JP6372352B2 - フレキシブル電子デバイスの製造方法 - Google Patents

フレキシブル電子デバイスの製造方法 Download PDF

Info

Publication number
JP6372352B2
JP6372352B2 JP2014539173A JP2014539173A JP6372352B2 JP 6372352 B2 JP6372352 B2 JP 6372352B2 JP 2014539173 A JP2014539173 A JP 2014539173A JP 2014539173 A JP2014539173 A JP 2014539173A JP 6372352 B2 JP6372352 B2 JP 6372352B2
Authority
JP
Japan
Prior art keywords
film
polymer film
inorganic substrate
substrate
electronic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014539173A
Other languages
English (en)
Other versions
JPWO2015008658A1 (ja
Inventor
奥山 哲雄
哲雄 奥山
中村 宗敦
宗敦 中村
郷司 前田
郷司 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Publication of JPWO2015008658A1 publication Critical patent/JPWO2015008658A1/ja
Application granted granted Critical
Publication of JP6372352B2 publication Critical patent/JP6372352B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/145Organic substrates, e.g. plastic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/189Printed circuits structurally associated with non-printed electric components characterised by the use of a flexible or folded printed circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/01Tools for processing; Objects used during processing
    • H05K2203/0147Carriers and holders
    • H05K2203/016Temporary inorganic, non-metallic carrier, e.g. for processing or transferring
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/13Moulding and encapsulation; Deposition techniques; Protective layers
    • H05K2203/1377Protective layers
    • H05K2203/1383Temporary protective insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/007Manufacture or processing of a substrate for a printed circuit board supported by a temporary or sacrificial carrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Laminated Bodies (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

本発明は、フレキシブルな高分子フィルムをリジッドな仮支持用無機基板に仮固定し積層体として、次いで高分子フィルム上に各種電子デバイスを形成した後に、高分子フィルムを電子デバイス部ごと剥離して、フレキシブル電子デバイスを得る製造技術に関する。
情報通信機器(放送機器、移動体無線、携帯通信機器等)、レーダー、高速情報処理装置等における電子部品として、半導体素子、MEMS素子、ディスプレイ素子などの機能素子(デバイス)が用いられるが、これらは従来、ガラス、シリコンウエハ、セラミック基材等の無機基板上にて形成ないし搭載されるのが一般的であった。しかし、近年、電子部品の軽量化、小型・薄型化、フレキシビリティ化が求められるなか、高分子フィルム上に各種機能素子を形成する試みがなされている。
各種機能素子を高分子フィルム表面に形成するにあたっては、高分子フィルムの特性であるフレキシビリティを利用した、いわゆるロール・トゥ・ロールプロセスにて加工することが理想とされる。しかしながら、半導体産業、MEMS産業、ディスプレイ産業等の業界においては、これまでウエハベースまたはガラス基板ベース等のリジッドな平面基板を対象としたプロセス技術が主流であった。そこで、既存インフラを利用して各種機能素子を高分子フィルム表面に形成するために、高分子フィルムを無機物(ガラス板、セラミック板、シリコンウエハ、金属板など)からなるリジッドな支持体に貼り合わせておき、所望の素子を形成した後に支持体から剥離するというプロセスが考案された。
一般に機能素子を形成する工程においては、比較的高温が用いられることが多い。例えば、ポリシリコンや酸化物半導体などの機能素子の形成においては120〜500℃程度の温度域が用いられる。低温ポリシリコン薄膜トランジスターの作製においては脱水素化のために450℃程度の加熱が必要になる場合がある。水素化アモルファスシリコン薄膜の作製においても150〜250℃程度の温度域が必要になる。ここに例示した温度域は、無機材料にとってはさほど高い温度ではないが、高分子フィルムや、一般に高分子フィルムの貼り合わせに利用される接着剤にとっては、相当に高い温度であると云わざるを得ない。先に述べた高分子フィルムを無機基板に貼り合わせ、機能素子形成後に剥離するという手法に於いて、用いられる高分子フィルムや貼り合わせに用いられる接着剤、粘着剤にも十分な耐熱性が求められる所以であるが、現実問題としてかかる高温域にて実用に耐える高分子フィルムは限られている。また、従来の貼り合わせ用接着剤、粘着剤に至っては十分な耐熱性を有したものは、きわめて少ないのが現状であった。
高分子フィルムを無機基板に仮貼り付けする耐熱接着手段が得られないため、かかる用途においては、無機基板上に高分子フィルムの溶液、ないし前駆体溶液を塗布して無機基板上で乾燥・硬化させてフィルム化して当該用途に使用する技術が知られている。しかしながら、かかる手段により得られる高分子膜は、脆く裂けやすいため、無機基板から剥離する際に機能素子を破壊してしまう場合が多い。特に大面積のデバイスを剥離することは極めて難度が高く、およそ工業的に成り立つ歩留まりを得ることはできない。
本発明者らは、このような事情に鑑み、機能素子を形成するための高分子フィルムと支持体との積層体として、耐熱性に優れ強靭で薄膜化が可能なポリイミドフィルムを、カップリング剤を介して無機物からなる支持体(無機層)に貼り合わせてなる積層体を提案した(特許文献1〜3)。
高分子フィルムは元来、柔軟な素材であり、多少の伸縮や曲げ伸ばしに支障はない。一方で高分子フィルム上に形成された電子デバイスは、多くの場合、無機物からなる導電体、半導体、を所定のパターンにて組み合わせた微細な構造を有しており、微小な伸縮や曲げ伸ばしといったストレスによって、その構造は破壊され、デバイスとしての特性は損なわれてしまう。かかるストレスは、電子デバイスを高分子フィルムごと、無機基板から剥離するときに生じやすい。
そこで本発明者らは、さらに改良を重ね、カップリング剤処理を行った無機基板に、部分的に不活性化処理を行い、カップリング剤の活性度の高い部分と低い部分を形成し、高分子フィルムを貼り合わせた際に、比較的剥離しにくい良接着部分と、比較的剥離しやすい易剥離部とを作り、易剥離部に電子デバイスを形成し、高分子フィルムの易剥離部/良接着部との境目に切り込みを入れて、易剥離部のみを剥離することにより、電子デバイスに与えるストレスを減じた状態にて剥離可能とする技術を提案した(特許文献4)。
特開2010−283262号公報 特開2011−11455号公報 特開2011−245675号公報 特開2013−010342号公報
上述した特許文献1〜4に記載の積層体によれば、所謂接着剤、粘着剤的な要素を用いることなく、高分子フィルムと無機基板との貼り合わせが可能となり、さらにその積層体は薄膜デバイスを製作するに必要な高温に暴露されても、高分子フィルムの剥離は生じない。従って当該積層体を、従来のガラス板やシリコンウエハなどの無機物の基板上に直接電子デバイスを形成するプロセスに供することが可能となる。しかし、かかる技術においても、無機基板の大きさが、ある範囲を超えて大きくなった場合には、工業生産上の問題点が顕在化してくることを本願発明者らは見出した。
長尺あるいは大面積の高分子フィルムには、一般にボーイングと呼ばれるフィルム幅方向での物性の不均一性が内在する。これは、フィルムの幅方向中央部の変形が幅方向端部の変形に比べて先行する、ないし、フィルムの幅方向中央部の変形が幅方向端部の変形に比べて遅延するため、フィルム内部に歪が残る現象である。かかる歪はボーイング歪と呼ばれる。
ボーイング歪は、たとえば、フィルムの熱収縮率の異方性、線膨張係数の異方性という形で発現する。かかる異方性は無機基板のサイズが小さい場合、すなわち高分子フィルムのサイズが小さい場合にはさほど大きな問題にはならない。しかし、特に無機基板のサイズが大きくなった場合、具体的には長方形状で一辺700mmを越える大きさになった場合には問題として顕在化する。例えば、電子デバイスの加工時の高温暴露等により、無機基板/高分子フィルム積層体の高分子フィルム部分に伸縮、収縮が生じ、そのために積層体全体に反りが発生する。加熱による伸縮、収縮が均質な場合、反り自体は十分に予見可能であるため、実際の製造工程では、あらかじめ反り量を想定して、条件設定とハンドリング方式を決めることが出来る。しかし、実際にはボーイング現象のため、伸縮、収縮は均質ではなく異方性を持ち、しかもその異方性が特定の方向に偏っているため、ヒネリやネジレを伴う、予想しがたい変形を生じる結果となる。
本発明が目的とするフレキシブル電子デバイスの加工においては、印刷技術、フォトリソグラフ技術などを高度に組み合わせた高精細なデバイス加工技術が求められる。通常、このような高精細な加工は極めて高いクリーン度を有する環境下にて、極力人手を廃し、自動搬送装置を用いて行われる。ここで必要になるのが無機基板/高分子フィルム積層体の平坦性である。ネジレを伴う複雑に変形した積層体では、自動搬送上の問題が多く、開口部にて引っかかったり、あるいは基板面が機器の一部に接触したり、ないしは、減圧吸着がうまく出来ない、液状レジスト材料の塗布均一性が阻害される、露光時に焦点が合わない等々、多くの問題が生じ目的とする高精細加工を行うことが困難となる。
以上、高分子フィルムを無機基板に仮固定してデバイス加工を行い、無機基板から高分子フィルムを剥離することによりフレキシブル電子デバイスを製造する方法について述べてきた。かかる高分子フィルムを仮固定して加工する手法は、フレキシブル電子デバイスを製作する方法としては優れた手法である。しかし、特に無機基板のサイズが大きくなった場合にはフィルムのボーイング現象による歪みの不均質の影響により、高精細な加工が困難になる。
本発明者らは前記課題を解決するために鋭意検討した結果、高分子フィルムを複数に分割して無機基板と貼り合わせることにより、かかる課題を解決する方法を見出し、大面積基板においても、高精細な電子デバイスを生産可能となることを見出し、本発明を完成した。
すなわち本発明は以下の構成からなる。
(1)無機基板に高分子フィルムを接着して多層基板とし、該多層基板の該高分子フィルム上に電子デバイスを形成した後に該高分子フィルムを該無機基板から剥離するフレキシブル電子デバイスの製造方法において、該無機基板に該高分子フィルムを少なくとも2以上の区画に分割して接着することを特徴とする、フレキシブル電子デバイスの製造方法。(2)前記高分子フィルムの厚さが12μm以上、ヤング率が6GPa以上であり、400
℃1時間加熱時の収縮率が0.5%以下であることを特徴とする(1)に記載のフレキシブル電子デバイスの製造方法。
(3)前記無機基板が、面積4900cm以上、少なくとも短辺側が700mm以上の実質的に長方形であることを特徴とする(1)または(2)に記載のフレキシブル電子デバイスの製造方法。
(4)前記無機基板と前記高分子フィルムとの張貼り合わせが、表面活性化処理した無機基板と、表面活性化処理した高分子フィルムとを加熱・加圧することによって行われ(1)〜(3)のいずれかに記載のフレキシブル電子デバイスの製造方法。
(5)前記無機基板と前記高分子フィルムとの貼り合わせに、厚さが5μm以下の粘着剤ないし接着剤を用いることを特徴とする(1)〜(4)のいずれかに記載のフレキシブル電子デバイスの製造方法。
(6)少なくとも下記(I)〜(V)の工程を含む(1)〜(5)のいずれかに記載のフレキシブル電子デバイスの製造方法。
(I) 一枚の保護フィルムに、少なくとも2以上の区画に分割された高分子フィルムを貼り合わせ多層積層フィルムを得る工程、
(II) 無機基板と、前記多層積層フィルムの高分子フィルム側とを接着し、多層基板を得る工程
(III) 前記多層基板から保護フィルムを剥離する工程
(IV)多層基板の高分子フィルム上に電子デバイスを形成する工程
(V) 多層基板から高分子フィルムを剥離する工程
本発明では、高分子フィルムを複数の区画に分割して無機基板に貼り合わせることによって積層体を得る。高分子フィルムを分割することにより高分子フィルムの熱変形(主には伸縮、収縮)、の緩衝領域得ることが出来る。また複数に分割したフィルムを無作為に、あるいは、ある程度予想される伸縮、収縮の絶対量と方向が打ち消し合うように配列して貼り合わせることにより、積層体の加熱による変形を抑制、あるいは望む形に変形するように誘導することが可能となる。
本発明では、無機基板と略同一のサイズ、ないし幅を有する保護フィルムに、高分子フィルムを適宜配列して仮合わせした積層フィルムとし、かかる積層フィルムの高分子フィルム側を、無機基板に貼り合わせることにより、貼り合わせの工程を省力化することができる。
高分子フィルムの分割例1。 高分子フィルムの分割例2。 高分子フィルムの分割例3。 高分子フィルムの分割例4。 無機基板、粘着剤、高分子フィルムの配置例1。 無機基板、粘着剤、高分子フィルムの配置例2。 保護フィルムと高分子フィルムの貼り付け例。 保護フィルムへの高分子フィルム分割貼り付け工程。 保護フィルム/高分子フィルム貼り合わせ品を無機基板に貼り付ける工程。 保護フィルムを剥離して、高分子フィルム/粘着剤/無機基板からなる積層体とする工程。
本発明のフレキシブル電子デバイスの製造方法は、無機基板、高分子フィルム、必要に応じて用いられる保護フィルム、無機基板と高分子フィルムの接着手段、高分子フィルム面への電子デバイスの形成手段、高分子フィルムの剥離手段から構成される。
<無機基板>
本発明においては高分子フィルムの支持体として無機基板を用いる。無機基板とは無機物からなる基板として用いることのできる板状のものであればよく、例えば、ガラス板、セラミック板、半導体ウエハ、金属等を主体としているもの、および、これらガラス板、セラミック板、シリコンウエハ、金属の複合体として、これらを積層したもの、これらが分散されているもの、これらの繊維が含有されているものなどが挙げられる。
前記ガラス板としては、石英ガラス、高ケイ酸ガラス(96%シリカ)、ソーダ石灰ガラス、鉛ガラス、アルミノホウケイ酸ガラス、ホウケイ酸ガラス(パイレックス(登録商標))、ホウケイ酸ガラス(無アルカリ)、ホウケイ酸ガラス(マイクロシート)、アルミノケイ酸塩ガラス等が含まれる。これらの中でも、線膨張係数が5ppm/K以下のものが望ましく、市販品であれば、液晶用ガラスであるコーニング社製の「コーニング(登録商標)7059」や「コーニング(登録商標)1737」、「EAGLE」、旭硝子社製の「AN100」、日本電気硝子社製の「OA10」、SCHOTT社製の「AF32」などが望ましい。
前記セラミック板としては、Al2O3、Mullite、AlN、SiC、Si3N4、BN、結晶化ガラス、Cordierite、Spodumene、Pb−BSG+CaZrO3+Al2O3、Crystallized glass+Al2O3、Crystallized Ca−BSG、BSG+Quartz、BSG+Quartz、BSG+Al2O3、Pb+BSG+Al2O3、Glass−ceramic、ゼロデュア材などの基板用セラミックス、TiO2、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、アルミナ、MgO、ステアタイト、BaTi4O9、BaTiO3、BaTi4+CaZrO3、BaSrCaZrTiO3、Ba(TiZr)O3、PMN−PTやPFN−PFWなどのキャパシター材料、PbNb2O6、Pb0.5Be0.5Nb2O6、PbTiO3、BaTiO3、PZT、0.855PZT−95PT−0.5BT、0.873PZT−0.97PT−0.3BT、PLZTなどの圧電材料が含まれる。
前記半導体ウエハとしては、シリコンウエハ、半導体ウエハ、化合物半導体ウエハ等を用いることができ、シリコンウエハとしては単結晶ないし多結晶のシリコンを薄板上に加工した物であり、n型或はp型にドーピングされたシリコンウエハ、イントリンシックシリコンウエハ等の全てが含まれ、また、シリコンウエハの表面に酸化シリコン層や各種薄膜が堆積されたシリコンウエハも含まれ、シリコンウエハ以外にも、ゲルマニウム、シリコン−ゲルマニウム、ガリウム−ヒ素、アルミニウム−ガリウム−インジウム、窒素−リン−ヒ素−アンチモン、SiC、InP(インジウム燐)、InGaAs、GaInNAs、LT、LN、ZnO(酸化亜鉛)やCdTe(カドミウムテルル)、ZnSe(セレン化亜鉛) などの半導体ウエハ、化合物半導体ウエハなどを用いることが出来る。
前記金属としては、W、Mo、Pt、Fe、Ni、Auといった単一元素金属、インコネル、モネル、ニモニック、炭素銅、Fe−Ni系インバー合金、スーパーインバー合金、といった合金等が含まれる。また、これら金属に、他の金属層、セラミック層を付加してなる多層金属板も含まれる。この場合、付加層との全体のCTEが低ければ、主金属層にCu、Alなども用いられる。付加金属層として使用される金属としては、ポリイミドフィルムとの密着性を強固にするもの、拡散がないこと、耐薬品性や耐熱性が良いこと等の特性を有するものであれば限定されるものではないが、クロム、ニッケル、TiN、Mo含有Cuが好適な例として挙げられる。
前記無機基板の平面部分は、充分に平坦である事が望ましい。具体的には、表面荒さRaが10nm以下、好ましくは3nm以下、さらには0.9nm以下であることが好ましい。また、表面粗さのP−V値が50nm以下、より好ましくは20nm以下、さらに好ましくは5nm以下である。これより粗いと、高分子フィルムと無機基板との接着強度が不充分となる場合がある。
前記無機基板の厚さは特に制限されないが、取り扱い性の観点より10mm以下の厚さが好ましく、3mm以下がなお好ましく、1.3mm以下がなお好ましい。厚さの加減については特に制限されないが、0.07mm以上、好ましくは0.15mm以上、なお好ましくは0.3mm以上が好ましく用いられる。
本発明における無機基板としては、望ましくは、少なくとも面積が4900cm以上のサイズを対象とする。本発明の無機基板は、少なくとも短辺側が700mm以上の実質的に長方形であることが好ましい。本発明において好ましい無機基板面積は5000cm以上であり、さらに10000cm以上、なおさらに18000cm以上が好ましい。また本発明を好ましく適応出来る長方形の短辺側長さは 730mm以上であり、840mm以上がさらに好ましく、なおさらに好ましいのは1000mm以上である。
なお、ここで「実質的に長方形」とは長方形の角のR、切り欠き、ノッチ、オリフラなどがあることを許容することを意味する。本発明ではフラットパネルディスプレイ業界に於いて第4世代と呼ばれる、680×880mmないし730×920mmのガラス基板、第5世代と呼ばれる、1000×1200mm 1100×1250mm 1300×1500mmのガラス基板、第6世代と呼ばれる1370×1670mmないし1500×1800mmのガラス基板、第7世代と呼ばれる1870×2200mmのガラス基板、第8世代と呼ばれる、2160×2460mmないし2200×2500mmのガラス基板、第9世代と呼ばれる2400×2800mmのガラス基板、第10世代と呼ばれる、2,880×3,130mmのガラス基板、第11世代と呼ばれる、3,320×3,000mmのガラス基板、ないしはそれ以上のサイズを有するガラス基板にも適用される。ただし本発明は、ここに例示した面積、サイズ、長方形の短辺長さより小さいサイズの無機基板への適用を制限されるものではない。
<高分子フィルム>
本発明における高分子フィルムとしては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、全芳香族ポリエステル、その他の共重合ポリエステル、ポリメチルメタクリレート、その他の共重合アクリレート、ポリカーボネート、ポリアミド、ポリスルフォン、ポリエーテルスルフォン、ポリエーテルケトン、ポリアミドイミド、ポリエーテルイミド、芳香族ポリイミド、脂環族ポリイミド、フッ素化ポリイミド、酢酸セルロース、硝酸セルロース、芳香族ポリアミド、ポリ塩化ビニル、ポリフェノール、ポリアリレート、ポリフェニレンスルフィド、ポリフェニレンオキシド、ポリスチレン等のフィルムを用いることが出来る。本発明において特に効果が顕著・有用であるものは耐熱性が100℃以上の高分子、所謂エンジニアリングプラスチックのフィルムである。ここに耐熱性とはガラス転移温度ないしは熱変形温度を云う。
本発明の高分子フィルムのヤング率(弾性率)は6GPa以上であることが好ましく、より好ましくは7.4GPa以上、さらに好ましくは8.2GPa以上、なおさらには9.1GPa以上であることが好ましい。ここに、ヤング率は引っ張りで求めるヤング率である。ヤング率がこの範囲に満たない場合、無機基板から高分子フィルムを剥離する際に、高分子フィルムの伸びが大となり、電子デバイスが破壊される可能性が高くなる。
本発明において、ヤング率の上限は特に限定されないが、現実的には15GPa程度である。ヤング率が高すぎる素材は、フィルムが脆く、割れやすくなることが多いため、フレキシブル電子デバイス用の基材としては適切でない。
本発明の高分子フィルムの厚さの下限は特に限定されないが、電子デバイスの基材としての最低限の機械的強度を維持するために、4.5μm以上が好ましい。本発明では12μm以上がなお好ましく、さらには24μm以上が好ましく、なおさらには45μm以上が好ましい。高分子フィルムの厚さの上限は特に制限されないが、フレキシブル電子デバイスとしての要求より250μm以下であることが好ましく、さらに150μm以下、なおさらには90μm以下が好ましい。
本発明で特に好ましく用いられる高分子フィルムはポリイミドフィルムであり、芳香族ポリイミド、脂環族ポリイミド、ポリアミドイミド、ポリエーテルイミドなどを用いることが出来る。本発明を特にフレキシブルディスプレイ素子製造に用いる場合には、無色透明性を有するポリイミド系樹脂フィルムを用いることが好ましいが、反射型、ないし自発光型のディスプレイの背面素子を形成する場合においては、特にこの限りではない。
一般にポリイミドフィルムは、溶媒中でジアミン類とテトラカルボン酸類とを反応させて得られるポリアミド酸(ポリイミド前駆体)溶液を、ポリイミドフィルム作製用支持体に塗布、乾燥してグリーンフィルム(「前駆体フィルム」または「ポリアミド酸フィルム」ともいう)となし、さらにポリイミドフィルム作製用支持体上で、あるいは該支持体から剥がした状態でグリーンフィルムを高温熱処理して脱水閉環反応を行わせることによって得られる。
ポリアミド酸を構成するジアミン類としては、特に制限はなく、ポリイミド合成に通常用いられる芳香族ジアミン類、脂肪族ジアミン類、脂環式ジアミン類等を用いることができる。耐熱性の観点からは、芳香族ジアミン類が好ましく、芳香族ジアミン類の中では、ベンゾオキサゾール構造を有する芳香族ジアミン類がより好ましい。ベンゾオキサゾール構造を有する芳香族ジアミン類を用いると、高い耐熱性とともに、高弾性率、低熱収縮性、低線膨張係数を発現させることが可能になる。ジアミン類は、単独で用いてもよいし二種以上を併用してもよい。
ベンゾオキサゾール構造を有する芳香族ジアミン類としては、特に限定はなく、例えば、5−アミノ−2−(p−アミノフェニル)ベンゾオキサゾール、6−アミノ−2−(p−アミノフェニル)ベンゾオキサゾール、5−アミノ−2−(m−アミノフェニル)ベンゾオキサゾール、6−アミノ−2−(m−アミノフェニル)ベンゾオキサゾール、2,2'−p−フェニレンビス(5−アミノベンゾオキサゾール)、2,2'−p−フェニレンビス(6−アミノベンゾオキサゾール)、1−(5−アミノベンゾオキサゾロ)−4−(6−アミノベンゾオキサゾロ)ベンゼン、2,6−(4,4'−ジアミノジフェニル)ベンゾ[1,2−d:5,4−d']ビスオキサゾール、2,6−(4,4'−ジアミノジフェニル)ベンゾ[1,2−d:4,5−d']ビスオキサゾール、2,6−(3,4'−ジアミノジフェニル)ベンゾ[1,2−d:5,4−d']ビスオキサゾール、2,6−(3,4'−ジアミノジフェニル)ベンゾ[1,2−d:4,5−d']ビスオキサゾール、2,6−(3,3'−ジアミノジフェニル)ベンゾ[1,2−d:5,4−d']ビスオキサゾール、2,6−(3,3'−ジアミノジフェニル)ベンゾ[1,2−d:4,5−d']ビスオキサゾール等が挙げられる。
上述したベンゾオキサゾール構造を有する芳香族ジアミン類以外の芳香族ジアミン類としては、例えば、2,2'−ジメチル−4,4'−ジアミノビフェニル、1,4−ビス[2−(4−アミノフェニル)−2−プロピル]ベンゼン(ビスアニリン)、1,4−ビス(4−アミノ−2−トリフルオロメチルフェノキシ)ベンゼン、2,2'−ジトリフルオロメチル−4,4'−ジアミノビフェニル、4,4'−ビス(4−アミノフェノキシ)ビフェニル、4,4'−ビス(3−アミノフェノキシ)ビフェニル、ビス[4−(3−アミノフェノキシ)フェニル]ケトン、ビス[4−(3−アミノフェノキシ)フェニル]スルフィド、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、2,2−ビス[4−(3−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(3−アミノフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、m−フェニレンジアミン、o−フェニレンジアミン、p−フェニレンジアミン、m−アミノベンジルアミン、p−アミノベンジルアミン、3,3'−ジアミノジフェニルエーテル、3,4'−ジアミノジフェニルエーテル、4,4'−ジアミノジフェニルエーテル、3,3'−ジアミノジフェニルスルフィド、3,3'−ジアミノジフェニルスルホキシド、3,4'−ジアミノジフェニルスルホキシド、4,4'−ジアミノジフェニルスルホキシド、3,3'−ジアミノジフェニルスルホン、3,4'−ジアミノジフェニルスルホン、4,4'−ジアミノジフェニルスルホン、3,3'−ジアミノベンゾフェノン、3,4'−ジアミノベンゾフェノン、4,4'−ジアミノベンゾフェノン、3,3'−ジアミノジフェニルメタン、3,4'−ジアミノジフェニルメタン、4,4'−ジアミノジフェニルメタン、ビス[4−(4−アミノフェノキシ)フェニル]メタン、1,1−ビス[4−(4−アミノフェノキシ)フェニル]エタン、1,2−ビス[4−(4−アミノフェノキシ)フェニル]エタン、1,1−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、1,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、1,3−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、1,1−ビス[4−(4−アミノフェノキシ)フェニル]ブタン、1,3−ビス[4−(4−アミノフェノキシ)フェニル]ブタン、1,4−ビス[4−(4−アミノフェノキシ)フェニル]ブタン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ブタン、2,3−ビス[4−(4−アミノフェノキシ)フェニル]ブタン、2−[4−(4−アミノフェノキシ)フェニル]−2−[4−(4−アミノフェノキシ)−3−メチルフェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)−3−メチルフェニル]プロパン、2−[4−(4−アミノフェノキシ)フェニル]−2−[4−(4−アミノフェノキシ)−3,5−ジメチルフェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)−3,5−ジメチルフェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、1,4−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4,4'−ビス(4−アミノフェノキシ)ビフェニル、ビス[4−(4−アミノフェノキシ)フェニル]ケトン、ビス[4−(4−アミノフェノキシ)フェニル]スルフィド、ビス[4−(4−アミノフェノキシ)フェニル]スルホキシド、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、ビス[4−(3−アミノフェノキシ)フェニル]エーテル、ビス[4−(4−アミノフェノキシ)フェニル]エーテル、1,3−ビス[4−(4−アミノフェノキシ)ベンゾイル]ベンゼン、1,3−ビス[4−(3−アミノフェノキシ)ベンゾイル]ベンゼン、1,4−ビス[4−(3−アミノフェノキシ)ベンゾイル]ベンゼン、4,4'−ビス[(3−アミノフェノキシ)ベンゾイル]ベンゼン、1,1−ビス[4−(3−アミノフェノキシ)フェニル]プロパン、1,3−ビス[4−(3−アミノフェノキシ)フェニル]プロパン、3,4'−ジアミノジフェニルスルフィド、2,2−ビス[3−(3−アミノフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、ビス[4−(3−アミノフェノキシ)フェニル]メタン、1,1−ビス[4−(3−アミノフェノキシ)フェニル]エタン、1,2−ビス[4−(3−アミノフェノキシ)フェニル]エタン、ビス[4−(3−アミノフェノキシ)フェニル]スルホキシド、4,4'−ビス[3−(4−アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4'−ビス[3−(3−アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4'−ビス[4−(4−アミノ−α,α−ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4'−ビス[4−(4−アミノ−α,α−ジメチルベンジル)フェノキシ]ジフェニルスルホン、ビス[4−{4−(4−アミノフェノキシ)フェノキシ}フェニル]スルホン、1,4−ビス[4−(4−アミノフェノキシ)フェノキシ−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノフェノキシ)フェノキシ−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノ−6−トリフルオロメチルフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノ−6−フルオロフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノ−6−メチルフェノキシ)−α,α−ジメチルベンジル]ベンゼン、1,3−ビス[4−(4−アミノ−6−シアノフェノキシ)−α,α−ジメチルベンジル]ベンゼン、3,3'−ジアミノ−4,4'−ジフェノキシベンゾフェノン、4,4'−ジアミノ−5,5'−ジフェノキシベンゾフェノン、3,4'−ジアミノ−4,5'−ジフェノキシベンゾフェノン、3,3'−ジアミノ−4−フェノキシベンゾフェノン、4,4'−ジアミノ−5−フェノキシベンゾフェノン、3,4'−ジアミノ−4−フェノキシベンゾフェノン、3,4'−ジアミノ−5'−フェノキシベンゾフェノン、3,3'−ジアミノ−4,4'−ジビフェノキシベンゾフェノン、4,4'−ジアミノ−5,5'−ジビフェノキシベンゾフェノン、3,4'−ジアミノ−4,5'−ジビフェノキシベンゾフェノン、3,3'−ジアミノ−4−ビフェノキシベンゾフェノン、4,4'−ジアミノ−5−ビフェノキシベンゾフェノン、3,4'−ジアミノ−4−ビフェノキシベンゾフェノン、3,4'−ジアミノ−5'−ビフェノキシベンゾフェノン、1,3−ビス(3−アミノ−4−フェノキシベンゾイル)ベンゼン、1,4−ビス(3−アミノ−4−フェノキシベンゾイル)ベンゼン、1,3−ビス(4−アミノ−5−フェノキシベンゾイル)ベンゼン、1,4−ビス(4−アミノ−5−フェノキシベンゾイル)ベンゼン、1,3−ビス(3−アミノ−4−ビフェノキシベンゾイル)ベンゼン、1,4−ビス(3−アミノ−4−ビフェノキシベンゾイル)ベンゼン、1,3−ビス(4−アミノ−5−ビフェノキシベンゾイル)ベンゼン、1,4−ビス(4−アミノ−5−ビフェノキシベンゾイル)ベンゼン、2,6−ビス[4−(4−アミノ−α,α−ジメチルベンジル)フェノキシ]ベンゾニトリル、および上記芳香族ジアミンの芳香環上の水素原子の一部もしくは全てが、ハロゲン原子、炭素数1〜3のアルキル基またはアルコキシル基、シアノ基、またはアルキル基またはアルコキシル基の水素原子の一部もしくは全部がハロゲン原子で置換された炭素数1〜3のハロゲン化アルキル基またはアルコキシル基で置換された芳香族ジアミン等が挙げられる。
前記脂肪族ジアミン類としては、例えば、1,2−ジアミノエタン、1,4−ジアミノブタン、1,5−ジアミノペンタン、1,6−ジアミノヘキサン、1,8−ジアミノオクタン等が挙げられる。
前記脂環式ジアミン類としては、例えば、1,4−ジアミノシクロヘキサン、4,4'−メチレンビス(2,6−ジメチルシクロヘキシルアミン)等が挙げられる。
芳香族ジアミン類以外のジアミン(脂肪族ジアミン類および脂環式ジアミン類)の合計量は、全ジアミン類の20質量%以下が好ましく、より好ましくは10質量%以下、さらに好ましくは5質量%以下である。換言すれば、芳香族ジアミン類は全ジアミン類の80質量%以上が好ましく、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。
ポリアミド酸を構成するテトラカルボン酸類としては、ポリイミド合成に通常用いられる芳香族テトラカルボン酸類(その酸無水物を含む)、脂肪族テトラカルボン酸類(その酸無水物を含む)、脂環族テトラカルボン酸類(その酸無水物を含む)を用いることができる。中でも、芳香族テトラカルボン酸無水物類、脂環族テトラカルボン酸無水物類が好ましく、耐熱性の観点からは芳香族テトラカルボン酸無水物類がより好ましく、光透過性の観点からは脂環族テトラカルボン酸類がより好ましい。これらが酸無水物である場合、分子内に無水物構造は1個であってもよいし2個であってもよいが、好ましくは2個の無水物構造を有するもの(二無水物)がよい。テトラカルボン酸類は単独で用いてもよいし、二種以上を併用してもよい。
脂環族テトラカルボン酸類としては、例えば、シクロブタンテトラカルボン酸、1,2,4,5−シクロヘキサンテトラカルボン酸、3,3',4,4'−ビシクロヘキシルテトラカルボン酸等の脂環族テトラカルボン酸、およびこれらの酸無水物が挙げられる。これらの中でも、2個の無水物構造を有する二無水物(例えば、シクロブタンテトラカルボン酸二無水物、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物、3,3',4,4'−ビシクロヘキシルテトラカルボン酸二無水物等)が好適である。なお、脂環族テトラカルボン酸類は単独で用いてもよいし、二種以上を併用してもよい。
脂環式テトラカルボン酸類は、透明性を重視する場合には、例えば、全テトラカルボン酸類の80質量%以上が好ましく、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。
芳香族テトラカルボン酸類としては、特に限定されないが、ピロメリット酸残基(すなわちピロメリット酸由来の構造を有するもの)であることが好ましく、その酸無水物であることがより好ましい。このような芳香族テトラカルボン酸類としては、例えば、ピロメリット酸二無水物、3,3',4,4'−ビフェニルテトラカルボン酸二無水物、4,4'−オキシジフタル酸二無水物、3,3',4,4'−ベンゾフェノンテトラカルボン酸二無水物、3,3',4,4'−ジフェニルスルホンテトラカルボン酸二無水物、2,2−ビス[4−(3,4−ジカルボキシフェノキシ)フェニル]プロパン酸無水物等が挙げられる。
芳香族テトラカルボン酸類は、耐熱性を重視する場合には、例えば、全テトラカルボン酸類の80質量%以上が好ましく、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。
本発明のポリイミドフィルムは、ガラス転移温度が250℃以上、好ましくは300℃以上、さらに好ましくは350℃以上であり、あるいは500℃以下の領域においてガラス転移点が観測されないことが好ましい。本発明におけるガラス転移温度は、示差熱分析(DSC)により求めるものである。
本発明の高分子フィルムの線膨張係数(CTE)は、好ましくは、−5ppm/K〜+20ppm/Kであり、より好ましくは−5ppm/K〜+15ppm/Kであり、さらに好ましくは1ppm/K〜+10ppm/Kである。CTEが前記範囲であると、一般的な支持体との線膨張係数の差を小さく保つことができ、熱を加えるプロセスに供してもポリイミドフィルムと無機物からなる支持体とが剥がれることを回避できる。
本発明における高分子フィルムの破断強度は、60MPa以上、好ましくは120MP以上、さらに好ましくは240MPa以上である。破断強度の上限に制限は無いが、事実上1000MPa程度未満である。なお、ここで前記高分子フィルムの破断強度とは、高分子フィルムのタテ方向とヨコ方向の平均値をさす。
本発明の高分子フィルムの熱収縮率は、400℃1時間加熱時において0.5%以下であることが好ましい。かかる特性は、ポリイミドフィルムの原料の内、テトラカルボン酸二無水物としてピロメリット酸を50mol%以上用い、同時にパラフェニレンジアミンないしベンゾオキサゾール構造を有するジアミンを50mol%以上用いるか、あるいは、芳香環を1ないし2有するテトラカルボン酸無水物と、ジアミン成分としてパラフェニレンジアミンを85mol%以上使用することにより得ることができる。
本発明における高分子フィルムの厚さ斑は、20%以下であることが好ましく、より好ましくは12%以下、さらに好ましくは7%以下、特に好ましくは4%以下である。厚さ斑が20%を超えると、狭小部へ適用し難くなる傾向がある。なお、フィルムの厚さ斑は、例えば接触式の膜厚計にて被測定フィルムから無作為に10点程度の位置を抽出してフィルム厚を測定し、下記式に基づき求めることができる。
フィルムの厚さ斑(%)
=100×(最大フィルム厚−最小フィルム厚)÷平均フィルム厚
高分子フィルムにおいては、ハンドリング性および生産性を確保する為、フィルム中に滑材(粒子)を添加・含有させて、高分子ドフィルム表面に微細な凹凸を付与して滑り性を確保することが好ましい。前記滑材(粒子)とは、好ましくは無機物からなる微粒子であり、金属、金属酸化物、金属窒化物、金属炭素化物、金属酸塩、リン酸塩、炭酸塩、タルク、マイカ、クレイ、その他粘土鉱物、等からなる粒子を用いることができる。好ましくは、酸化珪素、リン酸カルシウム、リン酸水素カルシウム、リン酸二水素カルシウム、ピロリン酸カルシウム、ヒドロキシアパタイト、炭酸カルシウム、ガラスフィラーなどの金属酸化物、リン酸塩、炭酸塩を用いることができる。滑材は1種のみであってもよいし、2種以上であってもよい。
前記滑材(粒子)の体積平均粒子径は、通常0.001〜10μmであり、好ましくは0.03〜2.5μm、より好ましくは0.05〜0.7μm、さらに好ましくは0.05〜0.3μmである。かかる体積平均粒子径は光散乱法で得られる測定値を基準とする。粒子径が下限より小さいと高分子フィルムの工業的生産が困難となり、また上限を超えると表面の凹凸が大きくなりすぎて貼り付け強度が弱くなり、実用上の支障が出る虞がある。
前記滑材の添加量は、高分子フィルム中の高分子成分に対する添加量として、0.02〜5質量%であり、好ましくは0.04〜1質量%、より好ましくは0.08〜0.4質量%である。滑材の添加量が少なすぎると滑材添加の効果が期待し難く、滑り性の確保がそれほどなく高分子フィルム製造に支障をきたす場合があり、多すぎると、フィルムの表面凹凸が大きくなり過ぎて、滑り性の確保が見られても平滑性の低下を招いたり、高分子フィルムの破断強度や破断伸度の低下を招いたり、CTEの上昇を招くなどの課題を招く場合がある。
高分子フィルムに滑材(粒子)を添加・含有させる場合、滑材が均一に分散した単層の高分子フィルムとしてもよいが、例えば、一方の面が滑材を含有させた高分子フィルムで構成され、他方の面が滑材を含有しないか含有していても滑材含有量が少量である高分子フィルムで構成された多層の高分子フィルムとしてもよい。このような多層高分子のフィルムにおいては、一方の層(フィルム)表面に微細な凹凸が付与されて該層(フィルム)で滑り性を確保することができ、良好なハンドリング性や生産性を確保できる。
多層高分子フィルムは、溶融延伸製膜法に製造されるフィルムの場合、例えばまず、滑剤含有しない高分子フィルム原料を用いてフィルム化を行い、その工程途上に置いて少なくともフィルムの片面に、滑剤を含有する樹脂層を塗布することにより得ることが出来る。もちろん、この逆で、滑剤を含有する高分子フィルム原料を用いてフィルム化を行い、その工程途上、ないし、フィルム化が完了した後に、滑剤を含有しない高分子フィルム原料を塗布してフィルムを得ることも出来る。
ポリイミドフィルムのような溶液製膜法を用いて得られる高分子フィルムの場合にも同様で、例えば、ポリアミド酸溶液(ポリイミドの前駆体溶液)として、滑材(好ましくは平均粒子径0.05〜2.5μm程度)をポリアミド酸溶液中のポリマー固形分に対して0.02質量%〜50質量%(好ましくは0.04〜3質量%、より好ましくは0.08〜1。2質量%)含有したポリアミド酸溶液と、滑材を含有しないか又はその含有量が少量(好ましくはポリアミド酸溶液中のポリマー固形分に対して0.02質量%未満、より好ましくは0.01質量%未満)である2種のポリアミド酸溶液を用いて製造することができる。
多層高分子フィルムの多層化(積層)方法は、両層の密着に問題が生じなければ、特に限定されるものではなく、かつ接着剤層などを介することなく密着するものであればよい。
ポリイミドフィルムの場合、例えば、i)一方のポリイミドフィルムを作製後、このポリイミドフィルム上に他方のポリアミド酸溶液を連続的に塗布してイミド化する方法、ii)一方のポリアミド酸溶液を流延しポリアミド酸フィルムを作製後このポリアミド酸フィルム上に他方のポリアミド酸溶液を連続的に塗布した後、イミド化する方法、iii)共押し出しによる方法、iv)滑材を含有しないか又はその含有量が少量であるポリアミド酸溶液で形成したフィルムの上に、滑材を多く含有するポリアミド酸溶液をスプレーコート、Tダイ塗工などで塗布してイミド化する方法などを例示できる。本発明では、上記i)ないし上記ii)の方法を用いることが好ましい。
多層の高分子フィルムにおける各層の厚さの比率は、特に限定されないが、滑材を多く含有する高分子層を(a)層、滑材を含有しないか又はその含有量が少量である高分子層を(b)層とすると、(a)層/(b)層は0.05〜0.95が好ましい。(a)層/(b)層が0.95を超えると(b)層の平滑性が失われがちとなり、一方0.05未満の場合、表面特性の改良効果が不足し易滑性が失われることがある。
本発明における高分子フィルムは、その製造時において幅が300mm以上、長さが10m以上の長尺フィルムとして巻き取られた形態で得られるものが好ましく、巻取りコアに巻き取られたロール状ポリイミドフィルムの形態のものがより好ましい。
<保護フィルム>
本発明では必要に応じて保護フィルムを用いる事が出来る。保護フィルムは、文字通り、主体となる被保護物を、汚染やキズから保護する役割を担う物であるが、本発明に於いては、さらに、分割された高分子フィルムをまとめ、無機基板と貼り合わせる工程を省力化する働きを担う。
本発明の保護フィルムは、基材フィルムと粘着剤からなる。基材フィルムとしては極一般的なPETフィルム、PENフィルム、ポリプロピレンフィルム、ナイロンフィルム等の他、PPSフィルム、PEEKフィルム、芳香族ポリアミドフィルム、ポリイミドフィルム、ポリイミドベンザソールフィルム等の耐熱性スーパーエンジニアリングプラスチックフィルムを用いることができる。
本発明で好ましく用いられる保護フィルムの基材は、寸法安定性改善のためのアニール処理を行ったPETフィルム、同じくアニール処理を行ったPENフィルム、ポリイミドフィルムである。
本発明の保護フィルムに用いられる粘着剤としては、シリコーン系、アクリル系、ポリウレタン系、等など公知の粘着剤を用いることが出来る。本発明の保護フィルムは、フレキシブル電子デバイスの基材となる高分子フィルムのデバイス形成面を保護する。したがって、粘着剤成分の転写が極少になるように、あるいは転写成分がドライ、ないしはウエット洗浄にて簡単に除去できるタイプの粘着剤を使用することが好ましい。本発明では、たとえば、冷却することによって粘着力が減じる性質を有する側鎖結晶性高分子を用いた粘着剤を用いることができる。
<無機基板と高分子フィルムの接着手段>
本発明において無機基板と高分子フィルムとの接着手段としては、シリコーン樹脂、エポキシ樹脂、アクリル樹脂、ポリエステル樹脂などの公知の接着剤、粘着剤を用いることができる。本発明では、たとえば、冷却することによって粘着力が減じる性質を有する側鎖結晶性高分子を用いた粘着剤を用いることができる。
本発明で好ましい接着手段は、厚さが5μm以下の、極薄い、接着・粘着層による接着手段、ないしは、好ましくは実質的に接着剤・粘着剤を用いない、接着手段が好ましい。
本発明では、無機基板側に、シランカップリング剤処理、UVオゾン処理などの有機化処理、活性化処理を行い、同様に高分子フィルム側にも真空プラズマ処理、大気圧プラズマ処理、コロナ処理、火炎処理、イトロ処理、UVオゾン処理、活性ガスへの暴露処理などの活性化処理を行い、両処理面を密着させて加圧、加熱処理を行う接合方法を用いることができる。
<シランカップリング剤>
本発明におけるシランカップリング剤は、仮支持体と高分子フィルムとの間に物理的ないし化学的に介在し、両者間の接着力を高める作用を有する化合物を云う。
シランカップリング剤の好ましい具体例としては、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、2−(3,4−エポキシシクロへキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、p−スチリルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−(ビニルベンジル)−2−アミノエチル−3−アミノプロピルトリメトキシシラン塩酸塩、3−ウレイドプロピルトリエトキシシラン、3−クロロプロピルトリメトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3−イソシアネートプロピルトリエトキシシラン、トリス−(3−トリメトキシシリルプロピル)イソシアヌレート、クロロメチルフェネチルトリメトキシシラン、クロロメチルトリメトキシシラン、アミノフェニルトリメトキシシラン、アミノフェネチルトリメトキシシラン、アミノフェニルアミノメチルフェネチルトリメトキシシラン、ヘキサメチルジシラザンなどが挙げられる。
n−プロピルトリメトキシシラン、ブチルトリクロロシラン、2−シアノエチルトリエトキシシラン、シクロヘキシルトリクロロシラン、デシルトリクロロシラン、ジアセトキシジメチルシラン、ジエトキシジメチルシラン、ジメトキシジメチルシラン、ジメトキシジフェニルシラン、ジメトキシメチルフェニルシラン、ドデシルリクロロシラン、ドデシルトリメトキシラン、エチルトリクロロシラン、ヘキシルトリメトキシシラン、オクタデシルトリエトキシシラン、オクタデシルトリメトキシシラン、n−オクチルトリクロロシラン、n−オクチルトリエトキシシラン、n−オクチルトリメトキシシラン、トリエトキシエチルシラン、トリエトキシメチルシラン、トリメトキシメチルシラン、トリメトキシフェニルシラン、ペンチルトリエトキシシラン、ペンチルトリクロロシラン、トリアセトキシメチルシラン、トリクロロヘキシルシラン、トリクロロメチルシラン、トリクロロオクタデシルシラン、トリクロロプロピルシラン、トリクロロテトラデシルシラン、トリメトキシプロピルシラン、アリルトリクロロシラン、アリルトリエトキシシラン、アリルトリメトキシシラン、ジエトキシメチルビニルシラン、ジメトキシメチルビニルシラン、トリクロロビニルシラン、トリエトキシビニルシラン、ビニルトリス(2−メトキシエトキシ)シラン、トリクロロ−2−シアノエチルシラン、ジエトキシ(3−グリシジルオキシプロピル)メチルシラン、3−グリシジルオキシプロピル(ジメトキシ)メチルシラン、3−グリシジルオキシプロピルトリメトキシシラン、などを使用することもできる。
かかるシランカップリング剤の中で、本発明にて好ましく用いられるシランカップリング剤はカップリング剤の、一分子あたりに一個の珪素原子を有する化学構造のシランカップリング剤が好ましい。
本発明では、特に好ましいシランカップリング剤としては、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、2−(3,4−エポキシシクロへキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、アミノフェニルトリメトキシシラン、アミノフェネチルトリメトキシシラン、アミノフェニルアミノメチルフェネチルトリメトキシシランなどが挙げられる。プロセスで特に高い耐熱性が要求される場合、Siとアミノ基の間を芳香族基でつないだものが望ましい。
なお本発明では必要に応じて、リン系カップリング剤、チタネート系カップリング剤等を併用しても良い。
<シランカップリング剤の塗布方法>
本発明におけるシランカップリング剤の塗布方法としては、液相での塗布方法、気相での塗布方法を用いることが出来る。
液相での塗布方法としては、シランカップリング剤をアルコールなどの溶媒で希釈した溶液を用いて、スピンコート法、カーテンコート法、ディップコート法、スリットダイコート法、グラビアコート法、バーコート法、コンマコート法、アプリケーター法、スクリーン印刷法、スプレーコート法等の一般的な液体塗布方法を例示することが出来る。液相での塗布方法を用いた場合、塗布後に速やかに乾燥し、さらに100±30℃程度で数十秒〜10分程度の熱処理を行うことが好ましい。熱処理により、シランカップリング剤と被塗布面の表面とが化学反応により結合される。
本発明ではシランカップリング剤を気相を介して塗布することができる。気相法による塗布は、基板をシランカップリング剤の蒸気、すなわち実質的に気体状態のシランカップリング剤に暴露することによる。シランカップリング剤の蒸気は、液体状態のシランカップリング剤を40℃〜シランカップリング剤の沸点程度までの温度に加温することによって得ることが出来る。シランカップリング剤の沸点は、化学構造によって異なるが、概ね100〜250℃の範囲である。ただし200℃以上の加熱は、シランカップリング剤の有機基がわの副反応を招く恐れがあるため好ましくない。
シランカップリング剤を加温する環境は、加圧下、略常圧下、減圧下のいずれでも構わないが、シランカップリング剤の気化を促進する場合には略常圧下ないし減圧下が好ましい。多くのシランカップリング剤は可燃性液体であるため、密閉容器内にて、好ましくは容器内を不活性ガスで置換した後に気化作業を行うことが好ましい。
無機基板をシランカップリング剤に暴露する時間は特に制限されないが、20時間以内、好ましくは60分以内、さらに好ましくは15分以内、なおさらに好ましくは1分以内である。
無機基板をシランカップリング剤に暴露する間の無機基板温度は、シランカップリング剤の種類と、求めるシランカップリング剤層の厚さにより−50℃から200℃の間の適正な温度に制御することが好ましい。
シランカップリング剤に暴露された無機基板は、好ましくは、暴露後に、70℃〜200℃、さらに好ましくは75℃〜150℃に加熱される。かかる加熱によって、無機基板表面の水酸基などと、シランカップリング剤のアルコキシ基やシラザン基が反応し、シランカップリング剤処理が完了する。加熱に要する時間は10秒以上10分程度以内である。温度が高すぎたり、時間が長すぎる場合にはカップリング剤の劣化が生じる場合がある。また短すぎると処理効果が得られない。なお、シランカップリング剤に暴露中の基板温度が既に80℃以上である場合には、事後の加熱を省略することも出来る。
本発明では、無機基板のシランカップリング剤塗布面を下向きに保持してシランカップリング剤蒸気に暴露することが好ましい。液相の塗布方法では、必然的に塗布中および塗布前後に無機基板の塗布面が上を向くため、作業環境下の浮遊異物などが無機基板表面に沈着する可能性を否定できない。しかしながら気相による塗布方法では無機基板を下向きに保持することが出来るため。環境中の異物付着を大幅に減ずることが可能となる。
なおシランカップリング剤処理前の無機基板表面を短波長UV/オゾン照射などの手段により清浄化すること、ないしは液体洗浄剤で清浄化すること等は、有意義な好ましい操作である。
カップリング剤の塗布量、厚さについては理論上は1分子層あれば事足り、機械設計的には無視できるレベルの厚さで十分である。一般的には400nm未満(0.4μm未満)であり、200nm以下(0.2μm以下)が好ましく、さらに実用上は100nm以下(0.1μm以下)が好ましく、より好ましくは50nm以下、さらに好ましくは10nm以下である。ただし計算上5nm以下の領域になるとカップリング剤が均一な塗膜としてではなく、クラスター状に存在するケースが想定され、余り好ましくはない。カップリング剤層の膜厚は、エリプソメトリー法または塗布時のカップリング剤溶液の濃度と塗布量から計算して求めることができる。
本発明では、シランカップリング剤処理を行った無機基板、ないしは未処理の無機基板、さらには、超純水などによる洗浄処理が行われた無機基板に、UVオゾン処理を行うことにより活性化した無機基板を用いることができる。本発明におけるUVオゾン処理とは、酸素存在下において、波長が270nm以下、好ましくは210nm以下、なお好ましくは180nm以下の波長の紫外線を比較的近距離で照射する処理を意味する。短波長の紫外線は、雰囲気中の酸素をオゾン化し、紫外線自身は減衰するため、光源と被処理物との距離を離すと効果が得られない。本発明では光源と被処理物との間隔は30mm以下、好ましくは16mm以下、なお好ましくは8mm以下である。
本発明では、シランカップリング剤処理のみでは、無機基板と高分子フィルムの接着力が強くなり過ぎ、剥離に支障をきたす場合がある。シランカップリング剤の塗布量を減じることにより調整は可能であるが、処理斑が出やすいため、本発明ではシランカップリング剤処理の後に、UVオゾン処理などを行い、シランカップリング剤により導入される官能基の減活性化を行う手法を推奨する。
<高分子フィルムの表面活性化処理>
本発明において用いられる高分子フィルムには表面活性化処理を行うことが好ましい。該表面活性化処理によって、高分子フィルム表面は官能基が存在する状態(いわゆる活性化した状態)に改質され、無機基板に対する接着性が向上する。
本発明における表面活性化処理とは、乾式、ないし湿式の表面処理である。本発明の乾式処理としては、紫外線、電子線、X線などの活性エネルギー線を表面に照射する処理、コロナ処理、真空プラズマ処理、常圧プラズマ処理、火炎処理、イトロ処理等を用いることが出来る。湿式処理としては、フィルム表面を酸ないしアルカリ溶液に接触させる処理を例示できる。本発明に置いて好ましく用いられる表面活性化処理は、プラズマ処理であり、プラズマ処理と湿式の酸処理の組み合わせ、UVオゾン処理である。
プラズマ処理は、特に限定されるものではないが、真空中でのRFプラズマ処理、マイクロ波プラズマ処理、マイクロ波ECRプラズマ処理、大気圧プラズマ処理、コロナ処理などがあり、フッ素を含むガス処理、イオン源を使ったイオン打ち込み処理、PBII法を使った処理、熱プラズマに暴露する火炎処理、イトロ処理なども含める。これらの中でも真空中でのRFプラズマ処理、マイクロ波プラズマ処理、大気圧プラズマ処理が好ましい。
プラズマ処理の適当な条件としては、酸素プラズマ、CF4、C2F6などフッ素を含むプラズマなど化学的にエッチング効果が高いことが知られるプラズマ、或はArプラズマのように物理的なエネルギーを高分子表面に与えて物理的にエッチングする効果の高いプラズマによる処理が望ましい。また、CO2、H2、N2などプラズマ、およびこれらの混合気体や、さらに水蒸気を付加することも好ましい。短時間での処理を目指す場合、プラズマのエネルギー密度が高く、プラズマ中のイオンの持つ運動エネルギーが高いもの、活性種の数密度が高いプラズマが望ましい。この観点からは、マイクロ波プラズマ処理、マイクロ波ECRプラズマ処理、高いエネルギーのイオンを打ち込みやすいイオン源によるプラズマ照射、PBII法なども望ましい。
本発明においては複数の表面活性化処理を組み合わせて行っても良い。本発明で好ましい組み合わせは、真空プラズマ処理とUVオゾン処理の組み合わせである。
かかる表面活性化処理は高分子表面を清浄化し、さらに活性な官能基を生成する。生成した官能基は、カップリング剤層と水素結合ないし化学反応により結びつき、高分子フィルム層とカップリング剤層とを接着することが可能となる。
本発明では、プラズマ処理のみでは、無機基板と高分子フィルムの接着力が強くなり過ぎ、剥離に支障をきたす場合がある。プラズマ処理における処理時間の短縮、投入パワーの低減などにより調整は可能であるが、処理斑が出やすいため、本発明ではプラズマ処理の後に、UVオゾン処理などを行いプラズマ処理効果の変成を行う手法を推奨する。
プラズマ処理においては高分子フィルム表面をエッチングする効果も得ることが出来る。特に滑剤粒子を比較的多く含む高分子フィルムにおいては、滑剤による突起が、フィルムと無機基板との接着を阻害する場合がある。この場合、プラズマ処理によって高分子フィルム表面を薄くエッチングし、滑剤粒子の一部を露出せしめた上で、フ酸にて処理を行えば、フィルム表面近傍の滑剤粒子を除去することが可能である。
表面活性化処理は、高分子フィルムの片面のみに施してもよいし、両面に施してもよい。片面にプラズマ処理を行う場合、並行平板型電極でのプラズマ処理で片側の電極上に高分子フィルムを接して置くことにより、高分子フィルムの電極と接していない側の面のみにプラズマ処理を施すことができる。また2枚の電極間の空間に電気的に浮かせる状態で高分子フィルムを置くようにすれば、両面にプラズマ処理が行える。また、高分子フィルムの片面に保護フィルムを貼った状態でプラズマ処理を行うことで片面処理が可能となる。なお保護フィルムとしては粘着剤付のPETフィルム、PENフィルム、オレフィンフィ
ルム、ポリイミドフィルムなどが使用できる。
本発明では、活性化処理を行う際に、一部をマスキングしたり、あるいは活性化処理の強弱、処理時間などを部分的に変化させ、比較的接着力の強い部分と比較的接着力が弱い部分を意図的に作ることができる。
<フィルムラミネート方法>
本発明では、活性化された無機基板表面と、活性化された高分子フィルム表面を重ね合わせ、加熱・加圧することにより接着を行うことができる。
加圧・加熱処理は、例えば、大気圧雰囲気下あるいは真空中で、プレス、ラミネート、ロールラミネート等を、加熱しながら行えばよい。またフレキシブルなバッグに入れた状態で加圧加熱する方法も応用できる。生産性の向上や、高い生産性によりもたらされる低加工コスト化の観点からは、大気雰囲気下でのプレスまたはロールラミネートが好ましく、特にロールを用いて行う方法(ロールラミネート等)が好ましい。
加圧加熱処理の際の圧力としては、1MPa〜20MPaが好ましく、さらに好ましくは3MPa〜10MPaである。圧力が高すぎると、支持体を破損するおそれがあり、圧力が低すぎると、密着しない部分が生じ、接着が不充分になる場合がある。
加圧加熱処理の際の温度としては、用いる高分子フィルムの耐熱温度を超えない範囲にて行う。非熱可塑性のポリイミドフィルムの場合には150℃〜400℃、さらに好ましくは250℃〜350℃での処理が好ましい。
また加圧加熱処理は、上述のように大気圧雰囲気中で行うこともできるが、全面の安定した接着強度を得る為には、真空下で行うことが好ましい。このとき真空度は、通常の油回転ポンプによる真空度で充分であり、10Torr以下程度あれば充分である。
加圧加熱処理に使用することができる装置としては、真空中でのプレスを行うには、例えば井元製作所製の「11FD」等を使用でき、真空中でのロール式のフィルムラミネーターあるいは真空にした後に薄いゴム膜によりガラス全面に一度に圧力を加えるフィルムラミネーター等の真空ラミネートを行うには、例えば名機製作所製の「MVLP」等を使用できる。
前記加圧加熱処理は加圧プロセスと加熱プロセスとに分離して行うことが可能である。この場合、まず、比較的低温(例えば120℃未満、より好ましくは95℃以下の温度)で高分子フィルムと無機基板とを加圧(好ましくは0.2〜50MPa程度)して両者の密着確保し、その後、低圧(好ましくは0.2MPa未満、より好ましくは0.1MPa以下)もしくは常圧にて比較的高温(例えば120℃以上、より好ましくは120〜250℃、さらに好ましくは150〜230℃)で加熱することにより、密着界面の化学反応が促進されて高分子フィルムと仮支持用無機基板とを積層できる。
なお、本発明において高分子フィルムと無機基板とを貼り合わせる際の高分子フィルムの吸湿率を1.8%以下に制御することが好ましい。かかる高分子フィルムの吸湿率は、高分子フィルムと無機基板を圧着する直前状態での吸湿率を意味する。高分子フィルムの吸湿率は、高分子フィルムが放置された室内の気温と湿度に依存する。また吸湿・放湿には時間を要するため、当該測定は、一定条件下に十分に長い時間、少なくとも24時間程度以上放置された後に評価することが肝要である。
かかる吸湿された水分は、その量が多すぎると、後工程で熱が加わった際に、ブリスターの原因となる。一方で量が少なすぎると、無機基板との接着性が安定になる場合がある。すなわち、高分子フィルムと無機基板との各々の表面における化学的反応は、高分子フィルムに内包された水分によって影響されるのである。高分子フィルムの吸湿率は1.5%如何好ましく1.2%以下が好ましい。また吸湿率の下限は0.1%、好ましくは0.2%、さらに好ましくは0.4%である。
<高分子フィルムと無機基板の接着プロセス>
本発明の無機基板と高分子フィルムの積層体は、無機基板1枚に対して、高分子フィルムを少なくとも2以上の区画に分割して接着されていることが特徴である。
このような積層体を得る方法としては、以下の方法を例示出来る。
(1)無機基板に、ほぼ等しいサイズの高分子フィルムを貼り合わせ、レーザー、ないし機
械的切削刃等において高分子フィルムのみを分割する方法。
この場合、高分子フィルムの製造時に存在したボーイング歪の分布自体はそのまま残るが、高分子フィルムが分割されることにより、高分子フィルムの伸縮、収縮が生じた場合に於いても、引っ張り応力が分割部分で遮断されるため、無機基板に加わる応力は細分化され、全体の変形を押さえることが出来る。
(2)予め、分割した高分子フィルムを、直接無機基板の所定の位置に貼り合わせる。
高分子フィルムを分割し、無作為に、ないしは予想されるボーイング歪みを打ち消すように配置して貼り合わせることが可能となるため、高分子フィルムの伸縮、収縮による、引っ張り応力を、無機基板全体に均質化して分散出来るため、さらに全体の変形を押さえることが出来る。
(3)予め分割した高分子フィルムを、無機基板とほぼ等しいサイズの保護フィルムなどの
中間媒体上の所定の位置に配列して貼り付け、中間媒体に配列された状態のまま無機基板に貼り付けた後に中間媒体を剥離する方法。
基本的には前(2)項と同じであるが、無機基板に貼り合わせる工程が一度で済むため、無機基板の貼り付け面ならびに、先に貼り付けられた高分子フィルム表面の汚染が防止される。
<分割形態>
高分子フィルムを分割する形態としては、基板サイズにたいして2分割、3分割、4分割、ないしそれ以上の分割が可能である。分割された個々の領域の形状は、無機基板の形状に相似形とすることが出来る。例えば長方形の無機基板において、縦横をそれぞれ等数で分割すれば、4分割、9分割、16分割というように分割することができる。すべての領域の形状、サイズが同じである必要はなく、製造するフレキシブル電子デバイスの形状、サイズに応じて設計上、余白部が少なくなるように配置すれば良い。好ましいフィルム形状は、外形が直線で構成される多角形であり、正方形、長方形、特には縦横比が4対3ないし16対9の長方形が好ましい。
本発明では、高分子フィルムを一方向だけに細長く分割し、無機基板上に縞模様上に配置することもできる。この場合、分割された高分子フィルムをロール状に巻き上げることが可能となり、保護フィルムもロール形状とすることで、両者をロールトゥロール式に連続的に貼り合わせることが出来るため、保護フィルムへの分割高分子フィルムの配置が容易となる。すなわち、
(1) 一枚の保護フィルムに、複数に分割された高分子フィルムを割り付けて貼り合わせ多層積層フィルムを得る工程
(2) 無機基板と、前記多層積層フィルムの高分子フィルム側とを接着し、多層基板を得る工程
(3) 前記多層基板から保護フィルムを剥がす工程にて無機基板上に分割された高分子フィルムが張り合わされた状態を実現し、
(4) 多層基板の高分子フィルム上に電子デバイスを形成する工程
(5) 多層基板から高分子フィルムを剥離する工程
を経ることによってフレキシブル電子デバイスを得ることが可能となる。
本発明の主旨は、このようにして、高分子フィルムの有するボーイング歪を、配置を工夫することによって打ち消し、高分子フィルム/無機基板からなる積層体の変形を抑制することにあるが、例えば、無機基板の短辺よりも狭い幅にて製造された複数の高分子フィルムを無機基板に直接並べて貼り合わせる、ないし、保護フィルム上に並べて貼り合わせてから無機基板と貼り合わせる事により、狭い幅の高分子フィルムでも、大きなサイズの無機基板を用いてデバイスを作成することが可能となる。この場合に於いても、高分子フィルムはボーイング歪みを打ち消す方向に貼り合わせられることが好ましい。
なお、収率を確保するために当然ではあるが、本発明では分割された高分子フィルムどうしの間の間隙は極力小さい方が好ましく、5mm以下、さらには2mm以下、なおさらには0.7mm以下とすることが好ましい。
<フレキシブル電子デバイスの製造手段>
本発明の積層体を用いると、既存の電子デバイス製造用の設備、プロセスを用いて積層体の高分子フィルム上に電子デバイスを形成し、積層体から高分子フィルムごと剥離することで、フレキシブルな電子デバイスを作製することができる。
本発明における電子デバイスとは、電気配線を担う配線基板、トランジスタ、ダイオードなどの能動素子や、抵抗、キャパシタ、インダクタなどの受動デバイスを含む電子回路、他、圧力、温度、光、湿度などをセンシングするセンサー素子、発光素子、液晶表示、電気泳動表示、自発光表示などの画像表示素子、無線、有線による通信素子、演算素子、記憶素子、MEMS素子、太陽電池、薄膜トランジスタなどを云う。
<無機基板からの高分子フィルムの剥離手段>
高分子フィルムを支持体から剥離する手段については特に限定されず、公知の方法を用いればよい。積層体から高分子フィルムを剥離する方法としては、無機基板側から強い光を照射し、無機基板と高分子フィルム間の接着部位を熱分解、ないし光分解させて剥離する方法、あらかじめ接着強度を弱めておき、高分子フィルムの弾性強度限界値未満の力で高分子フィルムを引きはがす方法、加熱水、加熱蒸気などに晒し、無機基板と高分子フィルム界面の結合強度を弱めて剥離させる方法などを例示することが出来る。
剥離の際の「きっかけ」を作る方法としては、ピンセットなどで端から捲る方法、デバイス付きの高分子フィルムの切り込み部分の1辺に粘着テープを貼着させた後にそのテープ部分から捲る方法、デバイス付きの高分子フィルムの切り込み部分の1辺を真空吸着した後にその部分から捲る方法、あるいは予め高分子フィルムの一部を無機板に接着しない、ないし高分子フィルムの一部を無機基板からはみ出させることにより掴みシロを得る方法等を採用できる。
本発明では、無機基板と高分子フィルムの90度剥離における接着強度が所定の範囲であることが好ましい。高分子フィルとして熱可塑性のフィルム、たとえばPETフィルム、PENフィルムなどを用いた場合には、半導体としてアモルファスシリコンないしは有機半導体を用いることを想定し、140℃30分間の熱処理後の接着力が、また本発明で高分子フィルムとしてポリイミドフィルムを用いる場合には、アモルフェスシリコンの脱水素工程と多結晶化工程を想定した420℃30分間の加熱処理後の接着力が、各々、90度剥離モードにおいて、1.0N/cm未満、好ましくは0.6N/cm未満、なお好ましくは0.4N/cm未満、さらに好ましくは0.3N/cm未満である。
また、本発明では剥離の際の剥離角がπ/6ラジアン(30度)以下とすることが推奨され、π/12ラジアン(15度)以下とすることがより好ましく、さらにπ/24ラジアン(7.5度)以下とすることがなおさらに好ましい。剥離角度の下限が0の場合は自然剥離に相当し、この場合には電子デバイス加工工程中でブリスター発生やフィルムの剥離などのトラブルが出やすくなる。本発明の剥離角度の下限は1.0度、更に好ましくは2度程度である。
本発明では、剥離する部分に予め別の補強基材を貼りつけて、補強基材ごと剥離する方法も有用である。剥離するフレキシブル電子デバイスが、表示デバイスのバックプレーンである場合、あらかじめ表示デバイスのフロントプレーンを貼りつけて、無機基板上で一体化した後に両者を同時に剥がし、フレキシブルな表示デバイスを得ることも可能である。
本発明において、無機基板側、ないし、高分子フィルム側、さらには両方にパターン化処理を行うことが出来る。本発明に於けるパターン化とは、高分子フィルム、あるいは無機基板、あるいは双方の表面処理の程度を制御して、接着力が比較的強い部分と弱い部分とを作り出すことを意味する。本発明ではパターン化処理により高分子フィルムと無機基板との接着力が低くなる領域(易剥離部と呼ぶ)に電子デバイスを形成し、次いで、その領域の外周部に切り込みを入れ、高分子フィルムの電子デバイスが形成されたエリアを無機基板から剥離する事によりフレキシブル電子デバイスを得ることが出来る。該方法により、高分子フィルムと無機基板の剥離がより容易になる。
積層体の易剥離部の外周に沿って高分子フィルムに切り込みを入れる方法としては、刃物などの切削具によって高分子フィルムを切断する方法や、レーザーと積層体を相対的にスキャンさせることにより高分子フィルムを切断する方法、ウォータージェットと積層体を相対的にスキャンさせることにより高分子フィルムを切断する方法、半導体チップのダイシング装置により若干ガラス層まで切り込みつつ高分子フィルムを切断する方法などを用いることができる。また、これらの方法の組み合わせや、切削具に超音波を重畳させたり、往復動作や上下動作などを付け加えて切削性能を向上させる等の手法を適宜採用することもできる。
積層体の易剥離部外周の高分子フィルムに切り込みを入れるにあたり、切り込みを入れる位置は、少なくとも易剥離部の一部を含んでいればよく、基本的には所定のパターンに従って切断すれば良いが、誤差の吸収、生産性の観点などより、適宜判断すればよい。
以下、図を用いて本発明について説明する。図1.図2.図3.図4.は本発明に於ける高分子フィルムの分割例である。図1.では縦横をそれぞれ2分割し、全4分割とした例である。図2.は縦横をそれぞれ3分割とし、全9分割とした例である。図3.は大きさの異なる領域を設けた分割例である。図4は、単純に2分割した例である。図面は模式図であり、分割した領域間の間隙を強調して図示してある。現実には、間隙は極力小さくするように努めるのが常道である。
図5.図6.粘着剤を用いて高分子フィルムを無機基板に貼り付けた例である。図5.においては、無機基板側に粘着剤を塗布ないしラミネートし、その上に分割された高分子フィルムを貼り付けた様子を例示している。図6.は高分子フィルム側に粘着剤を塗布ないしラミネートし、その後、無機基板に貼り合わせた様子を例示している。
図7.は、ロール状に巻かれた保護フィルムに、連続的に2分割された高分子フィルムを貼り付けている様子を示した模式図である。張り合わされた高分子フィルムと保護フィルムからなる積層フィルムは、再びロール状に巻き上げることができる。
図8、図9、図10は、分割された高分子フィルムを保護フィルムを介して無機基板に貼り付ける様子を示した模式図である。図8.は保護フィルムに分割した高分子フィルムを貼り付け、再びロールに巻き上げている様子を示した模式図である。図示するための都合上、高分子フィルムはロールの長手方向に分割されているが、分割方向が限定されるわけではなく、図7.に図示した様に、幅方向に分割することも可能である。図9.は、ロールに巻き上げられた保護フィルムを介して、高分子フィルムを、粘着剤層が設けられた無機基板に貼り付けている様子を示した模式図である。ラミネート直後に保護フィルムを断裁すれば、以後の工程では無機基板を支持体とした枚葉状態でハンドリングできる。図10.は保護フィルムを剥離している様子を示す。ここでは剥がした保護フィルムをロール状に巻き取る例を示しているが、必ずしも巻き取らなければならない訳ではない。
以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明は以下の実施例によって限定されるものではない。なお、以下の実施例における物性の評価方法は下記の通りである。
<ポリアミド酸溶液の還元粘度>
ポリマー濃度が0.2g/dlとなるようにN,N−ジメチルアセトアミドに溶解した溶液についてウベローデ型の粘度管を用いて30℃で測定した。
<高分子フィルムの厚さ>
高分子フィルムの厚さは、マイクロメーター(ファインリューフ社製「ミリトロン1245D」)を用いて測定した。
<高分子フィルムの引張弾性率、引張強度および引張破断伸度>
測定対象とする高分子フィルムから、流れ方向(MD方向)及び幅方向(TD方向)がそれぞれ100mm×10mmである短冊状の試験片を切り出し、引張試験機(島津製作所社製「オートグラフ(登録商標);機種名AG−5000A」)を用い、引張速度50mm/分、チャック間距離40mmの条件で、MD方向、TD方向それぞれについて、引張弾性率、引張強度および引張破断伸度を測定した。
<高分子フィルムの線膨張係数(CTE)>
測定対象とする高分子フィルムの流れ方向(MD方向)および幅方向(TD方向)について、下記条件にて伸縮率を測定し、15℃の間隔(30℃〜45℃、45℃〜60℃、…)での伸縮率/温度を測定し、この測定を300℃まで行って、MD方向およびTD方向で測定した全測定値の平均値を線膨張係数(CTE)として算出した。
機器名 ; MACサイエンス社製「TMA4000S」
試料長さ ; 20mm
試料幅 ; 2mm
昇温開始温度 ; 25℃
昇温終了温度 ; 400℃
昇温速度 ; 5℃/分
雰囲気 ; アルゴン
初荷重 ; 34.5g/mm2
<高分子フィルムの熱収縮率>
IEC 61189−2,Test 2X02 に規定される方法で、加熱条件を400℃1時間として、測定した。
<高分子フィルムの吸湿率>
JIS K7251に規定されるA法にて測定した。
<積層体の反り>
長方形の積層体を定盤上に、反りが上向きに凹となるように置き、角部分の、定盤からの高さを金尺にて測定し、各角の高さと平均値を求めた。
<搬送性>
液晶ディスプレイ製造用の自動搬送機械における搬送性を総合評価した。評価基準は以下の通り。
○:標準条件にて搬送可能、問題なし。
△:搬送に一部問題はあるが、装置条件変更にて対応可能
×:搬送出来ない。
<接着強度 90度剥離法>
積層板から、測定に供する部分を100mm四方程度に切り取り、無機基板と高分子フィルムとの接着強度を、JIS C6481に記載の90度剥離法に従い、下記条件で測定した。
装置名 : 島津製作所社製「オートグラフ(登録商標)AG−IS」
測定温度 : 室温
剥離速度 : 50mm/分
雰囲気 : 大気
測定サンプル幅 : 10mm
<ポリイミドフィルムの製造>
〔製造例1〕
(ポリアミド酸溶液の調製)
窒素導入管、温度計、攪拌棒を備えた反応容器内を窒素置換した後、3,3',4,4'−ビフェニルテトラカルボン酸二無水物(BPDA)398質量部と、パラフェニレンジアミン(PDA)147質量部とを、4600質量部のN、N−ジメチルアセトアミドに溶解させて加え、滑材としてコロイダルシリカをジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC−ST30」)をシリカ(滑材)がポリアミド酸溶液中のポリマー固形分総量に対して0.08質量%になるように加え、25℃の反応温度で24時間攪拌して、表1に示す還元粘度を有する褐色で粘調なポリアミド酸溶液V1を得た。
(ポリイミドフィルムの作製)
上記で得られたポリアミド酸溶液V1を、スリットダイを用いて幅1500mmの長尺ポリエステルフィルム(東洋紡績株式会社製「A−4100」)の平滑面(無滑材面)上に、最終膜厚(イミド化後の膜厚)が25μmとなるように塗布し、105℃にて20分間乾燥した後、ポリエステルフィルムから剥離して、幅1420mmの自己支持性のポリアミド酸フィルムを得た。
次いで得られた自己支持性ポリアミド酸フィルムを、搬送ロールの速度差により、長さ方向に1.1倍に引き延ばし、次いで、ピンテンターによって幅方向に1.05倍引き延ばし、150℃〜420℃の温度領域で段階的に昇温させて(1段目180℃×5分、2段目270℃×10分、3段目420℃×5分間)熱処理を施してイミド化させ、両端のピン把持部分をスリットにて落とし、幅1290mmの長尺ポリイミドフィルムF1(1000m巻き)を得た。得られたフィルムF1の特性を表2.に示す。
〔製造例2〕
(ポリアミド酸溶液の調製)
窒素導入管、温度計、攪拌棒を備えた反応容器内を窒素置換した後、5−アミノ−2−(p−アミノフェニル)ベンゾオキサゾール(DAMBO)223質量部と、N,N−ジメチルアセトアミド4416質量部とを加えて完全に溶解させ、次いで、ピロメリット酸二無水物(PMDA)217質量部とともに、滑材としてコロイダルシリカをジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC−ST30」)とをシリカ(滑材)がポリアミド酸溶液中のポリマー固形分総量にて0.09質量%になるように加え、25℃の反応温度で36時間攪拌して、表1に示す還元粘度を有する褐色で粘調なポリアミド酸溶液V2を得た。
<ポリイミドフィルムの作製>
ポリアミド酸溶液V1に代えて、上記で得られたポリアミド酸溶液V2を用い、スリットダイを用いて幅800mmの長尺ポリエステルフィルム(東洋紡績株式会社製「A−4100」)の平滑面(無滑材面)上に、最終膜厚(イミド化後の膜厚)が38μmとなるように塗布し、105℃にて25分間乾燥した後、ポリエステルフィルムから剥離して、ピンテンターによって、1段目150℃×5分、2段目220℃×5分、3段目495℃×10分間)熱処理を施してイミド化させ、両端のピン把持部分をスリットにて落とし、幅645mmの長尺ポリイミドフィルムF2(1000m巻き)を得た。得られたフィルムF2の特性を表2.に示す。
<表面活性化処理フィルムの製造>
製造例1で得られたポリイミドフィルムF1の両面に真空プラズマ処理を行い、さらに両面にUVオゾン処理を施して、表面活性化処理フィルムP1を得た。
真空プラズマ処理は、平行平板型の電極を使ったRIEモード、RFプラズマによる処理であり、真空チャンバー内に窒素ガスを導入し、13.54MHzの高周波電力を導入するようにし、処理時間は3分間とした。
UVオゾン処理には、 ランテクニカルサービス株式会社製のUV/O3洗浄改質装置(「SKB1102N−01」)とUVランプ(「SE−1103G05」)とを用い、該UVランプから20mm程度離れた距離から5分間行った。照射時にはUV/O3洗浄改質装置内には特別な気体は入れず、UV照射は、大気雰囲気、室温で行った。なお、UVランプは185nm(不活性化処理を促進するオゾンを発生させうる短波長)と254nmの波長の輝線を出しており、このとき照度は、照度計「ORC社製UV−M03AUV(254nmの波長で測定)」にて20mW/cm2であった。
ポリイミドフィルムF1に代えてポリイミドフィルムF2を用いたこと以外は同様にして、表面活性化処理ポリイミドフィルムP2を得た。さらに、市販のポリイミドフィルム:カプトンH、(東レデュポン社製)、市販のPENフィルム(帝人・デュポン社製)、市販の全芳香族ポリエステルフィルム(LCP、住友化学社製)を用いて同様に表面処理を行った。結果を表2.表3.に示す
<保護フィルムと高分子フィルムの貼り合わせ>
表面活性化処理フィルムP1の内25mを、幅方向に4分割にスリットして巻き上げ、幅322.5mmとした。なお得られた4本のロールはそれぞれ、フィルム作製時のフィルム進行方向の左側からP1a、P1b、P1c、P1dとした。
2対のシリコンゴムローラーを備えたフィルムラミネーターの巻出し部に、幅1300mmの保護フィルムをセットした。用いた保護フィルムは、150℃にてアニール処理を行った50μm厚の東洋紡株式会社製PETフィルム、E5100を基材とし、厚さ10μmのシリコーン系粘着剤を片面にコーティングしたものである。
フィルムラミネーターのもう一方の巻出し部に、先にスリットした322.5mm幅のポリイミドフィルムを、保護フィルム巻きだし方向の左側から、P1b、P1d、P1a、P1cの順で、フィルム間隙が2mmとなるように配置した。
次いで、保護フィルムとポリイミドフィルムとを貼り合わせを行い、再びロール状に巻き上げた。ラミネートは線速5m/分、保護フィルム側とポリイミドフィルム側のテンションは等しくし、ローラー温度は室温とした。
同様に、幅1300mmの保護フィルムに対して、表面活性化フィルムP2を幅方向に、間隙を1mmとして2列に並べ、ラミネートし、ロールに巻き上げた。
<無機基板への表面活性化処理>
気相塗布によるシランカップリング剤処理とUVオゾン処理にて無機基板の表面活性化処理を行った。なお、無機基板として1300×1500mmのコーニング社製 Lotus Glass を用いた。
<シランカップリング剤塗布>
以下の条件にて無機基板へのシランカップリング剤塗布を行った。シランカップリング剤(信越化学工業株式会社製「KBM−903」:3−アミノプロピルトリメトキシシラン)100質量部をチャンバー内の蒸発バットに仕込み、大気圧にて酸素濃度が0.1%以下となるまで窒素ガスを導入し、次いで窒素ガスを止め、チャンバー内を3×10-4Paまで減圧し、シランカップリング剤を仕込んだバットを120℃まで昇温した。次いでシランカップリング剤の液面から垂直方向に100mm離れた箇所を、1300×1500mmの液晶ディスプレイ用ガラス「G0」を水平に保持し、7mm/秒の速度で静かに搬送してシランカップリング剤蒸気への暴露を行い、その後、真空チャンバー内にクリーンな窒素ガスを静かに導入して大気圧まで戻し、遠赤外線加熱によりガラス温度を95℃〜105℃の間に制御して約3分間熱処理を行い、表面活性化処理としてシランカップリング剤を塗布した基板「G1」を得た。
得られたシランカップリング剤塗布基板G1に、ランテクニカルサービス株式会社製のUV/O3洗浄改質装置を用い、大気雰囲気内にて、該UVランプから20mm程度離れた距離からUV照射を5分間行い、表面活性化基板G2を得た。なお、UVランプは185nm(不活性化処理を促進するオゾンを発生させうる短波長)と254nmの波長の輝線を出しており、このとき照度は、照度計「ORC社製UV−M03AUV(254nmの波長で測定)」にて20mW/cm2であった。
(比較例1)
<積層体の製作と初期特性の評価>
表面活性化フィルムP1と表面活性化基板G1の、活性面通しを合わせるように重ね、MCK社製ロールラミネータを用いて、無機基板側温度100℃、ロール圧力5kg/cm2、ロール速度5mm/秒にて仮ラミネートした。仮ラミネート後の高分子フィルムはフィルムの自重では剥がれないが、フィルム端部を引っ掻くと簡単に剥がれる程度の接着性であった。その後、得られた仮ラミネート基板をクリーンオーブンに入れ、200℃にて30分間加熱した後、室温まで放冷して、積層体L1を得た。
得られた積層体の外観品位の観察、反りの測定、およびフィルムと基板との90度剥離接着強度、さらにオーブンで420℃30分処理後の90度剥離接着強度と反りについて評価した。結果を表4.に示す。
なお、積層体の製作は、温度25℃±2℃、湿度55%±3%に保たれている実験室で行い、表面活性化フィルムは当実験室に24時間以上放置した後に積層を行った。
(実施例1)
4分割され、保護フィルムに貼られてロールに巻き上げられた表面活性化フィルムP1a、P1b、P1c、P1d を保護フィルムごとラミネータにセットし、同様に表面活性化基板G1にラミネートして仮接着した。次いで得られた仮ラミネート基板をクリーンオーブンに入れ、150℃にて180分間加熱した後、室温まで放冷し、注意深く保護フィルムを剥離して、本発明の積層体L2を得た。評価結果を表4.に示す。
(実施例2)
2列に並べて貼り付けされた表面活性化フィルムP2と保護フィルムからなるロールを同様にラミネータにセットし、同様に表面活性化基板G1にラミネートして仮接着した。次いで得られた仮ラミネート基板をクリーンオーブンに入れ、150℃にて180分間加熱した後、室温まで放冷し、注意深く保護フィルムを剥離して、本発明の積層体L3を得た。評価結果を表4.に示す。積層体L3は、図4.、図7.に例示した形態である。この場合、ガラス基板の最小幅に満たない幅の高分子フィルムでも、このような手法を用いれば貼り合わせが可能であることと、かかる剛直性を有する化学構造を持つ高分子のフィルムでは、基板変形が最小限に留められることが理解出来る。
(比較例2)
表面活性化フィルムP3を、比較例1と同様の方法にてG1と貼り合わせてL4を得た。評価結果を表4.に示す。
(実施例3)
表面活性化フィルムP3を、無機基板の縦横3分割になるサイズに分割し、間隙を1.0mmとして保護フィルム上に無作為に配列して貼り合わせたロールを製作し、同様にラミネータにセットし、同様に表面活性化基板G1にラミネートして仮接着した。次いで得られた仮ラミネート基板をクリーンオーブンに入れ、150℃にて120分間加熱した後、室温まで放冷し、注意深く保護フィルムを剥離して、本発明の積層体L5を得た。評価結果を表4.に示す。
(比較例3)
未処理のガラス板G0の表面にアクリル系粘着剤を塗布し、表面活性化フィルムP4をラミネートし積層体L6を得た。評価結果を表4.に示す。なお、本フィルムは420℃の耐熱性を有していないため、加熱試験は行っていない。
(実施例4)
未処理のガラス板G0の表面にアクリル系粘着剤を塗布し、表面活性化フィルムP4を実施例3に倣って3×3分割し、G0にラミネートし積層体L7を得た。評価結果を表4.に示す。なお、本フィルムは420℃の耐熱性を有していないため、加熱試験は行っていない。
(比較例4)
表面活性化フィルムP5を用い、比較例3と同様の方法で積層体L8を得た。評価結果を表4.に示す。なお、本フィルムは420℃の耐熱性を有していないため、加熱試験は行っていない。
(実施例5)
表面活性化フィルムP5を用い、比較例3と同様の方法で、ただし分割数は4×4、配列は無作為として積層体L9を得た。評価結果を表4.に示す。なお、本フィルムは420℃の耐熱性を有していないため、加熱試験は行っていない。
本発明のフレキシブル電子デバイスの製造方法によれば、仮支持用の無機基板に仮固定した高分子フィルム上に電子デバイスを作成した後に無機基板から電子デバイス付き高分子フィルムを、電子デバイスにストレスを与えることなく剥離することが可能であり、特にフレキシブルな電子デバイスを製造する上で産業界への寄与は極めて大である。
1 無機基板
2 高分子フィルム
3 粘着剤
4 保護フィルム

Claims (5)

  1. 無機基板に高分子フィルムを接着して多層基板とし、該多層基板の該高分子フィルム上に電子デバイスを形成した後に該高分子フィルムを該無機基板から剥離するフレキシブル電子デバイスの製造方法において、少なくとも下記(1)〜(5)を含む工程により、該無機基板に該高分子フィルムを少なくとも2以上の区画に分割して接着することを特徴とする、フレキシブル電子デバイスの製造方法。
    (1) 一枚の保護フィルムに、少なくとも2以上の区画に分割された高分子フィルムを貼り合わせ多層積層フィルムを得る工程、
    (2) 無機基板と、前記多層積層フィルムの高分子フィルム側とを接着し、多層基板を得る工程、
    (3) 前記多層基板から保護フィルムを剥離する工程、
    (4) 多層基板の高分子フィルム上に電子デバイスを形成する工程、
    (5) 多層基板から高分子フィルムを剥離する工程、
  2. 前記高分子フィルムの厚さが12μm以上、ヤング率が6GPa以上であり、400℃1時間加熱時の収縮率が0.5%以下であることを特徴とする請求項1に記載のフレキシブル電子デバイスの製造方法。
  3. 前記無機基板が、面積4900cm2以上、少なくとも短辺側が700mm以上の実質的に長方形であることを特徴とする請求項1または2に記載のフレキシブル電子デバイスの製造方法。
  4. 前記無機基板と前記高分子フィルムとのり合わせが、表面活性化処理した無機基板と、表面活性化処理した高分子フィルムとを加熱・加圧することによって行われる請求項1〜3のいずれかに記載のフレキシブル電子デバイスの製造方法。
  5. 前記無機基板と前記高分子フィルムとの貼り合わせに、厚さが5μm以下の粘着剤ないし接着剤を用いることを特徴とする請求項1〜4のいずれかに記載のフレキシブル電子デバイスの製造方法。
JP2014539173A 2013-07-16 2014-07-08 フレキシブル電子デバイスの製造方法 Active JP6372352B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013147483 2013-07-16
JP2013147483 2013-07-16
PCT/JP2014/068139 WO2015008658A1 (ja) 2013-07-16 2014-07-08 フレキシブル電子デバイスの製造方法

Publications (2)

Publication Number Publication Date
JPWO2015008658A1 JPWO2015008658A1 (ja) 2017-03-02
JP6372352B2 true JP6372352B2 (ja) 2018-08-15

Family

ID=52346126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014539173A Active JP6372352B2 (ja) 2013-07-16 2014-07-08 フレキシブル電子デバイスの製造方法

Country Status (3)

Country Link
JP (1) JP6372352B2 (ja)
TW (1) TWI635582B (ja)
WO (1) WO2015008658A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101848039B1 (ko) * 2016-03-31 2018-04-11 동우 화인켐 주식회사 시트상 제품 제조장치
GB201801457D0 (en) 2018-01-30 2018-03-14 Pragmatic Printing Ltd Integrated circuit manufacturing process and apparatus
JP7151904B2 (ja) * 2019-12-17 2022-10-12 東洋紡株式会社 積層体
TWI811636B (zh) * 2020-03-31 2023-08-11 日商東洋紡股份有限公司 附有保護膜之無機基板/工程塑膠薄膜積層體、積層體之堆疊、積層體的保管方法、及積層體的運輸方法
CN115697871A (zh) * 2020-07-06 2023-02-03 东洋纺株式会社 高分子膜的剥离方法、电子器件的制造方法以及剥离装置
FR3131980B1 (fr) * 2022-01-17 2024-01-12 Soitec Silicon On Insulator Procédé de fabrication d’un substrat donneur pour le transfert d’une couche piézoélectrique et procédé de transfert d’une couche piézoélectrique sur un substrat support

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129625A (ja) * 2003-10-22 2005-05-19 Denki Kagaku Kogyo Kk スリット入り回路基板及びその製造方法
KR20060122491A (ko) * 2005-05-27 2006-11-30 삼성전자주식회사 가요성 표시 장치의 제조 방법
TWI276191B (en) * 2005-08-30 2007-03-11 Ind Tech Res Inst Alignment precision enhancement of electronic component process on flexible substrate device and method thereof the same
JP2008268666A (ja) * 2007-04-23 2008-11-06 Fujifilm Corp 素子の製造方法及びそれを用いた表示装置の製造方法
US20090087938A1 (en) * 2007-09-28 2009-04-02 Texas Instruments Incorporated Method for Manufacturing Microdevices or Integrated Circuits on Continuous Sheets
KR101022017B1 (ko) * 2008-10-01 2011-03-16 한국기계연구원 계층화 구조물 제조 장치
JP2011181592A (ja) * 2010-02-26 2011-09-15 Technology Research Association For Advanced Display Materials アクティブマトリクス表示装置及びアクティブマトリクス表示装置の製造方法
CN103299448B (zh) * 2010-09-29 2016-09-07 Posco公司 使用辊形状母基板的柔性电子器件的制造方法、柔性电子器件及柔性基板
CN103502005B (zh) * 2011-04-15 2015-05-06 东洋纺株式会社 层叠体、其制造方法及使用其的器件结构体的制造方法
JP2012226013A (ja) * 2011-04-15 2012-11-15 Sony Corp 電子デバイスおよび表示装置の製造方法

Also Published As

Publication number Publication date
WO2015008658A1 (ja) 2015-01-22
TW201517220A (zh) 2015-05-01
TWI635582B (zh) 2018-09-11
JPWO2015008658A1 (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
JP6447135B2 (ja) 積層体、積層体の製造方法、およびフレキシブル電子デバイスの製造方法
JP6210201B2 (ja) フレキシブル電子デバイスの製造方法
KR102366549B1 (ko) 실란 커플링제층 적층 고분자 필름
JP6372352B2 (ja) フレキシブル電子デバイスの製造方法
JP7167693B2 (ja) 積層フィルム、積層体、及び、積層体の製造方法
JP6181984B2 (ja) 高分子フィルム積層基板
JP7013875B2 (ja) 積層体、積層体の製造方法、フレキシブル電子デバイスの製造方法
JPWO2016031746A6 (ja) シランカップリング剤層積層高分子フィルム
WO2015041190A1 (ja) リジッド複合積層板とその製造方法、積層体および該積層体を用いたデバイスの製造方法
JP2015178237A (ja) 積層無機基板、積層体、積層体の製造方法、およびフレキシブル電子デバイスの製造方法
JP6332617B2 (ja) ポリイミド前駆体フィルム層/無機基板積層体、およびその製造方法、ポリイミドフィルム層/無機基板積層体の製造方法、およびフレキシブル電子デバイスの製造方法
JP6688450B2 (ja) 積層体、電子デバイス、及びフレキシブル電子デバイスの製造方法
JP6965978B2 (ja) ポリイミドフィルムと無機基板の積層体
JP6638415B2 (ja) フレキシブル電子デバイスの製造方法
JP6746920B2 (ja) フレキシブル電子デバイスの製造方法
KR102476038B1 (ko) 고분자 필름 적층 기판 및 플렉시블 전자 디바이스의 제조 방법
JP7205687B2 (ja) 積層体、積層体の製造方法、及び、金属含有層付き耐熱高分子フィルム
JP2020128077A (ja) 積層フィルム、エッジクリーニング装置、及び、クリーニングされた積層フィルムの製造方法
JP6878870B2 (ja) 積層体、積層体の製造方法およびフレキシブルデバイスの製造方法
JP2018099800A (ja) 積層体、積層体の製造方法およびフレキシブルデバイスの製造方法
JP2018099801A (ja) 積層体、積層体の製造方法およびフレキシブルデバイスの製造方法
US11833795B2 (en) Multilayer body and method for producing flexible device
JP2018094790A (ja) 積層体、積層体の製造方法およびフレキシブルデバイスの製造方法
JP7116889B2 (ja) 耐熱高分子フィルム、表面処理された耐熱高分子フィルムの製造方法、及び、耐熱高分子フィルムロール
WO2022113415A1 (ja) 積層体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180702

R151 Written notification of patent or utility model registration

Ref document number: 6372352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350