JP6369807B2 - Protein L mutant - Google Patents

Protein L mutant Download PDF

Info

Publication number
JP6369807B2
JP6369807B2 JP2014214234A JP2014214234A JP6369807B2 JP 6369807 B2 JP6369807 B2 JP 6369807B2 JP 2014214234 A JP2014214234 A JP 2014214234A JP 2014214234 A JP2014214234 A JP 2014214234A JP 6369807 B2 JP6369807 B2 JP 6369807B2
Authority
JP
Japan
Prior art keywords
protein
antibody
seq
amino acid
variant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014214234A
Other languages
Japanese (ja)
Other versions
JP2016079149A (en
JP2016079149A5 (en
Inventor
渡辺 俊介
俊介 渡辺
佐知子 本間
佐知子 本間
美穂子 赤羽
美穂子 赤羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ProteinExpress Co Ltd
Original Assignee
ProteinExpress Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ProteinExpress Co Ltd filed Critical ProteinExpress Co Ltd
Priority to JP2014214234A priority Critical patent/JP6369807B2/en
Publication of JP2016079149A publication Critical patent/JP2016079149A/en
Publication of JP2016079149A5 publication Critical patent/JP2016079149A5/ja
Application granted granted Critical
Publication of JP6369807B2 publication Critical patent/JP6369807B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

本発明は、野生型プロテインLの抗体結合能を維持し、アルカリ耐性能が向上したプロテインL変異体に関する。   The present invention relates to a protein L variant that maintains the antibody-binding ability of wild-type protein L and has improved alkali resistance.

プロテインL、プロテインA等の抗体に特異的に結合するタンパク質が知られており、プロテインLは抗体軽鎖κドメインと結合するため、Fabや1本鎖抗体(scFv)等の低分子抗体の精製に有用である。   Proteins that specifically bind to antibodies such as protein L and protein A are known. Since protein L binds to the antibody light chain κ domain, purification of low-molecular-weight antibodies such as Fab and single-chain antibody (scFv) Useful for.

上記の抗体に特異的に結合するタンパク質を用いて抗体を精製する場合、該タンパク質を固相化したカラム等を用いたアフィニティークロマトグラフィーにより行うが、固相化カラムを洗浄する場合に、アルカリ溶液を用いることがあった。しかしながら、前記抗体に結合するタンパク質はアルカリ耐性が小さく、アルカリ溶液により抗体結合能が低下してしまう。   When purifying an antibody using a protein that specifically binds to the above antibody, affinity chromatography using a column or the like on which the protein is immobilized is performed, but when washing the immobilized column, an alkaline solution is used. Was sometimes used. However, the protein that binds to the antibody has low alkali resistance, and the antibody binding ability is lowered by the alkaline solution.

プロテインAについては、アルカリ耐性が向上した変異体が知られていた(特許文献1〜3を参照)。   Regarding protein A, mutants with improved alkali resistance have been known (see Patent Documents 1 to 3).

一般的には、タンパク質のアルカリ溶液に弱いアミノ酸残基としてアスパラギン残基が知られ、特にその隣の残基がグリシンの場合(NG配列)、最も分解を受けやすいことが報告されていた(特許文献4を参照)。   In general, an asparagine residue is known as a weak amino acid residue in an alkaline solution of protein, and it has been reported that it is most susceptible to degradation, particularly when the neighboring residue is glycine (NG sequence) (patented) (Ref. 4).

特表2005-538693号公報Special Table 2005-538693 Publication 特表2010-504754号公報Special Table 2010-504754 特開2006-304633号公報JP 2006-304633 A 特表2002-527107号公報Special Table 2002-527107

本発明は、野生型プロテインLの抗体結合能を維持し、アルカリ耐性能が向上したプロテインL変異体の提供を目的とする。   An object of the present invention is to provide a protein L variant that maintains the antibody binding ability of wild-type protein L and has improved alkali resistance.

本発明者は、アルカリ溶液による洗浄によっても抗体結合能が低下しないプロテインLの開発に鋭意検討を行った。そこで、プロテインLの5つのイムノグロブリン結合ドメインのアミノ酸配列を検討し、イムノグロブリン結合ドメインの1つであるB1-5のアミノ酸配列において他のイムノグロブリン結合ドメインがNG配列を有しているのに対して、B1-5ドメインはNG配列を有していないことに着目した。   The present inventor has intensively studied the development of protein L in which the antibody binding ability does not decrease even by washing with an alkaline solution. Therefore, the amino acid sequences of the five immunoglobulin binding domains of protein L were examined, and the other immunoglobulin binding domain had an NG sequence in the amino acid sequence of B1-5, which is one of the immunoglobulin binding domains. In contrast, it was noted that the B1-5 domain has no NG sequence.

本発明者らは、プロテインLのイムノグロブリン結合ドメインをすべてB1-5にすることにより、該プロテインL変異体において抗体結合能が低下しないで維持され、かつアルカリ溶液耐性が向上することを見出し、本発明を完成させるに至った。   The present inventors have found that by making all the immunoglobulin binding domains of protein L B1-5, the antibody L binding ability is not reduced in the protein L mutant, and the alkaline solution resistance is improved. The present invention has been completed.

すなわち、本発明は以下のとおりである。
[1] イムノグロブリン結合ドメインとして配列番号5で表わされるアミノ酸配列からなるB1-5ドメインのみを少なくとも1つ含み、抗体結合能を有するプロテインL変異体。
[2] 野生型プロテインLの5つのイムノグロブリン結合ドメインがすべて配列番号5で表わされるアミノ酸配列からなるB1-5ドメインである、[1]のプロテインL変異体。
[3] 野生型プロテインLの1.5倍以上の抗体結合能を有する[2]のプロテインL変異体。
[4] 配列番号5で表わされるアミノ酸配列からなるイムノグロブリン結合ドメインの1〜8量体である、[1]のプロテインL変異体。
[5] 5量体である、[4]のプロテインL変異体。
[6] [1]〜[5]のいずれかのプロテインL変異体に抗体を結合させ、次いで抗体を溶出させることを含む、抗体の精製方法。
That is, the present invention is as follows.
[1] A protein L variant having at least one B1-5 domain consisting of the amino acid sequence represented by SEQ ID NO: 5 as an immunoglobulin binding domain and having antibody binding ability.
[2] The protein L variant of [1], wherein all five immunoglobulin binding domains of wild type protein L are B1-5 domains consisting of the amino acid sequence represented by SEQ ID NO: 5.
[3] The protein L variant of [2] having an antibody binding ability 1.5 times or more that of wild type protein L.
[4] The protein L variant of [1], which is a 1-8 mer of an immunoglobulin binding domain consisting of the amino acid sequence represented by SEQ ID NO: 5.
[5] The protein L variant of [4], which is a pentamer.
[6] A method for purifying an antibody, comprising binding an antibody to the protein L variant of any one of [1] to [5] and then eluting the antibody.

本発明の、イムノグロブリン結合ドメインとして、配列番号5で表されるアミノ酸配列からなるイムノグロブリン結合ドメインのみを含むプロテインL変異体は、抗体結合能を維持しており、なおかつアルカリ溶液耐性が向上している。特に、野生型プロテインLの5つのイムノグロブリン結合ドメインをすべて配列番号5で表されるアミノ酸配列からなるイムノグロブリン結合ドメインとしたプロテインL変異体は野生型プロテインLよりも高い抗体結合能を有し、なおかつアルカリ溶液耐性が向上していた。   The protein L variant containing only the immunoglobulin binding domain consisting of the amino acid sequence represented by SEQ ID NO: 5 as the immunoglobulin binding domain of the present invention maintains the antibody binding ability, and has improved alkaline solution resistance. ing. In particular, a protein L variant in which all five immunoglobulin binding domains of wild type protein L have an immunoglobulin binding domain consisting of the amino acid sequence represented by SEQ ID NO: 5 has a higher antibody binding ability than wild type protein L. Moreover, the alkali solution resistance was improved.

本発明のプロテインL変異体は、抗体のアフィニティークロマトグラフィー精製に用いた後にアルカリ溶液を用いて洗浄しても分解せず抗体結合能も低下しないので、繰り返し抗体の精製に用いることができる。   Since the protein L variant of the present invention is used for affinity chromatography purification of an antibody and then washed with an alkaline solution, it does not decompose and does not deteriorate the antibody binding ability, and therefore can be used repeatedly for antibody purification.

プロテインLの構造を示す図である。1 is a diagram showing the structure of protein L. FIG. プロテインLの各イムノグロブリン結合ドメインのアミノ酸配列のアラインメントを示す図である。It is a figure which shows the alignment of the amino acid sequence of each immunoglobulin binding domain of protein L. プロテインLの5つのイムノグロブリン結合ドメインそれぞれの抗体に対する親和性を示す図である。It is a figure which shows the affinity with respect to the antibody of each of five immunoglobulin binding domains of protein L. プロテインLの5つのイムノグロブリン結合ドメインそれぞれをアルカリに暴露した際に、分解されなかった割合を示した図である。図中、括弧内の数字は配列中のNG配列の個数を示す。It is the figure which showed the ratio which was not decomposed | disassembled when each of five immunoglobulin binding domains of protein L was exposed to the alkali. In the figure, the numbers in parentheses indicate the number of NG sequences in the sequence. 野生型および変異体プロテインL固定化カラムの抗体結合量に対するアルカリ洗浄の影響を示す図である。It is a figure which shows the influence of the alkali washing | cleaning with respect to the antibody binding amount of a wild type and mutant protein L fixed column.

以下、本発明を詳細に説明する。
本発明は、野生型プロテインLの抗体結合能を維持し、アルカリ耐性能が向上したプロテインL変異体である。プロテインLはFinegoldia magnaが産生するイムノグロブリン結合タンパク質であり、種々の動物種のIgG、IgM、IgA、IgE、IgDを含むクラスの抗体に結合する。また、1本鎖抗体(ScFv)やFab とも結合することができる。
Hereinafter, the present invention will be described in detail.
The present invention is a protein L variant that maintains the antibody-binding ability of wild-type protein L and has improved alkali resistance. Protein L is an immunoglobulin binding protein produced by Finegoldia magna and binds to a class of antibodies including IgG, IgM, IgA, IgE and IgD of various animal species. It can also bind to a single chain antibody (ScFv) or Fab.

プロテインLとしては、Finegoldia magnaの2つの株由来のものが知られている。1つは3316株由来のプロテインLであり、もう1つの312株由来のプロテインLである。3316株由来のプロテインL及び312株由来のプロテインLは図1に示す構造を有している。すなわち、3316株由来のプロテインLは4つのイムノグロブリン結合ドメインを有し、312株由来のプロテインLは5つのイムノグロブリン結合ドメインを有している。   As protein L, those derived from two strains of Finegoldia magna are known. One is protein L from 3316 strain and the other is protein L from 312 strain. Protein L derived from the 3316 strain and protein L derived from the 312 strain have the structure shown in FIG. That is, protein L from 3316 strain has 4 immunoglobulin binding domains, and protein L from 312 strain has 5 immunoglobulin binding domains.

312株由来のプロテインLの5つのイムノグロブリン結合ドメインをB1-1からB1-5と呼ぶ。それぞれのアミノ酸配列を図2に示し、さらにB1-1からB1-5のアミノ酸配列を、それぞれ配列番号1〜5に示す。また、B1-1からB1-5のアミノ酸配列をコードするDNA配列を配列番号6〜10に示す。   The five immunoglobulin binding domains of protein L from strain 312 are called B1-1 to B1-5. The respective amino acid sequences are shown in FIG. 2, and the amino acid sequences from B1-1 to B1-5 are shown in SEQ ID NOs: 1 to 5, respectively. Moreover, the DNA sequence which codes the amino acid sequence of B1-1 to B1-5 is shown to sequence number 6-10.

本発明のプロテインL変異体は、5つのイムノグロブリン結合ドメインがすべてB1-5であるプロテインLである。すなわち、B1-1、B1-2、B1-3及びB1-4がB1-5に置換されたプロテインLである。図2に示すように、B1-1のアミノ酸配列の50及び51番目の配列はNGであり、各イムノグロブリン結合ドメインのアミノ酸配列をアラインメントしたときのB1-1のNG配列に相当する配列はB1-2、B1-3およびB1-4では同様にNG配列であるが、B1-5ではHGである。さらにB1-1のアミノ酸配列の20及び21番目の配列もNGであるが、B1-1以外のドメインではDGである。これらのように配列にNGを含んでいないB1-5はアルカリ溶液耐性が大きく、従って、イムノグロブリン結合ドメインとしてB1-5のみを含むプロテインLはアルカリ溶液耐性が大きい。3316株由来のプロテインLは4つのイムノグロブリン結合ドメインの対応するアミノ酸配列はすべてNGである。   The protein L variant of the present invention is protein L in which all five immunoglobulin binding domains are B1-5. That is, protein L in which B1-1, B1-2, B1-3 and B1-4 are substituted with B1-5. As shown in FIG. 2, the 50th and 51st sequences of the amino acid sequence of B1-1 are NG, and the sequence corresponding to the NG sequence of B1-1 when the amino acid sequences of the respective immunoglobulin binding domains are aligned is B1. -2, B1-3 and B1-4 are similarly NG sequences, but B1-5 is HG. Furthermore, the 20th and 21st sequences of the amino acid sequence of B1-1 are also NG, but in the domain other than B1-1, it is DG. As described above, B1-5 that does not contain NG in the sequence is highly resistant to alkaline solution. Therefore, protein L containing only B1-5 as an immunoglobulin binding domain is highly resistant to alkaline solution. Protein L from strain 3316 is NG for the corresponding amino acid sequences of the four immunoglobulin binding domains.

野生型プロテインLのDNA配列を配列番号11に示し、アミノ酸配列を配列番号12に示す。配列番号12において、86番目のThrから156番目のLysがB1-1(配列番号1)、159番目のThrから228番目のLysがB1-2(配列番号2)、231番目のThrから300番目のLysがB1-3(配列番号3)、303番目のThrから372番目のLysがB1-4(配列番号4)、377番目のLysから445番目のLysがB1-5(配列番号5)のアミノ酸配列を示す。   The DNA sequence of wild type protein L is shown in SEQ ID NO: 11, and the amino acid sequence is shown in SEQ ID NO: 12. In SEQ ID NO: 12, the 156th Lys from the 86th Thr is B1-1 (SEQ ID NO: 1), the 228th Lys from the 159th Thr is B1-2 (SEQ ID NO: 2), and the 300th from the 231st Thr Lys of B1-3 (SEQ ID NO: 3), 372nd Lys from the 303rd Thr to B1-4 (SEQ ID NO: 4), 445th Lys from the 377th Lys to B1-5 (SEQ ID NO: 5) Amino acid sequence is shown.

本発明のプロテインL変異体は、イムノグロブリン結合ドメインとして配列番号5で表わされるアミノ酸配列からなるB1-5のみを含むプロテインL変異体である。野生型プロテインLは5つのイムノグロブリン結合ドメインを含むが、本発明のプロテインL変異体におけるB1-5イムノグロブリン結合ドメインの数は限定されず、少なくとも1つのB1-5を含んでいればよい。好ましくは1〜10個、さらに好ましくは2〜8個、さらに好ましくは3〜7個、さらに好ましくは4〜6個、特に好ましくは5個のB1-5を含む。5個のB1-5を含むプロテイン変異体は、野生型プロテインLの5つのイムノグロブリン結合ドメインが総て配列番号5で表わされるアミノ酸配列からなるB1-5になったプロテインL変異体であり、野生型プロテインLのB1-1からB1-4の4つのイムノグロブリン結合ドメインがB1-5に置換されたプロテインL変異体である。野生型プロテインLの5つのイムノグロブリン結合ドメインが総て配列番号5で表わされるアミノ酸配列からなるB1-5になったプロテインL変異体のDNA配列を配列番号15に示し、アミノ酸配列を配列番号16に示す。配列番号16のアミノ酸配列において、86番目のLysから154番目のLys、157番目のLysから225番目のLys、228番目のLysから296番目のLys、299番目のLysから367番目のLys及び372番目のLysから440番目のLysがB1-5の配列を示す。   The protein L variant of the present invention is a protein L variant containing only B1-5 consisting of the amino acid sequence represented by SEQ ID NO: 5 as an immunoglobulin binding domain. Wild-type protein L contains five immunoglobulin binding domains, but the number of B1-5 immunoglobulin binding domains in the protein L mutant of the present invention is not limited, and it is sufficient that it contains at least one B1-5. Preferably it contains 1 to 10, more preferably 2 to 8, more preferably 3 to 7, more preferably 4 to 6 and particularly preferably 5 B1-5. The protein variant containing 5 B1-5 is a protein L variant in which the five immunoglobulin binding domains of wild type protein L are all B1-5 consisting of the amino acid sequence represented by SEQ ID NO: 5, This is a protein L mutant in which the four immunoglobulin binding domains B1-1 to B1-4 of wild type protein L are substituted with B1-5. The DNA sequence of the protein L variant in which all five immunoglobulin binding domains of wild type protein L are B1-5 consisting of the amino acid sequence represented by SEQ ID NO: 5 is shown in SEQ ID NO: 15, and the amino acid sequence is SEQ ID NO: 16 Shown in In the amino acid sequence of SEQ ID NO: 16, the 86th Lys to the 154th Lys, the 157th Lys to the 225th Lys, the 228th Lys to the 296th Lys, the 299th Lys to the 367th Lys and the 372rd The 440th Lys from the Lys indicates the sequence of B1-5.

本発明のプロテインL変異体は、上記の312株由来の配列番号5で表わされるアミノ酸配列からなるB1-5からなるタンパク質も含む。該プロテインL変異体は、少なくともB1-5からなり、好ましくは1〜10個、さらに好ましくは2〜8個、さらに好ましくは3〜7個、さらに好ましくは4〜6個、特に好ましくは5個のB1-5からなる。該プロテインL変異体は、B1-5の1量体、2量体、3量体、4量体、5量体、6量体、7量体、8量体、9量体、10量体等の多量体である。B1-5はタンデムに連結されており、B1-5ドメインとB1-5ドメインの間にはリンカー配列が含まれていてもよい。リンカー配列としては、1〜15個のアミノ酸配列が挙げられる。例えば、Glu-Lysで表わされる配列やLys-Val-Asp-Gluで表わされるアミノ酸配列をリンカーとして用いることができるが、これらの配列には限定されない。   The protein L mutant of the present invention also includes a protein consisting of B1-5 consisting of the amino acid sequence represented by SEQ ID NO: 5 derived from the above 312 strain. The protein L variant consists of at least B1-5, preferably 1-10, more preferably 2-8, more preferably 3-7, more preferably 4-6, particularly preferably 5. Consisting of B1-5. The protein L mutant is a B1-5 monomer, dimer, trimer, tetramer, pentamer, hexamer, heptamer, octamer, 9mer or 10mer. Etc. are multimers. B1-5 is linked in tandem, and a linker sequence may be included between the B1-5 domain and the B1-5 domain. Examples of the linker sequence include 1 to 15 amino acid sequences. For example, a sequence represented by Glu-Lys or an amino acid sequence represented by Lys-Val-Asp-Glu can be used as a linker, but is not limited to these sequences.

本発明のプロテインL変異体が含むB1-5ドメインは、配列番号5で表わされるアミノ酸配列の48番目と49番目のHG以外のアミノ酸において、1または数個のアミノ酸において欠失、置換または付加があってもよい、1または数個は、5個以下、好ましくは1〜3個、さらに好ましくは1または2個、特に好ましくは1個である。   The B1-5 domain contained in the protein L variant of the present invention has a deletion, substitution or addition in one or several amino acids in amino acids other than the 48th and 49th HG of the amino acid sequence represented by SEQ ID NO: 5. One or several, which may be present, are 5 or less, preferably 1 to 3, more preferably 1 or 2, and particularly preferably 1.

また、アミノ酸配列が配列番号5で表わされるアミノ酸配列と95%以上、好ましくは97%以上、さらに好ましくは98%以上の配列同一性を有する。   In addition, the amino acid sequence has a sequence identity of 95% or more, preferably 97% or more, more preferably 98% or more with the amino acid sequence represented by SEQ ID NO: 5.

5個のB1-5ドメインを含むプロテインL変異体は、野生型プロテインLと同等又は野生型プロテインLよりも高い抗体結合能を有する。   A protein L variant containing five B1-5 domains has an antibody binding ability equivalent to or higher than that of wild type protein L.

ここで、抗体結合能は、プロテインLに抗体を結合させて、結合させた抗体を酸性条件下で溶出し、溶出した抗体量を測定することにより決定することができる。溶出した抗体量は抗体結合容量で表すことができる。B1-5ドメインを5つ有するプロテインL変異体は、野生型プロテインLに対して、少なくとも1.3倍以上、好ましくは1.5倍以上、さらに好ましくは1.7倍以上、特に好ましくは1.8倍以上の抗体結合能を有する。   Here, the antibody binding ability can be determined by binding an antibody to protein L, eluting the bound antibody under acidic conditions, and measuring the amount of the eluted antibody. The amount of antibody eluted can be expressed as the antibody binding capacity. A protein L variant having five B1-5 domains has an antibody binding capacity of at least 1.3 times, preferably 1.5 times, more preferably 1.7 times, particularly preferably 1.8 times or more that of wild-type protein L. Have

また、B1-5ドメインからなるB1-5多量体であるプロテインL変異体は、B1-5以外のイムノグロブリン結合ドメインの多量体と同等の抗体結合能を有する。   A protein L variant, which is a B1-5 multimer consisting of B1-5 domains, has an antibody binding ability equivalent to that of an immunoglobulin binding domain other than B1-5.

本発明のプロテインL変異体は、アミノ酸配列情報またはDNA配列情報に基づいて製造することができ、例えば、遺伝子工学の手法を利用して、リコンビナントタンパク質として製造することができる。   The protein L variant of the present invention can be produced based on amino acid sequence information or DNA sequence information. For example, it can be produced as a recombinant protein using genetic engineering techniques.

本発明のプロテインL変異体はアルカリ溶液に対する耐性が大きい。アルカリ溶液に対する耐性が大きいことを、アルカリ感受性が低いともいう。   The protein L mutant of the present invention has a high resistance to an alkaline solution. High resistance to an alkaline solution is also referred to as low alkali sensitivity.

アルカリ溶液耐性が大きいとは、アルカリ溶液中で分解されずに、抗体結合能を保持し得ることをいい、アルカリ溶液耐性が大きいかどうかは、例えば、プロテインL変異体を水酸化ナトリウム溶液等のアルカリ溶液に添加し、一定時間放置した後に分解されずに残存したプロテインL量を測定することにより決定することができる。プロテインLの量は、例えば、SDS-PAGEを行いバンドの強度をデンシトメーターで測定することにより決定することができる。   High alkaline solution resistance means that the antibody binding ability can be maintained without being decomposed in an alkaline solution, and whether the alkaline solution resistance is large is determined by, for example, protein L mutants such as sodium hydroxide solution. It can be determined by measuring the amount of protein L which is added to the alkaline solution and left undecomposed after being left for a certain period of time. The amount of protein L can be determined, for example, by performing SDS-PAGE and measuring the intensity of the band with a densitometer.

例えば、プロテインL変異体に50mM水酸化ナトリウム溶液を添加し、37℃で24時間放置した後にSDS-PAGEを行った場合に、バンド強度はアルカリ溶液を添加しなかったプロテインL変異体と同等である。   For example, when SDS-PAGE was performed after adding 50 mM sodium hydroxide solution to protein L mutant and allowed to stand at 37 ° C. for 24 hours, the band intensity was equivalent to that of protein L mutant to which no alkaline solution was added. is there.

プロテインLを用いてアフィニティークロマトグラフィーにより抗体の精製を行う場合、使用後プロテインLを0.01〜0.1Nの水酸化ナトリウム溶液等のアルカリ溶液を用いて洗浄する。野生型プロテインLはアルカリ溶液を用いた洗浄により、分解し抗体結合能が低下するが、本発明のプロテインL変異体はアルカリ溶液を用いた洗浄によっても抗体結合能が低下しないため繰り返しアフィニティークロマトグラフィーによる抗体の精製に用いることができる。   When purifying an antibody by affinity chromatography using protein L, after use, protein L is washed with an alkaline solution such as 0.01 to 0.1 N sodium hydroxide solution. Wild-type protein L is degraded by washing with an alkaline solution and its antibody binding ability is reduced. However, the protein L mutant of the present invention is not reduced in its antibody-binding ability even by washing with an alkaline solution, so that repeated affinity chromatography Can be used to purify antibodies.

本発明のプロテインL変異体は、抗体のアフィニティー精製に用いることができる。プロテインL変異体は、抗体軽鎖κドメインに結合するためκ鎖ドメインを有する抗体または抗体の機能的ドメイン等の低分子抗体のアフィニティークロマトグラフィーによる精製に用いることができる。κ鎖ドメインを有する抗体または抗体の機能的ドメインとしては、Fab、Fab’、1本鎖抗体(ScFv)等が挙げられる。   The protein L mutant of the present invention can be used for antibody affinity purification. Since the protein L variant binds to the antibody light chain κ domain, it can be used for the purification by affinity chromatography of a low molecular antibody such as an antibody having a κ chain domain or a functional domain of an antibody. Examples of the antibody or antibody functional domain having a κ chain domain include Fab, Fab ′, single-chain antibody (ScFv) and the like.

アフィニティー精製は、精製しようとする抗体をプロテインL変異体を固定化した担体と結合させ、その後溶出すればよい。   In affinity purification, the antibody to be purified may be bound to a carrier on which a protein L variant is immobilized, and then eluted.

担体としては、Sepharose、Sephadex、Cellulofine等のセルロース、アガロース、デキストラン、シリカ、合成ポリマー等の樹脂が挙げられる。これらの担体へのプロテインL変異体の結合は公知の方法で行うことができる。   Examples of the carrier include resins such as cellulose such as Sepharose, Sephadex, and Cellulofine, agarose, dextran, silica, and synthetic polymers. The protein L mutant can be bound to these carriers by a known method.

本発明は、本発明のプロテインL変異体を固定化した抗体精製用担体および該担体を充填したアフィニティークロマトグラフィー用カラムも包含する。   The present invention also includes an antibody purification support on which the protein L variant of the present invention is immobilized, and an affinity chromatography column packed with the support.

本発明は、本発明のプロテインL変異体を用いて抗体を精製する方法も包含する。例えば、プロテインL変異体を結合させた担体を充填したカラムに抗体を含む溶液を添加し、プロテインL変異体に抗体を結合させ、ついで洗浄した後に、溶出液を添加し、抗体を溶出し回収すればよい。具体的には例えば、以下の方法で行うことができる。   The present invention also includes a method for purifying an antibody using the protein L mutant of the present invention. For example, add a solution containing an antibody to a column packed with a carrier to which a protein L variant has been bound, bind the antibody to the protein L variant, wash, and then add an eluate to elute and collect the antibody. do it. Specifically, for example, the following method can be used.

アフィニティー精製はバッチ法で行ってもよいし、プロテインL変異体を担体に結合させ、カラムに詰めアフィニティーカラムを製造して行ってもよい。例えば、アフィニティーカラムを用いて精製を行う場合、あらかじめカラムをpH6.0〜8.5の緩衝液で平衡化しておく。この時用いる緩衝液はリン酸ナトリウム、リン酸カリウム等がある。また、該緩衝液は0〜4.0Mまでの塩化ナトリウムや塩化カリウムを含んでいてもよい。例えば、10〜100mM、好ましくは20mMリン酸ナトリウムおよび0〜4.0M、好ましくは0.15M塩化ナトリウムを含有する緩衝液を用いることができる。カラムサイズはサンプルとしてアプライする抗体含有混合物の量にもよるが、例えば長さ1〜30cmのものを用いればよい。精製しようとする抗体が含有した混合物をアプライした後に緩衝液、例えばpH6.0〜8.5、好ましくはpH7.0の緩衝液でカラムを洗浄する。この際用いる緩衝液は好ましくは、平衡化に用いた緩衝液である。また、この際用いる緩衝液の量は限定されないが、例えば5カラム容量の緩衝液で洗浄すればよい。次いで、pH2.0〜pH4.0、好ましくはpH2.5の緩衝液、例えばグリシン緩衝液やクエン酸ナトリウム緩衝液で抗体をカラムから溶出する。この際の溶出用緩衝液の濃度は、10〜100mMが好ましい。この際用いる緩衝液の量は限定されないが、例えば5カラム容量の緩衝液で溶出。溶出液中に目的の抗体が含まれているので回収すればよい。   Affinity purification may be performed by a batch method, or may be performed by binding a protein L variant to a carrier and packing it in a column to produce an affinity column. For example, when purification is performed using an affinity column, the column is previously equilibrated with a pH 6.0 to 8.5 buffer. Examples of the buffer used at this time include sodium phosphate and potassium phosphate. The buffer may contain 0 to 4.0 M sodium chloride or potassium chloride. For example, a buffer containing 10-100 mM, preferably 20 mM sodium phosphate and 0-4.0 M, preferably 0.15 M sodium chloride can be used. Although the column size depends on the amount of the antibody-containing mixture to be applied as a sample, for example, a column having a length of 1 to 30 cm may be used. After applying the mixture containing the antibody to be purified, the column is washed with a buffer, for example, pH 6.0 to 8.5, preferably pH 7.0. The buffer used at this time is preferably the buffer used for equilibration. In addition, the amount of the buffer solution used at this time is not limited. For example, the buffer solution may be washed with 5 column volumes of buffer solution. The antibody is then eluted from the column with a buffer solution of pH 2.0 to pH 4.0, preferably pH 2.5, such as glycine buffer or sodium citrate buffer. In this case, the concentration of the elution buffer is preferably 10 to 100 mM. The amount of buffer used at this time is not limited, but elution is performed with, for example, 5 column volumes of buffer. Since the target antibody is contained in the eluate, it may be recovered.

カラムを用いた後、0.01〜0.1Nの水酸化ナトリウム溶液等のアルカリ溶液を用いて洗浄することにより、再度用いることができる。   After using the column, the column can be used again by washing with an alkaline solution such as 0.01 to 0.1 N sodium hydroxide solution.

本発明を以下の実施例によって具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。   The present invention will be specifically described by the following examples, but the present invention is not limited to these examples.

(実施例1)
プロテインLイムノグロブリン結合ドメインB1-1からB1-5タンパク質の発現
図2に記載のプロテインLイムノグロブリン結合ドメインB1-1からB1-5(以下、PLB1からPLB5とする)のアミノ酸配列をコードする合成遺伝子(それぞれ、配列番号6〜10)を人工遺伝子合成メーカーから入手した。当該合成遺伝子の5’側には制限酵素BamHI認識配列を、3’側には制限酵素XhoI認識配列をあらかじめ付与しておき、BamHI/XhoIで処理したpET21ベクター(Novagen)にT4 DNA ligaseを用いて連結後、大腸菌DH5αの形質転換を行なった。得られた形質転換体からコロニーPCR法、DNAシーケンス法により陽性クローンを選別し、プラスミドミニキット(FastGene)により、発現用プラスミドpET21-PLB1〜pET21-PLB5を得た。
Example 1
Expression of protein L immunoglobulin binding domain B1-1 to B1-5 protein Synthesis encoding the amino acid sequence of protein L immunoglobulin binding domain B1-1 to B1-5 (hereinafter PLB1 to PLB5) shown in FIG. Genes (SEQ ID NOs: 6 to 10, respectively) were obtained from an artificial gene synthesis manufacturer. A restriction enzyme BamHI recognition sequence was given to the 5 'side of the synthetic gene, and a restriction enzyme XhoI recognition sequence was given to the 3' side in advance, and T4 DNA ligase was used for the pET21 vector (Novagen) treated with BamHI / XhoI. After ligation, E. coli DH5α was transformed. Positive clones were selected from the obtained transformants by colony PCR and DNA sequencing, and expression plasmids pET21-PLB1 to pET21-PLB5 were obtained using a plasmid mini kit (FastGene).

発現用プラスミドpET21-PLB1〜pET21-PLB5それぞれを用いて、大腸菌BL21(DE3)の形質転換を行ない、100μg/mLのアンピシリンを含んだLBプレートに塗布、37℃で一晩培養した。出現したコロニーを100μg/mLのアンピシリンを含んだLB培地に移し、37℃で一晩培養した。培養液100μLを100μg/mLのアンピシリンを含んだTB培地10mLに移し、37℃で3時間培養した後に、IPTG(終濃度0.5mM)を添加し、20℃で18時間培養した。培養終了後、3,000g、10分間の遠心により菌体を回収し、1mLのPBSに懸濁した。懸濁した菌体を超音波処理により破砕、10,000g、10分間の遠心により、可溶性画分を得た。設計したプロテインLイムノグロブリン結合ドメインはC末端にヒスチジンタグを保有するので、可溶性画分からHisSpin Trap(GEヘルスケア)を用いて、精製PLB1〜PLB5タンパク質溶液を得た。このタンパク質溶液は透析法により蒸留水に溶媒置換を行ない、凍結保存した。   E. coli BL21 (DE3) was transformed with each of the expression plasmids pET21-PLB1 to pET21-PLB5, applied to an LB plate containing 100 μg / mL ampicillin, and cultured at 37 ° C. overnight. The appearing colonies were transferred to LB medium containing 100 μg / mL ampicillin and cultured at 37 ° C. overnight. 100 μL of the culture solution was transferred to 10 mL of TB medium containing 100 μg / mL of ampicillin, cultured at 37 ° C. for 3 hours, added with IPTG (final concentration 0.5 mM), and cultured at 20 ° C. for 18 hours. After completion of the culture, the cells were collected by centrifugation at 3,000 g for 10 minutes and suspended in 1 mL of PBS. The suspended cells were disrupted by sonication, and a soluble fraction was obtained by centrifugation at 10,000 g for 10 minutes. Since the designed protein L immunoglobulin binding domain has a histidine tag at the C-terminus, purified PLB1 to PLB5 protein solutions were obtained from the soluble fraction using HisSpin Trap (GE Healthcare). This protein solution was subjected to solvent replacement in distilled water by dialysis and stored frozen.

(実施例2)
PLB1からPLB5の抗体結合能
調製したPLB1からPLB5を96ウェルELISA用プレートに1ウェルあたり4〜1000ng加え、4℃で一晩放置することで、固相化を行なった。加えた溶液を除去した後に、3%ウシ血清アルブミン/TBS溶液を加え、室温で2時間放置し、ウェルのブロッキングを行なった。0.05%Tween20/TBS溶液にて、ウェルを3回洗浄した後に、5,000倍希釈したHRP標識IgGを各ウェルに加え、室温で1時間抗体結合反応を行なった。0.05%Tween20/TBS溶液にて、ウェルを3回洗浄した後に、TMBパーオキシダーゼEIA複合体基質キット(バイオ・ラッド ラボラトリーズ)を用いた発色反応を行なう。3%硫酸で反応を停止させた後に、450nmでの吸光度を測定することで抗体の結合量を定量した。図3に示すように、PLB1からPLB5それぞれにおいて、抗体との親和性に関する相違は認められなかった。
(Example 2)
Antibody binding ability of PLB1 to PLB5 The prepared PLB1 to PLB5 were added to a 96-well ELISA plate at 4 to 1000 ng per well, and allowed to stand overnight at 4 ° C. to effect immobilization. After removing the added solution, a 3% bovine serum albumin / TBS solution was added, and the mixture was allowed to stand at room temperature for 2 hours to block the wells. After the wells were washed three times with 0.05% Tween20 / TBS solution, 5,000-fold diluted HRP-labeled IgG was added to each well, and an antibody binding reaction was performed at room temperature for 1 hour. The wells are washed three times with 0.05% Tween20 / TBS solution, and then a color reaction using TMB peroxidase EIA complex substrate kit (Bio-Rad Laboratories) is performed. After stopping the reaction with 3% sulfuric acid, the amount of antibody bound was quantified by measuring the absorbance at 450 nm. As shown in FIG. 3, there was no difference in affinity with the antibody in each of PLB1 to PLB5.

(実施例3)
PLB1からPLB5のアルカリ耐性能
調製したPLB1からPLB5に終濃度50mMとなるように水酸化ナトリウム溶液を添加し、37℃で24時間放置した。24時間後、酢酸を加えて中性にし、水酸化ナトリウム未処理のものとともに、SDS-PAGEを行なった。水酸化ナトリウム溶液処理前後のPLB1からPLB5のバンド強度を、ImageJソフトウェア(http://imagej.nih.gov/ij/)を用いて定量、水酸化ナトリウム溶液処理後のバンドの残存率を算出した。図2に示すように、アルカリに対して感受性の高い配列とされるAsn-Gly(NG)配列はPLB1に2ヶ所、PLB2からPLB4には1ヶ所あり、PLB5には存在しない。図4に示すように、水酸化ナトリウム溶液処理後のPLB1からPLB5のバンドの残存率はNG配列の個数に依存していた。
(Example 3)
Alkali resistance performance of PLB1 to PLB5 A sodium hydroxide solution was added to the prepared PLB1 to PLB5 to a final concentration of 50 mM, and the mixture was allowed to stand at 37 ° C. for 24 hours. After 24 hours, acetic acid was added to neutralize the solution, and SDS-PAGE was performed along with sodium hydroxide untreated. The band intensity of PLB1 to PLB5 before and after the sodium hydroxide solution treatment was quantified using ImageJ software (http://imagej.nih.gov/ij/), and the band remaining ratio after the sodium hydroxide solution treatment was calculated. . As shown in FIG. 2, there are two Asn-Gly (NG) sequences, which are considered to be highly sensitive to alkali, in PLB1, one in PLB2 to PLB4, and not in PLB5. As shown in FIG. 4, the remaining ratio of the bands of PLB1 to PLB5 after the treatment with the sodium hydroxide solution depended on the number of NG sequences.

(実施例4)
野生型プロテインLの発現
野生型プロテインLの配列をコードする合成遺伝子を人工遺伝子合成メーカーから入手した。配列番号11にDNA配列を示し、配列番号12にアミノ酸配列を示す。その際、Brevibacillus choshinensis用発現ベクターpNY326に導入するために、5’側に制限酵素NcoI配列を含むccatggctttcgct(配列番号13)を、3’側に終止コドンと制限酵素HindIII配列を含むtagaagctt(配列番号14)を付与しておいた。NcoI/HindIIIで処理したpNY326に同処理を行なった野生型プロテインL遺伝子をT4 DNA ligaseを用いて連結後、Brevibacillus choshinensis HPD31株の形質転換を行なった。得られた形質転換体からコロニーPCR法、DNAシーケンスにより陽性クローンを選別し、プラスミドミニキット(FastGene)により、野生型プロテインL発現用プラスミドpNY326-PLwtを得た。
Example 4
Expression of wild type protein L A synthetic gene encoding the sequence of wild type protein L was obtained from an artificial gene synthesis manufacturer. SEQ ID NO: 11 shows the DNA sequence, and SEQ ID NO: 12 shows the amino acid sequence. At that time, for introduction into the expression vector pNY326 for Brevibacillus choshinensis, ccatggctttcgct (SEQ ID NO: 13) containing the restriction enzyme NcoI sequence on the 5 ′ side and tagaagctt (SEQ ID NO: SEQ ID NO: 13) containing the stop codon and the restriction enzyme HindIII sequence on the 3 ′ side. 14). The wild-type protein L gene which had been treated with pNY326 treated with NcoI / HindIII was ligated using T4 DNA ligase, and then Brevibacillus choshinensis HPD31 strain was transformed. From the obtained transformant, a positive clone was selected by colony PCR method and DNA sequence, and a plasmid pNY326-PLwt for wild type protein L expression was obtained by a plasmid mini kit (FastGene).

pNY326-PLwtにて形質転換したBrevibacillus choshinensis HPD31株をTMN培地(1% ポリペプトン、0.5% 肉エキス、0.2% 酵母エキス、0.001% FeSO47H2O、0.0001% ZnSO47H2O、0.001% MnSO47H2O、1% グルコース、50μg/mL ネオマイシン)で30℃、48時間培養を行なう。培養終了後、10,000g、10分間の遠心により培養上清を回収し、0.2μmのフィルターでろ過滅菌を行なった。滅菌後の培養上清から、IgG sepharose(GEヘルスケア)を用いて、分泌生産された野生型プロテインLタンパク質の精製を行ない、蒸留水に溶媒置換したものを野生型プロテインL溶液とし、使用まで凍結保存した。 Brevibacillus choshinensis strain HPD31 transformed with pNY326-PLwt was added to TMN medium (1% polypeptone, 0.5% meat extract, 0.2% yeast extract, 0.001% FeSO 4 7H 2 O, 0.0001% ZnSO 4 7H 2 O, 0.001% MnSO 4 7H 2 O, 1% glucose, 50 μg / mL neomycin) at 30 ° C. for 48 hours. After completion of the culture, the culture supernatant was collected by centrifugation at 10,000 g for 10 minutes, and sterilized by filtration with a 0.2 μm filter. From the culture supernatant after sterilization, IgG sepharose (GE Healthcare) is used to purify the secreted and produced wild-type protein L protein, and solvent-substituted distilled water is used as a wild-type protein L solution. Cryopreserved.

(実施例5)
プロテインL変異体の発現
野生型プロテインLのイムノグロブリン結合ドメインがすべてB1-5に置換された変異体プロテインLの配列をコードする合成遺伝子を人工遺伝子合成メーカーから入手した。配列番号15にDNA配列を示し、配列番号16にアミノ酸配列を示す。野生型プロテインLと同様の手順で、プロテインL変異体発現プラスミドpNY326-PLmut、並びにプロテインL変異体溶液を得た。
(Example 5)
Expression of protein L mutant A synthetic gene encoding a mutant protein L sequence in which the immunoglobulin binding domain of wild type protein L was all replaced with B1-5 was obtained from an artificial gene synthesis manufacturer. SEQ ID NO: 15 shows the DNA sequence, and SEQ ID NO: 16 shows the amino acid sequence. A protein L mutant expression plasmid pNY326-PLmut and a protein L mutant solution were obtained in the same procedure as wild type protein L.

(実施例6)
プロテインL固定化カラムの作製と抗体結合容量の測定
5mgの野生型または変異体プロテインLを1mLのNHS-activated Sepharose 4 Fast Flow(GEヘルスケア)と25℃、30分間反応させた。トリス緩衝液で未反応のNHS基をブロックした後に、PBSに置換した。作製したプロテインL固定化カラム1mLに対して、ウサギ標準血清を10mL加え、1時間放置する。PBSで洗浄した後に、25mM グリシン緩衝液(pH2.5)によって、プロテインLに結合した抗体を溶出した。溶出された抗体はトリス緩衝液(pH9.0)添加により中性にした後、280nmの吸光度を測定することで、定量した。表1には、野生型プロテインL固定化カラムとプロテインL変異体固定化カラムの抗体結合容量の比較を示した。表中の数字はプロテインL固定化カラム1mLあたりに結合できたIgGの量(mg)である。野生型に比べ、プロテインL変異体を固定化したカラムの抗体結合容量は1.8倍と高い値を示した。
(Example 6)
Preparation of protein L-immobilized column and measurement of antibody binding capacity 5 mg of wild-type or mutant protein L was reacted with 1 mL of NHS-activated Sepharose 4 Fast Flow (GE Healthcare) at 25 ° C. for 30 minutes. After blocking unreacted NHS groups with Tris buffer, it was replaced with PBS. Add 10 mL of rabbit standard serum to 1 mL of the prepared protein L-immobilized column and leave it for 1 hour. After washing with PBS, the antibody bound to protein L was eluted with 25 mM glycine buffer (pH 2.5). The eluted antibody was neutralized by adding Tris buffer (pH 9.0) and then quantified by measuring the absorbance at 280 nm. Table 1 shows a comparison of antibody binding capacities between the wild-type protein L-immobilized column and the protein L variant-immobilized column. The number in the table is the amount (mg) of IgG that could be bound per mL of protein L-immobilized column. Compared to the wild type, the antibody binding capacity of the column immobilized with the protein L mutant was 1.8 times higher.

Figure 0006369807
Figure 0006369807

(実施例7)
プロテインL固定化カラムのアルカリ耐性能
上記のように作製した野生型およびプロテインL変異体固定化カラムがアルカリ洗浄に対し、どの程度の耐性があるか調べるため、抗体の結合、洗浄、酸溶出、蒸留水に置換、アルカリ溶液での長時間洗浄(15mM水酸化ナトリウム溶液に50分間暴露)蒸留水に置換、PBSに置換という工程を1サイクルとして繰り返し、各サイクルで溶出された抗体の定量を行なった。対照として、市販のプロテインL固定化カラム(CaptoL、GEヘルスケア)を用い、1サイクル目の抗体溶出量を100%として、その量がどのように変化したかを示したものが、図5である。野生型プロテインL固定化カラムおよびCaptoLは5サイクル目で1サイクル目の50%程度の抗体結合能を示し、アルカリ洗浄工程に脆弱であることが示された。それに対し、プロテインL変異体固定化カラムは10サイクル目でも1サイクル目と同程度の抗体結合を示し、野生型と比べ、アルカリに対して耐久性が高まったとの結果が得られた。
(Example 7)
Alkali resistance of protein L-immobilized column In order to examine how much resistance the wild-type and protein L mutant-immobilized columns prepared as described above are resistant to alkaline washing, antibody binding, washing, acid elution, Replacing with distilled water, washing with alkaline solution for a long time (exposure to 15 mM sodium hydroxide solution for 50 minutes) Replacing with distilled water and replacing with PBS are repeated as one cycle, and the antibody eluted in each cycle is quantified. It was. As a control, a commercially available protein L-immobilized column (CaptoL, GE Healthcare) was used, and the amount of antibody elution in the first cycle was taken as 100%. is there. The wild-type protein L-immobilized column and CaptoL showed about 50% antibody binding ability in the first cycle and the first cycle, indicating that they were vulnerable to the alkaline washing step. On the other hand, the protein L mutant-immobilized column showed antibody binding comparable to that in the first cycle even at the 10th cycle, and the result was that durability against alkali was increased compared to the wild type.

本発明のプロテインL変異体を用いて抗体を繰り返し精製することができ、効率的な抗体精製が可能になる。   The antibody can be repeatedly purified using the protein L mutant of the present invention, and efficient antibody purification becomes possible.

配列番号13および14 合成 SEQ ID NOs: 13 and 14

Claims (3)

イムノグロブリン結合ドメインとして、配列番号5で表わされるアミノ酸配列からなるB1-5ドメインのみを5〜10個有しプロテインL固定化カラム1mLあたりに結合できたIgGの量を測定したときに野生型プロテインLの1.5倍以上の抗体結合能を有するプロテインL変異体。 When measuring the amount of IgG that has 5 to 10 B1-5 domains consisting of the amino acid sequence represented by SEQ ID NO: 5 as the immunoglobulin binding domain and was able to bind per mL of protein L-immobilized column, the wild type A protein L mutant having an antibody binding capacity 1.5 times or more that of protein L. イムノグロブリン結合ドメインとして、配列番号5で表わされるアミノ酸配列からなるB1-5ドメインのみを5個有する、請求項1記載のプロテインL変異体。The protein L variant according to claim 1, which has 5 B1-5 domains consisting of the amino acid sequence represented by SEQ ID NO: 5 as immunoglobulin binding domains. 請求項1又は2に記載のプロテインL変異体に抗体を結合させ、次いで抗体を溶出させることを含む、抗体の精製方法。 A method for purifying an antibody, comprising binding an antibody to the protein L variant according to claim 1 or 2 and then eluting the antibody.
JP2014214234A 2014-10-21 2014-10-21 Protein L mutant Active JP6369807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014214234A JP6369807B2 (en) 2014-10-21 2014-10-21 Protein L mutant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014214234A JP6369807B2 (en) 2014-10-21 2014-10-21 Protein L mutant

Publications (3)

Publication Number Publication Date
JP2016079149A JP2016079149A (en) 2016-05-16
JP2016079149A5 JP2016079149A5 (en) 2017-07-06
JP6369807B2 true JP6369807B2 (en) 2018-08-08

Family

ID=55957579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014214234A Active JP6369807B2 (en) 2014-10-21 2014-10-21 Protein L mutant

Country Status (1)

Country Link
JP (1) JP6369807B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6843438B2 (en) * 2014-12-17 2021-03-17 サイティバ・バイオプロセス・アールアンドディ・アクチボラグ Modified κ light chain binding polypeptide
EP3252158A4 (en) 2015-01-26 2018-07-18 Kaneka Corporation Mutant immunoglobulin kappa chain variable region-binding peptide
JPWO2016121701A1 (en) 2015-01-26 2017-11-09 株式会社カネカ Affinity separation matrix for protein purification containing immunoglobulin κ chain variable region
JP6950957B2 (en) 2015-10-22 2021-10-13 プロテノバ株式会社 Immunoglobulin-binding polypeptide
WO2017191748A1 (en) * 2016-05-02 2017-11-09 株式会社カネカ Modified immunoglobulin κ chain variable region-binding peptide
WO2017195638A1 (en) 2016-05-09 2017-11-16 株式会社カネカ Method for refining antibody or antibody fragment containing κ-chain variable region
US10703774B2 (en) 2016-09-30 2020-07-07 Ge Healthcare Bioprocess R&D Ab Separation method
WO2017194597A1 (en) 2016-05-11 2017-11-16 Ge Healthcare Bioprocess R&D Ab Separation matrix
EP3455241B1 (en) 2016-05-11 2022-02-23 Cytiva BioProcess R&D AB Method of cleaning and/or sanitizing a separation matrix
CN109311949B (en) 2016-05-11 2022-09-16 思拓凡生物工艺研发有限公司 Method for storing separation matrices
EP3540056A4 (en) 2016-11-10 2020-06-03 Kaneka Corporation Method for producing transgenic cells
TW201928059A (en) * 2017-09-25 2019-07-16 日商Jsr股份有限公司 Immunoglobulin binding protein, and affinity support using same
US11753449B2 (en) 2017-09-25 2023-09-12 Jsr Corporation Immunoglobulin binding protein, and affinity support using same
GB2569585A (en) 2017-12-20 2019-06-26 Ge Healthcare Bio Sciences Ab A method for preparation of a separation matrix
WO2019187602A1 (en) * 2018-03-29 2019-10-03 株式会社カネカ MODIFIED IMMUNOGLOBULIN κ CHAIN VARIABLE REGION-BINDING PEPTIDE
WO2020066270A1 (en) * 2018-09-28 2020-04-02 株式会社カネカ METHOD FOR PRODUCING κ CHAIN VARIABLE REGION-CONTAINING ANTIBODY AND/OR ANTIBODY FRAGMENT
WO2023074642A1 (en) * 2021-10-25 2023-05-04 東ソー株式会社 Immunoglobulin-binding protein
JP7414106B2 (en) 2022-01-14 2024-01-16 東ソー株式会社 Protein with immunoglobulin binding activity
KR102637595B1 (en) * 2022-05-03 2024-02-16 아미코젠주식회사 Immunoglobulin-binding protein variant with increased alkali-tolerance and use thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9201331D0 (en) * 1992-04-28 1992-04-28 Hightech Receptor C O Active PROTEIN L AND HYBRID PROTEINS THEREOF
GB9823071D0 (en) * 1998-10-21 1998-12-16 Affibody Technology Ab A method
SE0200943D0 (en) * 2002-03-25 2002-03-25 Amersham Biosciences Ab Mutant protein
GB0323238D0 (en) * 2003-10-03 2003-11-05 Domantis Ltd Synthetic LG binding domains of protein L
SG195555A1 (en) * 2008-12-24 2013-12-30 Emd Millipore Corp Caustic stable chromatography ligands
AU2011230313B2 (en) * 2010-03-24 2015-01-22 Kaneka Corporation Protein capable of binding specifically to immunoglobulin, and immunoglobulin-binding affinity ligand
JP5997176B2 (en) * 2010-12-21 2016-09-28 ザ ユニバーシティ オブ ウエスタン オンタリオThe University of Western Ontario Novel alkali-resistant mutant of protein A and its use in affinity chromatography
US9284354B2 (en) * 2011-03-25 2016-03-15 Kaneka Corporation Immunoglobulin-binding polypeptide

Also Published As

Publication number Publication date
JP2016079149A (en) 2016-05-16

Similar Documents

Publication Publication Date Title
JP6369807B2 (en) Protein L mutant
JP7181612B2 (en) alkali-stable immunoglobulin-binding protein
JP6181145B2 (en) Novel immunoglobulin binding proteins with improved specificity
AU2016293063B2 (en) Novel immunoglobulin-binding proteins and their use in affinity purification
JP5994068B2 (en) IgG-binding peptide and method for detecting and purifying IgG thereby
JP4391830B2 (en) Mutant immunoglobulin binding protein
Verdoliva et al. Affinity purification of polyclonal antibodies using a new all-D synthetic peptide ligand: comparison with protein A and protein G
WO2010110288A1 (en) Protein having affinity for immunoglobulin, and immunoglobulin-binding affinity ligand
JP2016079153A (en) Protein g mutant
JP2018021038A (en) Chromatography matrices including novel staphylococcus aureus protein a based ligands
US20120149875A1 (en) Affinity chromatography matrix
WO2014115229A1 (en) Antibody-binding peptide
KR20200116963A (en) Fc binding protein with cysteine in the C-terminal helical region
JP2023119596A (en) Fc binding proteins with cysteine in c terminal helical region
RU2733897C2 (en) Stable polypeptides binding with human c5 complement
JP2022519808A (en) Immunoglobulin-binding protein for affinity purification
JP2008255046A (en) Fused protein, carrier for capturing antibody employing the same, and method for detecting antigen using the same
JP2009525725A (en) Peptide aptamers that neutralize the binding of platelet antigen-specific antibodies and diagnostic and therapeutic applications containing them
WO2018043629A1 (en) Polypeptide exhibiting affinity to antibodies forming non-natural three-dimensional structure
JP2020520348A (en) Photoswitchable polypeptides and uses thereof
Rai et al. A study of recombinant human sestrin 1 and sestrin 2 proteins produced in a prokaryotic system
JP2022521648A (en) Functionalized UBX protein substance to facilitate antibody purification
JP2023533529A (en) Immunoglobulin binding proteins for affinity purification
CN117897397A (en) Modified kappa light chain-binding polypeptides
JP2004217573A (en) Immunoglobulin-binding peptide

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180702

R150 Certificate of patent or registration of utility model

Ref document number: 6369807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250