JP6376979B2 - Method for synthesizing nanocarriers comprising radiation-sensitive copolymers as constituents - Google Patents

Method for synthesizing nanocarriers comprising radiation-sensitive copolymers as constituents Download PDF

Info

Publication number
JP6376979B2
JP6376979B2 JP2015004060A JP2015004060A JP6376979B2 JP 6376979 B2 JP6376979 B2 JP 6376979B2 JP 2015004060 A JP2015004060 A JP 2015004060A JP 2015004060 A JP2015004060 A JP 2015004060A JP 6376979 B2 JP6376979 B2 JP 6376979B2
Authority
JP
Japan
Prior art keywords
diselenide
synthesizing
block copolymer
nanomedicine
polyethylene glycol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015004060A
Other languages
Japanese (ja)
Other versions
JP2016130221A (en
Inventor
林武智
杜定賢
李偉銘
李銘忻
Original Assignee
行政院原子能委員會核能研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 行政院原子能委員會核能研究所 filed Critical 行政院原子能委員會核能研究所
Priority to JP2015004060A priority Critical patent/JP6376979B2/en
Publication of JP2016130221A publication Critical patent/JP2016130221A/en
Application granted granted Critical
Publication of JP6376979B2 publication Critical patent/JP6376979B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Radiation-Therapy Devices (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Description

本発明は、放射線感受性共重合体を構成成分とするナノキャリアであって、特に、陽子線治療用の放射線感受性共重合体を構成成分とするナノキャリアおよびナノキャリアを用いるナノメディシンの合成方法に関する。 The present invention relates to a nanocarrier comprising a radiation-sensitive copolymer as a constituent component, and more particularly to a nanocarrier comprising a radiation-sensitive copolymer for proton beam therapy as a constituent component and a nanomedicine synthesis method using the nanocarrier.

癌の発生は人体細胞に病変が起きるもので、臨床上の治療法としては外科手術、放射線療法、化学療法、定位放射線治療などが主流である。また、異なる療法は癌病巣に対しても、それぞれの効果と適応症にも相違がある。 Cancer is caused by lesions in human body cells, and surgical treatment, radiotherapy, chemotherapy, stereotactic radiotherapy, etc. are the mainstream clinical treatments. Different therapies have different effects and indications for cancer lesions.

放射線療法の基本原理は、放射線で癌細胞核の中にあるデオキシリボ核酸(deoxyribonucleic acid, DNA)の二重螺旋構造を形成している二本鎖を切断し、癌細胞を死滅させるかその成長を抑制することを目的とし、腫瘍細胞に理想的な照射量を与えて治療効果をもたらす。従来の光子線治療に用いられるγ線もしくはX線は人体を透過する時、照射深度が深くなるにつれて、γ線の強度も指数関数的に減衰するので、腫瘍における癌細胞を破壊する前に、多くの正常な組織に影響する。
しかし、陽子線の物理特性として、そのエネルギーはヒト組織への貫通深度と相まって減衰する一方で、射程先端(即ち腫瘍の位置)で速度を落し、瞬間的に最大エネルギーを放出してブラッグピークを発生させ、他の健康なヒト組織に損傷を与えないまま、癌細胞に有効な照射量を与えて治療する。更に、陽子線治療の拡大ブラッグピーク(spread-out Bragg peak, SOBP)特性により、治療過程において患者の正常なヒト組織が損傷を受けるリスクを下げ、放射線治療の副作用も相対的に最小限に抑えることができる。
The basic principle of radiation therapy is that radiation breaks the double strands that form the double helical structure of deoxyribonucleic acid (DNA) in cancer cell nuclei, killing cancer cells or suppressing their growth. The aim is to provide a therapeutic effect by giving the tumor cells an ideal dose. When γ-rays or X-rays used in conventional photon therapy pass through the human body, the intensity of γ-rays decays exponentially as the irradiation depth increases, so before destroying cancer cells in the tumor, Affects many normal tissues.
However, as a physical property of the proton beam, its energy decays in combination with the depth of penetration into human tissue, while at the tip of the range (ie, the location of the tumor) it slows down and instantaneously releases the maximum energy, causing the Bragg peak. Generate and treat cancer cells with an effective dose without damaging other healthy human tissues. In addition, the spread-out Bragg peak (SOBP) feature of proton therapy reduces the risk of damage to the patient's normal human tissue during the course of treatment and relatively minimizes the side effects of radiation therapy. be able to.

陽子線とX線の物理的な特性の違いによると、X線は貫通力が強いため、深部組織腫瘍の治療に用いられるが、ヒト組織を通過する時に腫瘍病巣より高い放射線量を腫瘍の前方組織に与え、腫瘍病巣の貫通後も相当な放射線量が残るので、腫瘍周辺の正常なヒト組織に損傷を与えやすい。これに対して、陽子線はヒト組織を貫通する時は少量の放射線量しか漏れないが、治療しようとする腫瘍の深度に到達した位置で大量の放射線量を放出することでブラッグピークを形成し、腫瘍の後方組織には全くエネルギーの影響を残さない。単一のブラッグピークの幅は広くないので、数個のブラッグピークを併用して腫瘍の大きさに合わせられ、陽子線治療の効果を高めることができる。陽子線治療は現在世界で最も先進的な放射線治療技術であり、従来の治療法より腫瘍病巣周辺の正常細胞への損傷がかなり小さく、副作用も相対的に少なくなり、将来的に陽子線治療の普及が期待できる。 According to the difference in the physical characteristics of proton rays and X-rays, X-rays have a strong penetrating power and are used for the treatment of deep tissue tumors. Since a considerable amount of radiation remains after the tissue is passed through the tumor lesion, normal human tissue around the tumor is likely to be damaged. In contrast, a proton beam leaks only a small amount of radiation when penetrating human tissue, but forms a Bragg peak by emitting a large amount of radiation at the depth of the tumor to be treated. It leaves no energy effect on the tissue behind the tumor. Since the width of a single Bragg peak is not wide, several Bragg peaks can be used in combination with the size of the tumor to enhance the effectiveness of proton therapy. Proton therapy is currently the most advanced radiotherapy technology in the world, and damage to normal cells around the tumor lesion is considerably smaller than that of conventional therapy, and there are relatively fewer side effects. It can be expected to spread.

従来の放射線治療はX線で癌の腫瘍の定位及び治療をしていたが、位置決め及び照射量を高精度に把握できないため、身体表面と腫瘍との間にある正常なヒト組織も放射線を浴びて損傷を受けることになる。したがって、高精度の定位及び適当な照射量を決める治療装置及びその方法が望ましい。現在の陽子線治療では、大抵X線コンピュータ断層撮影(XCT、X-ray computed tomography)システムを用いて、腫瘍輪郭の定位及び最適な照射量を決めるのであるが、X線コンピュータ断層による定位にはまだ難しい所がある。 Conventional radiotherapy used X-rays to localize and treat cancer tumors, but because the positioning and dose cannot be accurately grasped, normal human tissue between the body surface and the tumor is also exposed to radiation. Will be damaged. Therefore, a treatment apparatus and method for determining a high-precision localization and an appropriate dose are desirable. In current proton therapy, the X-ray computed tomography (XCT) system is usually used to determine the localization of the tumor contour and the optimal dose. There are still difficult places.

米国特許公開号US 2007/0031337A1は金ナノ粒子と抗体との良好な結合性を用いて、癌細胞の中の抗原に引き付かせるように、治療位置の定位及び薬用量をコントロールする精度を高める陽子線断層撮影(PCT、Proton Computed Tomography)システムを掲示したので、陽子線断層撮影システムは将来的に趨勢になることが見込める。 US Patent Publication No. US 2007 / 0031337A1 uses gold nanoparticle and antibody binding to improve the accuracy of therapeutic location and dose control to attract antigens in cancer cells Proton computed tomography (PCT) system has been posted, so proton tomography system is expected to become a trend in the future.

米国特許公開第2007/0031337号US Patent Publication No. 2007/0031337

したがって、本発明の目的の一つは、放射線感受性共重合体を構成成分とするナノキャリアの合成方法を提供する。 Accordingly, one of the objects of the present invention is to provide a method for synthesizing nanocarriers comprising a radiation-sensitive copolymer as a constituent component.

ジセレニド(Diselenide)とアミノプロピルポリエチレングリコール(Aminopropyl Poly(ethylene glycol)) 高分子との化学反応によってジセレニドブロック共重合体を生成してナノキャリアとして使い、そのナノキャリア自体が親疎水性を示すので、乳化工程でジセレニドブロック共重合体を自己組織化させてナノ球体を構成する。
また、乳化過程において、同じく親疎水性を示すジステアロイルホスファチジルエタノールアミン‐ポリエチレングリコール‐バイオマーカー(DSPE-PEG-biomarker)高分子を加え、その高分子の自己組織化の過程において、疎水基は有機溶剤を介して集まって整列し、親水基は外部水溶液に露出することで、安定なナノ球体構造を形成する。有機溶剤が揮発した後は、ナノ球体は内部の疎水性によって疎水効果が生じる。
Diselenide and aminopropyl polyethylene glycol (Aminopropyl Poly (ethylene glycol)) Since a diselenide block copolymer is produced by a chemical reaction with a polymer and used as a nanocarrier, the nanocarrier itself exhibits hydrophilicity / hydrophobicity. In the emulsification step, the diselenide block copolymer is self-assembled to form nanospheres.
Also, in the emulsification process, distearoylphosphatidylethanolamine-polyethylene glycol-biomarker polymer (DSPE-PEG-biomarker), which also exhibits hydrophilicity / hydrophobicity, was added, and in the process of self-assembly of the polymer, the hydrophobic group The hydrophilic groups are exposed to an external aqueous solution to form a stable nanosphere structure. After the organic solvent volatilizes, the nanospheres have a hydrophobic effect due to the internal hydrophobicity.

したがって、水分子はそのナノ球体の内部に入ってナノ球体の構造を破壊することはない。さらに、ナノ球体の外部は親水性を示すので、水溶液の中で安定に存在でき、本発明中で放射線感受性ジセレニドブロック共重合体として開発される。このジセレニドブロック共重合体から作られるナノ球体構造は水溶液の中で安定に存在できるだけでなく、特定の電磁放射によって担体構造の解体速度を制御することも出来るゆえ、放射性薬物の担体として開発される潜在能力を備える。 Therefore, water molecules do not enter the nanosphere and destroy the structure of the nanosphere. Furthermore, since the outside of the nanosphere is hydrophilic, it can exist stably in an aqueous solution and is developed as a radiation-sensitive diselenide block copolymer in the present invention. The nanosphere structure made from this diselenide block copolymer can not only exist stably in aqueous solution, but also can be controlled by specific electromagnetic radiation, so the disassembly rate of the carrier structure can be controlled. With the potential to be.

また、本発明の放射線感受性共重合体を構成成分とするナノキャリア及びそのナノメディシンの合成方法を利用すれば、確実に癌細胞に対応する薬剤量を高める一方、薬物に対する定位照射の精度も向上することが解る。 In addition, if the nanocarrier comprising the radiation-sensitive copolymer of the present invention and the method for synthesizing the nanocarrier are used, the amount of drug corresponding to cancer cells is reliably increased while the accuracy of stereotactic irradiation for the drug is also improved. I understand that.

図1は、本発明の陽子線(陽子入射量)をウラン238に当てて核***反応を引き起こし、核***生成物の発生比率が質量数によって変化することを示す分布図である。FIG. 1 is a distribution diagram showing that the proton beam (proton incident amount) of the present invention is applied to uranium 238 to cause a fission reaction, and the generation ratio of fission products varies depending on the mass number.

以下は本発明の放射線感受性共重合体を構成成分とするナノキャリアの合成方法の一実施例であって、少なくとも以下の手順を含む。
ステップ1:0.05molの固体水酸化ナトリウム(NaOH)2gを水25mlに溶解し、50molのセレン3.95gと臭化ヘキサデシルトリメチルアンモニウム100gを加えてセレン水溶液を調製した。
ステップ2: 6.6molの水素化ホウ素ナトリウム0.25gと固体水酸化ナトリウム0.2gを氷浴中で水5mlに溶解し、ヘリウムの保護雰囲気下で前述の水素化ホウ素ナトリウム水溶液を攪拌しながらステップ1のセレン水溶液を滴下し、室温において約1時間反応させてから約90℃で約半時間反応させ、反応が完了に近づくと赤褐色のセレン化ナトリウム(Sodium selenide、Na2Se2)のアルカリ水溶液を得る。
ステップ3:2-ドデセン-1-イルこはく酸無水物(2-Dodecen-1-yl-succinic anhydride)をテトラヒドラフラン(Tetrehydrafuran, THF)に溶解し、前述ステップ2で得られたセレン化ナトリウムのアルカリ水溶液と混合して約12時間反応させ、カラムクロマトグラフィーで不純物を分離させてから高温乾燥してジセレニド(Diselenide)化合物を得る。
ステップ4:前述ステップ3で得られたジセレニド化合物をテトラヒドラフランに溶解してアミノ基が付いてるポリーエチレングリコールポリマーを加え、架橋剤として1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride、EDC)もしくはN-ヒドロキシスクシンイミド(N-Hydroxysuccinimide、 NHS)を加えて約12時間反応させ、カラムクロマトグラフィーで不純物を分離させてから高温乾燥して最終製品のジセレニドブロック共重合体(Diselenide Block Co-polymer)を得て放射性ナノ粒子または/及び化学療法薬物を覆う担体として使用する。
The following is an example of a method for synthesizing a nanocarrier comprising the radiation-sensitive copolymer of the present invention as a constituent component, and includes at least the following procedures.
Step 1: 2 g of 0.05 mol of solid sodium hydroxide (NaOH) was dissolved in 25 ml of water, and 3.95 g of 50 mol of selenium and 100 g of hexadecyltrimethylammonium bromide were added to prepare an aqueous selenium solution.
Step 2: 6.6 g of sodium borohydride (0.25 g) and solid sodium hydroxide (0.2 g) are dissolved in 5 ml of water in an ice bath, and the above-mentioned sodium borohydride aqueous solution is stirred under the helium protective atmosphere. An aqueous solution of selenium is added dropwise and allowed to react at room temperature for about 1 hour and then at about 90 ° C. for about half an hour. When the reaction is nearly complete, an alkaline aqueous solution of sodium selenide (Na 2 Se 2 ) is obtained. .
Step 3: 2-Dodecen-1-yl-succinic anhydride is dissolved in tetrahydrafuran (THF) and the sodium selenide obtained in Step 2 above is dissolved. It is mixed with an aqueous alkaline solution and allowed to react for about 12 hours, and impurities are separated by column chromatography, followed by high temperature drying to obtain a diselenide compound.
Step 4: Diselenide compound obtained in Step 3 above is dissolved in tetrahydrafuran to add a polyethylene glycol polymer having an amino group, and 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride is added as a crosslinking agent. Salt (1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) or N-Hydroxysuccinimide (NHS) is added and reacted for about 12 hours. Dry to obtain the final product, Diselenide Block Co-polymer, which is used as a carrier to cover the radionanoparticles and / or chemotherapeutic drugs.

前述のジセレニドブロック共重合体と1,2-ジステアレート-スズ-グリセロ-3-エタノールアミンリン酸-ポリエチレングリコール-バイオマーカーをナノ薬物の担体として、放射性ナノ粒子または/及び化学療法薬物を覆うナノ薬物の合成方法には下記三種類がある。       Covering radioactive nanoparticles and / or chemotherapeutic drugs using the aforementioned diselenide block copolymer and 1,2-distearate-tin-glycero-3-ethanolamine phosphate-polyethylene glycol-biomarker as the carrier for the nanodrug There are three methods for synthesizing nano drugs.

その一、放射性ナノ粒子(Radiated nanoparticles、RNPs)を封入する場合:ナノ球体を構成する主成分であるジセレニドブロック共重合体10mgとナノ球体構造を安定させるジステアロイルホスファチジルエタノールアミン‐ポリエチレングリコール‐バイオマーカー(DSPE-PEG-biomarker)高分子2mgを採取して超純水5mlに溶解し、油相の放射性ナノ粒子4mgが溶解している有機溶剤のジクロロメタン1mlを加えて、ジセレニドブロック共重合体:ジステアロイルホスファチジルエタノールアミン‐ポリエチレングリコール‐バイオマーカー:油相の放射性ナノ粒子の質量比を5:1:2として、氷浴中で超音波処理による乳化を完了させ、約60℃まで加熱してジクロロメタンを除去して放射性ナノ粒子を封入した約100ナノメートル(nm)の放射線感受性ナノ球体粒子(RNPs-Radiation-Sensitive nanoparticles)を得る。 First, when encapsulating radioactive nanoparticles (RNPs): 10 mg of diselenide block copolymer, the main component of the nanosphere, and distearoylphosphatidylethanolamine-polyethylene glycol- which stabilizes the nanosphere structure Collect 2 mg of biomarker (DSPE-PEG-biomarker) polymer and dissolve in 5 ml of ultrapure water. Add 1 ml of dichloromethane, an organic solvent in which 4 mg of oily radioactive nanoparticles are dissolved. Polymer: Distearoylphosphatidylethanolamine-polyethylene glycol-Biomarker: Oil phase radioactive nanoparticles at a mass ratio of 5: 1: 2, complete emulsification by sonication in an ice bath and heat to about 60 ° C About 100 nanometers (nm) encapsulating radioactive nanoparticles by removing dichloromethane Radiosensitivity nanosphere particles get (RNPs-Radiation-Sensitive nanoparticles).

その二、化学治療用薬物(drug)を封入する場合:ジセレニドブロック共重合体10mgとジステアロイルホスファチジルエタノールアミン‐ポリエチレングリコール‐バイオマーカー高分子2mgを採取して超純水5mlに溶解し、化学療法用のドキソルビシン(Doxorubicin)4mgが溶解している有機溶剤のジクロロメタン1mlを加えて、ジセレニドブロック共重合体:ジステアロイルホスファチジルエタノールアミン‐ポリエチレングリコール‐バイオマーカー:ドキソルビシンの質量比を5:1:2とし、氷浴中で超音波処理による乳化を完了させ、約60℃まで加熱してジクロロメタンを除去してドキソルビシンを封入した約100nmの放射線感受性ナノ球体粒子(DOX-Radiation-Sensitive nanoparticles)を得る。 Second, when encapsulating a drug for chemotherapeutic treatment: 10 mg of diselenide block copolymer and 2 mg of distearoylphosphatidylethanolamine-polyethylene glycol-biomarker polymer are collected and dissolved in 5 ml of ultrapure water. Add 1 ml of dichloromethane, an organic solvent in which 4 mg of doxorubicin for chemotherapy is dissolved, and add a mass ratio of diselenide block copolymer: distearoylphosphatidylethanolamine-polyethylene glycol-biomarker: doxorubicin to 5: 1: 2, complete emulsification by sonication in an ice bath, heat to about 60 ° C to remove dichloromethane, and about 100 nm radiation-sensitive nanosphere particles encapsulating doxorubicin (DOX-Radiation-Sensitive nanoparticles) Get.

その三、放射性ナノ粒子及び化学治療用薬物を同時に封入する場合:ジセレニドブロック共重合体10mgとジステアロイルホスファチジルエタノールアミン‐ポリエチレングリコール‐バイオマーカー高分子2mgを採取して超純水5mlに溶解して、更に油相の放射性ナノ粒子2mg及びドキソルビシン2mgが溶解している有機溶剤のジクロロメタン1mlに加えて、ジセレニドブロック共重合体:ジステアロイルホスファチジルエタノールアミン‐ポリエチレングリコール‐バイオマーカー:油相の放射性ナノ粒子:ドキソルビシンの質量比を5:1:1:1として、氷浴中で超音波処理による乳化を完了させて、約60℃まで加熱してジクロロメタンを除去して放射性ナノ粒子及びドキソルビシンを封入した約120nmの放射線感受性ナノ球体粒子(RNPs/DOX-Radiation-Sensitive nanoparticles)を得る。 Third, when encapsulating radioactive nanoparticles and chemotherapeutic drugs at the same time: 10 mg of diselenide block copolymer and 2 mg of distearoylphosphatidylethanolamine-polyethylene glycol-biomarker polymer are collected and dissolved in 5 ml of ultrapure water. Furthermore, in addition to 1 ml of an organic solvent dichloromethane in which 2 mg of oily phase radioactive nanoparticles and 2 mg of doxorubicin are dissolved, a diselenide block copolymer: distearoylphosphatidylethanolamine-polyethylene glycol-biomarker: oil phase The radioactive nanoparticle: doxorubicin mass ratio of 5: 1: 1: 1 was used to complete emulsification by sonication in an ice bath and heated to about 60 ° C. to remove dichloromethane to remove the radioactive nanoparticles and doxorubicin About 120nm radiation sensitivity Roh obtain spherical particles (RNPs / DOX-Radiation-Sensitive nanoparticles).

本発明の放射線感受性共重合体を構成成分とするナノキャリアでナノメディシンを伝送して陽子線治療を行うとき、高エネルギーの陽子線が体内に入射すると、体内に入るに従って放射線量が徐々に減少する。腫瘍に到達した時点で、初期エネルギーの三分の一〜四分の一程度に減衰するので、それに応じて陽子線が入射するときの放射線量及び透過深度を決めることができる。陽子線が腫瘍上に分布しているウラン238に当たるとき、陽子線のエネルギーを10〜1000MeVに維持すれば、一定の確率でウラン238の核***反応を引き起こせる。図1を参照すると、陽子線(高入射線量を100MeVとする)がウラン238に当たると核***反応を起こし、核***生成物の発生比率は質量数の変化に応じて分布する。これらの核***生成物は大体不安定な核種であるため、さらに放射性崩壊をし続ける。 When proton therapy is performed by transmitting nanomedicine using a nanocarrier comprising the radiation-sensitive copolymer of the present invention as a constituent, when a high-energy proton beam enters the body, the radiation dose gradually decreases as it enters the body. . When it reaches the tumor, it attenuates to about one-third to one-fourth of the initial energy, and accordingly, the radiation dose and the penetration depth when the proton beam is incident can be determined accordingly. When the proton beam hits uranium 238 distributed on the tumor, the fission reaction of uranium 238 can be caused with a certain probability if the energy of the proton beam is maintained at 10 to 1000 MeV. Referring to FIG. 1, when a proton beam (with a high incident dose of 100 MeV) hits uranium 238, a fission reaction occurs, and the generation ratio of fission products is distributed according to the change in mass number. Since these fission products are mostly unstable nuclides, they continue to undergo radioactive decay.

表1は、発生率の高い核***生成物の核種名称及びその放射性崩壊の関連データを一覧表とした。特に、陽子線(高入射線量を10〜250MeVとする)がウラン238に衝突して核***反応を起こす時の発生率の高い核***生成物の核種名称及びその放射性崩壊の関連データである。これらの核***生成物は崩壊過程においても高エネルギーの電子を放出するので、患者が陽子線治療を終えた後でも、これらの崩壊過程によって発生した電子で腫瘍の癌細胞を破壊し続けることができ、治療効果を高める目的を果たす。 Table 1 lists the nuclide names of the fission products with high incidence and the related data of their radioactive decay. In particular, it is the nuclide name of the fission product having a high incidence when a proton beam (with a high incident dose of 10 to 250 MeV) collides with uranium 238 to cause a fission reaction, and related data of radioactive decay. These fission products emit high-energy electrons even during the decay process, so that even after the patient has finished proton therapy, the electrons generated by these decay processes can continue to destroy tumor cancer cells. Serve the purpose of enhancing the therapeutic effect.

以上、添付の図を参照しながら本発明の好適な実施例について説明したが、前記説明は単に本発明を説明することを目的としており、意味限定や請求の範囲に記載された本発明の請求の範囲を制限するためのものではない。したがって、前記説明によって当業者であれば、本発明の技術思想を逸脱しない範囲で各種の変更および修正が可能であることはいうまでもない。 The preferred embodiments of the present invention have been described above with reference to the accompanying drawings. However, the descriptions are merely for the purpose of illustrating the present invention, and the claims of the present invention described in the meaning limitation and claims are described. It is not intended to limit the scope of Therefore, it goes without saying that various changes and modifications can be made by those skilled in the art based on the above description without departing from the technical idea of the present invention.

Claims (7)

放射線感受性共重合体を構成成分とするナノキャリアの合成方法であって、
固体水酸化ナトリウムを水に溶解し、セレンと臭化ヘキサデシルトリメチルアンモニウムを加えてセレン水溶液を調製し、
水素化ホウ素ナトリウムと固体水酸化ナトリウムを氷浴中で水に溶解し、ヘリウムの保護雰囲気下で前述の水素化ホウ素ナトリウム水溶液を攪拌しながら前記セレン水溶液を滴下し、室温において約1時間反応させてから約90℃で約半時間反応させ、セレン化ナトリウム(Sodium selenide、Na2Se2)のアルカリ水溶液とし、
2-ドデセン-1-イルこはく酸無水物(2-Dodecen-1-yl-succinic anhydride)をテトラヒドラフラン(Tetrehydrafuran, THF)に溶解し、前述のセレン化ナトリウムのアルカリ水溶液と混合して約12時間反応させ、カラムクロマトグラフィーで不純物を分離させてから高温乾燥してジセレニド(Diselenide)化合物とし、
前述のジセレニド化合物をテトラヒドラフランに溶解してアミノ基が付いてるポリーエチレングリコールポリマーを加え、架橋剤として1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride、EDC)もしくはN-ヒドロキシスクシンイミド(N-Hydroxysuccinimide、 NHS)を加えて約12時間反応させ、カラムクロマトグラフィーで不純物を分離させてから高温乾燥してジセレニドブロック共重合体(Diselenide Block Co-polymer)を得る、
以上の工程を含むことを特徴とする前記ナノキャリアの合成方法。
A method for synthesizing a nanocarrier comprising a radiation-sensitive copolymer as a constituent component,
Dissolve solid sodium hydroxide in water, prepare selenium aqueous solution by adding selenium and hexadecyltrimethylammonium bromide,
Sodium borohydride and solid sodium hydroxide are dissolved in water in an ice bath, and the aqueous sodium borohydride solution is added dropwise while stirring the aqueous sodium borohydride solution in a helium protective atmosphere and allowed to react at room temperature for about 1 hour. Then, react at about 90 ° C. for about half an hour to obtain an alkaline aqueous solution of sodium selenide (Sodium selenide, Na 2 Se 2 ),
2-Dodecen-1-yl-succinic anhydride is dissolved in tetrahydrafuran (THF) and mixed with the above-mentioned aqueous sodium selenide solution to obtain about 12 The reaction is allowed to occur for a period of time, and impurities are separated by column chromatography, followed by high temperature drying to obtain a diselenide compound.
1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (1-ethyl-3- (3-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride) is added as a cross-linking agent by dissolving the aforementioned diselenide compound in tetrahydrafuran and adding an amino group-attached polyethylene glycol polymer. (3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) or N-hydroxysuccinimide (NHS) is added and reacted for about 12 hours. After separating impurities by column chromatography and drying at high temperature, both diselenide block Obtain a polymer (Diselenide Block Co-polymer),
A method for synthesizing the nanocarrier comprising the steps described above.
請求項1記載のジセレニドブロック共重合体を構成成分とするナノキャリアに放射性ナノ粒子を封入した陽子線治療用ナノメディシンの合成方法であって、前記ジセレニドブロック共重合体とジステアロイルホスファチジルエタノールアミン‐ポリエチレングリコール‐バイオマーカー高分子を採取して超純水に溶解して、油相の前記放射性ナノ粒子を溶解したジクロロメタンを加えて、前記ジセレニドブロック共重合体と前記ジステアロイルホスファチジルエタノールアミン‐ポリエチレングリコール‐バイオマーカーと油相の前記放射性ナノ粒子との質量比を5:1:2として、氷浴中で超音波処理による乳化を完了させ、約60℃まで加熱して前記ジクロロメタンを除去して前記放射性ナノ粒子を封入した放射線感受性ナノ球体粒子を得ることを特徴とする前記ナノメディシンの合成方法。 A method for synthesizing a nanomedicine for proton beam treatment in which radioactive nanoparticles are encapsulated in a nanocarrier comprising the diselenide block copolymer according to claim 1 as a constituent, wherein the diselenide block copolymer and distearoyl phosphatidyl are combined. Ethanolamine-polyethylene glycol-biomarker polymer is collected and dissolved in ultrapure water, and dichloromethane containing the radioactive nanoparticles in the oil phase is added, and the diselenide block copolymer and the distearoyl phosphatidyl are added. The mass ratio of ethanolamine-polyethylene glycol-biomarker to the radioactive nanoparticles in the oil phase was 5: 1: 2, completing the emulsification by sonication in an ice bath and heating to about 60 ° C. To obtain radiation-sensitive nanosphere particles encapsulating the radioactive nanoparticles The Nanomedicine synthesis method, characterized in that. 請求項1記載のジセレニドブロック共重合体を構成成分とするナノキャリアに化学治療用薬物を封入した陽子線治療用ナノメディシンの合成方法であって、前記ジセレニドブロック共重合体とジステアロイルホスファチジルエタノールアミン‐ポリエチレングリコール‐バイオマーカー高分子を採取して超純水に溶解して、前記化学治療用薬物を溶解したジクロロメタンを加えて、前記ジセレニドブロック共重合体:前記ジステアロイルホスファチジルエタノールアミン‐ポリエチレングリコール‐バイオマーカー:前記化学治療用薬物の質量比を5:1:2として、氷浴中で超音波処理による乳化を完了させ、約60℃まで加熱して前記ジクロロメタンを除去して前記化学治療用薬物を封入した放射線感受性ナノ球体粒子を得ることを特徴とする前記ナノメディシンの合成方法。 A method for synthesizing a nanomedicine for proton beam therapy in which a drug for chemotherapeutic treatment is encapsulated in a nanocarrier comprising the diselenide block copolymer according to claim 1 as a constituent, wherein the diselenide block copolymer and distearoyl A phosphatidylethanolamine-polyethylene glycol-biomarker polymer is collected and dissolved in ultrapure water, and dichloromethane containing the chemotherapeutic drug is added to the diselenide block copolymer: distearoyl phosphatidylethanol. The amine-polyethylene glycol-biomarker: chemotherapeutic drug mass ratio was 5: 1: 2 to complete emulsification by sonication in an ice bath and heating to about 60 ° C. to remove the dichloromethane. Obtaining radiation-sensitive nanosphere particles encapsulating the chemotherapeutic drug The nanomedicine method of synthesis that. 請求項1記載のジセレニドブロック共重合体を構成成分とするナノキャリアに放射性ナノ粒子及び化学治療用薬物を封入した陽子線治療用ナノメディシンの合成方法であって、前記ジセレニドブロック共重合体とジステアロイルホスファチジルエタノールアミン‐ポリエチレングリコール‐バイオマーカー高分子を採取して超純水に溶解して、油相の前記放射性ナノ粒子及び前記化学治療用薬物を溶解したジクロロメタンを前述のジセレニドブロック共重合体水溶液に加えて、前記ジセレニドブロック共重合体と前記ジステアロイルホスファチジルエタノールアミン‐ポリエチレングリコール‐バイオマーカーと油相の前記放射性ナノ粒子と前記化学治療用薬物との質量比を5:1:1:1として、氷浴中で超音波処理による乳化を完了させ、約60℃まで加熱して前記ジクロロメタンを除去して前記放射性ナノ粒子及び前記化学治療用薬物を封入した放射線感受性ナノ球体粒子を得ることを特徴とする前記ナノメディシンの合成方法。 A method for synthesizing a nanomedicine for proton beam therapy, in which radioactive nanoparticles and a chemotherapeutic drug are encapsulated in a nanocarrier comprising the diselenide block copolymer according to claim 1 as a constituent, wherein the diselenide block copolymer The polymer and distearoyl phosphatidylethanolamine-polyethylene glycol-biomarker polymer are collected and dissolved in ultrapure water, and the radioactive nanoparticles in the oil phase and the dichloromethane in which the chemotherapeutic drug is dissolved are used as the aforementioned diselenide. In addition to the aqueous block copolymer solution, the mass ratio of the diselenide block copolymer, the distearoylphosphatidylethanolamine-polyethylene glycol-biomarker, the radioactive nanoparticles in the oil phase, and the chemotherapeutic drug is 5 : 1: 1: 1 to complete emulsification by sonication in an ice bath. The method of synthesizing the nanomedicine, characterized in that to obtain the radioactive nanoparticles and radiosensitivity nanosphere particles encapsulating the chemotherapeutic drug for and removing the dichloromethane was heated to about 60 ° C.. 前記放射性ナノ粒子がウラン238であることを特徴とする請求項2記載の陽子線治療用ナノメディシンの合成方法。 3. The method for synthesizing proton therapy nanomedicine according to claim 2, wherein the radioactive nanoparticles are uranium 238. 前記化学治療用薬物がドキソルビシンであることを特徴とする請求項3記載の陽子線治療用ナノメディシンの合成方法。 4. The method for synthesizing nanomedicine for proton beam therapy according to claim 3, wherein the chemical therapeutic drug is doxorubicin. 前記放射性ナノ粒子がウラン238であり、前記化学治療用薬物がドキソルビシンであることを特徴とする請求項4記載の陽子線治療用ナノメディシンの合成方法。
5. The method for synthesizing nanomedicine for proton beam therapy according to claim 4, wherein the radioactive nanoparticle is uranium 238, and the chemical therapeutic drug is doxorubicin.
JP2015004060A 2015-01-13 2015-01-13 Method for synthesizing nanocarriers comprising radiation-sensitive copolymers as constituents Expired - Fee Related JP6376979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015004060A JP6376979B2 (en) 2015-01-13 2015-01-13 Method for synthesizing nanocarriers comprising radiation-sensitive copolymers as constituents

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015004060A JP6376979B2 (en) 2015-01-13 2015-01-13 Method for synthesizing nanocarriers comprising radiation-sensitive copolymers as constituents

Publications (2)

Publication Number Publication Date
JP2016130221A JP2016130221A (en) 2016-07-21
JP6376979B2 true JP6376979B2 (en) 2018-08-22

Family

ID=56414774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015004060A Expired - Fee Related JP6376979B2 (en) 2015-01-13 2015-01-13 Method for synthesizing nanocarriers comprising radiation-sensitive copolymers as constituents

Country Status (1)

Country Link
JP (1) JP6376979B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101715235B1 (en) * 2015-06-17 2017-03-22 순천대학교 산학협력단 Radioresponsive nanoparticles which control releasing of radioprotectants by being irradiated and preparation methods thereof
CN114159577B (en) * 2021-11-26 2023-10-20 清华大学 Polymer nano-drug and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2095829A1 (en) * 2008-02-27 2009-09-02 LEK Pharmaceuticals D.D. Selenium containing modifying agents and conjugates

Also Published As

Publication number Publication date
JP2016130221A (en) 2016-07-21

Similar Documents

Publication Publication Date Title
US9468608B2 (en) Preparation method of radiation sensitive copolymer carrier for coating radiated nanoparticles and chemotherapy drugs
Kamkaew et al. Scintillating nanoparticles as energy mediators for enhanced photodynamic therapy
Retif et al. Nanoparticles for radiation therapy enhancement: the key parameters
Kim et al. Enhanced proton treatment in mouse tumors through proton irradiated nanoradiator effects on metallic nanoparticles
Jones et al. Estimation of microscopic dose enhancement factor around gold nanoparticles by Monte Carlo calculations
Bulin et al. Radiation dose‐enhancement is a potent radiotherapeutic effect of rare‐earth composite nanoscintillators in preclinical models of glioblastoma
Detappe et al. Key clinical beam parameters for nanoparticle-mediated radiation dose amplification
WO2015031675A1 (en) Nanoparticle assisted scanning focusing x-ray fluorescence imaging and enhanced treatment
Shanei et al. Investigating the sonodynamic-radiosensitivity effect of gold nanoparticles on HeLa cervical cancer cells
Titus et al. Current scenario of biomedical aspect of metal-based nanoparticles on gel dosimetry
Chow Photon and electron interactions with gold nanoparticles: A Monte Carlo study on gold nanoparticle-enhanced radiotherapy
US20170173364A1 (en) Nanoparticle-mediated ablation of glioblastoma and of other malignancies
JP6376979B2 (en) Method for synthesizing nanocarriers comprising radiation-sensitive copolymers as constituents
TW201739460A (en) Ion implantation of neutron capture elements into nanodiamond particles to form composition for neutron capture therapy usage
Algethami et al. Radiation dose enhancement using Bi2S3 nanoparticles in cultured mouse PC3 prostate and B16 melanoma cells
Zheng et al. An Activatable Prodrug Nanosystem for Ultrasound‐Driven Multimodal Tumor Therapy and Metastasis Inhibition
Torrisi et al. Study of gold nanoparticles for mammography diagnostic and radiotherapy improvements
Torrisi Evaluation of the radiotherapy and proton therapy improvements using gold nanoparticles
Xu et al. Monte Carlo simulation of physical dose enhancement in core-shell magnetic gold nanoparticles with TOPAS
Jiang et al. Surface-ligand effect on radiosensitization of ultrasmall luminescent gold nanoparticles
Kiran et al. Emerging Nanomaterials as Radio-Sensitizer in Radiotherapy
Taheri et al. A review of recent advances in the modeling of nanoparticle radiosensitization with the Geant4-DNA toolkit
US10773098B2 (en) Therapy for glioblastoma multiforme
TWI538691B (en) Preparation method of radiation-sensitive copolymer carrier for nanoparticles with chemotherapeutic pharmaceuticals
Arif et al. Nanotechnology-based radiation therapy to cure cancer and the challenges in its clinical applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180724

R150 Certificate of patent or registration of utility model

Ref document number: 6376979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees