JP6379995B2 - Membrane stock solution for carbon membrane and method for producing hollow fiber carbon membrane using the same - Google Patents

Membrane stock solution for carbon membrane and method for producing hollow fiber carbon membrane using the same Download PDF

Info

Publication number
JP6379995B2
JP6379995B2 JP2014217467A JP2014217467A JP6379995B2 JP 6379995 B2 JP6379995 B2 JP 6379995B2 JP 2014217467 A JP2014217467 A JP 2014217467A JP 2014217467 A JP2014217467 A JP 2014217467A JP 6379995 B2 JP6379995 B2 JP 6379995B2
Authority
JP
Japan
Prior art keywords
membrane
hollow fiber
film
stock solution
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014217467A
Other languages
Japanese (ja)
Other versions
JP2016083612A5 (en
JP2016083612A (en
Inventor
山本 浩和
浩和 山本
健祐 渡辺
健祐 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2014217467A priority Critical patent/JP6379995B2/en
Publication of JP2016083612A publication Critical patent/JP2016083612A/en
Publication of JP2016083612A5 publication Critical patent/JP2016083612A5/ja
Application granted granted Critical
Publication of JP6379995B2 publication Critical patent/JP6379995B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

本発明は、炭素膜用製膜原液およびこれを用いた中空糸炭素膜の製造方法に関する。さらに詳しくは、ガス分離性能に優れた中空糸炭素膜の製造を可能とする炭素膜用製膜原液およびこれを用いた中空糸炭素膜の製造方法に関する。   The present invention relates to a membrane forming solution for carbon membrane and a method for producing a hollow fiber carbon membrane using the same. More particularly, the present invention relates to a membrane forming solution for carbon membrane that enables the production of a hollow fiber carbon membrane having excellent gas separation performance and a method for producing a hollow fiber carbon membrane using the same.

中空糸炭素膜は、ガス分離可能なサイズの孔を有しており、種々の無機膜の中でもすぐれた気体分離性を示し、かつ有機膜が適用できない70〜150℃といった高い温度に対する耐熱性、耐薬品性が要求される環境下においても使用可能であることから、その高機能分離膜としての実用性が期待されている。   The hollow fiber carbon membrane has pores of a size capable of gas separation, exhibits excellent gas separation properties among various inorganic membranes, and heat resistance to high temperatures such as 70 to 150 ° C. where organic membranes cannot be applied, Since it can be used in an environment where chemical resistance is required, it is expected to be practical as a highly functional separation membrane.

これまで中空糸炭素膜としては、原料として例えばポリフェニレンオキサイドをスルホン化した樹脂を用いたもの(特許文献1〜2)、芳香族ポリイミドを用いたもの(特許文献3)が提案されている。   Conventionally, as hollow fiber carbon membranes, materials using, for example, a resin sulfonated with polyphenylene oxide (Patent Documents 1 and 2) and those using aromatic polyimide (Patent Document 3) have been proposed.

しかるに、スルホン化ポリフェニレンオキサイドは、それ自身が汎用性材料ではないためポリフェニレンオキサイドをスルホン化する合成工程が必要となり、一方芳香族ポリイミドは、その合成に有機溶媒での反応が必要となるが、この有機溶媒への溶解性を確保することが困難なため、特殊な製造方法となってしまう。このようにスルホン化ポリフェニレンオキサイドあるいは芳香族ポリイミドを原料とする炭素膜は、原料が高価であったり、その原料調製や製膜工程が複雑であったりすることから、膜コストが高くなってしまうといった問題がある。   However, since sulfonated polyphenylene oxide itself is not a general-purpose material, a synthesis process for sulfonated polyphenylene oxide is required, whereas aromatic polyimide requires a reaction in an organic solvent for its synthesis. Since it is difficult to ensure the solubility in an organic solvent, it becomes a special manufacturing method. As described above, the carbon film using sulfonated polyphenylene oxide or aromatic polyimide as a raw material is expensive in raw material, and the raw material preparation and film forming process are complicated, resulting in an increase in film cost. There's a problem.

一方、ポリスルホンやポリフェニルスルホン、ポリビフェニルエーテルジスルホンは、汎用性材料であり、耐熱性が高いといった特徴を有するものの、熱可塑性であるため、中空糸炭素膜を調製する過程での、例えば250〜330℃といった熱処理において中空形状が保てず、均一な中空糸膜化ができないという問題があった。   On the other hand, polysulfone, polyphenylsulfone, and polybiphenyl ether disulfone are versatile materials and have high heat resistance, but are thermoplastic, so in the process of preparing a hollow fiber carbon membrane, for example 250- There was a problem that the hollow shape could not be maintained by heat treatment at 330 ° C., and a uniform hollow fiber membrane could not be formed.

特開2009−34614号公報JP 2009-34614 A 特開2013−94744号公報JP 2013-94744 A 特開2000−185212号公報JP 2000-185212 A

本発明の目的は、中空糸膜の原料として汎用性材料であり安価なポリビフェニルエーテルジスルホンを用いつつ、断面中空形状を保った中空糸膜の製造を可能とする製膜原液およびこれを用いた中空糸炭素膜の製造方法を提供することにある。   An object of the present invention is to use a membrane-forming stock solution that enables production of a hollow fiber membrane having a hollow cross-section while using a low-cost polybiphenyl ether disulfone, which is a versatile material as a raw material for a hollow fiber membrane, and the same. It is providing the manufacturing method of a hollow fiber carbon membrane.

かかる本発明の目的は、製膜原液中、15〜40重量%の濃度となる量の式
nは重合度である
で表されるポリビフェニルエーテルジスルホンおよび2〜20重量%の濃度となる量の架橋可能な水溶性添加剤を、これらを溶解可能な溶媒に溶解させた炭素膜用製膜原液によって達成され、この炭素膜用製膜原液を、二重環状ノズルを用いて、湿式または乾湿式紡糸法により中空状に成形し、空気中で250〜350℃で加熱して不融化処理した後、不活性雰囲気または真空中で600〜800℃で加熱して炭化処理を行うことにより中空糸炭素膜が製造される。
The object of the present invention is to provide a formula for the amount that results in a concentration of 15 to 40% by weight in the film-forming stock solution.
n is a degree of polymerization, and a film for carbon film in which polybiphenyl ether disulfone and a crosslinkable water-soluble additive having a concentration of 2 to 20% by weight are dissolved in a solvent capable of dissolving them. be achieved by a stock solution, the carbon film for film-forming stock solution, dual annular with a nozzle, formed into a hollow fiber shape by wet or dry-wet spinning method, heated infusibilized at 250 to 350 ° C. in air Then, a hollow fiber carbon membrane is manufactured by heating at 600-800 degreeC in an inert atmosphere or a vacuum, and performing a carbonization process.

本発明に係る製膜原液に用いられる材料はいずれも安価であり、紡糸方法も通常の工業用水処理膜と同じ方法が適用できるため、中空糸炭素膜製造の低コスト化および量産性向上を可能にするといったすぐれた効果を奏する。かかる製膜原液を用いる中空糸炭素膜の製造方法は、安価な材料を用いて、簡素化された方法により高機能炭素膜を製膜することが可能となるため、その生産性にすぐれているといった効果を奏する。   All the materials used in the membrane-forming stock solution according to the present invention are inexpensive, and the spinning method can be applied to the same method as a normal industrial water treatment membrane, so it is possible to reduce the cost and improve the mass productivity of hollow fiber carbon membrane production. Excellent effect such as. The method for producing a hollow fiber carbon membrane using such a membrane-forming stock solution is excellent in productivity because a high-performance carbon membrane can be formed by a simplified method using an inexpensive material. There are effects such as.

また、中空糸炭素膜をガス分離用の膜として用いる場合には、使用条件に応じた膜強度や透過速度の調整のために、中空糸膜の内外径と膜厚を任意寸法で調整可能なことが望ましいが、本発明においては、ポリマーの選定および配合の調整によって耐膨潤性にすぐれた紡糸膜とすることにより、紡糸段階における中空糸膜の径を0.5〜3mm、肉厚が100〜1000μmとなるように調整することができる。   In addition, when a hollow fiber carbon membrane is used as a gas separation membrane, the inner and outer diameters and thicknesses of the hollow fiber membrane can be adjusted with arbitrary dimensions in order to adjust the membrane strength and permeation rate according to the use conditions. However, in the present invention, by selecting a polymer and adjusting the blending to obtain a spun membrane having excellent swelling resistance, the diameter of the hollow fiber membrane at the spinning stage is 0.5 to 3 mm and the wall thickness is 100 to 1000 μm. Can be adjusted.

実施例における紡糸後の中空糸膜の膜断面一部SEM拡大写真(×300)である。2 is a partial SEM enlarged photograph (× 300) of a cross-section of a hollow fiber membrane after spinning in an example. 実施例における紡糸後の中空糸膜の膜断面一部SEM拡大写真(×5000)である。2 is a partial SEM enlarged photograph (× 5000) of a cross-section of a hollow fiber membrane after spinning in an example. 実施例における不融化処理後の中空糸膜の膜断面一部SEM拡大写真(×700)である。2 is a partial SEM enlarged photograph (× 700) of a membrane cross-section of a hollow fiber membrane after infusibilization treatment in an example. 実施例における不融化処理後の中空糸膜の膜断面一部SEM拡大写真(×5000)である。2 is a partial SEM enlarged photograph (× 5000) of a cross-section of a hollow fiber membrane after infusibilization treatment in an example. 実施例における炭化処理後の中空糸炭素膜の膜断面一部SEM拡大写真(×700)である。FIG. 3 is a partial SEM enlarged photograph (× 700) of a cross section of a hollow fiber carbon membrane after carbonization in an example. 実施例における炭化処理後の中空糸炭素膜の膜断面一部SEM拡大写真(×5000)である。FIG. 2 is a partial SEM enlarged photograph (× 5000) of a cross section of a hollow fiber carbon membrane after carbonization in an example. 実施例における紡糸後の中空糸膜の断面SEM拡大写真(×120)である。2 is a cross-sectional SEM enlarged photograph (× 120) of a hollow fiber membrane after spinning in an example. 比較例1における紡糸後の中空糸膜の断面SEM拡大写真(×230)である。2 is a cross-sectional SEM enlarged photograph (× 230) of a hollow fiber membrane after spinning in Comparative Example 1. FIG.

本発明で用いられるポリビフェニルエーテルジスルホンは、Solvay Specialty Polymers 社からSUPRADELとして市販されている樹脂であり、下記の繰り返し構造を有している。
The polybiphenyl ether disulfone used in the present invention is a resin commercially available as SUPRADEL from Solvay Specialty Polymers, and has the following repeating structure.

架橋可能な水溶性添加剤としては、N,N’-メチレンビスアクリルアミド、エチレングリコールジメタクリレート等のジビニル化合物、ポリビニルアルコール、ポリエチレングリコール、ポリビニルピロリドン等が挙げられ、これらの少なくとも一種の多官能性化合物が用いられ、好ましくは重量平均分子量Mwが約10,000(K-15)〜1,200,000(K-90)のポリビニルピロリドンが用いられる。   Examples of cross-linkable water-soluble additives include divinyl compounds such as N, N′-methylenebisacrylamide and ethylene glycol dimethacrylate, polyvinyl alcohol, polyethylene glycol, polyvinyl pyrrolidone, and the like, and at least one of these multifunctional compounds Preferably, polyvinylpyrrolidone having a weight average molecular weight Mw of about 10,000 (K-15) to 1,200,000 (K-90) is used.

ポリビフェニルエーテルジスルホンと架橋可能な水溶性添加剤は、製膜原液中、前者が15〜40重量%、好ましくは18〜30重量%、後者が2〜20重量%、好ましくは3〜16重量%の濃度で用いられる。ポリビフェニルエーテルジスルホンの濃度がこれより高い場合には、相分離してしまい紡糸ができなくなり、一方これより低い場合には、糸強度が弱いので焼成前の取扱いが困難となるとなる。また、架橋可能な水溶性添加剤の濃度がこれより高い場合には、相分離してしまい紡糸ができなくなり、一方これより低い場合には、紡糸時に膜断面中100〜150μmサイズのボイドが発生してしまい、これは不融化処理および炭化処理後も残り、炭素膜の強度を低下させる原因となる。   The water-soluble additive capable of crosslinking with polybiphenyl ether disulfone is 15 to 40% by weight of the former, preferably 18 to 30% by weight, and 2 to 20% by weight of the latter, preferably 3 to 16% by weight, in the film forming stock solution. Used at a concentration of. If the concentration of polybiphenyl ether disulfone is higher than this, the phases are separated and spinning cannot be performed. On the other hand, if it is lower than this, the yarn strength is weak and handling before firing becomes difficult. If the concentration of the water-soluble additive that can be cross-linked is higher than this, the phase will be separated and spinning will not be possible. Thus, this remains after the infusibilization treatment and carbonization treatment, and causes the strength of the carbon film to decrease.

炭素膜用製膜原液の調製は、ポリビフェニルエーテルジスルホンと架橋可能な水溶性添加剤とを、これらが溶解可能な溶媒に溶解させることにより行われる。かかる溶媒としては、メタノール、エタノール、テトラヒドロフラン、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等が挙げられ、好ましくはN-メチル-2-ピロリドンが用いられる。その際、必要に応じて約0.05〜2重量%程度の水も添加される。   Preparation of the membrane forming solution for carbon membrane is performed by dissolving polybiphenyl ether disulfone and a crosslinkable water-soluble additive in a solvent in which they can be dissolved. Examples of such a solvent include methanol, ethanol, tetrahydrofuran, N, N-dimethylacetamide, N-methyl-2-pyrrolidone and the like, and preferably N-methyl-2-pyrrolidone is used. At that time, about 0.05 to 2% by weight of water is also added as necessary.

ここで、紡糸時に紡糸原液が相分離してしまうと安定した紡糸ができないため、紡糸、製膜時における製膜溶液は、相安定な温度、好ましくは〔製膜時の温度−相分離する温度〕の絶対値が10℃以上の相安定性となるものが用いられる。   Here, since stable spinning cannot be performed if the spinning dope is phase-separated at the time of spinning, the film-forming solution at the time of spinning and film-forming is preferably a phase-stable temperature, preferably [temperature during film-forming temperature for phase separation. ] Whose phase stability is 10 ° C. or more is used.

調製された製膜原液は、平膜状にも製膜できるが、好ましくは中空糸膜状に製膜される。中空糸膜状に製膜する場合には、湿式紡糸法または乾湿式紡糸法によって、二重環状構造の中空糸紡糸ノズルの外管から直接または空走を経て凝固浴中に押し出し、必要に応じて紡糸ノズルの内管からは、製膜原液の溶媒とポリマーに対して非溶解性の芯液を同時に押し出すことにより、非溶媒誘起相分離法によりポリビフェニルエーテルジスルホン中空糸膜が成形される。ここで芯液および凝固浴は、製膜原液の溶媒と混合するが、ポリビフェニルエーテルジスルホンとは非溶解性の溶媒、例えば水等が用いられる。また、このときの芯液および凝固浴の温度は、一般に約-20〜60℃、好ましくは約0〜30℃である。   The prepared membrane-forming stock solution can be formed into a flat membrane, but is preferably formed into a hollow fiber membrane. When forming into a hollow fiber membrane, it is extruded into the coagulation bath directly or idly from the outer tube of a hollow fiber spinning nozzle with a double ring structure by wet spinning method or dry wet spinning method. From the inner tube of the spinning nozzle, a polybiphenyl ether disulfone hollow fiber membrane is formed by a non-solvent-induced phase separation method by simultaneously extruding a core solution that is insoluble in the membrane-forming stock solution and the polymer. Here, the core solution and the coagulation bath are mixed with the solvent of the film-forming stock solution, but polybiphenyl ether disulfone is an insoluble solvent such as water. The temperature of the core liquid and the coagulation bath at this time is generally about -20 to 60 ° C, preferably about 0 to 30 ° C.

得られたポリビフェニルエーテルジスルホン中空糸膜は、必要に応じて水洗され、次いで乾燥され、すなわち中空糸状物のポリビフェニルエーテルジスルホン部分から水分の除去が行われる。乾燥は、ポリビフェニルエーテルジスルホン中空糸膜が完全に乾燥する条件であれば特に限定されないが、一般には約20〜80℃、好ましくは約25〜35℃で、約0.5〜4時間程度行われる。   The obtained polybiphenyl ether disulfone hollow fiber membrane is washed with water as necessary and then dried, that is, moisture is removed from the polybiphenyl ether disulfone portion of the hollow fiber-like product. The drying is not particularly limited as long as the polybiphenyl ether disulfone hollow fiber membrane is completely dried, but is generally about 20 to 80 ° C., preferably about 25 to 35 ° C., for about 0.5 to 4 hours.

乾燥されたポリビフェニルエーテルジスルホン中空糸膜は、炭化処理に先立ち不融化処理が行われる。不融化処理は、約150〜300℃程度で約0.5〜4時間程度の加熱処理を施すことにより行われる。かかる不融化処理により、紡糸段階では図1〜2に示されるように、膜断面全体に液液相分離に基づくサブミクロンから数ミクロンサイズの気泡が観察されていたものが、不融化処理後には図3〜4に示されるように、部分的に数十ミクロンサイズのボイド構造が観察されるものの、ほとんどSEMで観察されない緻密構造となる。   The dried polybiphenyl ether disulfone hollow fiber membrane is infusibilized prior to carbonization. The infusibilization treatment is performed by performing a heat treatment at about 150 to 300 ° C. for about 0.5 to 4 hours. As a result of this infusibilization treatment, as shown in FIGS. 1 and 2, at the spinning stage, submicron to several micron size bubbles based on liquid-liquid phase separation were observed on the entire membrane cross section. As shown in FIGS. 3 to 4, although a void structure having a size of several tens of microns is partially observed, a dense structure hardly observed by SEM is obtained.

炭化処理は、不融化処理後のポリビフェニルエーテルジスルホン中空糸膜を公知の方法、例えばポリビフェニルエーテルジスルホン中空糸膜を容器内に収容し、ヘリウム、アルゴンガス、窒素ガスなどで置換した不活性ガス雰囲気下あるいは真空中で加熱処理することにより行われる。加熱条件は、一般には約600〜800℃、約0.5〜4時間といった条件が適用される。かかる炭化処理により、図5〜6に示されるように不融化後にみられる場合があるボイド構造は全く確認されなくなり、全体が緻密構造となる。   Carbonization treatment is a known method in which a polybiphenyl ether disulfone hollow fiber membrane after infusibilization treatment is stored in a container, for example, a polybiphenyl ether disulfone hollow fiber membrane, and is replaced with helium, argon gas, nitrogen gas, or the like. The heat treatment is performed in an atmosphere or in a vacuum. The heating conditions are generally about 600 to 800 ° C. and about 0.5 to 4 hours. By such carbonization treatment, as shown in FIGS. 5 to 6, no void structure which may be seen after infusibilization is confirmed, and the whole becomes a dense structure.

得られた中空糸炭素膜は、さらにその分離性能を向上させるべく、その表面に公知技術であるプロピレン、ブタン、アセトニトリル、シクロヘキサン等の化学的気相蒸着(CVD)を施すこともできる。   The obtained hollow fiber carbon membrane can be subjected to chemical vapor deposition (CVD) of propylene, butane, acetonitrile, cyclohexane or the like, which is a known technique, on its surface in order to further improve the separation performance.

次に、実施例について本発明を説明する。   Next, the present invention will be described with reference to examples.

実施例
ポリビフェニルエーテルジスルホン樹脂(Solvay Specialty Polymers社製品SUPRADEL)20重量部、ポリビニルピロリドン(ISP社製品K-30G)3重量部、水1重量部およびN-メチル-2-ピロリドン76重量部からなる、室温で均一な製膜原液を調製した。
Example Polybiphenyl ether disulfone resin (SUPRADEL, product of Solvay Specialty Polymers) 20 parts by weight, polyvinyl pyrrolidone (ISP product K-30G) 3 parts, water 1 part, N-methyl-2-pyrrolidone 76 parts A uniform film-forming stock solution was prepared at room temperature.

調製された製膜原液を、二重環状構造の紡糸ノズルを用い、水を芯液として、乾湿式紡糸法により水凝固浴中に押し出し、その後121℃の加圧水中で1時間洗浄してから60℃のオーブン中で乾燥し、外径940μm、内径600μmの多孔質ポリビフェニルエーテルジスルホン中空糸膜を得た。紡糸後の中空糸膜の断面SEM拡大写真(×120)である図7に示されるように、得られる中空糸膜は良好な円管形状を保持していることが確認された。 The prepared film forming solution was extruded into a water coagulation bath by a dry and wet spinning method using water as a core solution using a spinning nozzle having a double annular structure, and then washed in pressurized water at 121 ° C. for 1 hour and then 60 Drying in an oven at 0 ° C. yielded a porous polybiphenyl ether disulfone hollow fiber membrane having an outer diameter of 940 μm and an inner diameter of 600 μm. As shown in FIG. 7 which is a cross-sectional SEM enlarged photograph (× 120) of the hollow fiber membrane after spinning, it was confirmed that the obtained hollow fiber membrane maintained a good circular tube shape.

次いで、得られた中空糸膜をパーフルオロアルコキシアルカン(PFA:テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合樹脂)管に挿入し、空気中で温度300℃、1時間の加熱を行い、不融化処理を施した。さらに、不融化処理した中空糸膜を石英管に挿入し、窒素雰囲気下で温度650℃、1時間の加熱を行い、炭化処理を施して中空糸炭素膜を得た。   Next, the resulting hollow fiber membrane is inserted into a perfluoroalkoxyalkane (PFA: tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer resin) tube, heated in air at 300 ° C. for 1 hour, and infusibilized. Was given. Further, the infusibilized hollow fiber membrane was inserted into a quartz tube, heated in a nitrogen atmosphere at a temperature of 650 ° C. for 1 hour, and carbonized to obtain a hollow fiber carbon membrane.

得られた中空糸炭素膜について、引張試験およびガス分離試験が行われた。
引張試験:中空糸炭素膜を引張試験器(島津製作所製小型卓上試験器EZTest)にセッ
トし、標線間距離50mm、引張速度毎分60mmの条件下で引張試験を行い、
試験時の伸びを下記式を用いて算出した
〔(試験終了時の標線間距離−試験開始時の標線間距離)/
試験開始時の標線間距離〕×100
また、破断荷重/膜の断面積により破断応力を算出した
ガス分離試験:中空糸炭素膜の片端をエポキシ樹脂で封止し、もう片端をスエジロ
ック製メタルガスケットのグランド6LV-4-VCR-3S-6MTB7の配管部に
10mmほど挿入して、中空糸炭素膜の挿入箇所約5mmまでの中空糸
素膜とグランドの配管の隙間をエポキシ樹脂にて接着し、ガス分離
評価用のミニモジュールを作製して、これをガス分離装置に取り付
け、中空糸炭素膜の外側に圧力200kPagにてヘリウム、二酸化炭素
、窒素またはメタンの各々異なるガスを流し、管側に透過するガス
流量をマスフロコントローラーで測定し、各ガスの透過速度を圧力
/膜面積により算出した
The obtained hollow fiber carbon membrane was subjected to a tensile test and a gas separation test.
Tensile test: Set the hollow fiber carbon membrane in a tensile tester (SHIZUZU small desktop tester EZTest).
The tensile test was performed under the conditions of a distance between marked lines of 50 mm and a tensile speed of 60 mm per minute.
The elongation during the test was calculated using the following formula
[(Distance between marked lines at end of test-Distance between marked lines at start of test) /
Distance between marked lines at start of test) x 100
In addition, the breaking stress was calculated from the breaking load / the cross-sectional area of the membrane. Gas separation test: One end of the hollow fiber carbon membrane was sealed with epoxy resin, and the other end was swept.
In the piping part of the metal gasket gland 6LV-4-VCR-3S-6MTB7
Insert as 10 mm, the hollow fiber charcoal to the insertion point about 5mm of the hollow fiber carbon membrane
Gas separation by bonding the gap between the base film and the gland piping with epoxy resin
Create a mini-module for evaluation and attach it to the gas separator
Helium and carbon dioxide at a pressure of 200kPag outside the hollow fiber carbon membrane
, Nitrogen or methane different gas flows and permeates to the tube side
The flow rate is measured with a mass flow controller, and the permeation rate of each gas is pressure.
/ Calculated by membrane area

比較例1
実施例1において、ポリフェニルスルホン樹脂(Solvay Specialty Polymers社製品RADELR5500)20重量部、ポリビニルピロリドン(K-30G)3重量部、水1重量部およびN-メチル-2-ピロリドン76重量部からなる室温で均一な製膜原液を用いて、外径1000μm、内径600μmの多孔質ポリフェニルスルホン樹脂中空糸膜を紡糸した。紡糸後の中空糸膜の断面SEM拡大写真(×230)である図8に示されるように、中空糸断面は全体が不定形であり、中空糸膜に求められる円管形状を保持していなかった。また実施例1と同条件下で不融化処理および炭化処理を行い、引張試験およびガス分離試験が行われた。
Comparative Example 1
In Example 1, a room temperature consisting of 20 parts by weight of a polyphenylsulfone resin (product of Solvay Specialty Polymers RADELR5500), 3 parts by weight of polyvinylpyrrolidone (K-30G), 1 part by weight of water and 76 parts by weight of N-methyl-2-pyrrolidone A porous polyphenylsulfone resin hollow fiber membrane having an outer diameter of 1000 μm and an inner diameter of 600 μm was spun using a uniform membrane-forming stock solution. As shown in FIG. 8, which is a cross-sectional SEM enlarged photograph (× 230) of the hollow fiber membrane after spinning, the entire hollow fiber cross section is indefinite, and does not retain the circular tube shape required for the hollow fiber membrane. It was. Further, an infusibilization treatment and a carbonization treatment were performed under the same conditions as in Example 1, and a tensile test and a gas separation test were conducted.

比較例2
実施例1において、ポリビニルピロリドンおよび水が用いられず、N-メチル-2-ピロリドン量が80重量部に変更された室温条件下で均一な製膜原液を用いて、外径970μm、内径600μmの多孔質ポリフェニルスルホン樹脂中空糸膜を紡糸し、不融化処理および炭化処理を行ったところ、得られた中空糸炭素膜には多くの箇所において亀裂が確認され、引張試験およびガス分離試験を行うことができなかった。
Comparative Example 2
In Example 1, not used is polyvinylpyrrolidone and water, N- methyl-2-pyrrolidone amount was changed to 80 parts by weight, using a uniform film-forming solution at room temperature conditions, the outer diameter 970Myuemu, inner diameter 600μm The hollow fiber membrane was spun and infusibilized and carbonized, and the resulting hollow fiber carbon membrane was cracked at many locations, and was subjected to tensile tests and gas separation tests. Could not do.

施例および比較例1で得られた測定結果は、次の表に示される。


測定項目 実施例 比較例1
〔形状〕
外径 (μm) 450 880
肉厚 (μm) 32 105
〔破断試験〕
破断応力 (MPa) 106 25
破断伸び (%) 2.1 1.2
〔ガス透過試験〕
He透過速度(モル/m2・秒・Pa) 3.07×10-9 2.50×10-9
CO2透過速度( 〃 ) 3.33×10-10 1.08×10-9
N2透過速度 ( 〃 ) 1.82×10-11 2.76×10-11
CH4透過速度( 〃 ) 7.30×10-12 1.22×10-11
分離係数α(He/CH4) 421 206
Measurement results obtained in the real施例and Comparative Example 1 are shown in the following Table.

table
Measurement Item Example Comparative Example 1
〔shape〕
Outer diameter (μm) 450 880
Wall thickness (μm) 32 105
(Break test)
Breaking stress (MPa) 106 25
Elongation at break (%) 2.1 1.2
[Gas permeation test]
He permeation rate (mol / m 2 · sec · Pa) 3.07 × 10 -9 2.50 × 10 -9
CO 2 permeation rate (〃) 3.33 × 10 -10 1.08 × 10 -9
N2 transmission speed (速度) 1.82 × 10 -11 2.76 × 10 -11
CH 4 transmission rate (速度) 7.30 × 10 -12 1.22 × 10 -11
Separation factor α (He / CH 4 ) 421 206

本発明により得られる中空糸炭素膜は、ガスの分子径が小さくなるにつれて透過量が高くなるガス分離機能を有していることから、水素、ヘリウムといった有益な低分子のガスとメタン、トルエン等の有機ガスとを混合したガスから、水素やヘリウムのみを取り出す用途や、蒸気分離あるいは膜面蒸留用の膜として有効に使用することができる。炭素膜は耐熱性、耐薬品性にすぐれているので、有機膜では適用ができない用途にも使用することができる。   The hollow fiber carbon membrane obtained by the present invention has a gas separation function in which the amount of permeation increases as the molecular diameter of the gas decreases, so that useful low-molecular gas such as hydrogen and helium, methane, toluene, etc. It can be used effectively as an application for extracting only hydrogen or helium from a gas mixed with organic gas, or as a membrane for vapor separation or membrane surface distillation. Since the carbon film has excellent heat resistance and chemical resistance, it can be used for applications that cannot be applied to organic films.

Claims (4)

製膜原液中、15〜40重量%の濃度となる量の式
nは重合度である
で表されるポリビフェニルエーテルジスルホンおよび2〜20重量%の濃度となる量の架橋可能な水溶性添加剤を、これらを溶解可能な溶媒に溶解させた炭素膜用製膜原液。
Formula for the amount of concentration of 15 to 40% by weight in the stock solution
n is a degree of polymerization, and a film for carbon film in which polybiphenyl ether disulfone and a crosslinkable water-soluble additive having a concentration of 2 to 20% by weight are dissolved in a solvent capable of dissolving them. Stock solution.
架橋可能な水溶性添加剤がN,N’-メチレンビスアクリルアミド、エチレングリコールジメタクリレート、ポリビニルアルコール、ポリエチレングリコールまたはポリビニルピロリドンである請求項1記載の炭素膜用製膜原液。   The carbon film-forming stock solution according to claim 1, wherein the water-soluble additive capable of crosslinking is N, N'-methylenebisacrylamide, ethylene glycol dimethacrylate, polyvinyl alcohol, polyethylene glycol or polyvinyl pyrrolidone. 溶媒がメタノール、エタノール、テトラヒドロフラン、N,N-ジメチルアセトアミドまたはN-メチル-2-ピロリドンである請求項1記載の炭素膜用製膜原液。   2. The film forming solution for carbon film according to claim 1, wherein the solvent is methanol, ethanol, tetrahydrofuran, N, N-dimethylacetamide or N-methyl-2-pyrrolidone. 請求項1記載の炭素膜用製膜原液を、二重環状ノズルを用いて、湿式または乾湿式紡糸法により中空糸状に成形し、空気中で250〜350℃で加熱して不融化処理した後、不活性雰囲気または真空中で600〜800℃で加熱して炭化処理を行う中空糸炭素膜の製造方法。   After the film-forming stock solution for carbon membrane according to claim 1 is formed into a hollow fiber shape by a wet or dry-wet spinning method using a double annular nozzle and heated at 250 to 350 ° C. in air to infusibilize the film. A method for producing a hollow fiber carbon membrane, which is carbonized by heating at 600 to 800 ° C. in an inert atmosphere or vacuum.
JP2014217467A 2014-10-24 2014-10-24 Membrane stock solution for carbon membrane and method for producing hollow fiber carbon membrane using the same Active JP6379995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014217467A JP6379995B2 (en) 2014-10-24 2014-10-24 Membrane stock solution for carbon membrane and method for producing hollow fiber carbon membrane using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014217467A JP6379995B2 (en) 2014-10-24 2014-10-24 Membrane stock solution for carbon membrane and method for producing hollow fiber carbon membrane using the same

Publications (3)

Publication Number Publication Date
JP2016083612A JP2016083612A (en) 2016-05-19
JP2016083612A5 JP2016083612A5 (en) 2017-11-09
JP6379995B2 true JP6379995B2 (en) 2018-08-29

Family

ID=55972422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014217467A Active JP6379995B2 (en) 2014-10-24 2014-10-24 Membrane stock solution for carbon membrane and method for producing hollow fiber carbon membrane using the same

Country Status (1)

Country Link
JP (1) JP6379995B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113877434B (en) * 2020-07-02 2022-12-09 中国石油化工股份有限公司 Method for preparing hollow fiber carbon film by direct wrapping heat treatment and hollow fiber carbon film thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375031A (en) * 1985-06-12 1988-04-05 アモコ・コ−ポレイション Production of sulfonated poly(arylether) resin
DE3807296A1 (en) * 1988-03-05 1989-09-14 Basf Ag HIGH-TEMPERATURE-RESISTANT POLYARYLETHERSULPHONE / POLYARYLETHERKETONE MOLDS WITH IMPROVED PHASE CONNECTION
KR20070036141A (en) * 2004-07-22 2007-04-02 솔베이 어드밴스트 폴리머스 엘.엘.씨. Polysulfone-polyether blockcopolymers, process to synthesize it, membranes made therefrom
JP2006255502A (en) * 2005-03-15 2006-09-28 Nok Corp Manufacturing method of porous polyphenylsulfone resin hollow fiber membrane
JP5339324B2 (en) * 2007-08-02 2013-11-13 独立行政法人産業技術総合研究所 Hollow fiber carbon membrane and method for producing the same
IN2007CH02892A (en) * 2007-12-04 2009-09-11 Solvay
JP5993941B2 (en) * 2011-05-25 2016-09-21 ソルベイ スペシャルティ ポリマーズ ユーエスエー, エルエルシー Polymer with reduced estrogenic activity
JP5708684B2 (en) * 2013-02-27 2015-04-30 Nok株式会社 Method for producing hollow fiber carbon membrane

Also Published As

Publication number Publication date
JP2016083612A (en) 2016-05-19

Similar Documents

Publication Publication Date Title
JP6465120B2 (en) Method for producing hollow fiber carbon membrane
JP5339324B2 (en) Hollow fiber carbon membrane and method for producing the same
JP5966298B2 (en) Method for producing hollow fiber carbon membrane
TW201739503A (en) Fluid separation membrane, fluid separation membrane module, and porous carbon fiber
JP6358337B2 (en) Membrane stock solution for carbon membrane and method for producing carbon hollow fiber membrane using the same
Rownaghi et al. Effects of coating solvent and thermal treatment on transport and morphological characteristics of PDMS/T orlon composite hollow fiber membrane
JP5171012B2 (en) Method for producing polyolefin microporous membrane
Liu et al. Highly gas permeable, ultrathin Teflon AF2400/γ-alumina composite hollow fiber membranes for dissolved gas analysis
KR20160116466A (en) Method for manufacturing asymmetric hollow fiber membranes for gas separation using semi-thermally induced phase separation and asymmetric hollow fiber membranes for gas separation manufactured thereby
JP6379995B2 (en) Membrane stock solution for carbon membrane and method for producing hollow fiber carbon membrane using the same
TWI789408B (en) Carbon membrane for fluid separation and manufacturing method thereof
JP2016140836A (en) Method for production of hollow fiber carbon membrane module
JP2016083612A5 (en)
CN110831690B (en) Film-forming solution and method for producing separation membrane using same
JP2017136561A (en) Manufacturing method of hollow fiber carbon membrane
CN113195081A (en) Porous membranes for high pressure filtration
US20130313739A1 (en) Membrane-forming dope solution for carbon membranes and method for producing carbon hollow fiber membranes using the same
JP2022514036A (en) Porous membrane for high pressure filtration
Tanaka et al. Nanoporous Membranes Prepared from Homogeneous Lamellar Structure Developed via Biaxial Melt‐Drawing of Ultra‐High Molecular Weight Polyethylene/Normal Molecular Weight Polyethylene Blend Films
RU2655140C1 (en) Fiberglass composite gas-filling membrane and the method of its production
JP2017013004A (en) Separation film module prepared with hollow fiber carbon film
KR20150121697A (en) Polymer resin composition for preparing hollow fiber membrane, preparation method of hollow fiber membrane, and hollow fiber membrane
KR20170036977A (en) Polyvinylidenefluoride hollow fiber membrane with structure of micro fibril and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180716

R150 Certificate of patent or registration of utility model

Ref document number: 6379995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250