JP6368516B2 - Raman spectroscopy - Google Patents

Raman spectroscopy Download PDF

Info

Publication number
JP6368516B2
JP6368516B2 JP2014067870A JP2014067870A JP6368516B2 JP 6368516 B2 JP6368516 B2 JP 6368516B2 JP 2014067870 A JP2014067870 A JP 2014067870A JP 2014067870 A JP2014067870 A JP 2014067870A JP 6368516 B2 JP6368516 B2 JP 6368516B2
Authority
JP
Japan
Prior art keywords
substrate
raman
noble metal
metal nanoparticles
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014067870A
Other languages
Japanese (ja)
Other versions
JP2015190836A (en
Inventor
弘之 竹井
弘之 竹井
渡辺 康介
康介 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo University
Original Assignee
Toyo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo University filed Critical Toyo University
Priority to JP2014067870A priority Critical patent/JP6368516B2/en
Publication of JP2015190836A publication Critical patent/JP2015190836A/en
Application granted granted Critical
Publication of JP6368516B2 publication Critical patent/JP6368516B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、固体表面及び固体表面に吸着した化学物質のin-situ分析(反応雰囲気下での分析、その場での分析)等に用いられるラマン分光測定法及びラマン分光測定器に関する。   The present invention relates to a Raman spectroscopic measuring method and a Raman spectroscopic measuring instrument used for in-situ analysis (analysis under a reaction atmosphere, in-situ analysis) of a solid surface and a chemical substance adsorbed on the solid surface.

化学物質の同定に広く用いられている分析方法の一つとしてラマン分光法が挙げられる。収束されたレーザー光を光源として用いることにより微小領域の分析が可能であるが、散乱断面積、すなわち散乱光強度が極めて低いといった欠点を有する。そこで、貴金属ナノ粒子による表面増強ラマン効果(Surface Enhanced Raman Spectroscopy: SERS)を用いた測定方法が研究されている。   One of analytical methods widely used for identification of chemical substances is Raman spectroscopy. Although it is possible to analyze a minute region by using the converged laser beam as a light source, it has a drawback that the scattering cross section, that is, the scattered light intensity is extremely low. Therefore, a measurement method using the surface enhanced Raman spectroscopy (SERS) using noble metal nanoparticles has been studied.

測定に際して、上記貴金属ナノ粒子は、液体中に懸濁されていたり基板に吸着されていたりするのが一般的である。分析用基板に吸着された貴金属ナノ粒子を用いて、表面増強ラマン効果による測定を行う場合は、例えば、図7(a)に示されるように、基板52の表面に吸着された貴金属ナノ粒子51の領域に、測定対象となる分子53が懸濁された液体を滴下し、図7(c)に示されるように、分子53を貴金属ナノ粒子51上に乾固してから測定する。   In measurement, the noble metal nanoparticles are generally suspended in a liquid or adsorbed on a substrate. In the case of performing measurement by the surface enhanced Raman effect using the noble metal nanoparticles adsorbed on the analysis substrate, for example, as shown in FIG. 7A, the noble metal nanoparticles 51 adsorbed on the surface of the substrate 52 are used. The liquid in which the molecule 53 to be measured is suspended is dropped into the region of, and the molecule 53 is dried on the noble metal nanoparticles 51 and measured as shown in FIG.

ここで、図7(b)は、図7(a)の50に示される領域を拡大したものであり、基板52の表面に貴金属ナノ粒子51が形成されている状態を示している。また、図7(d)に示されるように、測定対象の物質の粉末54を貴金属ナノ粒子51に接触させて測定する場合もある。   Here, FIG. 7B is an enlarged view of the region indicated by 50 in FIG. 7A, and shows a state in which the noble metal nanoparticles 51 are formed on the surface of the substrate 52. Further, as shown in FIG. 7 (d), measurement may be performed by bringing the powder 54 of the substance to be measured into contact with the noble metal nanoparticles 51.

一方、固体及び固体表面に吸着した物質の分子等の検体を測定する場合には、固体表面を削り、それを分析用基板上に形成された貴金属ナノ粒子上に散布して測定を行ったり、又は、貴金属ナノ粒子を固体表面の測定対象物質に散布して測定を行っていた。しかし、この方法では、貴金属ナノ粒子に接触しない検体が多く発生し、測定の精度が悪くなる。   On the other hand, when measuring a specimen such as a molecule of a solid and a substance adsorbed on the solid surface, the solid surface is shaved and measured on a noble metal nanoparticle formed on the substrate for analysis. Alternatively, measurement was performed by spraying noble metal nanoparticles on a measurement target substance on a solid surface. However, in this method, many specimens that do not come into contact with the noble metal nanoparticles are generated, and the measurement accuracy is deteriorated.

G. Lu et al. Nanoparticle-coated PDMS elastomers for enhancement of Raman scattering; Chem.Commun., 2011, 47, 8560-8562G. Lu et al. Nanoparticle-coated PDMS elastomers for enhancement of Raman scattering; Chem. Commun., 2011, 47, 8560-8562

そこで、検体が吸着している固体の表面を貴金属ナノ粒子が吸着された分析用基板に直接押し付けて測定する方法が考えられる。例えば、図8(a)のように、固体65の凹凸のある表面に検体64が吸着している場合に、貴金属ナノ粒子61が形成された基板60を用いて表面増強ラマン分光測定を行う場合、図8(b)のように固体65の表面を基板60に直接押し付けても、固体65の表面に凹凸が存在するため、測定対象の検体64の一部70が貴金属ナノ粒子61に接触するのみで、すべての検体64が接触できるわけではなく、極限られた検体からの信号しか増強されない。   Therefore, a method is conceivable in which the surface of the solid on which the specimen is adsorbed is directly pressed against the analysis substrate on which the noble metal nanoparticles are adsorbed. For example, as shown in FIG. 8A, when the specimen 64 is adsorbed on the uneven surface of the solid 65, the surface enhanced Raman spectroscopic measurement is performed using the substrate 60 on which the noble metal nanoparticles 61 are formed. Even if the surface of the solid 65 is directly pressed against the substrate 60 as shown in FIG. 8B, since the surface of the solid 65 is uneven, a part 70 of the specimen 64 to be measured contacts the noble metal nanoparticles 61. However, not all specimens 64 can be contacted, and only a signal from a limited specimen is enhanced.

また、例え、固体66の表面が数10nmのスケールで平滑であっても、図7(c)に示されるように、基板60が傾いて押し付けられれば、図7(b)の場合と同じ問題が発生し、極限られた検体からの信号しか増強されない。   Moreover, even if the surface of the solid 66 is smooth on the scale of several tens of nanometers, the same problem as in FIG. 7B is obtained if the substrate 60 is inclined and pressed as shown in FIG. 7C. Occurs and only signals from a limited sample are enhanced.

上記のような方法は、簡便な測定方法であると言えず、定性的なデータを取得することは困難である。一方、非特許文献1に示されるように、チップ増強ラマン分光法(Tip-enhanced Raman Spectroscopy: TERS)においては、貴金属ナノ粒子が形成されたPDMS等の弾性体を固体表面に取り付けて、固体表面のサンプルと貴金属ナノ粒子を接触させることで、信号を得る方法も提案されている。しかし、チップ増強ラマン分光法では、ナノレベルの金属の探針を用いて測定するため、信号強度は、探針が押し付ける力に依存し、凹凸を有する表面に対しては圧力を一定にする必要があるが、それは困難である。   The above method cannot be said to be a simple measurement method, and it is difficult to acquire qualitative data. On the other hand, as shown in Non-Patent Document 1, in tip-enhanced Raman spectroscopy (TERS), an elastic body such as PDMS on which noble metal nanoparticles are formed is attached to a solid surface. A method of obtaining a signal by bringing a sample of the sample into contact with noble metal nanoparticles has also been proposed. However, since chip-enhanced Raman spectroscopy is measured using a nano-level metal probe, the signal intensity depends on the force pressed by the probe, and the pressure needs to be constant for uneven surfaces. There is but it is difficult.

本発明は、上述した課題を解決するために創案されたものであり、凹凸を有する固体表面に吸着した物質のラマンスペクトルを定性的に測定することができるラマン分光測定法及びラマン分光測定器を提供することを目的とする。   The present invention was devised to solve the above-described problems, and includes a Raman spectroscopic measuring method and a Raman spectroscopic measuring instrument that can qualitatively measure the Raman spectrum of a substance adsorbed on a solid surface having irregularities. The purpose is to provide.

上記目的を達成するために、請求項1記載の発明は、弾性体からなる基板の表面に貴金属ナノ粒子が形成されたラマン分光基板を用い、固体に吸着した被検体と前記貴金属ナノ粒子が対向するように前記ラマン分光基板を配置し、前記貴金属ナノ粒子が形成された領域全体に所定の圧力を加えて前記ラマン分光基板を前記固体に押し付けながら、又は、前記ラマン分光基板を前記固体に押し付けた後に表面ラマン増強分光測定を行うことを特徴とするラマン分光測定法である。   In order to achieve the above object, the invention according to claim 1 uses a Raman spectroscopic substrate in which noble metal nanoparticles are formed on the surface of a substrate made of an elastic body, and the analyte adsorbed on a solid and the noble metal nanoparticles face each other. The Raman spectroscopic substrate is arranged so that a predetermined pressure is applied to the entire region where the noble metal nanoparticles are formed to press the Raman spectroscopic substrate against the solid, or the Raman spectroscopic substrate is pressed against the solid. After that, the Raman spectroscopic measurement method is characterized in that surface Raman enhanced spectroscopic measurement is performed.

また、請求項2記載の発明は、前記ラマン分光基板に所定の圧力を加える手段として流体を用いることを特徴とする請求項1に記載のラマン分光測定法である。   The invention according to claim 2 is the Raman spectroscopic measurement method according to claim 1, wherein a fluid is used as means for applying a predetermined pressure to the Raman spectroscopic substrate.

また、請求項3記載の発明は、凹部を有する基体を備え、少なくとも前記基体の凹部に対応する領域は弾性体で構成されており、前記弾性体の表面には貴金属ナノ粒子が形成されていることを特徴とするラマン分光測定器である。   According to a third aspect of the present invention, a substrate having a recess is provided, at least a region corresponding to the recess of the substrate is made of an elastic body, and noble metal nanoparticles are formed on the surface of the elastic body. This is a Raman spectrometer.

また、請求項4記載の発明は、前記基体の凹部に流体を導入するための流体導入管を前記基体に接続したことを特徴とする請求項3に記載のラマン分光測定器である。   The invention according to claim 4 is the Raman spectrophotometer according to claim 3, wherein a fluid introduction tube for introducing a fluid into the recess of the substrate is connected to the substrate.

本発明によれば、弾性体からなる基板の表面に貴金属ナノ粒子が形成されたラマン分光基板を用いており、貴金属ナノ粒子が形成された領域全体に所定の圧力を加えてラマン分光基板を固体に押し付けながら、又は、ラマン分光基板を固体に押し付けた後に表面ラマン増強分光測定を行っているので、固体表面に凹凸が存在し、その凹凸部分に被検体が吸着していたとしても、貴金属ナノ粒子を大半の被検体に接触させることができ、精度の良い表面増強ラマン分光測定が行うことができ、定性的な測定を行うことができる。   According to the present invention, a Raman spectroscopic substrate in which noble metal nanoparticles are formed on the surface of a substrate made of an elastic body is used, and a predetermined pressure is applied to the entire region where the noble metal nanoparticles are formed so that the Raman spectroscopic substrate is solid. Since the surface Raman enhanced spectroscopic measurement is performed while pressing the substrate onto the solid, the surface of the solid surface is uneven. Particles can be brought into contact with most specimens, surface-enhanced Raman spectroscopy with high accuracy can be performed, and qualitative measurements can be performed.

また、ラマン分光法が広い分野で利用されるようになる。増強効果による信号強度の増大と、前処理を必要としない簡便な方法を組み合わせる利点が大きい。特に、野外での測定対象物に対しては、測定対象の表面から微量サンプルを剥離してラボに持ち帰る必要がなくなり、その場での測定が可能となる。その他、法医学、製造現場で利用することができる。また、農作物表面の農薬量も畑や果樹園で直接かつ簡便に測定することが可能になり、食の安全に貢献することが期待できる。   In addition, Raman spectroscopy will be used in a wide range of fields. The advantage of combining an increase in signal intensity due to the enhancement effect and a simple method that does not require preprocessing is great. In particular, for an object to be measured outdoors, there is no need to peel off a small amount of sample from the surface of the object to be measured and bring it back to the laboratory. In addition, it can be used in forensic medicine and manufacturing sites. In addition, the amount of pesticides on the surface of crops can be measured directly and simply in fields and orchards, and it can be expected to contribute to food safety.

本発明のラマン分光測定器の構造を示す平面図と断面図である。It is the top view and sectional drawing which show the structure of the Raman spectrometer of this invention. ラマン分光測定器の基本的な構造を用いてラマン分光測定を行った結果と、その基本的な構造を用いずにラマン分光測定を行った結果とを比較した図である。It is the figure which compared the result of having performed the Raman spectroscopic measurement using the basic structure of a Raman spectroscopic measuring device, and the result of having performed the Raman spectroscopic measurement without using the basic structure. 図2で用いられたラマン分光測定状態を示す図である。It is a figure which shows the Raman spectroscopy measurement state used in FIG. ラマン分光測定器の製造方法を示す図である。It is a figure which shows the manufacturing method of a Raman spectrometer. ラマン分光測定器の基体に相当する部分の構造を示す図である。It is a figure which shows the structure of the part corresponded to the base | substrate of a Raman spectrometer. ラマン分光測定器の拡張された基体に相当する部分を示す図である。It is a figure which shows the part corresponded to the expanded base | substrate of a Raman spectrometer. 従来のラマン分光用基板を用いて、液体中に懸濁している分子、粉末を測定する状態を示す図である。It is a figure which shows the state which measures the molecule | numerator and powder which are suspended in the liquid using the conventional board | substrate for Raman spectroscopy. 従来のラマン分光用基板を用いて固体表面上に吸着した分子を分析する際に発生する問題を示す図である。It is a figure which shows the problem which generate | occur | produces when analyzing the molecule | numerator adsorb | sucked on the solid surface using the board | substrate for conventional Raman spectroscopy.

以下、図面を参照して本発明の一実施形態を説明する。構造に関する図面は模式的なものであり、現実のものとは異なる。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The drawings relating to the structure are schematic and different from the actual ones. Moreover, the part from which the relationship and ratio of a mutual dimension differ also in between drawings is contained.

本発明のラマン分光測定器の一例を図1に示す。図1(a)は、ラマン分光測定器10を上面から見た図であり、図1(b)は、図1(a)のA−A断面を示す。基部1上に平板状の基板2が形成されており、これにより、凹部3が形成される。基板2は、弾性体で構成されており、弾力性を有する。図1では、上面から見た全体形状は四角形状に形成されており、凹部は円形に形成されているが、一例を示したに過ぎず、形状はこれに限定されるものではない。   An example of the Raman spectrometer of the present invention is shown in FIG. Fig.1 (a) is the figure which looked at the Raman spectrometer 10 from the upper surface, and FIG.1 (b) shows the AA cross section of Fig.1 (a). A flat substrate 2 is formed on the base 1, whereby a recess 3 is formed. The board | substrate 2 is comprised with the elastic body and has elasticity. In FIG. 1, the overall shape as viewed from above is formed in a square shape, and the recess is formed in a circular shape, but is merely an example, and the shape is not limited thereto.

また、基板2と基部1とは、異なる材料で構成されていても良いし、弾性体からなる同一の材料で構成されていても良い。凹部3に対応した領域Sの基板上には、金、銀、白金等の貴金属からなる貴金属ナノ粒子4が形成されている。凹部3は、図1(b)の矢印方向に、圧力が加えられるようになっている。その場合、凹部3に対応した領域Sの基板全体に圧力が加えられ、領域Sに相当する基板が外側に凸状に膨らむことにより、凹凸のある固体表面に吸着された被検体であっても接触させることができ、表面増強ラマン分光測定を精度良く行うことができる。   Moreover, the board | substrate 2 and the base 1 may be comprised with a different material, and may be comprised with the same material which consists of an elastic body. On the substrate in the region S corresponding to the recess 3, noble metal nanoparticles 4 made of a noble metal such as gold, silver, or platinum are formed. The recess 3 is adapted to apply pressure in the direction of the arrow in FIG. In that case, even if the object is adsorbed on the solid surface having irregularities, pressure is applied to the entire substrate in the region S corresponding to the recess 3 and the substrate corresponding to the region S bulges outward. The surface enhanced Raman spectroscopic measurement can be performed with high accuracy.

したがって、図1において、弾性体からなる基板を有するのは、少なくとも領域Sの部分だけであっても良く、その場合、他の基部1や基板2から領域Sを除く部分は、非弾性体で構成しても良い。また、後述するように、基部1と基板2を同一の弾性材料で一体的に形成しても良く、あるいは、基部1と基板2を異なる材料で構成しても良い。   Accordingly, in FIG. 1, the substrate made of an elastic body may have at least a portion of the region S. In that case, the portion excluding the region S from the other base 1 and the substrate 2 is an inelastic body. It may be configured. Further, as will be described later, the base 1 and the substrate 2 may be integrally formed of the same elastic material, or the base 1 and the substrate 2 may be formed of different materials.

貴金属ナノ粒子4は、ナノオーダーの粒径を有する貴金属からなる粒子であっても良いが、後述するように、ナノオーダーの粒径を有する誘電体の粒子上に貴金属を堆積した構造であっても良い。   The noble metal nanoparticle 4 may be a particle made of a noble metal having a nano-order particle size, but has a structure in which a noble metal is deposited on a dielectric particle having a nano-order particle size, as will be described later. Also good.

領域Sに対応する基板2の厚さは、高い柔軟性を確保するためには薄い方が望ましく、実際の作製では、0.01mm〜0.5mmの範囲で構成することができ、基板2の厚みと基部1の厚みとの合計は、1mm〜30mmの範囲で構成することができる。   The thickness of the substrate 2 corresponding to the region S is preferably thin in order to ensure high flexibility. In actual production, the substrate 2 can be configured in a range of 0.01 mm to 0.5 mm. The sum of the thickness and the thickness of the base 1 can be configured in the range of 1 mm to 30 mm.

図2は、弾性体からなる基板上に貴金属ナノ粒子を形成した基板を用いて表面増強ラマン分光測定を行った結果と、貴金属ナノ粒子を形成した基板を用いないでラマン分光測定を行った結果との比較を示す。図2の縦軸はラマン信号強度を示し、横軸はラマンシフト(cm−1)を示す。 FIG. 2 shows the results of surface-enhanced Raman spectroscopic measurement using a substrate in which noble metal nanoparticles are formed on a substrate made of an elastic body, and the results of Raman spectroscopic measurement without using a substrate on which noble metal nanoparticles are formed. Comparison with is shown. The vertical axis in FIG. 2 indicates the Raman signal intensity, and the horizontal axis indicates the Raman shift (cm −1 ).

具体的には、図2の信号Xは、以下のように測定した。図3(a)のように、弾性体であるポリジメチルシクロサン(PDMS)からなる基板2A上に貴金属ナノ粒子4を形成した分析用基板を作製する。また、スライドガラス30上にp−アミノチオフェノール(PATP)31を吸着させたものを用意する。貴金属ナノ粒子4がp−アミノチオフェノール31に対向するように基板2Aを配置し、基板2A全体をスライドガラス30に押し付けて表面増強ラマン分光によるラマンスペクトルを測定した。図3(a)の貴金属ナノ粒子4は、後述する図4(f)に示される構造のものを用い、基板2A全体を押し付ける際には、基板2A上に錘を載せて、基板2の貴金属ナノ粒子4が形成された領域又は基板2A全体に均等な圧力がかかるようにした。   Specifically, the signal X in FIG. 2 was measured as follows. As shown in FIG. 3A, an analysis substrate in which noble metal nanoparticles 4 are formed on a substrate 2A made of polydimethylcyclosan (PDMS), which is an elastic body, is prepared. Also prepared is a slide glass 30 having p-aminothiophenol (PATP) 31 adsorbed thereon. The substrate 2A was placed so that the noble metal nanoparticles 4 faced the p-aminothiophenol 31, and the entire substrate 2A was pressed against the slide glass 30 to measure the Raman spectrum by surface enhanced Raman spectroscopy. The noble metal nanoparticles 4 shown in FIG. 3 (a) have the structure shown in FIG. 4 (f) to be described later. When pressing the entire substrate 2A, a weight is placed on the substrate 2A, and the noble metal of the substrate 2 is placed. An equal pressure was applied to the region where the nanoparticles 4 were formed or to the entire substrate 2A.

図2の信号Yは、図3(b)のように、貴金属ナノ粒子が形成された分析用基板を使用せずに、スライドガラス30上にp−アミノチオフェノール(PATP)31を吸着させた状態で、ラマン分光測定を行ったラマンスペクトルを示す。   The signal Y in FIG. 2 is obtained by adsorbing p-aminothiophenol (PATP) 31 on the slide glass 30 without using an analysis substrate on which noble metal nanoparticles are formed, as shown in FIG. The Raman spectrum which performed the Raman spectroscopic measurement in the state is shown.

測定に際しては、基板2Aを加圧により測定対象物であるp−アミノチオフェノール31に接触させ、ラマン分光用の励起レーザーを接触部に収束させて照射させてラマン散乱光を測定する。スライドガラス30上のp−アミノチオフェノール31が基板2Aの表面に転写されるのであれば、加圧後に基板2Aを固体表面から離して、ラマン散乱光を測定しても良い。   At the time of measurement, the substrate 2A is brought into contact with the p-aminothiophenol 31 as a measurement object under pressure, and an excitation laser for Raman spectroscopy is converged on the contact portion and irradiated to measure Raman scattered light. If the p-aminothiophenol 31 on the slide glass 30 is transferred to the surface of the substrate 2A, the substrate 2A may be separated from the solid surface after pressurization, and the Raman scattered light may be measured.

この結果からわかるように、図3(a)のような分析用基板を用いることで、弾性体からなる基板2A上に形成された貴金属ナノ粒子4を、ほとんどのp−アミノチオフェノール31に接触させることができ、定性的に測定することが可能になる。   As can be seen from the results, the noble metal nanoparticles 4 formed on the elastic substrate 2A are brought into contact with most of the p-aminothiophenol 31 by using the analysis substrate as shown in FIG. And can be qualitatively measured.

図4は、本発明のラマン分光測定器の製造方法を示す。実施例では、基板に用いる弾性体材料は、ポリジメチルシクロサン(PDMS)を用いたが、これに限定されるものではない。   FIG. 4 shows a method for manufacturing the Raman spectrometer of the present invention. In the embodiment, polydimethylcyclosan (PDMS) is used as the elastic material used for the substrate, but the material is not limited to this.

図4(a)に示すように、スピンコーター23上にガラス基板20を配置し、ガラス基板20上にアルミフォイル21を配置する。重合剤を加えたジメチルシクロサン22aをアルミフォイル21上に滴下し、スピンコーター23を用い、例えば1000rpmで30秒間回転させ、図4(b)のように、PDMS薄膜22bを形成する。   As shown in FIG. 4A, the glass substrate 20 is disposed on the spin coater 23, and the aluminum foil 21 is disposed on the glass substrate 20. Dimethylcyclosan 22a added with a polymerizing agent is dropped on the aluminum foil 21 and rotated using, for example, 1000 rpm for 30 seconds using a spin coater 23 to form a PDMS thin film 22b as shown in FIG. 4B.

PDMS薄膜22bが完全に硬化する前に、同じくPDMSで形成され、貫通孔を有する基部24をPDMS薄膜22bに押し付けることにより、凹部を有する積層体を形成する(図4(c))。次に、前記積層体を塩酸(6M)に浸漬させてアルミフォイル21を溶かすことにより、PDMS材料で一体化された基体25を基板から剥離させる(図4(d))。   Before the PDMS thin film 22b is completely cured, a base 24 having a through hole is pressed against the PDMS thin film 22b to form a laminate having a recess (FIG. 4C). Next, the base body 25 integrated with the PDMS material is peeled from the substrate by immersing the laminate in hydrochloric acid (6M) to dissolve the aluminum foil 21 (FIG. 4D).

さらに、基体25を3−アミノプロピルトリメトキシシラン溶液に10分間浸漬し、乾燥後に、図4(e)に示すように、粒径100nmのシリカナノ粒子5を基体25のA1の領域に添加して吸着させる。なお、図4(f)は、図4(e)のA1の領域を拡大したものであり、A1の領域に形成された貴金属ナノ粒子の構造を示す。   Further, the substrate 25 is immersed in a 3-aminopropyltrimethoxysilane solution for 10 minutes, and after drying, silica nanoparticles 5 having a particle size of 100 nm are added to the region A1 of the substrate 25 as shown in FIG. Adsorb. FIG. 4F is an enlarged view of the area A1 in FIG. 4E and shows the structure of the noble metal nanoparticles formed in the area A1.

最後に、シリカナノ粒子5に対して、真空蒸着やスパッタリング等の手法により貴金属6を厚さ10〜100nmで被覆させることにより、貴金属ナノ粒子15を形成させる。これにより、図1の構造に相当するラマン分光測定器が完成する。   Finally, the noble metal nanoparticles 15 are formed on the silica nanoparticles 5 by coating the noble metal 6 with a thickness of 10 to 100 nm by a technique such as vacuum deposition or sputtering. Thereby, a Raman spectroscopic measuring instrument corresponding to the structure of FIG. 1 is completed.

なお、上記の製造方法では、図4(c)において、基部24と薄膜22bを同じ弾性体材料で形成し、一体化した構造としているが、基部24と薄膜22bとを異なる材料で構成しても良い。例えば、薄膜22bはPDMSで形成し、基部24をプラスチックで構成しても良い。このように、基部24は非弾性体であっても良く、他にも様々な材料が考えられるが、本製造方法において、アルミフォイルを溶かすために酸を用いるので、酸に反応しない材料が望ましい。   In the above manufacturing method, in FIG. 4C, the base 24 and the thin film 22b are formed of the same elastic material and integrated, but the base 24 and the thin film 22b are formed of different materials. Also good. For example, the thin film 22b may be formed by PDMS and the base 24 may be made of plastic. As described above, the base 24 may be an inelastic body, and various other materials are conceivable. However, in the present manufacturing method, an acid is used to dissolve the aluminum foil, and therefore, a material that does not react with an acid is desirable. .

また、A1の領域に形成される貴金属ナノ粒子は、図4(f)のように、シリカナノ粒子5上に貴金属6を帽子状に被覆した構造のものが示されているが、基体25にシリカナノ粒子を吸着させるのではなく、貴金属で構成されたナノ粒子そのものを吸着させて用いるようにしても良い。   Further, as shown in FIG. 4 (f), the noble metal nanoparticles formed in the region A1 have a structure in which the noble metal 6 is coated on the silica nanoparticles 5 in a hat shape. Instead of adsorbing particles, the nanoparticles themselves made of noble metal may be adsorbed and used.

次に、実際に作製したラマン分光測定器の基礎となる構造体の画像データを図5に示す。図5の250は、図4の基体25の基礎となるPDMS構造体を示す。図5(b)は、上面から見た図であり、図5(c)は下面から見た図である。図5(c)のB―B断面を模式的に表したのが図5(a)である。図5では、図4の基体25を4個一度に作製した状態を表している。すなわち、図5(b)又は(c)に示された構造体250を4分割すれば、図4の基体25を作製することができる。   Next, FIG. 5 shows image data of a structure that is the basis of an actually manufactured Raman spectrometer. Reference numeral 250 in FIG. 5 denotes a PDMS structure that is the basis of the substrate 25 in FIG. FIG. 5B is a view from the top, and FIG. 5C is a view from the bottom. FIG. 5A schematically shows the BB cross section of FIG. FIG. 5 shows a state in which four bases 25 of FIG. 4 are manufactured at a time. That is, if the structure 250 shown in FIG. 5B or FIG. 5C is divided into four, the base body 25 of FIG. 4 can be manufactured.

図5(a)では、構造体250の断面図が示されているが、凹部の領域の構造体250の厚さD1は0.01mm〜0.5mm範囲で、厚さD2は1mm〜30mmの範囲で作製することができる。   In FIG. 5A, a cross-sectional view of the structure 250 is shown. The thickness D1 of the structure 250 in the recess region is in the range of 0.01 mm to 0.5 mm, and the thickness D2 is 1 mm to 30 mm. It can be produced in a range.

図6は、基体25の背面から加圧するために、さらに構成を付加したラマン分光測定器の基礎となる構造物を示し、加圧した際に生じる薄膜部位の構造変化を示す。図6(a)は、加圧用の中空チューブ41と基体25を開口部を有する台座40を挟んで固定した状態を示す。図6(b)は加圧前の状態を、図6(c)は加圧後の状態を示す。   FIG. 6 shows a structure serving as a basis of a Raman spectrophotometer to which a structure is further added in order to pressurize from the back surface of the substrate 25, and shows a structural change of a thin film portion that occurs when pressurizing. FIG. 6A shows a state in which the pressurizing hollow tube 41 and the base body 25 are fixed with a base 40 having an opening interposed therebetween. FIG. 6B shows a state before pressurization, and FIG. 6C shows a state after pressurization.

また、図6(d)、(e)は、図6(a)の模式的な断面を示しており、図6(d)は図6(b)に対応した断面図であり、図6(e)は図6(c)に対応した断面図である。中空チューブ41は、加圧用の流体(気体又は液体)の導入管の役割を果たしており、図6(d)では、加圧されていないので、基体25の中央部は平坦な状態のままである。しかし、中空チューブ41に気体又は液体による流体が導入されると、図6(e)のように、矢印方向に圧力が加わるので、弾性体で構成された基体25の中央部は、外側に膨らんでいる。図6の構造物をラマン分光測定器とするには、基体25の凹部に対応する領域の表面に貴金属ナノ粒子を形成すれば良い。   6 (d) and 6 (e) show a schematic cross section of FIG. 6 (a), FIG. 6 (d) is a cross-sectional view corresponding to FIG. 6 (b), and FIG. e) is a cross-sectional view corresponding to FIG. The hollow tube 41 plays a role of an introduction pipe for pressurizing fluid (gas or liquid), and in FIG. 6D, since it is not pressurized, the central portion of the substrate 25 remains flat. . However, when a gas or liquid fluid is introduced into the hollow tube 41, pressure is applied in the direction of the arrow as shown in FIG. 6E, so that the central portion of the base body 25 made of an elastic body swells outward. It is out. In order to use the structure shown in FIG. 6 as a Raman spectrometer, noble metal nanoparticles may be formed on the surface of a region corresponding to the concave portion of the substrate 25.

流体を用い、基体25の凹部を加圧する手段として、気体による加圧の場合にはエアーコンプレッサー等を中空チューブ41に接続して用いれば良く、液体による加圧の場合には油圧ポンプ等を中空チューブ41に接続して用いれば良い。   As a means for pressurizing the concave portion of the base body 25 using a fluid, an air compressor or the like may be connected to the hollow tube 41 in the case of pressurization with a gas, and a hydraulic pump or the like is hollowed in the case of pressurization with a liquid. What is necessary is just to connect and use to the tube 41.

測定に際しては、基体25を加圧により測定対象物である固体上の被検体に接触させ、ラマン分光用の励起レーザーを接触部に収束させて照射させて表面増強によるラマン散乱光を測定する。また、固体表面上の測定対象物が基体25の表面に転写されるのであれば、加圧後に基体25を固体表面から離して、表面増強ラマン散乱光を測定しても良い。   In measurement, the substrate 25 is brought into contact with a subject on a solid as a measurement object by pressurization, and an excitation laser for Raman spectroscopy is converged on the contact portion and irradiated to measure Raman scattered light due to surface enhancement. If the measurement object on the solid surface is transferred to the surface of the base 25, the surface-enhanced Raman scattered light may be measured by separating the base 25 from the solid surface after pressurization.

本発明のラマン分光測定器及びラマン分光測定法は、固体表面及び固体表面に吸着した化学物質のin-situ分析(反応雰囲気下での分析、その場での分析)、廃棄物処理、大気汚染物のモニタリング、残留農薬検出等に適用することができる。   The Raman spectrophotometer and the Raman spectroscopic measurement method of the present invention are used for in-situ analysis (analysis under a reaction atmosphere, in-situ analysis), waste treatment, air pollution of a solid surface and chemical substances adsorbed on the solid surface. It can be applied to monitoring of substances and detection of residual agricultural chemicals.

1 基部
2 基板
2A 基板
3 凹部
4 貴金属ナノ粒子
25 基体
30 スライドガラス
31 p−アミノチオフェノール
1 Base 2 Substrate 2A Substrate 3 Recess 4 Precious Metal Nanoparticle 25 Base 30 Slide Glass 31 p-Aminothiophenol

Claims (4)

一方面側では平坦面で、他方面側では凹部が開口していて、少なくとも前記凹部の底面を形成する基板底面部分が弾性体で構成されている基板を用い、前記基板底面部分の前記一方面側に貴金属ナノ粒子が形成されたラマン分光基板を形成する工程と、
固体に吸着した被検体と前記貴金属ナノ粒子が対向するように前記ラマン分光基板を配置する工程と、
前記凹部内から前記基板底面部分に所定の圧力を加えることで前記基板底面部分を前記一方面側へ膨らませつつ、前記ラマン分光基板を前記固体に押し付けながら、又は、前記ラマン分光基板を前記固体に押し付けた後に表面ラマン増強分光測定を行う工程と
を行うことを特徴とするラマン分光測定法。
A flat surface is formed on one surface side, and a recess is opened on the other surface side, and at least one substrate bottom surface portion forming the bottom surface of the recess is made of an elastic body. Forming a Raman spectroscopic substrate on which noble metal nanoparticles are formed ;
Arranging the Raman spectroscopic substrate so that the analyte adsorbed on a solid and the noble metal nanoparticles face each other;
While inflating the substrate bottom part Rukoto applying a predetermined pressure to the substrate bottom surface portion from the recess to the one side, while pressing the Raman spectroscopy substrate to the solid, or, the Raman spectroscopy substrate said solid And a step of performing surface Raman enhanced spectroscopy after being pressed onto the surface.
前記基板底面部分の厚さを0.01mm〜0.5mmの範囲とすることを特徴とする請求項1に記載のラマン分光測定法。2. The Raman spectroscopic measurement method according to claim 1, wherein the thickness of the bottom surface portion of the substrate is in the range of 0.01 mm to 0.5 mm. 前記基板底面部分に前記凹部内から所定の圧力を加える手段として流体を用いることを特徴とする請求項1又は2に記載のラマン分光測定法。 3. The Raman spectroscopic measurement method according to claim 1 , wherein a fluid is used as means for applying a predetermined pressure from the inside of the recess to the bottom surface portion of the substrate . 前記凹部に流体を導入するための流体導入管を前記ラマン分光基板に接続することを特徴とする請求項3に記載のラマン分光測定法 The Raman spectroscopic measurement method according to claim 3, wherein a fluid introduction tube for introducing a fluid into the recess is connected to the Raman spectroscopic substrate .
JP2014067870A 2014-03-28 2014-03-28 Raman spectroscopy Active JP6368516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014067870A JP6368516B2 (en) 2014-03-28 2014-03-28 Raman spectroscopy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014067870A JP6368516B2 (en) 2014-03-28 2014-03-28 Raman spectroscopy

Publications (2)

Publication Number Publication Date
JP2015190836A JP2015190836A (en) 2015-11-02
JP6368516B2 true JP6368516B2 (en) 2018-08-01

Family

ID=54425438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014067870A Active JP6368516B2 (en) 2014-03-28 2014-03-28 Raman spectroscopy

Country Status (1)

Country Link
JP (1) JP6368516B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6906784B2 (en) * 2017-02-13 2021-07-21 学校法人 東洋大学 Method for manufacturing a substrate for surface-enhanced Raman spectroscopy
JP7205271B2 (en) * 2019-02-08 2023-01-17 株式会社デンソー sensing system
CN109884030A (en) * 2019-03-12 2019-06-14 牛建国 A kind of food/pharmaceutical safety distinguishing apparatus using laser

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086450A (en) * 1983-10-19 1985-05-16 Hitachi Ltd Sampling method of very small sample for laser raman analysis
AU703502B2 (en) * 1994-11-04 1999-03-25 La Mina Ltd Method and apparatus for preparing substances for optical analysis
EP1748724A1 (en) * 2004-05-11 2007-02-07 Koninklijke Philips Electronics N.V. Measurement head for non-invasive blood analysis
US7342656B2 (en) * 2005-10-17 2008-03-11 Hewlett-Packard Development Company, L.P. Dynamically variable separation among nanoparticles for nano-enhanced Raman spectroscopy (NERS) molecular sensing
WO2012063535A1 (en) * 2010-11-10 2012-05-18 三菱電機株式会社 Identifying device and identifying method
US9797842B2 (en) * 2010-12-08 2017-10-24 Osaka Prefecture University Public Corporation Device and method utilizing a metallic nanoparticle assembly structure for detecting a target substance
JP5724497B2 (en) * 2011-03-18 2015-05-27 セイコーエプソン株式会社 Substance component detector
JP2012242167A (en) * 2011-05-17 2012-12-10 Fujifilm Corp Raman spectroscopic method and apparatus
JP5879783B2 (en) * 2011-07-11 2016-03-08 セイコーエプソン株式会社 Detection device
JP6058313B2 (en) * 2012-08-10 2017-01-11 浜松ホトニクス株式会社 Surface-enhanced Raman scattering unit

Also Published As

Publication number Publication date
JP2015190836A (en) 2015-11-02

Similar Documents

Publication Publication Date Title
Wang et al. Gecko-inspired nanotentacle surface-enhanced Raman spectroscopy substrate for sampling and reliable detection of pesticide residues in fruits and vegetables
Viehrig et al. Quantitative SERS assay on a single chip enabled by electrochemically assisted regeneration: a method for detection of melamine in milk
Fang et al. Ultrasensitive and quantitative detection of paraquat on fruits skins via surface-enhanced Raman spectroscopy
Chen et al. Large-scale hot spot engineering for quantitative SERS at the single-molecule scale
Fang et al. Portable SERS-enabled micropipettes for microarea sampling and reliably quantitative detection of surface organic residues
Kim et al. Facile fabrication of a silver nanoparticle immersed, surface-enhanced Raman scattering imposed paper platform through successive ionic layer absorption and reaction for on-site bioassays
Zhao et al. SERS-based ultrasensitive detection of organophosphorus nerve agents via substrate’s surface modification
Zhang et al. Rapid field trace detection of pesticide residue in food based on surface-enhanced Raman spectroscopy
CN102706835A (en) Sensing chip of dual-detecting biochemical sensing detector and preparation method thereof
Durucan et al. Nanopillar-assisted SERS chromatography
Creedon et al. Transparent polymer-based SERS substrates templated by a soda can
Lin et al. A dual-functional PDMS-assisted paper-based SERS platform for the reliable detection of thiram residue both on fruit surfaces and in juice
CN103926231B (en) Optical sensing chip
Martin et al. Surface-Enhanced Raman Scattering of 4-aminobenzenethiol on Au nanorod ordered arrays
JP6368516B2 (en) Raman spectroscopy
Zhang et al. 3D flexible SERS substrates integrated with a portable raman analyzer and wireless communication for point-of-care application
Dong et al. Cu/Ag sphere segment void array as efficient surface enhanced Raman spectroscopy substrate for detecting individual atmospheric aerosol
Raveendran et al. Detection and quantification of toxicants in food and water using Ag–Au core-shell fractal SERS nanostructures and multivariate analysis
Reyer et al. Investigation of mass-produced substrates for reproducible surface-enhanced Raman scattering measurements over large areas
JP6063603B2 (en) Device for detecting a substance and method for manufacturing the device
JP2005195441A (en) Raman spectroscopy, and device for raman spectroscopy
Liu et al. Superhydrophobic Ag nanostructures on polyaniline membranes with strong SERS enhancement
Huang et al. Superhydrophobic–superhydrophilic hybrid surface with highly ordered tip-capped nanopore arrays for surface-enhanced Raman scattering spectroscopy
Fang et al. Interfacial Self-Assembly of Surfactant-Free Au Nanoparticles as a Clean Surface-Enhanced Raman Scattering Substrate for Quantitative Detection of As5+ in Combination with Convolutional Neural Networks
KR20210018606A (en) Paper-based substrate for spectroscopic analysis and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180709

R150 Certificate of patent or registration of utility model

Ref document number: 6368516

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250