評価]
更には、施肥材供給容器1の沈設から5か月経過した時点において(対照区についてはマウンド形成から5か月経過時点)、スクーバ潜水により容器本体1aの直上10cmのポイントで採水を行った。採取した各海水サンプルは、採取後直ちに有害金属測定用塩酸を加え(海水サンプル100mlあたり塩酸を100μl加え)、海水中に溶存した鉄分を溶解させて、安定化した。その後、固相抽出を行い、ICP質量分析法によってFe濃度を測定した。
[Evaluation of Fe concentration]
Furthermore, at the time when 5 months have passed since the settling of the fertilizer supply container 1 (5 months after the formation of the mound in the control zone), water was sampled at a point 10 cm directly above the container body 1a by scuba diving. . Each collected seawater sample was stabilized by adding hydrochloric acid for measuring toxic metals immediately after collection (100 μl hydrochloric acid was added per 100 ml of seawater sample) to dissolve iron dissolved in seawater. Thereafter, solid phase extraction was performed, and the Fe concentration was measured by ICP mass spectrometry.

結果は図6に示したとおりであり、Fe濃度は対照区で最も低く1.6μg/Lであったのに対し、比較例1ではその3.5倍、実施例1では約12.2倍であった。すなわち、本発明の方法に係る実施例1では、施肥材から供給される肥料成分の拡散を防ぐことができ、溶出した鉄分が高い濃度で滞留することが確認された。   The results are as shown in FIG. 6, while the Fe concentration was the lowest in the control group, which was 1.6 μg / L, while it was 3.5 times in Comparative Example 1 and about 12.2 times in Example 1. Met. That is, in Example 1 which concerns on the method of this invention, the spreading | diffusion of the fertilizer component supplied from a fertilizer material can be prevented, and it was confirmed that the eluted iron retains in a high density | concentration.

(実施例2〜4)
実施例1と同様の施肥材供給容器1を用意し、図1(a)に示したように、壁の厚みをほぼ一定にしながら石材2を上方に積み重ね、石材窪地5の外壁側に傾斜を設けずに水流規制用の石材組み4を構築した以外は実施例1と同様にして、施肥材供給容器1を海域底部に沈設した(実施例2)。なお、この実施例2によれば、施肥材供給容器1を中心におよそ縦10m×横10mの沈設エリアで移動規制用の石材組み3が構築されたことになる。
(Examples 2 to 4)
A fertilizer supply container 1 similar to that of Example 1 is prepared, and as shown in FIG. 1A, the stones 2 are stacked upward while keeping the wall thickness substantially constant, and the outer wall side of the stone depressions 5 is inclined. The fertilizer supply container 1 was sunk in the bottom of the sea area (Example 2) in the same manner as in Example 1 except that the stone assembly 4 for regulating water flow was constructed without providing it. In addition, according to this Example 2, the stone structure 3 for movement restrictions was constructed | assembled by the subsidence area of about 10 m long x 10 m wide centering | focusing on the fertilizer supply container 1. FIG.

また、同じく、図1(c)に示したように、石材窪地5の内壁に傾斜を設けてすり鉢状になるように水流規制用の石材組み4を構築して、容器本体1aの上壁部側がおよそ縦1.7m×横1.7m、水流規制用の石材組み4の先端側がおよそ縦2m×横2、容器本体1aの上壁部上面を基準にした水流規制用の石材組み4の高さh(石材窪地の深さ)がおよそ1mの石材窪地5が形成されるようにした以外は実施例1と同様にして、施肥材供給容器1を海域底部に沈設した(実施例3)。なお、この実施例3によれば、施肥材供給容器1を中心におよそ縦10m×横10mの沈設エリアで移動規制用の石材組み3が構築されたことになる。   Similarly, as shown in FIG. 1 (c), a stone assembly 4 for restricting water flow is constructed so as to form a mortar shape by inclining the inner wall of the stone depression 5 and the upper wall portion of the container body 1a. The side is approximately 1.7m long x 1.7m wide, and the top side of the stone assembly 4 for restricting water flow is approximately 2m long × 2 wide, the height of the stone assembly 4 for restricting water flow based on the upper surface of the upper wall of the container body 1a. The fertilizer supply container 1 was sunk in the bottom of the sea area (Example 3) in the same manner as in Example 1 except that the stone recess 5 having a depth h (depth of the stone recess) of about 1 m was formed. In addition, according to this Example 3, the stone | matrix material | assembly 3 for a movement control is constructed | assembled by the subsidence area of about 10 m long x 10 m wide centering | focusing on the fertilizer supply container 1. FIG.

更に、実施例1と同様の施肥材供給容器1を3つ用意し、図2に示したように、それぞれの施肥材供給容器1に移動規制用の石材組み3及び水流規制用の石材組み4を構築して、水流規制用の石材組み4を介して互いに隣接する施肥材供給容器1に対応する石材窪地5が並ぶようにした以外は実施例1と同様にして、施肥材供給容器1を海域底部に沈設した(実施例4)。その際、各施肥材供給容器1の容器本体1aの上壁部上面には石材2を並べるようにした。これによって、真ん中の施肥材供給容器1では、容器本体1aの上壁部上方におよそ縦1.7m×横1.7m×深さ0.8mの石材窪地5が形成され、また、この両隣には、およそ縦2m×横2m×深さ0.8mの石材窪地5と、容器本体1aの上壁部側がおよそ縦1.7m×横1.7mであると共に、水流規制用の石材組み4の先端側がおよそ縦2m×横2mであって、深さがおよそ0.8mの石材窪地5とがそれぞれ形成される。そして、この実施例4では、3つの施肥材供給容器1を囲むように、およそ縦10m×横30mの沈設エリアで移動規制用の石材組み3を構築した。   Further, three fertilizer supply containers 1 similar to those of the first embodiment are prepared, and as shown in FIG. 2, each fertilizer supply container 1 has a stone assembly 3 for movement restriction and a stone assembly 4 for water flow restriction. The fertilizer supply container 1 is constructed in the same manner as in Example 1 except that the stone depressions 5 corresponding to the fertilizer supply containers 1 adjacent to each other are arranged through the stone assembly 4 for restricting water flow. It was sunk at the bottom of the sea area (Example 4). At that time, the stones 2 were arranged on the upper surface of the upper wall portion of the container main body 1a of each fertilizer supply container 1. As a result, in the fertilizer supply container 1 in the middle, a stone depression 5 having a length of 1.7 m, a width of 1.7 m and a depth of 0.8 m is formed above the upper wall portion of the container main body 1a. Is approximately 2m long x 2m wide x 0.8m deep, and the upper wall side of the container body 1a is approximately 1.7m long x 1.7m wide. A stone depression 5 having a front end side of about 2 m × 2 m and a depth of about 0.8 m is formed. And in this Example 4, the stone set 3 for movement restrictions was constructed | assembled in the subsidence area of about 10 m long x 30 m wide so that the three fertilizer supply containers 1 might be enclosed.

そして、これらの実施例2〜4に係る沈設方法について、上記[海藻の坪刈り評価]に従い単位面積あたりで採取された海藻の湿重量を求めたところ、実施例2では比較例1の場合に比べて海藻の生育密度が2.3倍であり、実施例3では比較例1の場合に比べて海藻の生育密度が3.2倍であり、実施例4では比較例1の場合に比べて海藻の生育密度が3.6倍であった。   And about the setting method which concerns on these Examples 2-4, when the wet weight of the seaweed sampled per unit area was calculated | required according to the said [grass cutting evaluation of a seaweed], in Example 2, in the case of the comparative example 1 In comparison, the growth density of seaweed is 2.3 times, in Example 3, the growth density of seaweed is 3.2 times that in Comparative Example 1, and in Example 4, compared with that in Comparative Example 1. The growth density of seaweed was 3.6 times.

以上の実施例等で示されるように、本発明によれば、施肥材から供給される肥料成分の拡散を防いで、石材窪地内に鉄分を高い濃度で滞留させることができる。そのため、施肥材の肥料成分を藻類に対して効率的に供給できて、生育密度の高い藻場を効果的に造成することができるようになる。   As shown in the above examples and the like, according to the present invention, the fertilizer component supplied from the fertilizer can be prevented from diffusing and iron can be retained in the stone depression at a high concentration. Therefore, the fertilizer component of a fertilizer can be efficiently supplied with respect to algae, and a seaweed bed with high growth density can be created effectively.

1:施肥材供給容器、1a:容器本体、2:石材、3:移動規制用の石材組み、4:水流規制用の石材組み、5:石材窪地、6:藻類、11:H形鋼、12:鋼板、12a:肥料成分の供給孔、13:吊り金具13。 DESCRIPTION OF SYMBOLS 1: Fertilizer supply container, 1a: Container main body, 2: Stone material, 3: Stone assembly for movement regulation, 4: Stone construction for water flow regulation, 5: Stone depression, 6: Algae, 11: H-section steel, 12 : Steel plate, 12a: feed hole for fertilizer component, 13: hanging metal fitting 13.

Claims (5)

容器本体の内部には藻類の施肥材が充填されていると共に、少なくとも容器本体の上壁部には前記施肥材から供給される肥料成分の供給孔を有する施肥材供給容器を、海域、淡水域、汽水域等の水域底部に沈設するための施肥材供給容器の沈設方法であり、
前記容器本体の側壁部外周には、この施肥材供給容器の水平方向の移動及び/又は揺動を規制するための移動規制用の石材組みを構築すると共に、前記移動規制用の石材組みには、前記容器本体の上壁部上面を超えて上方に突出し、上壁部上面での水の水平方向の流れを緩和する水流規制用の石材組みを構築して、前記容器本体の上壁部上方に該水流規制用の石材組みによる石材窪地を備えるようにしたことを特徴とする施肥材供給容器の沈設方法。
The container body is filled with algae fertilizer, and at least the upper wall of the container body is provided with a fertilizer supply container having a supply hole for fertilizer components supplied from the fertilizer. , A settling method for fertilizer supply containers for sinking to the bottom of a brackish water area,
On the outer periphery of the side wall of the container main body, a stone assembly for movement restriction for restricting the movement and / or swinging of the fertilizer supply container in the horizontal direction is constructed. The upper wall of the container body protrudes upward beyond the upper surface of the upper wall portion, and a stone structure for restricting water flow that relaxes the horizontal flow of water on the upper surface of the upper wall portion is constructed. A method for sinking a fertilizer supply container, comprising: a stone depression made of a stone assembly for regulating water flow.
前記容器本体の上壁部上面は閉塞されることなく、前記水流規制用の石材組みが構築される請求項1に記載の施肥材供給容器の沈設方法。   The method for laying down a fertilizer supply container according to claim 1, wherein the upper surface of the upper wall portion of the container body is not blocked, and the stone structure for regulating the water flow is constructed. 所定の間隔を設けて複数の施肥材供給容器を水域底部に配置し、それぞれに移動規制用の石材組みを構築すると共に、水流規制用の石材組みを構築して、水流規制用の石材組みを介して互いに隣接する施肥材供給容器に対応する石材窪地が併設されるようにする請求項1又は2に記載の施肥材供給容器の沈設方法。   A plurality of fertilizer supply containers are arranged at the bottom of the water area with a predetermined interval, and a stone set for movement restriction is constructed for each, and a stone set for water flow restriction is constructed, and a stone set for water flow restriction is constructed. The method for sinking a fertilizer supply container according to claim 1 or 2, wherein a stone depression corresponding to a fertilizer supply container adjacent to each other is provided. 前記移動規制用の石材組み及び水流規制用の石材組みが、製鋼スラグを骨材に使用した水和固化体からなる石材を用いて構築される請求項1〜3のいずれかに記載の施肥材供給容器の沈設方法。   The fertilizer according to any one of claims 1 to 3, wherein the stone assembly for movement restriction and the stone assembly for water flow restriction are constructed using a stone made of a hydrated solidified body using steelmaking slag as an aggregate. How to set up the supply container. 前記施肥材が、鉄鋼スラグと腐植物質とを混合したスラグ系施肥材である請求項1〜4のいずれかに記載の施肥材供給容器の沈設方法。   The said fertilizer is a slag fertilizer which mixed steel slag and humic substance, The settling method of the fertilizer supply container in any one of Claims 1-4.
JP2015012998A 2015-01-27 2015-01-27 Setting method of fertilizer supply container Active JP6382121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015012998A JP6382121B2 (en) 2015-01-27 2015-01-27 Setting method of fertilizer supply container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015012998A JP6382121B2 (en) 2015-01-27 2015-01-27 Setting method of fertilizer supply container

Publications (2)

Publication Number Publication Date
JP2016136870A JP2016136870A (en) 2016-08-04
JP6382121B2 true JP6382121B2 (en) 2018-08-29

Family

ID=56558231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015012998A Active JP6382121B2 (en) 2015-01-27 2015-01-27 Setting method of fertilizer supply container

Country Status (1)

Country Link
JP (1) JP6382121B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000004710A (en) * 1998-06-24 2000-01-11 Okabe Co Ltd Creation of undersea grove
JP4849840B2 (en) * 2004-07-22 2012-01-11 早川 理絵 Multipurpose reef block
KR100650268B1 (en) * 2005-12-23 2006-11-27 재단법인 포항산업과학연구원 Slag based reefs for marine ranching
JP4351708B2 (en) * 2006-05-18 2009-10-28 新日本製鐵株式会社 Water environment container, water environment protection system, and water environment protection method
JP5884631B2 (en) * 2012-05-14 2016-03-15 新日鐵住金株式会社 Water environment container

Also Published As

Publication number Publication date
JP2016136870A (en) 2016-08-04

Similar Documents

Publication Publication Date Title
JP4489043B2 (en) Water area environmental conservation material and water area environmental conservation method
JP4351708B2 (en) Water environment container, water environment protection system, and water environment protection method
US10934676B2 (en) Lake restoration systems and processes
JP3829140B2 (en) How to repair salmon burn
Ostrovsky et al. Long-term changes in the Lake Kinneret ecosystem: the effects of climate change and anthropogenic factors
Bergman et al. Controlling parameters on facies geometries of the Bahamas, an isolated carbonate platform environment
JP6115911B2 (en) Biological breeding block and biological breeding method
JP2013017462A (en) Method for forming fish reef block and seaweed bed
JP2004159610A (en) Sea weed growing reef and method for forming sea weed bed
Wolanski et al. Water circulation in mangroves, and its implications for biodiversity
JP3142286U (en) Seaweed culture float
JP5070667B2 (en) Underwater environment improvement method
JP4904791B2 (en) Artificial submarine base for aquatic animal settlement / growth or farmland bottom purification
JP6382121B2 (en) Setting method of fertilizer supply container
JP5305047B2 (en) Solid organic matter decomposition type liquid fertilizer supply device and solid organic matter decomposition type liquid fertilizer supply method
JP3729160B2 (en) Environmental improvement method and environmental improvement materials for underwater or beach
JP2001198593A (en) Vegetation box and method for cleaning waterside using the vegetation box
JP2011155906A (en) Nutrient salt supplying device for seaweed, and method for supplying nutrient salt for seaweed
JP6268637B2 (en) Underwater structure, bottom sediment improvement method, and amamo field construction method
JP5884631B2 (en) Water environment container
KR102480653B1 (en) Sea nutrient-dissolving seaweed growth device for the restoration of seaweed grounds
JP4433831B2 (en) Ecosystem-constructed underwater structures
JP2004187519A (en) Eelgrass dissemination material and method for producing the same
JP2001226938A (en) Revetment structure
JP7424933B2 (en) Algae growing material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180801

R150 Certificate of patent or registration of utility model

Ref document number: 6382121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250