JP6367681B2 - Piping residual stress improvement method, antifreeze liquid supply method between ice plugs, and piping residual stress improvement device - Google Patents

Piping residual stress improvement method, antifreeze liquid supply method between ice plugs, and piping residual stress improvement device Download PDF

Info

Publication number
JP6367681B2
JP6367681B2 JP2014212606A JP2014212606A JP6367681B2 JP 6367681 B2 JP6367681 B2 JP 6367681B2 JP 2014212606 A JP2014212606 A JP 2014212606A JP 2014212606 A JP2014212606 A JP 2014212606A JP 6367681 B2 JP6367681 B2 JP 6367681B2
Authority
JP
Japan
Prior art keywords
pipe
piping
residual stress
antifreeze
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014212606A
Other languages
Japanese (ja)
Other versions
JP2016078085A (en
Inventor
青池 聡
聡 青池
章隆 日高
章隆 日高
常男 高柳
常男 高柳
久恒 眞一
眞一 久恒
史則 岩松
史則 岩松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2014212606A priority Critical patent/JP6367681B2/en
Publication of JP2016078085A publication Critical patent/JP2016078085A/en
Application granted granted Critical
Publication of JP6367681B2 publication Critical patent/JP6367681B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

本発明は、配管の残留応力改善方法、氷栓間への不凍液供給方法、および配管の残留応力改善装置に関する。   The present invention relates to a method for improving residual stress in piping, a method for supplying antifreeze liquid between ice plugs, and a residual stress improving device for piping.

従来より、配管の突合せ溶接部の内面に働く引張残留応力を緩和する方法が提案されている。例えば、配管の突合せ溶接部の両側に冷媒容器を設置し、配管外面を冷却して氷栓を形成させた後に、氷栓間の配管外面を冷却し、水の凝固に伴う体積膨張を利用して溶接部近傍を拡管させて、引張残留応力を緩和させている(例えば、特許文献1および非特許文献1参照)。   Conventionally, a method for relaxing the tensile residual stress acting on the inner surface of the butt weld of the pipe has been proposed. For example, after installing a refrigerant container on both sides of a butt weld of a pipe and cooling the outer surface of the pipe to form an ice plug, the outer surface of the pipe between the ice plugs is cooled and the volume expansion accompanying the solidification of water is used. Thus, the vicinity of the weld is expanded to relieve the tensile residual stress (see, for example, Patent Document 1 and Non-Patent Document 1).

特開2010−76000号公報JP 2010-76000 A

小口径突合せ溶接配管に対する残留応力改善方法の開発(フリージング工法の適用による残留応力の改善)、青池聡、他3名、 日本機械学会論文集(A編)77巻 779号 (2011−7)Development of residual stress improvement method for small-diameter butt-welded pipes (improvement of residual stress by applying the freezing method), Aoike, et al., The Japan Society of Mechanical Engineers, Vol. 77, No. 779 (2011-7)

オーステナイト系ステンレス鋼やニッケル基金合金は、引張応力が負荷された状態で腐食環境中に長時間曝されることにより、応力腐食割れが発生する可能性がある。発電プラントを構成する配管系にはオーステナイト系ステンレス鋼製の高温配管がある。高温水中は腐食環境であることから、溶接部近傍の配管内面に働く引張残留応力を低減ないし圧縮状態にすることが望まれている。特に現在運転中の発電プラントを構成する既設の配管系に対して、簡易に適用可能な施工方法が強く望まれている。   Austenitic stainless steel and nickel-base alloy may cause stress corrosion cracking when exposed to a corrosive environment for a long time under a tensile stress. A piping system constituting a power plant includes high temperature piping made of austenitic stainless steel. Since high temperature water is a corrosive environment, it is desired to reduce or compress the tensile residual stress acting on the inner surface of the pipe near the weld. In particular, a construction method that can be easily applied to an existing piping system that constitutes a power plant that is currently in operation is strongly desired.

前述した特許文献1および非特許文献1の方法では、水の凝固に伴う体積膨張率が約1.1倍と小さいことから、1度の施工で残留応力を低減できるのは、1つの溶接部または近接する複数の溶接部に限られる。このため、1本の配管の残留応力を低減する場合でも、溶接部の位置が離れている場合には、複数回の施工が必要となり、手間がかかり時間を要していた。   In the methods of Patent Document 1 and Non-Patent Document 1 described above, since the volume expansion coefficient associated with the solidification of water is as small as about 1.1 times, it is possible to reduce the residual stress by one construction. Or it is limited to a plurality of adjacent welds. For this reason, even when the residual stress of one pipe is reduced, if the position of the welded part is far away, a plurality of constructions are required, which takes time and effort.

そこで、本発明は上記課題を鑑みなされたものであり、その目的は、互いに離れて位置する複数の溶接部を有する配管の引張残留応力を簡易かつ短時間で低減させることが可能な技術を提供することである   Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a technique capable of easily and quickly reducing the tensile residual stress of a pipe having a plurality of welds positioned apart from each other. It is to be

上記課題を解決すべく、本発明の一態様である配管の残留応力改善方法は、複数の配管部材と、前記複数の配管部材を互いに突き合わせて溶接して形成された複数の突合せ溶接部とを備える配管の引張残留応力改善方法であって、前記配管の内部に水を保有させた状態で、前記配管の両端に位置する前記配管部材の内部に氷栓を形成して、前記配管内部に水密な空間を形成し、前記水密な空間を形成後に、前記水密な空間に対し不凍液を供給し、前記水密な空間の内圧を上昇させ、各配管部材の前記突合せ溶接部の近傍部を塑性変形させて拡管する。   In order to solve the above problems, a method for improving residual stress of piping according to an aspect of the present invention includes a plurality of piping members and a plurality of butt welds formed by butting the plurality of piping members together. A method for improving tensile residual stress of a pipe, comprising: forming ice plugs in the pipe members located at both ends of the pipe in a state in which water is held in the pipe, and watertight in the pipe After forming the water-tight space, antifreeze is supplied to the water-tight space, the internal pressure of the water-tight space is increased, and the vicinity of the butt welds of each pipe member is plastically deformed. And expand.

また、本発明の一態様である不凍液供給方法は、複数の配管部材と、前記複数の配管部材を互いに突き合わせて溶接して形成された複数の突合せ溶接部とを備える配管の内部に水を保有させた状態で、前記配管の両端に位置する前記配管部材の内部に氷栓を形成して、前記配管内部の水密な空間に不凍液を供給する不凍液供給方法であって、前記不凍液を供給するポンプに接続された供給管を、前記配管の両端に位置する前記配管部材のうちの一方の前記配管部材に対し、前記供給管の先端部が、前記氷栓が形成される位置よりも、他方の前記配管部材側の位置まで挿入し、前記供給管を挿入後、前記配管の両端に位置する前記配管部材の内部に前記氷栓を形成して、前記配管内部に水密な空間を形成し、前記ポンプにより前記供給管を通じて、前記不凍液を前記水密な空間に供給する。   In addition, the antifreeze supply method according to one aspect of the present invention includes a plurality of piping members and a plurality of butt welds formed by abutting and welding the plurality of piping members to each other to hold water inside the piping. An antifreeze supply method for supplying an antifreeze liquid to a watertight space inside the pipe by forming ice plugs inside the pipe members located at both ends of the pipe in a state where the antifreeze liquid is supplied. The supply pipe connected to the one pipe member among the pipe members located at both ends of the pipe is connected to the other end of the supply pipe from the position where the ice plug is formed. After inserting the pipe member side to the position, inserting the supply pipe, forming the ice plug inside the pipe member located at both ends of the pipe, forming a watertight space inside the pipe, Through the supply pipe by a pump , It supplies the antifreeze into the watertight space.

また、本発明の一態様である配管の引張残留応力改善装置は、複数の配管部材と、前記複数の配管部材を互いに突き合わせて溶接して形成された複数の突合せ溶接部とを備える配管の引張残留応力改善装置であって、前記配管の両端に位置する前記配管部材の外面に設置され、冷媒を収容して前記配管部材の外面を冷却して内部に氷栓を形成し、前記配管内に水密な空間を形成する一組の冷媒容器と、不凍液を供給する供給ポンプと、前記供給ポンプに接続され、前記水密な空間内に前記不凍液を供給する供給管と、を備える。   Moreover, the tensile residual stress improvement apparatus of piping which is one aspect | mode of this invention is the tension | tensile_strength of piping provided with several piping members and several butt-welding parts formed by mutually abutting and welding the said several piping members. A residual stress improving apparatus, installed on the outer surface of the piping member located at both ends of the pipe, containing a refrigerant, cooling the outer surface of the piping member to form an ice plug inside, and in the pipe A set of refrigerant containers that form a watertight space, a supply pump that supplies antifreeze liquid, and a supply pipe that is connected to the supply pump and supplies the antifreeze liquid into the watertight space.

本発明によれば、互いに離れて位置する複数の溶接部を有する配管の引張残留応力を簡易かつ短時間で低減させることが可能な技術を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the technique which can reduce the tensile residual stress of piping which has the some welding part located mutually apart easily and in a short time can be provided.

本実施形態における配管の残留応力改善方法を実施するための残留応力改善装置の概要図を示す。The schematic diagram of the residual-stress improvement apparatus for enforcing the residual-stress improvement method of piping in this embodiment is shown. 氷栓の間に不凍液を供給する工程を説明するための図を示す。The figure for demonstrating the process of supplying antifreeze between ice plugs is shown. 変形例における配管の残留応力改善方法を実施するための残留応力改善装置の概要図を示す。The schematic diagram of the residual stress improvement apparatus for enforcing the residual stress improvement method of piping in a modification is shown.

以下、本発明の実施の形態に係る配管の残留応力改善方法、氷栓間への不凍液供給方法、および配管の残留応力改善装置について、図面を参照して説明する。なお、当該方法および装置は、化学プラント配管、火力ボイラ設備、および熱交換器チューブ等における応力腐食割れの対策に適用される。   Hereinafter, a method for improving residual stress in piping, a method for supplying antifreeze liquid between ice plugs, and a residual stress improving device for piping according to embodiments of the present invention will be described with reference to the drawings. The method and apparatus are applied to countermeasures against stress corrosion cracking in chemical plant piping, thermal boiler equipment, heat exchanger tubes, and the like.

図1は、本実施形態における配管の残留応力改善方法を実施するための配管の残留応力改善装置1の概要図を示している。   FIG. 1: has shown the schematic diagram of the residual stress improvement apparatus 1 of the piping for enforcing the residual stress improvement method of piping in this embodiment.

図1に示すように、配管10は、複数の配管部材11と、複数の配管部材11を互いに突き合わせて溶接して形成された複数の突合せ溶接部12とを有する。各配管部材11は、オーステナイト系ステンレス鋼により構成される。また、各配管部材11の突合せ溶接部12近傍(各配管部材11の両端部)には、局部的に管厚の薄い開先加工部が存在する。   As shown in FIG. 1, the pipe 10 includes a plurality of piping members 11 and a plurality of butt welds 12 formed by butting the plurality of piping members 11 together. Each piping member 11 is made of austenitic stainless steel. Further, in the vicinity of the butt weld portion 12 of each piping member 11 (both ends of each piping member 11), a groove processing portion having a locally thin tube thickness exists.

配管の残留応力改善装置1は、一組の冷媒容器2A、2Bと、一組の断熱材3と、複数のひずみゲージ4と、高圧ポンプ5と、耐圧ホース6と、細管7とを備える。   The piping residual stress improving apparatus 1 includes a set of refrigerant containers 2A and 2B, a set of heat insulating materials 3, a plurality of strain gauges 4, a high-pressure pump 5, a pressure-resistant hose 6, and a thin tube 7.

各冷媒容器2A、2Bは、配管10の両端に位置する配管部材11A、11Bにそれぞれ設置されている。各断熱材3は、冷媒容器2A、2B内において、配管部材11の外周に装着されている(図2(a)も参照)。複数のひずみゲージ4は、それぞれ各突合せ溶接部12の近傍の配管部材11の表面に設置されている。各ひずみゲージ4には、図示せぬ計測器が接続され、当該計測器により配管部材11表面のひずみが読み出される。   Each refrigerant container 2A, 2B is installed in piping members 11A, 11B located at both ends of the piping 10, respectively. Each heat insulating material 3 is attached to the outer periphery of the piping member 11 in the refrigerant containers 2A and 2B (see also FIG. 2A). The plurality of strain gauges 4 are respectively installed on the surface of the piping member 11 in the vicinity of each butt weld 12. A measuring instrument (not shown) is connected to each strain gauge 4, and the strain on the surface of the piping member 11 is read by the measuring instrument.

供給ポンプである高圧ポンプ5は、不凍液を配管10へ供給するための手動式の高圧ポンプであり、圧力は例えば80〜100MPaである。耐圧ホース6は、一端が高圧ポンプ5に接続されている。供給管である細管7は、例えば、サイズが25A−sch80、材質がSUSであり、一端が耐圧ホース6の他端に接続され、配管10の一方の端部に位置する配管部材11Aに挿入されている。また、図2に示すように、細管7の先端部には、仮閉止栓7Aが取り付けられ、閉止されている。   The high-pressure pump 5 that is a supply pump is a manual high-pressure pump for supplying the antifreeze liquid to the pipe 10 and has a pressure of, for example, 80 to 100 MPa. One end of the pressure hose 6 is connected to the high pressure pump 5. The thin tube 7 that is a supply tube has a size of 25A-sch80, a material of SUS, and one end connected to the other end of the pressure hose 6 and is inserted into a pipe member 11A located at one end of the pipe 10. ing. As shown in FIG. 2, a temporary closing plug 7 </ b> A is attached to the distal end portion of the thin tube 7 and is closed.

次に、配管の残留応力改善装置1を用いて実行する配管の残留応力改善方法について、図2を参照して説明する。図2は、氷栓23の間に不凍液25を供給する工程を説明するための図を示している。   Next, a method for improving the residual stress in piping, which is executed using the residual stress improving apparatus 1 for piping, will be described with reference to FIG. FIG. 2 shows a diagram for explaining a process of supplying the antifreeze liquid 25 between the ice plugs 23.

図2(a)に示すように、配管10の内部に水20を保有させた状態で、細管7を配管部材11Aに対して挿入する。具体的には、細管7の先端部を、氷栓23が形成される位置よりも配管部材11B側(配管10の中央側)の位置に挿入する。   As shown in FIG. 2A, the thin tube 7 is inserted into the piping member 11 </ b> A in a state where the water 20 is held inside the piping 10. Specifically, the tip of the thin tube 7 is inserted into a position closer to the piping member 11B (center side of the piping 10) than the position where the ice plug 23 is formed.

次に、図2(b)に示すように、冷媒容器2A内に、冷媒、例えば、エタノール21およびドライアイス22を投入し、配管部材11A内の水20を急速に冷却して凝固させ、配管部材11A内に氷栓23を形成する。冷媒容器2B内にも同様に冷媒を投入し、配管部材11B内に氷栓を形成する。これにより、配管10内に水密な空間24が形成される。なお、配管部材11Aにおいて、断熱材3が装着された箇所の内部の水20は、氷栓23の形成過程において最後に凝固する。これにより、氷栓23において、断熱材3が装着された箇所に対応する部分が局所的に膨張する。よって、配管部材11Aの内周面に対する垂直効力が増大し、氷栓23の耐圧性を向上させることができる。   Next, as shown in FIG. 2 (b), a refrigerant, for example, ethanol 21 and dry ice 22 is put into the refrigerant container 2A, and the water 20 in the pipe member 11A is rapidly cooled and solidified. An ice plug 23 is formed in the member 11A. Similarly, the refrigerant is charged into the refrigerant container 2B to form an ice plug in the piping member 11B. Thereby, a watertight space 24 is formed in the pipe 10. In addition, in the piping member 11 </ b> A, the water 20 inside the place where the heat insulating material 3 is attached solidifies lastly in the process of forming the ice plug 23. Thereby, in the ice plug 23, the part corresponding to the location where the heat insulating material 3 was mounted expand | swells locally. Therefore, the vertical effect on the inner peripheral surface of the piping member 11A is increased, and the pressure resistance of the ice plug 23 can be improved.

次に、手動で高圧ポンプ5を作動させて、高圧ホース6を介して細管7に不凍液25を供給し、図2(c)に示すように、仮閉止栓7Aが外れて、水密な空間24に対して不凍液25が供給される。不凍液25には、使用する冷媒の温度で凝固しない液体を採用する。本実施の形態では、冷媒に約−80℃の温度が得られるドライアイス22を使用しているので、融点が約−110℃のエタノールを不凍液として採用している。なお、不凍液としては、アセトン、ジエチルエーテル等であっても良い。   Next, the high-pressure pump 5 is manually operated to supply the antifreeze liquid 25 to the thin tube 7 via the high-pressure hose 6, and as shown in FIG. Is supplied with antifreeze 25. As the antifreeze liquid 25, a liquid that does not solidify at the temperature of the refrigerant used is employed. In the present embodiment, since dry ice 22 that can obtain a temperature of about −80 ° C. is used as the refrigerant, ethanol having a melting point of about −110 ° C. is used as the antifreeze liquid. Note that the antifreeze may be acetone, diethyl ether, or the like.

そして、不凍液25の供給により、水密な空間24内の内圧(水圧)を上昇させる。内圧の上昇に伴い、各配管部材11の突合せ溶接部12の近傍部である開先加工部が、局所的に管厚が薄いため塑性変形して拡管される。これにより、各配管部材11の開先加工部の内面の引張残留応力が低減され、圧縮残留応力に改善される。   The supply of the antifreeze liquid 25 increases the internal pressure (water pressure) in the watertight space 24. As the internal pressure rises, the groove processing portion, which is the vicinity of the butt weld portion 12 of each piping member 11, is locally plastically thin and is plastically deformed to be expanded. Thereby, the tensile residual stress of the inner surface of the groove processed portion of each piping member 11 is reduced, and the compressive residual stress is improved.

不凍液25の供給量は、配管部材11の外面に貼り付けたひずみゲージ4で測定した、配管部材11の周方向のひずみを指標に調整する。例えば、予め設定した拡管量(例えば周方向ひずみ1%以上など)に、全ての突合せ溶接部12の近傍が到達するまで、高圧ポンプ5により不凍液25を配管10に供給する。すなわち、全てのひずみゲージ4の所定のひずみ量となった後に、不凍液25の供給を停止する。なお、各配管部材11の外径や厚さが異なる部位がある場合には、同等の外径および厚さを有する複数の配管部材11の両端に冷媒容器2A、2Bを設置して、氷栓23を形成するようにする。   The supply amount of the antifreeze liquid 25 is adjusted using the strain in the circumferential direction of the piping member 11 measured by the strain gauge 4 attached to the outer surface of the piping member 11 as an index. For example, the antifreeze liquid 25 is supplied to the pipe 10 by the high-pressure pump 5 until the vicinity of all the butt welds 12 reaches a preset pipe expansion amount (for example, a circumferential strain of 1% or more). That is, after the predetermined strain amount of all the strain gauges 4 is reached, the supply of the antifreeze liquid 25 is stopped. In addition, when there exists a site | part from which the outer diameter and thickness of each piping member 11 differ, refrigerant container 2A, 2B is installed in the both ends of the several piping member 11 which has an equivalent outer diameter and thickness, and an ice plug 23 is formed.

以上のように、本実施形態によれば、引張残留応力改善装置1は、冷媒を収容して配管部材11A、11Bの外面を冷却して内部に氷栓23を形成し、配管10内に水密な空間24を形成するための一組の冷媒容器2A、2Bと、水密な空間24内に不凍液25を供給する高圧ポンプ5と、配管部材11Aに対し、先端部が、氷栓23が形成される位置よりも、配管部材11B側の位置まで挿入される細管7とを備える。   As described above, according to the present embodiment, the tensile residual stress improving apparatus 1 accommodates the refrigerant, cools the outer surfaces of the piping members 11A and 11B, forms the ice plugs 23 therein, and is watertight in the piping 10. A pair of refrigerant containers 2A and 2B for forming a simple space 24, a high-pressure pump 5 for supplying the antifreeze liquid 25 into the watertight space 24, and an ice plug 23 are formed at the tip of the piping member 11A. And the narrow tube 7 inserted to a position closer to the piping member 11B side than the position where it is located.

かかる構成において、配管10の内部に水を保有させた状態で、配管10の両端に位置する配管部材11A、11Bの内部に氷栓23を形成して、配管10内部に水密な空間24を形成する。その後、水密な空間24に対し不凍液25を供給し、水密な空間24の内圧を上昇させ、各配管部材11の突合せ溶接部12の近傍部を塑性変形させて拡管している。   In such a configuration, in the state where water is held inside the pipe 10, ice plugs 23 are formed inside the pipe members 11 </ b> A and 11 </ b> B located at both ends of the pipe 10, thereby forming a watertight space 24 inside the pipe 10. To do. Thereafter, the antifreeze liquid 25 is supplied to the watertight space 24, the internal pressure of the watertight space 24 is increased, and the vicinity of the butt weld 12 of each piping member 11 is plastically deformed and expanded.

これにより、配管10の配管部材11A、11Bの間に位置する複数の突合せ溶接部12の近傍を一度に同時に拡管することができる。よって、各配管部材11の突合せ溶接部12の近傍部における引張残留応力を、簡易かつ短時間で圧縮化することができる。従って、腐蝕環境中において配管10を使用したとしても、応力腐食割れの発生を抑制することができる。   Thereby, the vicinity of the some butt welding part 12 located between the piping members 11A and 11B of the piping 10 can be expanded simultaneously at once. Therefore, the tensile residual stress in the vicinity of the butt weld portion 12 of each piping member 11 can be compressed easily and in a short time. Therefore, even if the pipe 10 is used in a corrosive environment, the occurrence of stress corrosion cracking can be suppressed.

また、配管部材11A、11Bの外周に断熱材3が装着された状態で、氷栓23が形成される。   Further, the ice plug 23 is formed in a state where the heat insulating material 3 is attached to the outer periphery of the piping members 11A and 11B.

これにより、配管部材11Aにおいて、断熱材3が装着された箇所の内部の水20は、氷栓23の形成過程において最後に凝固する。よって、氷栓23において、断熱材3が装着された箇所に対応する部分が局所的に膨張する。その結果、配管部材11Aの内周面に対する垂直効力が増大し、氷栓23の耐圧性を向上させることができる。   Thereby, in the piping member 11 </ b> A, the water 20 inside the place where the heat insulating material 3 is attached is finally solidified in the process of forming the ice plug 23. Therefore, in the ice plug 23, the part corresponding to the location where the heat insulating material 3 is mounted expands locally. As a result, the vertical effect on the inner peripheral surface of the piping member 11A is increased, and the pressure resistance of the ice plug 23 can be improved.

また、各突合せ溶接部12の近傍の配管部材11の表面にひずみゲージ4を設け、全てのひずみゲージ4が所定のひずみ量となった後に、不凍液25の供給を停止する。   Moreover, the strain gauge 4 is provided on the surface of the piping member 11 in the vicinity of each butt weld portion 12, and after all the strain gauges 4 reach a predetermined strain amount, the supply of the antifreeze liquid 25 is stopped.

これにより、全ての配管部材11の突合せ溶接部12の近傍部の引張残留応力を確実に低減させることができる。   Thereby, the tensile residual stress of the vicinity part of the butt welding part 12 of all the piping members 11 can be reduced reliably.

また、細管7の先端部を、配管部材11Aの氷栓23が形成される位置よりも配管部材11B側の位置に挿入し、細管7を挿入後、配管部材11A、配管部材11B内に氷栓23を形成して、配管10内に水密な空間24が形成する。次に、高圧ポンプ5により細管7を通じて水密な空間24に対して不凍液25を供給している。   Further, the tip of the narrow tube 7 is inserted into a position closer to the piping member 11B than the position where the ice plug 23 of the piping member 11A is formed, and after inserting the narrow tube 7, the ice plug is inserted into the piping member 11A and the piping member 11B. 23 is formed, and a watertight space 24 is formed in the pipe 10. Next, the antifreeze liquid 25 is supplied to the watertight space 24 through the thin tube 7 by the high pressure pump 5.

これにより、水密な空間24の内圧を上昇させ、各配管部材11の突合せ溶接部12の近傍部を塑性変形させて拡管することができる。   Thereby, the internal pressure of the watertight space 24 can be raised, and the vicinity of the butt weld 12 of each piping member 11 can be plastically deformed and expanded.

なお、本発明は、上述した実施例に限定されない。当業者であれば、本発明の範囲内で、種々の追加や変更等を行うことができる。   In addition, this invention is not limited to the Example mentioned above. A person skilled in the art can make various additions and changes within the scope of the present invention.

例えば、上記の実施形態では、高圧ポンプ5は手動式であったが、高圧ポンプ5を自動式にして、図3に示すように、コントローラ8を設け、全てのひずみゲージ4の値に基づきコントローラ8により高圧ポンプ5を制御するようにしても良い。なお、図3では、コントローラ8と一対のひずみゲージ4との接続のみを示している。   For example, in the above embodiment, the high-pressure pump 5 is a manual type, but the high-pressure pump 5 is an automatic type, and a controller 8 is provided as shown in FIG. The high pressure pump 5 may be controlled by 8. In FIG. 3, only the connection between the controller 8 and the pair of strain gauges 4 is shown.

1:配管の引張残留応力改善装置、2A、2B:冷媒容器、3:断熱材、4:ひずみゲージ、5:高圧ポンプ、7:細管、10:配管、11:配管部材、12:突合せ溶接部
23:氷栓、24:水密な空間、25:不凍液
1: Pipe tensile residual stress improvement device, 2A, 2B: Refrigerant container, 3: Thermal insulation material, 4: Strain gauge, 5: High pressure pump, 7: Narrow pipe, 10: Pipe, 11: Pipe member, 12: Butt weld 23: Ice plug, 24: Watertight space, 25: Antifreeze

Claims (7)

複数の配管部材と、前記複数の配管部材を互いに突き合わせて溶接して形成された複数の突合せ溶接部とを備える配管の引張残留応力改善方法であって、
前記配管の内部に水を保有させた状態で、前記配管の両端に位置する前記配管部材の内部に氷栓を形成して、前記配管内部に水密な空間を形成し、
前記水密な空間を形成後に、前記水密な空間に対し不凍液を供給し、前記水密な空間の内圧を上昇させ、各配管部材の前記突合せ溶接部の近傍部を塑性変形させて拡管する配管の残留応力改善方法。
A method of improving tensile residual stress of a pipe comprising a plurality of piping members and a plurality of butt welds formed by butting the plurality of piping members against each other,
In a state where water is held inside the pipe, an ice plug is formed inside the pipe member located at both ends of the pipe, and a watertight space is formed inside the pipe.
After forming the water-tight space, supply antifreeze to the water-tight space, increase the internal pressure of the water-tight space, and plastically deform the vicinity of the butt-welded portion of each pipe member to expand the residual pipe Stress improvement method.
前記配管の両端に位置する前記配管部材に冷媒容器を設置し、前記冷媒容器の中央付近に位置する前記配管部材の外周に断熱材を装着した状態で、前記冷媒容器内に冷媒を投入し、前記配管部材を冷却して前記氷栓を形成する請求項1に記載の配管の残留応力改善方法。   A refrigerant container is installed in the pipe member located at both ends of the pipe, and a refrigerant is introduced into the refrigerant container in a state where a heat insulating material is attached to the outer periphery of the pipe member located near the center of the refrigerant container, The method for improving residual stress of piping according to claim 1, wherein the ice plug is formed by cooling the piping member. 各配管部材の前記突合せ溶接部の近傍部に設けられたひずみゲージにより各配管部材外面のひずみ量を計測し、全てのひずみゲージが所定のひずみ量となった後に、前記不凍液の供給を停止する請求項1または請求項2に記載の配管の残留応力改善方法。   Measure the amount of strain on the outer surface of each piping member with a strain gauge provided in the vicinity of the butt weld of each piping member, and stop supplying the antifreeze liquid after all strain gauges have reached the predetermined strain amount. The method for improving residual stress in piping according to claim 1 or 2. 複数の配管部材と、前記複数の配管部材を互いに突き合わせて溶接して形成された複数の突合せ溶接部とを備える配管の内部に水を保有させた状態で、前記配管の両端に位置する前記配管部材の内部に氷栓を形成して、前記配管内部の水密な空間に不凍液を供給する不凍液供給方法であって、
前記不凍液を供給するポンプに接続された供給管を、前記配管の両端に位置する前記配管部材のうちの一方の前記配管部材に対し、前記供給管の先端部が、前記氷栓が形成される位置よりも、他方の前記配管部材側の位置まで挿入し、
前記供給管を挿入後、前記配管の両端に位置する前記配管部材の内部に前記氷栓を形成して、前記配管内部に水密な空間を形成し、
前記ポンプにより前記供給管を通じて、前記不凍液を前記水密な空間に供給する不凍液供給方法。
The pipes located at both ends of the pipe in a state in which water is held inside the pipe having a plurality of pipe members and a plurality of butt welds formed by butting the plurality of pipe members against each other. An antifreeze supplying method for forming an ice plug inside the member and supplying the antifreeze to a watertight space inside the pipe,
The tip of the supply pipe is formed with the ice plug with respect to one of the pipe members of the pipe members positioned at both ends of the supply pipe connected to the pump for supplying the antifreeze liquid. Insert to the position on the other piping member side than the position,
After inserting the supply pipe, forming the ice plug inside the pipe member located at both ends of the pipe, forming a watertight space inside the pipe,
An antifreeze supply method for supplying the antifreeze liquid to the watertight space through the supply pipe by the pump.
複数の配管部材と、前記複数の配管部材を互いに突き合わせて溶接して形成された複数の突合せ溶接部とを備える配管の引張残留応力改善装置であって、
前記配管の両端に位置する前記配管部材の外面に設置され、冷媒を収容して前記配管部材の外面を冷却して内部に氷栓を形成し、前記配管内に水密な空間を形成する一組の冷媒容器と、
不凍液を供給する供給ポンプと、
前記供給ポンプに接続され、前記水密な空間内に前記不凍液を供給する供給管と、を備えた配管の引張残留応力改善装置。
A tensile residual stress improving device for piping comprising a plurality of piping members and a plurality of butt welds formed by butting the plurality of piping members against each other,
A set that is installed on the outer surface of the pipe member located at both ends of the pipe, accommodates the refrigerant, cools the outer surface of the pipe member, forms an ice plug inside, and forms a watertight space in the pipe A refrigerant container,
A supply pump for supplying antifreeze,
A tensile residual stress improving device for piping, comprising: a supply pipe connected to the supply pump and supplying the antifreeze liquid into the watertight space.
前記冷媒容器の中央付近に位置する前記配管部材の外周に装着される断熱材を更に備える請求項5に記載の配管の引張残留応力改善装置。   The tensile residual stress improvement apparatus for piping according to claim 5, further comprising a heat insulating material attached to an outer periphery of the piping member located near the center of the refrigerant container. 各配管部材の前記突合せ溶接部の近傍部に設けられ、各配管部材の外面のひずみ量を計測するひずみゲージを更に備える請求項5または請求項6に記載の配管の引張残留応力改善装置。

The tensile residual stress improvement apparatus for piping according to claim 5 or 6, further comprising a strain gauge that is provided in the vicinity of the butt weld portion of each piping member and measures the strain amount of the outer surface of each piping member.

JP2014212606A 2014-10-17 2014-10-17 Piping residual stress improvement method, antifreeze liquid supply method between ice plugs, and piping residual stress improvement device Active JP6367681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014212606A JP6367681B2 (en) 2014-10-17 2014-10-17 Piping residual stress improvement method, antifreeze liquid supply method between ice plugs, and piping residual stress improvement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014212606A JP6367681B2 (en) 2014-10-17 2014-10-17 Piping residual stress improvement method, antifreeze liquid supply method between ice plugs, and piping residual stress improvement device

Publications (2)

Publication Number Publication Date
JP2016078085A JP2016078085A (en) 2016-05-16
JP6367681B2 true JP6367681B2 (en) 2018-08-01

Family

ID=55955594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014212606A Active JP6367681B2 (en) 2014-10-17 2014-10-17 Piping residual stress improvement method, antifreeze liquid supply method between ice plugs, and piping residual stress improvement device

Country Status (1)

Country Link
JP (1) JP6367681B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110394574A (en) * 2019-08-06 2019-11-01 武汉卫亚汽车零部件有限公司 A kind of precision parts prevent the technology of deformation in the welding process
CN113319208A (en) * 2021-04-25 2021-08-31 东莞材料基因高等理工研究院 Method for eliminating residual stress of cold drawn pipe

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328055A (en) * 1976-08-27 1978-03-15 Babcock Hitachi Kk Means for reducing residual stree of welded tube
JPS636287A (en) * 1986-06-26 1988-01-12 日本鋼管株式会社 Method of reclamating old pipe
JPH0825064A (en) * 1994-07-08 1996-01-30 Sony Corp Method and device for laser working
JP2008238190A (en) * 2007-03-26 2008-10-09 Hitachi-Ge Nuclear Energy Ltd Method for improving residual stress of piping
JP4448873B2 (en) * 2007-08-29 2010-04-14 日立Geニュークリア・エナジー株式会社 Residual stress improvement method for small diameter piping
JP4857375B2 (en) * 2009-11-30 2012-01-18 日立Geニュークリア・エナジー株式会社 Equipment for improving residual stress in piping

Also Published As

Publication number Publication date
JP2016078085A (en) 2016-05-16

Similar Documents

Publication Publication Date Title
JP4448791B2 (en) Method and apparatus for improving residual stress in piping
Tkaczyk et al. Integrity of mechanically lined pipes subjected to multi-cycle plastic bending
JP5763868B1 (en) A method for diagnosing the remaining life of a metal pipe subject to creep damage
JP6367681B2 (en) Piping residual stress improvement method, antifreeze liquid supply method between ice plugs, and piping residual stress improvement device
JP4448873B2 (en) Residual stress improvement method for small diameter piping
JP5367558B2 (en) How to improve residual stress in piping
JP5237750B2 (en) How to improve residual stress in piping
Vasilikis et al. Buckling of clad pipes under bending and external pressure
Timms et al. TurkStream Collapse Test Program
JP2008238190A (en) Method for improving residual stress of piping
JP4972595B2 (en) Method for inhibiting crack growth in piping
CN107798392A (en) The determination method and apparatus in the working service time limit of pipeline corrosion default
WO2015107652A1 (en) Estimation method using calibration curve of remaining lifespan of tubing having bainite structure
JP4857375B2 (en) Equipment for improving residual stress in piping
Denniel et al. Reelable Cost Effective and Enabling PipelineTechnologies
Zhang et al. Measurement and modelling of residual stresses in offshore circumferential welds
Hall et al. Manufacture and Qualification of Small Diameter/Thickwall Reelable DSAWL Linepipe
Sharifi et al. Engineering Critical Assessment for Offshore Pipeline with Semi Elliptical Surface Cracks in Girth Weld–Comparison of FEM and BS7910 Guideline
CN101684879A (en) Method and tools for connecting, repairing and maintaining insulated line pipes
Venu Rao Contribution of Liner Strength in CRA Lined Pipes
De Lucca et al. Enhanced Collapse Resistance for Different D/t Ratios of UOE Pipes for Ultra Deepwater Application
Marines-Garcia et al. Girth Weld Joints From Long Upset Pipe Ends for Improving Fatigue Strength of Offshore Oil and Gas Pipelines
JPS62153733A (en) Preparation of test tube for stress corrosion cracking
JP2012071355A (en) Method of improving residual stress
Duan et al. Plastic behaviour of small bore piping bend/elbow under combined internal pressure and bending moment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170829

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180705

R150 Certificate of patent or registration of utility model

Ref document number: 6367681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150