JP6364857B2 - Variable magnification imaging optical system with anti-vibration function - Google Patents

Variable magnification imaging optical system with anti-vibration function Download PDF

Info

Publication number
JP6364857B2
JP6364857B2 JP2014063026A JP2014063026A JP6364857B2 JP 6364857 B2 JP6364857 B2 JP 6364857B2 JP 2014063026 A JP2014063026 A JP 2014063026A JP 2014063026 A JP2014063026 A JP 2014063026A JP 6364857 B2 JP6364857 B2 JP 6364857B2
Authority
JP
Japan
Prior art keywords
lens group
image
partial
lens
subsequent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014063026A
Other languages
Japanese (ja)
Other versions
JP2014209226A (en
JP2014209226A5 (en
Inventor
典行 小笠原
典行 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sigma Inc
Original Assignee
Sigma Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sigma Inc filed Critical Sigma Inc
Priority to JP2014063026A priority Critical patent/JP6364857B2/en
Publication of JP2014209226A publication Critical patent/JP2014209226A/en
Publication of JP2014209226A5 publication Critical patent/JP2014209226A5/ja
Application granted granted Critical
Publication of JP6364857B2 publication Critical patent/JP6364857B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Nonlinear Science (AREA)

Description

本発明はデジタルカメラ、ビデオカメラなどに用いられる撮影レンズに好適な防振機能を備えた変倍結像光学系に関する。   The present invention relates to a variable magnification imaging optical system having an image stabilization function suitable for a photographing lens used in a digital camera, a video camera, or the like.

従来より、一眼レフレックスカメラなど向けに、変倍比10倍程度かつ対角線画角75°程度の高倍率の変倍結像光学系が提供されている。更に光学系の一部を光軸と直交する方向に移動させることによって像ブレの補正を行う防振機構を備えた変倍結像光学系が提案されている。   Conventionally, for a single-lens reflex camera or the like, a variable magnification imaging optical system with a variable magnification ratio of about 10 times and a diagonal angle of view of about 75 ° has been provided. Further, there has been proposed a variable magnification imaging optical system provided with an image stabilization mechanism for correcting image blur by moving a part of the optical system in a direction orthogonal to the optical axis.

特許文献1は、これら一眼レフレックスカメラに適する、防振機構を備えた高倍率の変倍結像光学系を開示している。   Patent Document 1 discloses a high-magnification variable magnification imaging optical system equipped with an anti-vibration mechanism that is suitable for these single-lens reflex cameras.

一方、近年は、ミラーレス一眼カメラが登場している。ミラーレス一眼カメラは、一眼レフレックスカメラと同様レンズ交換式カメラでありながら、一眼レフレックスファインダーに代えて電子ビューファインダーを備えることによりクイックリターンミラーを廃止している。   On the other hand, in recent years, mirrorless single-lens cameras have appeared. The mirrorless single-lens camera is an interchangeable-lens camera like the single-lens reflex camera. However, the mirrorless single-lens camera eliminates the quick return mirror by providing an electronic viewfinder instead of the single-lens reflex finder.

ミラーレス一眼カメラは、クイックリターンミラー及び駆動機構、ペンタプリズム等が不要であることから、従来の一眼レフレックスカメラに比べカメラ本体を大幅に小型化できる。更に、ミラーレス一眼カメラに対応する交換レンズは、クイックリターンミラーの可動スペースを考慮する必要が無くなることから、バックフォーカスを大幅に短縮できる。   Since a mirrorless single-lens camera does not require a quick return mirror, a drive mechanism, a pentaprism, or the like, the camera body can be greatly reduced in size compared to a conventional single-lens reflex camera. Furthermore, the interchangeable lens corresponding to the mirrorless single-lens camera does not need to consider the movable space of the quick return mirror, so that the back focus can be greatly shortened.

特許文献2や特許文献3は、ミラーレス一眼カメラに適する、防振機構を備えた高倍率の変倍結像光学系を開示している。   Patent Document 2 and Patent Document 3 disclose a high-magnification variable magnification imaging optical system equipped with an image stabilization mechanism suitable for a mirrorless single-lens camera.

ミラーレス一眼カメラは、電子ビューファインダーの表示のためにリアルタイムとみなし得る十分に高速な動画像処理を行う能力を備えている必要がある。また、その画像処理能力は動画の記録にも応用されている。   The mirrorless single-lens camera needs to have an ability to perform sufficiently high-speed moving image processing that can be regarded as real time for display of an electronic viewfinder. The image processing capability is also applied to moving image recording.

動画を記録するにあたって、ミラーレス一眼カメラに対応する交換レンズは、以下に示す3つの性能が求められる。   In recording a moving image, an interchangeable lens corresponding to a mirrorless single-lens camera is required to have the following three performances.

求められる第1の性能は、動作音の低減である。動作音が大きいと、フォーカシング時、防振時、絞り駆動時等に発生する動作音が録音されてしまい、動画及び音声を再生した際に騒音として耳障りに感じられる。この問題を解決する方法として、静粛なアクチュエータを使用すると同時に、アクチュエータによって駆動される光学系のフォーカスレンズ群や防振群は可能な限り軽量化を図ることが望ましい。   The first performance required is a reduction in operating noise. If the operation sound is loud, the operation sound generated during focusing, vibration isolation, aperture drive, etc. is recorded, and it is felt as annoying as noise when reproducing moving images and sounds. As a method for solving this problem, it is desirable to use a quiet actuator, and at the same time, reduce the weight of the focus lens group and the image stabilization group of the optical system driven by the actuator as much as possible.

求められる第2の性能は、防振時の最大補正角の確保である。動画撮影中には静止画撮影時に問題となるブレよりも周波数が低い成分も記録されてしまう。このため、手振れの補正のなされた動画を撮影するには、静止画撮影時のみを考慮した場合よりも最大補正角を大きくした方が良い。一方で、交換レンズは、より一層の小型化・小径化が多くの場合に求められる。鏡筒の小径化のために防振群の移動量は少なくしたい。従って、求められる第2の性能と小型化とを両立するには、光軸直交方向への防振群の移動量に対する像の移動の比(以下、防振係数)をなるべく大きくしたい。   The required second performance is to secure the maximum correction angle during vibration isolation. During moving image shooting, a component having a frequency lower than that of blurring, which is a problem during still image shooting, is also recorded. For this reason, in order to shoot a moving image that has been corrected for camera shake, it is better to increase the maximum correction angle than when only taking a still image into consideration. On the other hand, interchangeable lenses are required in many cases for further miniaturization and diameter reduction. We want to reduce the amount of movement of the anti-vibration group to reduce the diameter of the lens barrel. Therefore, in order to achieve both the required second performance and downsizing, it is desirable to increase the ratio of image movement to the amount of movement of the image stabilizing group in the direction perpendicular to the optical axis (hereinafter referred to as image stabilizing coefficient) as much as possible.

求められる第3の性能は、フォーカシング時のデフォーカス変化に対する像高変化率の低減である。ミラーレス一眼カメラのオートフォーカスは一般的にフォーカスレンズ群の移動に対しコントラストの変化を評価し、コントラストのピークを探索して合焦とする、所謂コントラストAFを採用する。コントラストAFにおいてはAF用のセンサはイメージセンサと同一で、別の測距センサを必要としないので小型化及びコストにおいて有利である。更にイメージセンサと測距センサの位置合わせ等の問題もないので精度面でも有利である。   The required third performance is a reduction in the image height change rate with respect to the defocus change during focusing. The auto-focus of a mirrorless single-lens camera generally employs so-called contrast AF in which a change in contrast is evaluated with respect to movement of a focus lens group, and a peak of contrast is searched for focusing. In contrast AF, the AF sensor is the same as the image sensor and does not require a separate distance measuring sensor, which is advantageous in terms of downsizing and cost. Furthermore, since there is no problem of alignment between the image sensor and the distance measuring sensor, it is advantageous in terms of accuracy.

その一方、コントラストAFは、一眼レフレックスカメラで一般的な位相差AFと異なり、フォーカスレンズ群をフォーカス位置へ駆動するための駆動方向及び量をあらかじめ知ることができない。そのため、コントラストAFは、駆動すべき方向を確認するためにフォーカスレンズ群を光軸に沿って前後方向に微少駆動させ、コントラストの変化を見てコントラストが高くなる方向にフォーカスレンズ群を駆動する。また合焦点の判定は、コントラストの極大値を一度通過した後、極大点を合焦点とする。   On the other hand, contrast AF is different from phase difference AF generally used in a single-lens reflex camera, and the driving direction and amount for driving the focus lens group to the focus position cannot be known in advance. For this reason, in contrast AF, the focus lens group is slightly driven in the front-rear direction along the optical axis in order to confirm the direction to be driven, and the focus lens group is driven in a direction in which the contrast is increased when a change in contrast is observed. Further, the in-focus determination is performed by passing the maximum value of the contrast once and then setting the maximum point as the in-focus point.

コントラストAFは、特に動画時などにカメラとの距離が常に変化する被写体に対してフォーカシングし続けるコンティニュアスAFを行う際、フォーカスレンズ群を光軸に沿う方向への微少な振動(以下、ウォブリング)をさせ続けることで、常にフォーカス駆動方向を判断し続けている。   Contrast AF is a small vibration (hereinafter referred to as wobbling) that moves the focus lens group in the direction along the optical axis, especially when performing continuous AF that continues to focus on a subject whose distance from the camera changes constantly, such as during video. ), The focus drive direction is always determined.

ウォブリングを行う際、フォーカス変化に対して像高変化率が大きい光学系を使用すると、鑑賞者は、画面に映る被写体の倍率の変動を認識し、目障りに感じる。例えば、1920×1080の解像度のデジタル画像で、像高変化率が最大像高の0.1%であるとすると、ウォブリングを行った際に画面最周辺での画面に映る被写体の倍率の変化はおよそ1pixelに相当する。そのため像倍率の変化率が0.1%以下であれば鑑賞者に認識されることはないと言える。同様にウォブリング時のボケ量も半径1pixel程度であれば鑑賞者に認識されることはない。動画撮影時のFナンバーによるが、晴天時に感度ISO100相当で1/60秒の積分時間を仮定すると、およそF16程度が適切なF値である。したがってF16に対して半径1pixelのボケが生じるような振幅でウォブリングを行う場合に、像高変化率が0.1%を下回ることが望ましい。   When wobbling, if an optical system having a large image height change rate with respect to the focus change is used, the viewer recognizes a change in the magnification of the subject on the screen and feels annoying. For example, if a digital image with a resolution of 1920 × 1080 has an image height change rate of 0.1% of the maximum image height, the change in the magnification of the subject displayed on the screen at the outermost periphery of the screen when wobbling is performed. It corresponds to about 1 pixel. Therefore, it can be said that it is not recognized by the viewer if the change rate of the image magnification is 0.1% or less. Similarly, if the amount of blur at the time of wobbling is about 1 pixel in radius, the viewer will not recognize it. Depending on the F number at the time of moving image shooting, assuming an integration time of 1/60 seconds corresponding to a sensitivity of ISO 100 in fine weather, about F16 is an appropriate F value. Therefore, when wobbling is performed with such an amplitude that a blur with a radius of 1 pixel is generated with respect to F16, it is desirable that the image height change rate is less than 0.1%.

特許第4628828号公報Japanese Patent No. 4628828 特開2011−247962号公報JP 2011-247932 A 特開2012−181526号公報JP 2012-181526 A

特許文献1に記載の発明は、物体側より負負正負正の5枚のレンズからなる第2レンズ群全体でフォーカシングを行うため、フォーカス群の重量が重いため求められる第1の性能を満足しない。さらにウォブリング時の像高変化率が大きいため求められる第3の性能も満足しない。そのため、特許文献1に記載の発明は、鑑賞者が動画撮影中に像の大きさの変化を知覚することで、目障りに感じられてしまうという課題を有している。   The invention described in Patent Document 1 does not satisfy the first performance required because the focus group is heavy because focusing is performed on the entire second lens group including five negative, positive, positive, and positive lenses from the object side. . Furthermore, since the rate of change in image height during wobbling is large, the third performance required is not satisfied. For this reason, the invention described in Patent Document 1 has a problem that the viewer perceives a change in the size of the image during moving image shooting and thus feels uncomfortable.

特許文献2に記載の発明は、負の屈折力を有する2枚のレンズからなる第4レンズ群でフォーカシングを行うことで、フォーカスレンズ群の軽量化と像高変化率の抑制が達成されている。また、特許文献2に記載の発明は、第3レンズ群の一部のレンズ2枚からなる正の屈折力を有するレンズ群で防振を行い、フォーカスレンズ群同様に十分な軽量化と防振係数を達成している。しかし、特許文献2に記載の発明は、その反面で望遠端における防振群の光軸直交方向への移動に伴う偏芯コマ収差の変動が非常に大きく、画質に不満が残るという課題を有している。防振群の枚数を保ったまま偏芯コマ収差の発生を抑える事と防振群の屈折力を大きくして防振係数を保つ事との両立はし難いため、画質を改善しようとすると鏡筒の径が大きくならざるを得ず小型化は難しい。   The invention described in Patent Document 2 achieves weight reduction of the focus lens group and suppression of the image height change rate by performing focusing with the fourth lens group including two lenses having negative refractive power. . In addition, the invention described in Patent Document 2 performs image stabilization with a lens unit having a positive refractive power composed of two lenses of a part of the third lens unit, and as with the focus lens unit, sufficient weight reduction and image stabilization are achieved. The coefficient is achieved. However, the invention described in Patent Document 2 has a problem that the decentering coma aberration due to the movement of the image stabilizing group at the telephoto end in the direction perpendicular to the optical axis is very large, and the image quality remains unsatisfactory. doing. It is difficult to achieve both the suppression of decentered coma aberration while maintaining the number of anti-vibration groups and the increase of the refractive power of the anti-vibration group to maintain the anti-vibration coefficient. The diameter of the tube must be large, and downsizing is difficult.

特許文献3は、正の屈折力を有する第3レンズ群でフォーカシングを行う光学系を開示している。しかし、開示されている正の屈折力を有する第3レンズ群でフォーカシングを行う光学系は、像高変化率が非常に大きく、動画撮影中に像の大きさの変化が鑑賞者に知覚されてしまうため動画の品位に不満が残るという課題を有している   Patent Document 3 discloses an optical system that performs focusing with a third lens group having a positive refractive power. However, the disclosed optical system that performs focusing with the third lens group having positive refractive power has a very large image height change rate, and the change in the size of the image is perceived by the viewer during video recording. Therefore, there is a problem that dissatisfaction with the quality of the video

また、特許文献3は、負の屈折力を有する第3レンズ群でフォーカシングを行う光学系も開示している。しかし、開示されている負の屈折力を有する第3レンズ群でフォーカシングを行う光学系は、変倍時のフォーカスレンズ群と防振群との移動量差が大きいため制御用の配線を別個に行わなければならず複雑化を招き、鏡筒径の抑制が困難である。また、開示されている負の屈折力を有する第3レンズ群でフォーカシングを行う光学系は、像高変化率の抑制も十分ではないため、動画の品位に不満が残るという課題を有する。   Patent Document 3 also discloses an optical system that performs focusing with a third lens group having negative refractive power. However, the disclosed optical system that performs focusing with the third lens group having negative refractive power has a large difference in the amount of movement between the focus lens group and the image stabilizing group at the time of zooming. This must be done, resulting in complications and it is difficult to suppress the lens barrel diameter. In addition, the disclosed optical system that performs focusing with the third lens group having negative refractive power has a problem that the quality of the moving image remains unsatisfactory because the image height change rate is not sufficiently suppressed.

本発明は上記の問題点に鑑みてなされたものであり、フォーカスレンズ群と防振群の軽量化を達成し、防振係数を大きくしながら、ウォブリング時の像高変化率を抑制し、小型化を達成しつつ使用領域全域にわたって高い光学性能を実現した、防振機構を備えた変倍結像光学系を提供することを目的とする。   The present invention has been made in view of the above-described problems, achieves weight reduction of the focus lens group and the image stabilization group, suppresses the image height change rate during wobbling while increasing the image stabilization coefficient, and is compact. An object of the present invention is to provide a variable magnification imaging optical system equipped with an anti-vibration mechanism that achieves high optical performance over the entire use region while achieving high speed.

前記課題を解決するための手段である第1の発明は、物体側から順に正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、変倍領域の全域で、全体として正の屈折力を有する後続レンズ群Grとからなり、開口絞りSは後続レンズ群Grのうち変倍時に独立した軌跡で移動するレンズ群のうち最も物体側のレンズ群に隣接または内部に配置され、前記後続レンズ群Grは、物体側から順に少なくとも2つの正の屈折力を有する部分レンズ群Rp1と部分レンズ群Rp2とを有し、さらに前記部分レンズ群Rp2よりも像側に負の屈折力を有する部分レンズ群Rn1を有し、無限遠から近距離へのフォーカシングに際して、後続レンズ群Grの前記部分レンズ群Rp2を光軸に沿う方向に物体側へ移動し、広角端から望遠端への変倍に際して、前記後続レンズ群Grは変倍時に独立した軌跡で移動するレンズ群を少なくとも1つ含み、前記第1レンズ群G1と前記第2レンズ群G2の間隔は増大し、前記第2レンズ群G2と前記後続レンズ群Grの間隔は減少し、防振に際して前記部分レンズ群Rn1が光軸と略直交方向に動き、前記後続レンズ群Grは前記部分レンズ群Rn1より像側に変倍時に独立の軌跡で移動する部分レンズ群を有し、前記後続レンズ群Grの有する変倍時に独立の軌跡で移動する部分レンズ群は最も像側に位置するレンズ群であり、前記部分レンズ群Rp2の、無限遠合焦時における結像倍率は、変倍の全域において次の条件式を満たし、
(1) |M|<0.65
ただし、
M:後続レンズ群Gr中の前記部分レンズ群Rp2の無限遠合焦時における結像倍率
前記後続レンズ群Grのうち前記部分レンズ群Rp2より像側のすべての群の合成屈折力の符号が負であり、変倍の全域において次の条件式を満たし、広角端における対角線全画角が50度以上であることを特徴とする防振機能を備えた変倍結像光学系。
(2) 0.626≦EXP/Lf<1.50
ただし、
EXP:無限遠合焦状態における、射出瞳から像面までの長さ
Lf:無限遠合焦状態における、前記部分レンズ群Rp2を含まずにRp2よりも像側の群の合成系の像側焦点から像面までの長さ
The first invention, which is a means for solving the above-mentioned problems, includes a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a variable magnification region in order from the object side. The entire area is composed of a subsequent lens group Gr having a positive refractive power as a whole, and the aperture stop S is adjacent to the most object side lens group among the lens groups that move in an independent locus during zooming in the subsequent lens group Gr. Alternatively, the succeeding lens group Gr is disposed inside, and includes a partial lens group Rp1 and a partial lens group Rp2 having at least two positive refractive powers in order from the object side, and further on the image side from the partial lens group Rp2. And a partial lens group Rn1 having a negative refractive power at the time of focusing from infinity to a short distance, the partial lens group Rp2 of the subsequent lens group Gr is moved to the object side in the direction along the optical axis, and the wide-angle end When zooming to the telephoto end, the subsequent lens group Gr includes at least one lens group that moves along an independent locus during zooming, and the distance between the first lens group G1 and the second lens group G2 increases. The distance between the second lens group G2 and the subsequent lens group Gr is reduced, the partial lens group Rn1 moves in a direction substantially orthogonal to the optical axis during image stabilization, and the subsequent lens group Gr is imaged by the partial lens group Rn1. has a partial lens group moves independently of the trajectory when zooming on the side, the partial lens group moves independently of the trajectory during zooming with a subsequent lens group Gr is a lens group closest to the image side, the The imaging magnification of the partial lens group Rp2 at the time of focusing on infinity satisfies the following conditional expression in the entire zoom range,
(1) | M | <0.65
However,
M: Imaging magnification at the time of focusing on the partial lens group Rp2 in the subsequent lens group Gr at infinity The sign of the combined refractive power of all the groups on the image side of the partial lens group Rp2 in the subsequent lens group Gp is negative. A variable magnification imaging optical system having an anti-vibration function, wherein the following conditional expression is satisfied over the entire range of the variable magnification, and the total angle of view of the diagonal line at the wide angle end is 50 degrees or more.
(2) 0. 626 ≦ EXP / Lf <1.50
However,
EXP: Length from the exit pupil to the image plane in the infinite focus state Lf: In the infinite focus state, the image-side focal point of the composite system of the group closer to the image side than Rp2 without including the partial lens group Rp2 From image to image plane

また、前述の課題を解決するための手段である第2の発明は、物体側から順に正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、変倍領域の全域で、全体として正の屈折力を有する後続レンズ群Grとからなり、開口絞りSは後続レンズ群Grのうち変倍時に独立した軌跡で移動するレンズ群のうち最も物体側のレンズ群に隣接または内部に配置され、前記後続レンズ群Grは、物体側から順に少なくとも2つの正の屈折力を有する部分レンズ群Rp1と部分レンズ群Rp2とを有し、さらに前記部分レンズ群Rp2よりも像側に負の屈折力を有する部分レンズ群Rn1を有し、無限遠から近距離へのフォーカシングに際して、後続レンズ群Grの前記部分レンズ群Rp2を光軸に沿う方向に物体側へ移動し、広角端から望遠端への変倍に際して、前記後続レンズ群Grは変倍時に独立した軌跡で移動するレンズ群を少なくとも1つ含み、前記第1レンズ群G1と前記第2レンズ群G2の間隔は増大し、前記第2レンズ群G2と前記後続レンズ群Grの間隔は減少し、防振に際して前記部分レンズ群Rn1が光軸と略直交方向に動き、前記後続レンズ群Grは前記部分レンズ群Rn1より像側に変倍時に独立の軌跡で移動する部分レンズ群を有し、前記後続レンズ群Grの有する変倍時に独立の軌跡で移動する部分レンズ群は最も像側に位置するレンズ群であり、前記部分レンズ群Rp2の、無限遠合焦時における結像倍率は、変倍の全域において次の条件式を満たし、
(1) |M|<0.65
ただし、
M:後続レンズ群Gr中の前記部分レンズ群Rp2の無限遠合焦時における結像倍率
後続レンズ群Grのうち前記部分レンズ群Rp2より像側のすべての群の合成屈折力の符号が負であって、広角端において次の条件式を満たし、
広角端における対角線全画角が50度以上であることを特徴とする防振機能を備えた変倍結像光学系。
(2) 0.636≦EXP/Lf<1.50
ただし、
EXP:無限遠合焦状態における、射出瞳から像面までの長さ
Lf:無限遠合焦状態における、前記部分レンズ群Rp2を含まずにRp2よりも像側の群の合成系の像側焦点から像面までの長さ
Further, the second invention, which is means for solving the above-described problems, includes a first lens group G1 having a positive refractive power in order from the object side, a second lens group G2 having a negative refractive power, and a variable lens. The entire lens area is composed of a subsequent lens group Gr having a positive refractive power as a whole, and the aperture stop S is the most object side lens among the lens groups that move along an independent locus during zooming in the subsequent lens group Gr. The succeeding lens group Gr is arranged adjacent to or inside the group, and has a partial lens group Rp1 and a partial lens group Rp2 having at least two positive refractive powers in order from the object side, and further from the partial lens group Rp2 Also has a partial lens group Rn1 having negative refractive power on the image side, and moves the partial lens group Rp2 of the subsequent lens group Gr to the object side in the direction along the optical axis when focusing from infinity to a short distance. In zooming from the wide-angle end to the telephoto end, the subsequent lens group Gr includes at least one lens group that moves along an independent locus during zooming, and the distance between the first lens group G1 and the second lens group G2 is as follows. The distance between the second lens group G2 and the subsequent lens group Gr decreases, the partial lens group Rn1 moves in a direction substantially orthogonal to the optical axis during image stabilization, and the subsequent lens group Gr moves to the partial lens group Rn1. The partial lens group that moves along an independent locus at the time of zooming on the image side, and the partial lens group that moves along the independent locus at the time of zooming of the subsequent lens group Gr is a lens group that is positioned closest to the image side. The imaging magnification of the partial lens group Rp2 at the time of focusing on infinity satisfies the following conditional expression in the entire zoom range:
(1) | M | <0.65
However,
M: Imaging magnification at the time of focusing on the partial lens group Rp2 in the subsequent lens group Gr at infinity
A previous SL all negative sign of the combined refractive power of the group on the image side of the partial lens group Rp2 of the subsequent lens group Gr, meets the following condition at the wide angle end,
A variable magnification imaging optical system having an anti-vibration function , wherein a total angle of view of a diagonal line at a wide-angle end is 50 degrees or more .
(2) 0. 636 ≦ EXP / Lf <1.50
However,
EXP: Length from the exit pupil to the image plane in the infinite focus state Lf: In the infinite focus state, the image-side focal point of the composite system of the group closer to the image side than Rp2 without including the partial lens group Rp2 From image to image plane

また、前述の課題を解決するための手段である第3の発明は、第1の発明又は第2の発明である防振機能を備えた変倍結像光学系であり、前記部分レンズ群Rp2は2枚以下のレンズで構成されることを特徴とする防振機能を備えた変倍結像光学系。 A third invention, which is a means for solving the above-mentioned problems, is a variable magnification imaging optical system having a vibration isolation function according to the first invention or the second invention, and the partial lens group Rp2 Is a variable magnification imaging optical system having an anti-vibration function, characterized by comprising two or less lenses .

また、前述の課題を解決するための手段である第4の発明は、第1乃至第3いずれかの発明である防振機能を備えた変倍結像光学系であり、さらに前記部分レンズ群Rn1は2枚以下のレンズで構成されることを特徴とする防振機能を備えた変倍結像光学系。 A fourth invention, which is means for solving the above-described problems, is a variable magnification imaging optical system having an image stabilization function according to any one of the first to third inventions, and further the partial lens group A variable magnification imaging optical system having an image stabilization function, wherein Rn1 is composed of two or less lenses .

本発明によれば、フォーカスレンズ群と防振群の軽量化を達成し、防振係数を大きくしながら、ウォブリング時の像高変化率を抑制し、小型化を達成しつつ使用領域全域にわたって高い光学性能を実現した、防振機構を備えた変倍結像光学系を提供することができる。   According to the present invention, the weight of the focus lens group and the image stabilization group can be reduced, the image stabilization rate can be increased, the image height change rate during wobbling can be suppressed, and the entire area of use can be increased while achieving downsizing. A variable magnification imaging optical system having an anti-vibration mechanism that realizes optical performance can be provided.

本願発明の防振機能を備えた変倍結像光学系の実施例1に係る広角端かつ無限遠物体合焦時における広角端のレンズ構成図である。It is a lens block diagram at the wide-angle end when focusing on an object at infinity at the wide-angle end according to Example 1 of the variable magnification imaging optical system having the image stabilization function of the present invention. 本実施例1の防振機能を備えた変倍結像光学系の無限遠物体合焦時における広角端の縦収差図である。FIG. 6 is a longitudinal aberration diagram at the wide-angle end when an object at infinity is in focus in the variable magnification imaging optical system having the image stabilization function according to Example 1. 本実施例1の防振機能を備えた変倍結像光学系の無限遠物体合焦時における広角端の横収差図である。FIG. 6 is a lateral aberration diagram at the wide-angle end when an object at infinity is in focus in the variable magnification imaging optical system having the image stabilization function according to Example 1. 本実施例1の防振機能を備えた変倍結像光学系の無限遠物体合焦時における防振群をー0.12mmシフトさせた手振れ補正時の広角端の横収差図である。FIG. 6 is a lateral aberration diagram at the wide-angle end during camera shake correction in which the image stabilization group is shifted by −0.12 mm when the object at infinity is focused in the variable magnification imaging optical system having the image stabilization function of Example 1; 本実施例1の防振機能を備えた変倍結像光学系の焦点距離70mmにおける縦収差図である。FIG. 4 is a longitudinal aberration diagram at a focal length of 70 mm of the variable magnification imaging optical system having the image stabilization function of Example 1. 本実施例1の防振機能を備えた変倍結像光学系の焦点距離70mmにおける横収差図である。FIG. 6 is a lateral aberration diagram at a focal length of 70 mm of the variable magnification imaging optical system having the image stabilization function of Example 1. 本実施例1の防振機能を備えた変倍結像光学系の焦点距離70mmにおける防振群をー0.23mmシフトさせた手振れ補正時の横収差図である。FIG. 6 is a lateral aberration diagram during camera shake correction in which a vibration isolation group at a focal length of 70 mm in the variable magnification imaging optical system having the image stabilization function of Example 1 is shifted by −0.23 mm. 本実施例1の防振機能を備えた変倍結像光学系の無限遠物体合焦時における望遠端の縦収差図である。FIG. 6 is a longitudinal aberration diagram at the telephoto end when an object at infinity is in focus in the variable magnification imaging optical system having the image stabilization function of Example 1. 本実施例1の防振機能を備えた変倍結像光学系の無限遠物体合焦時における望遠端の横収差図である。FIG. 6 is a lateral aberration diagram at the telephoto end when an infinite object is focused in the variable magnification imaging optical system having the image stabilization function according to Example 1. 本実施例1の防振機能を備えた変倍結像光学系の無限遠物体合焦時における防振群をー0.50mmシフトさせた手振れ補正時の望遠端の横収差図である。FIG. 7 is a lateral aberration diagram at the telephoto end during camera shake correction in which the image stabilizing group is shifted by −0.50 mm when the object at infinity is focused in the variable magnification imaging optical system having the image stabilizing function of Example 1; 本願発明の防振機能を備えた変倍結像光学系の実施例2に係る広角端かつ無限遠物体合焦時におけるレンズ構成図である。It is a lens block diagram at the time of a wide-angle end and infinity object which concerns on Example 2 of the variable magnification imaging optical system provided with the anti-vibration function of this invention. 本実施例2の防振機能を備えた変倍結像光学系の無限遠物体合焦時における広角端の縦収差図である。FIG. 6 is a longitudinal aberration diagram at the wide-angle end when an object at infinity is in focus in the variable magnification imaging optical system having the image stabilization function according to Example 2. 本実施例2の防振機能を備えた変倍結像光学系の無限遠物体合焦時における広角端の横収差図である。FIG. 12 is a lateral aberration diagram at the wide-angle end when an object at infinity is focused in the variable magnification imaging optical system having the image stabilization function according to Example 2. 本実施例2の防振機能を備えた変倍結像光学系の無限遠物体合焦時おける防振群をー0.13mmシフトさせた手振れ補正時の広角端の横収差図である。FIG. 11 is a lateral aberration diagram at the wide-angle end when camera shake is corrected by shifting the image stabilizing group in focusing on an object at infinity by the variable magnification imaging optical system having the image stabilizing function of Example 2 by −0.13 mm. 本実施例2の防振機能を備えた変倍結像光学系の焦点距離35mmにおける縦収差図である。FIG. 6 is a longitudinal aberration diagram at a focal length of 35 mm of the variable magnification imaging optical system having the image stabilization function of Example 2. 本実施例2の防振機能を備えた変倍結像光学系の焦点距離35mmにおける横収差図である。FIG. 6 is a lateral aberration diagram at a focal length of 35 mm of the variable magnification imaging optical system having the image stabilization function of Example 2. 本実施例2の防振機能を備えた変倍結像光学系の焦点距離35mmにおける防振群をー0.17mmシフトさせた手振れ補正時の横収差図である。It is a lateral aberration diagram at the time of camera shake correction in which the image stabilizing group at the focal length of 35 mm of the variable magnification imaging optical system having the image stabilizing function of Example 2 is shifted by −0.17 mm. 本実施例2の防振機能を備えた変倍結像光学系の無限遠物体合焦時における望遠端の縦収差図である。FIG. 6 is a longitudinal aberration diagram at the telephoto end when an object at infinity is in focus in the variable magnification imaging optical system having the image stabilization function according to Example 2. 本実施例2の防振機能を備えた変倍結像光学系の無限遠物体合焦時における望遠端の横収差図である。FIG. 10 is a lateral aberration diagram at the telephoto end when a variable magnification imaging optical system having the image stabilization function according to Example 2 is focused on an object at infinity. 本実施例2の防振機能を備えた変倍結像光学系の無限遠物体合焦時における防振群をー0.24mmシフトさせた手振れ補正時の望遠端の横収差図である。FIG. 12 is a lateral aberration diagram at the telephoto end during camera shake correction in which a vibration reduction group is shifted by −0.24 mm when an object at infinity is in focus in the variable magnification imaging optical system having the image stabilization function according to Example 2; 本願発明の防振機能を備えた変倍結像光学系の実施例3に係る広角端かつ無限遠物体合焦時におけるレンズ構成図である。It is a lens block diagram at the time of a wide-angle end and infinity object which concerns on Example 3 of the variable magnification imaging optical system provided with the anti-vibration function of this invention. 本実施例3の防振機能を備えた変倍結像光学系の無限遠物体合焦時における広角端の縦収差図である。FIG. 12 is a longitudinal aberration diagram at the wide-angle end when an object at infinity is in focus in the variable magnification imaging optical system having the image stabilization function according to Example 3; 本実施例3の防振機能を備えた変倍結像光学系の無限遠物体合焦時における広角端の横収差図である。FIG. 10 is a lateral aberration diagram at the wide-angle end when an object at infinity is in focus in the variable magnification imaging optical system having the image stabilization function according to Example 3. 本実施例3の防振機能を備えた変倍結像光学系の無限遠物体合焦時おける防振群をー0.14mmシフトさせた手振れ補正時の広角端の横収差図である。FIG. 10 is a lateral aberration diagram at the wide-angle end when camera shake is corrected by shifting the image stabilization group in focusing at infinity by the variable magnification imaging optical system having the image stabilization function of Example 3 by −0.14 mm. 本実施例3の防振機能を備えた変倍結像光学系の焦点距離30mmにおける縦収差図である。FIG. 12 is a longitudinal aberration diagram at a focal length of 30 mm of the variable magnification imaging optical system with the image stabilization function according to Example 3; 本実施例3の防振機能を備えた変倍結像光学系の焦点距離30mmにおける横収差図である。FIG. 10 is a lateral aberration diagram at a focal length of 30 mm of the variable magnification imaging optical system with the image stabilization function according to Example 3; 本実施例3の防振機能を備えた変倍結像光学系の焦点距離30mmにおける防振群をー0.18mmシフトさせた手振れ補正時の横収差図である。FIG. 10 is a lateral aberration diagram during camera shake correction in which a vibration reduction group at a focal length of 30 mm in the variable magnification imaging optical system having the image stabilization function according to Example 3 is shifted by −0.18 mm. 本実施例3の防振機能を備えた変倍結像光学系の無限遠物体合焦時における望遠端の縦収差図である。FIG. 10 is a longitudinal aberration diagram at the telephoto end when an object at infinity is in focus in the variable magnification imaging optical system having the image stabilization function according to Example 3; 本実施例3の防振機能を備えた変倍結像光学系の無限遠物体合焦時における望遠端の横収差図である。FIG. 12 is a lateral aberration diagram at the telephoto end when a variable magnification imaging optical system having the image stabilization function of Example 3 is focused on an object at infinity. 本実施例3の防振機能を備えた変倍結像光学系の無限遠物体合焦時における防振群をー0.23mmシフトさせた手振れ補正時の望遠端の横収差図である。FIG. 12 is a lateral aberration diagram at the telephoto end during camera shake correction in which the image stabilization group is shifted by −0.23 mm when the object at infinity is focused in the variable magnification imaging optical system having the image stabilization function of Example 3; 本願発明の防振機能を備えた変倍結像光学系の実施例4に係る広角端かつ無限遠物体合焦時におけるレンズ構成図である。It is a lens block diagram at the time of the wide-angle end and infinity object which concerns on Example 4 of the variable magnification imaging optical system provided with the anti-vibration function of this invention. 本実施例4の防振機能を備えた変倍結像光学系の無限遠物体合焦時における広角端の縦収差図である。FIG. 10 is a longitudinal aberration diagram at the wide-angle end when an object at infinity is in focus in the variable magnification imaging optical system that has the image stabilization function of Example 4. 本実施例4の防振機能を備えた変倍結像光学系の無限遠物体合焦時における広角端の横収差図である。FIG. 12 is a lateral aberration diagram at the wide-angle end when an object at infinity is in focus in the variable magnification imaging optical system that has the image stabilization function according to Example 4; 本実施例4 の防振機能を備えた変倍結像光学系の無限遠物体合焦時おける防振群をー0.25mm シフトさせた手振れ補正時の広角端の横収差図である。FIG. 11 is a lateral aberration diagram at the wide-angle end when camera shake is corrected by shifting the image stabilization group in focusing on an object at infinity by the variable magnification imaging optical system having the image stabilization function of Example 4 by −0.25 mm. 本実施例4の防振機能を備えた変倍結像光学系の焦点距離135mmにおける縦収差図である。FIG. 12 is a longitudinal aberration diagram at a focal length of 135 mm of the variable magnification imaging optical system having the image stabilization function according to Example 4; 本実施例4の防振機能を備えた変倍結像光学系の焦点距離135mmにおける横収差図である。FIG. 12 is a lateral aberration diagram at a focal length of 135 mm in the variable magnification imaging optical system with the image stabilization function according to Example 4; 本実施例4の防振機能を備えた変倍結像光学系の焦点距離135mmにおける防振群をー0.45mmシフトさせた手振れ補正時の横収差図である。FIG. 11 is a lateral aberration diagram during camera shake correction in which a vibration isolation group at a focal length of 135 mm in the variable magnification imaging optical system having the image stabilization function according to Example 4 is shifted by −0.45 mm. 本実施例4の防振機能を備えた変倍結像光学系の無限遠物体合焦時における望遠端の縦収差図である。FIG. 12 is a longitudinal aberration diagram at the telephoto end when an object at infinity is in focus in the variable magnification imaging optical system having the image stabilization function according to Example 4; 本実施例4の防振機能を備えた変倍結像光学系の無限遠物体合焦時における望遠端の横収差図である。FIG. 10 is a lateral aberration diagram at the telephoto end when a variable magnification imaging optical system having the image stabilization function according to Example 4 is focused on an object at infinity. 本実施例4の防振機能を備えた変倍結像光学系の無限遠物体合焦時における防振群をー0.54mmシフトさせた手振れ補正時の望遠端の横収差図である。FIG. 11 is a lateral aberration diagram at the telephoto end during camera shake correction in which the image stabilizing group is shifted by −0.54 mm when the object at infinity is focused in the variable magnification imaging optical system having the image stabilization function of Example 4; 本願発明の防振機能を備えた変倍結像光学系の実施例5に係る広角端かつ無限遠物体合焦時におけるレンズ構成図である。It is a lens block diagram at the time of a wide-angle end and infinity object which concerns on Example 5 of the variable magnification imaging optical system provided with the anti-vibration function of this invention. 本実施例5の防振機能を備えた変倍結像光学系の無限遠物体合焦時における広角端の縦収差図である。FIG. 12 is a longitudinal aberration diagram at the wide-angle end when an object at infinity is in focus in the variable magnification imaging optical system having the image stabilization function according to Example 5. 本実施例5の防振機能を備えた変倍結像光学系の無限遠物体合焦時における広角端の横収差図である。FIG. 10 is a lateral aberration diagram at the wide-angle end when an object at infinity is in focus in the variable magnification imaging optical system having the image stabilization function according to Example 5. 本実施例5の防振機能を備えた変倍結像光学系の無限遠物体合焦時おける防振群をー0.23mmシフトさせた手振れ補正時の広角端の横収差図である。FIG. 12 is a lateral aberration diagram at the wide-angle end when camera shake is corrected by shifting the image stabilizing group in focusing an object at infinity by the variable magnification imaging optical system having the image stabilizing function of Example 5 by −0.23 mm. 本実施例5の防振機能を備えた変倍結像光学系の焦点距離135mmにおける縦収差図である。FIG. 10 is a longitudinal aberration diagram at a focal length of 135 mm of the variable magnification imaging optical system having the image stabilization function of Example 5. 本実施例5の防振機能を備えた変倍結像光学系の焦点距離135mmにおける横収差図である。FIG. 12 is a lateral aberration diagram at a focal length of 135 mm of the variable magnification imaging optical system with the image stabilization function according to Example 5. 本実施例5の防振機能を備えた変倍結像光学系の焦点距離135mmにおける防振群をー0.45mmシフトさせた手振れ補正時の横収差図である。FIG. 10 is a lateral aberration diagram during camera shake correction in which a vibration isolation group at a focal length of 135 mm in the variable magnification imaging optical system having the image stabilization function according to Example 5 is shifted by −0.45 mm. 本実施例5の防振機能を備えた変倍結像光学系の無限遠物体合焦時における望遠端の縦収差図である。FIG. 10 is a longitudinal aberration diagram at the telephoto end when an object at infinity is in focus in the variable magnification imaging optical system having the image stabilization function according to Example 5. 本実施例5の防振機能を備えた変倍結像光学系の無限遠物体合焦時における望遠端の横収差図である。FIG. 12 is a lateral aberration diagram at the telephoto end when a variable magnification imaging optical system having an image stabilization function according to Example 5 is focused on an object at infinity. 本実施例5の防振機能を備えた変倍結像光学系の無限遠物体合焦時における防振群をー0.50mmシフトさせた手振れ補正時の望遠端の横収差図である。FIG. 11 is a lateral aberration diagram at the telephoto end during camera shake correction in which the vibration reduction group is shifted by −0.50 mm when the object at infinity is focused in the variable magnification imaging optical system having the image stabilization function according to Example 5.

本発明の防振機構を備えた変倍結像光学系は、第1の発明として、図1、図11、図21、図31及び図41に示す本発明の実施例1から実施例5の防振機能を備えた変倍結像光学系のレンズ構成図からわかるように、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、変倍領域の全域で、全体として正の屈折力を有する後続レンズ群Grとからなり、開口絞りSは後続レンズ群Grのうち変倍時に独立した軌跡で移動するレンズ群のうち最も物体側のレンズ群に隣接または内部に配置され、前記後続レンズ群Grは、物体側から順に少なくとも2つの正の屈折力を有する部分レンズ群Rp1と部分レンズ群Rp2とを有し、さらに前記部分レンズ群Rp2よりも像側に負の屈折力を有する部分レンズ群Rn1を有し、無限遠物体から近距離物体へのフォーカシングに際して、後続レンズ群Grの前記部分レンズ群Rp2を光軸に沿う方向に物体側へ移動し、広角端から望遠端への変倍に際して、前記後続レンズ群Grは変倍時に独立した軌跡で移動するレンズ群を少なくとも1つ含み、前記第1レンズ群G1と前記第2レンズ群G2の間隔は増大し、前記第2レンズ群G2と前記後続レンズ群Grの間隔は減少し、防振に際して前記部分レンズ群Rn1が光軸と略直交方向に動く構成となっている。   The variable magnification imaging optical system provided with the image stabilization mechanism according to the present invention includes, as the first invention, the first to fifth embodiments of the present invention shown in FIGS. 1, 11, 21, 31, and 41. As can be seen from the lens configuration diagram of the variable magnification imaging optical system having an image stabilization function, in order from the object side, the first lens group G1 having a positive refractive power and the second lens group G2 having a negative refractive power. And the succeeding lens group Gr having a positive refractive power as a whole over the entire zooming region, and the aperture stop S is the most object of the following lens group Gr that moves along an independent locus during zooming. The subsequent lens group Gr is disposed adjacent to or inside the lens group on the side, and has at least two partial lens groups Rp1 and Rp2 having positive refractive power in order from the object side, and further the partial lens Has negative refractive power on the image side of the group Rp2 When focusing from an infinitely distant object to a close object, the partial lens group Rp2 of the subsequent lens group Gr is moved to the object side in the direction along the optical axis, and from the wide-angle end to the telephoto end. During zooming, the subsequent lens group Gr includes at least one lens group that moves along an independent locus during zooming, and the distance between the first lens group G1 and the second lens group G2 increases, and the second lens The interval between the group G2 and the subsequent lens group Gr is reduced, and the partial lens group Rn1 moves in a direction substantially orthogonal to the optical axis during image stabilization.

一般的に物体側から順に正の屈折力を有する第1レンズ群G1・負の屈折力を有する第2レンズ群G2・正の屈折力を有する後続レンズ群Grが配列される正先行型変倍結像光学系は、広角端では第1レンズ群G1と第2レンズ群G2が接近して第1レンズ群G1と第2レンズ群G2の合成屈折力は負となり、像側に正の屈折力を有する後続レンズ群Grを配置することで、第1レンズ群G1と第2レンズ群G2の合成系と後続レンズ群Grとの間にレトロフォーカス型の屈折力配置を形成する。   In general, the first lens group G1 having a positive refractive power, the second lens group G2 having a negative refractive power, and the subsequent lens group Gr having a positive refractive power are arranged in order from the object side. In the imaging optical system, at the wide-angle end, the first lens group G1 and the second lens group G2 approach each other, the combined refractive power of the first lens group G1 and the second lens group G2 becomes negative, and the positive refractive power on the image side. By disposing the subsequent lens group Gr having a retrofocus type refractive power arrangement between the first lens group G1 and the second lens group G2 and the subsequent lens group Gr.

望遠端では第2レンズ群G2が第1レンズ群G1から離れて後続レンズ群Grと接近し、第2レンズ群G2と後続レンズ群Grの合成屈折力が負となって、第1レンズ群G1と、第2レンズ群G2と後続レンズ群Grの合成系の間にテレフォト型の屈折力配置を形成する。このような構成の正先行型変倍結像光学系は広角側から望遠側まで幅広く対応できるため変倍率を大きくするために有利である。   At the telephoto end, the second lens group G2 moves away from the first lens group G1 and approaches the subsequent lens group Gr, and the combined refractive power of the second lens group G2 and the subsequent lens group Gr becomes negative, and the first lens group G1. A telephoto refractive power arrangement is formed between the second lens group G2 and the subsequent lens group Gr. The forward-advance type variable magnification imaging optical system having such a configuration is advantageous for increasing the variable magnification because it can handle a wide range from the wide angle side to the telephoto side.

本発明は、開口絞りSに近く光線高の低くなる後続レンズ群Gr中にフォーカス群や防振群を設けることでフォーカス群や防振群の軽量化を達成する。このことは、求められる第1の性能である動作音の低減に寄与する。   The present invention achieves weight reduction of the focus group and the anti-vibration group by providing the focus group and the anti-vibration group in the subsequent lens group Gr close to the aperture stop S and having a low ray height. This contributes to the reduction of operation sound, which is the first performance required.

求められる第2の性能である防振時の最大補正角の確保のためには、防振係数Kosをなるべく大きくすることが望ましい。そこで、防振係数Kosに関して、防振係数Kosは下記参考式1にて計算されることが知られている。
(参考式1) Kos=(1−Mos)×Mros
ただし、
Kos :防振係数
Mos :防振群の結像倍率
Mros:防振群より後方のレンズ群の合成結像倍率
すると、参考式1からわかるように防振群の結像倍率Mosが1から離れるにつれて、防振係数Kosは大きくなる。これは、同じ量の像ぶれに対して防振群の移動量を抑制できるため、防振機構の小型化に有利である。防振機構の小型化は、レンズ鏡筒全体の小型化に寄与する。
In order to secure the maximum correction angle at the time of vibration isolation, which is the required second performance, it is desirable to increase the vibration isolation coefficient Kos as much as possible. Therefore, it is known that the image stabilization coefficient Kos is calculated by the following reference formula 1 with respect to the image stabilization coefficient Kos.
(Reference Formula 1) Kos = (1-Mos) × Mros
However,
Kos: Anti-vibration coefficient Mos: Imaging magnification of the anti-vibration group Mros: Composite imaging magnification of the lens group behind the anti-vibration group Then, as can be seen from the reference equation 1, the imaging magnification Mos of the anti-vibration group departs from 1. Accordingly, the image stabilization coefficient Kos increases. This is advantageous in reducing the size of the image stabilization mechanism because the amount of movement of the image stabilization group can be suppressed for the same amount of image blur. The downsizing of the vibration isolation mechanism contributes to the downsizing of the entire lens barrel.

次に、防振群の結像倍率Mosを1から離すためには、発散光束中であれば正の屈折力を有するレンズ群を、収束光束中であれば負の屈折力を有するレンズ群を、それぞれ防振群として用いることが有利となる。   Next, in order to separate the image formation magnification Mos of the image stabilizing group from 1, a lens group having a positive refractive power is used in a divergent light beam, and a lens group having a negative refractive power is used in a convergent light beam. These are advantageously used as vibration-proof groups.

発散光束中の正の屈折力を有するレンズ群を防振群に用いる場合、後続レンズ群Gr中の前方の正の屈折力を有するレンズ群を使用することが望ましい。この後続レンズ群Gr中の前方の正の屈折力を有するレンズ群においては、負の屈折力を有する第2レンズ群G2の作用によって軸上マージナル光線高が高くなる。一般に軸上マージナル光線の高い面において、面形状の誤差が軸上の光波面の形状そのものに影響を与える。軸上マージナル光線の高い面が偏芯した場合は、軸上画角において非対称な光波面の変化を引き起こす。なぜなら、基準状態に対して光軸周りに非対称な面形状誤差を生じるのと等価となるからである。すなわち偏芯コマ収差が生じる。偏芯コマ収差は、実際には軸上のみならず軸外においても発生し、画面全体において像の鮮鋭度を低下させる。偏芯コマ収差の発生を抑制する方法は、以下の2通りの方法が考えられる。防振群の屈折力を弱くする方法と防振群の構成枚数を増やして収差発生を抑制する方法がある。防振群の屈折力を弱くした場合、防振群は防振時の光軸直交方向への移動量が増加し、鏡筒の小径化を阻害する。防振群の構成枚数を増やした場合は、動作音の低減に全く逆行することとなる。防振群は重量増加となるからである。   When a lens group having a positive refractive power in the divergent light beam is used as the anti-vibration group, it is desirable to use a front lens group having a positive refractive power in the subsequent lens group Gr. In the subsequent lens group having positive refractive power in the subsequent lens group Gr, the axial marginal ray height is increased by the action of the second lens group G2 having negative refractive power. In general, on the surface having a high axial marginal ray, the surface shape error affects the shape of the optical wavefront on the axis itself. When the surface with a high on-axis marginal ray is decentered, a change in the light wavefront that is asymmetric in the on-axis angle of view is caused. This is because it is equivalent to producing an asymmetric surface shape error around the optical axis with respect to the reference state. That is, eccentric coma occurs. Decentration coma actually occurs not only on the axis but also off-axis, and reduces the sharpness of the image on the entire screen. The following two methods are conceivable as methods for suppressing the occurrence of decentering coma. There are a method of reducing the refractive power of the image stabilizing group and a method of suppressing the occurrence of aberrations by increasing the number of components of the image stabilizing group. When the refracting power of the image stabilizing group is weakened, the amount of movement of the image stabilizing group in the direction perpendicular to the optical axis at the time of image stabilization increases, and the diameter reduction of the lens barrel is inhibited. When the number of constituents of the anti-vibration group is increased, the operation noise is completely reversed. This is because the vibration-proof group is increased in weight.

収束光束中の負の屈折力を有するレンズ群を防振群に用いる場合、後続レンズ群Gr中の後方の負の屈折力を有するレンズ群を使用することが望ましい。その場合、後続レンズ群Gr中の前方にある正の屈折力を有するレンズ群の収束作用によって、後続レンズ群Gr中の後方の負の屈折力を有するレンズ群における軸上マージナル光線高が抑制される。そのため偏芯コマ収差の発生は少なく、防振係数の確保と防振群の軽量化を両立しやすい。以上のことから、本発明は、収束光束中の負の屈折力を有するレンズ群を防振群に用いることとした。   When a lens group having a negative refractive power in the convergent light beam is used as the anti-vibration group, it is desirable to use a rear lens group having a negative refractive power in the subsequent lens group Gr. In that case, the on-axis marginal ray height in the rear lens group having negative refractive power in the subsequent lens group Gr is suppressed by the converging action of the lens group having positive refractive power in the front in the subsequent lens group Gr. The For this reason, the occurrence of decentration coma is small, and it is easy to ensure both the vibration-proof coefficient and the weight reduction of the vibration-proof group. From the above, in the present invention, the lens group having negative refractive power in the convergent light beam is used as the anti-vibration group.

求められる第3の性能の像高変化率の抑制に関して、ウォブリング時の像高Yの被写体の像高変化の振幅をΔY、ウォブリング時のデフォーカスの振幅をΔdefとしたときに、係数Kw=ΔY/(Y*Δdef)と定義する。この係数Kwの絶対値が小さい程、ウォブリング時の像高変化率が小さくできる。この係数Kwは下記参考式2にて近似的に計算できる。
(参考式2) Kw=Mf/(ff×Kf)−1/(frf×Mrf)−tanθ/Y
ただし、
Kf :Kf=(1−Mf^2)×Mrf^2で定義される値
Mf :フォーカスレンズ群の結像倍率
Mrf:フォーカス群より像側のレンズ群の合成結像倍率
ff :フォーカス群の焦点距離
frf:フォーカス群より像側のレンズ群の合成焦点距離
θ :最大像高の主光線が像面に入射する際に光軸との間でなす角度であり光軸を基準として結像点側へ向かう方向を正とする値
Regarding suppression of the required image height change rate of the third performance, when the amplitude of the image height change of the subject having the image height Y during wobbling is ΔY, and the defocus amplitude during wobbling is Δdef, the coefficient Kw = ΔY / (Y * Δdef). The smaller the absolute value of the coefficient Kw, the smaller the image height change rate during wobbling. This coefficient Kw can be approximately calculated by the following reference equation 2.
(Reference Formula 2) Kw = Mf / (ff × Kf) −1 / (frf × Mrf) −tan θ / Y
However,
Kf: Value defined by Kf = (1−Mf ^ 2) × Mrf ^ 2 Mf: Imaging magnification of the focus lens group Mrf: Composite imaging magnification of the lens group on the image side from the focus group ff: Focus of the focus group Distance frf: Combined focal length θ of the lens group on the image side from the focus group θ: Angle formed with the optical axis when the principal ray having the maximum image height is incident on the image plane, and on the imaging point side with respect to the optical axis Value with positive direction

以上のことから、像高変化率を抑制するためには、係数Kwの絶対値を小さくする必要がある。従って、参考式2の第1項の分であるフォーカスレンズ群自身の結像倍率の絶対値を小さくする必要がある。すなわち、フォーカスレンズ群に入射する光束はなるべく平行光束に近いことが望ましい。しかし、後続レンズ群Grには第2レンズ群G2で発散させられた光束が入射するため、後続レンズ群Grの最も物体側にフォーカスレンズ群を配置すると像高変化率が大きくなってしまう。そこで、本発明では、像高変化率を抑制するために後続レンズ群Gr中最も物体側に正の屈折力を有するレンズ群を配置し、その後方にフォーカスレンズ群を配置する構成をとる。この構成により、フォーカスレンズ群へ入射する光束を平行に近づけることができ、像高変化率を抑制することができる。 From the above, in order to suppress the image height change rate, it is necessary to reduce the absolute value of the coefficient Kw. Therefore, it is necessary to reduce the absolute value of the imaging magnification of the focusing lens group itself is a molecular of a first of Reference Formula 2. That is, it is desirable that the light beam incident on the focus lens group be as close to a parallel light beam as possible. However, since the light beam diverged by the second lens group G2 is incident on the subsequent lens group Gr, if the focus lens group is disposed closest to the object side of the subsequent lens group Gr, the image height change rate becomes large. Therefore, in the present invention, in order to suppress the image height change rate, a lens group having a positive refractive power is disposed closest to the object side in the subsequent lens group Gr, and a focus lens group is disposed behind the lens group. With this configuration, it is possible to make light beams incident on the focus lens group closer to parallel, and to suppress the image height change rate.

また当然であるが、フォーカスレンズ群の移動量が大きくなると、その分光学系内部にフォーカスレンズ群が光軸移動するためのスペースを確保する必要があるので、光軸方向への光学系全長の抑制が困難となってしまう。フォーカスレンズ群の移動量を抑制するためにはフォーカスレンズ群の屈折力が強い方が良い。   As a matter of course, when the amount of movement of the focus lens group becomes large, it is necessary to secure a space for moving the optical axis of the focus lens group in the optical system, so that the total length of the optical system in the optical axis direction is increased. It becomes difficult to suppress. In order to suppress the movement amount of the focus lens group, it is preferable that the focus lens group has a strong refractive power.

フォーカスレンズ群の屈折力を負とした場合、後続レンズ群Gr中の負の屈折力成分が防振群とフォーカスレンズ群に分割される。防振群とフォーカスレンズ群のそれぞれの屈折力を強くすると後続レンズ群Gr全体の正の屈折力を維持するために、後続レンズ群Gr中のその他の正の屈折力を有するレンズ群の屈折力も強くなることが避けられず、軸上色収差や球面収差をはじめとする諸収差の補正が困難になってしまう。このことから、本発明は、防振群に負の屈折力とし、フォーカスレンズ群は正の屈折力とすることにした。   When the refractive power of the focus lens group is negative, the negative refractive power component in the succeeding lens group Gr is divided into the image stabilizing group and the focus lens group. In order to maintain the positive refractive power of the entire subsequent lens group Gr when the respective refractive powers of the image stabilizing group and the focus lens group are increased, the refractive powers of the other lens groups having positive refractive power in the subsequent lens group Gr are also increased. Intensity is unavoidable, and correction of various aberrations including axial chromatic aberration and spherical aberration becomes difficult. Therefore, in the present invention, the anti-vibration group has a negative refractive power, and the focus lens group has a positive refractive power.

また、本発明の第2の発明である防振機能を備えた変倍結像光学系は、部分レンズ群Rp2は1枚または2枚のレンズで構成されることが望ましい。これは、フォーカスレンズ群の軽量化に寄与する。   In the variable magnification imaging optical system having the image stabilization function according to the second aspect of the present invention, the partial lens group Rp2 is preferably composed of one or two lenses. This contributes to weight reduction of the focus lens group.

また、本発明の第3の発明である防振機能を備えた変倍結像光学系は、部分レンズ群Rn1は1枚または2枚のレンズで構成されることが望ましい。これは、防振群についてもフォーカスレンズ群と同様に軽量化に寄与する。   In the variable magnification imaging optical system having the image stabilization function according to the third aspect of the present invention, the partial lens group Rn1 is preferably composed of one or two lenses. This contributes to the weight reduction of the image stabilizing group as well as the focus lens group.

また、本発明の第4の発明である防振機能を備えた変倍結像光学系は、変倍の全域において以下に示す条件式(1)を満足することを特徴とする。
(1) |M|<0.65
M :後続レンズ群Gr中の部分群Rp2の、無限遠合焦時における結像倍率
In addition, the variable magnification imaging optical system having the image stabilization function according to the fourth aspect of the present invention is characterized in that the following conditional expression (1) is satisfied in the entire range of variable magnification.
(1) | M | <0.65
M: Imaging magnification of the subgroup Rp2 in the subsequent lens group Gr at the time of focusing on infinity

条件式(1)は、ウォブリング時の像高変化率を抑制するための好ましい条件として、フォーカスレンズ群である後続レンズ群Gr中の部分レンズ群Rp2の無限遠合焦状態での結像倍率を規定するものである。条件式(1)を満たすことで参考式2の第1項の分であるフォーカスレンズ群自身の結像倍率の絶対値が小さくなる。従って、係数Kwの絶対値が小さくなる。その結果、像高変化率の抑制に寄与する。 Conditional expression (1) represents the imaging magnification in the infinitely focused state of the partial lens group Rp2 in the subsequent lens group Gr as the focus lens group as a preferable condition for suppressing the image height change rate during wobbling. It prescribes. Conditions absolute value of the imaging magnification of the focusing lens group itself is a molecular of a first of Reference Formula 2 by satisfying equation (1) becomes smaller. Therefore, the absolute value of the coefficient Kw becomes small. As a result, it contributes to suppression of the image height change rate.

条件式(1)の上限値を上回った場合、ウォブリング時の像高変化率を抑制することが困難となる。   If the upper limit of conditional expression (1) is exceeded, it will be difficult to suppress the image height change rate during wobbling.

尚、条件式(1)について、望ましくはその上限値を0.62に限定することで、参考式2の第1項がより小さくなることからも本発明の効果をより確実にすることがわかる。さらに、条件式(1)について、その上限値を0.60とすることで、前述の効果をより確実にすることができる。   In addition, regarding conditional expression (1), it is understood that the effect of the present invention can be further ensured by limiting the upper limit value to 0.62, preferably because the first term of reference expression 2 becomes smaller. . Furthermore, regarding the conditional expression (1), by setting the upper limit value to 0.60, the above-described effect can be further ensured.

また、一般に変倍結像光学系において、広角端から望遠端への変倍に伴い、焦点距離の変化に追従して射出瞳から像面までの距離が長くなる方が、変倍倍率を大きくしやすい。射出瞳を像面に対して固定した変倍結像光学系もあるが、この場合、開口絞りSより像側のレンズ群の移動に制限が加わることになり、変倍結像光学系の変倍率を大きくするのに不利である。   In general, in a variable magnification imaging optical system, the magnification from the wide-angle end to the telephoto end increases the magnification ratio as the distance from the exit pupil to the image plane increases following the change in focal length. It's easy to do. There is also a variable magnification imaging optical system in which the exit pupil is fixed with respect to the image plane. In this case, however, the movement of the lens group on the image side from the aperture stop S is limited, and the variable magnification optical system is changed. It is disadvantageous to increase the magnification.

本発明の防振機能を備えた変倍結像光学系においても、広角端から望遠端への変倍に伴い射出瞳から像面までの距離が長くなるように、開口絞りSが含まれ全体として正の屈折力を有する後続レンズ群Grが像側から物体側へ移動する。したがって射出瞳が像面に最も近い広角端において、画面周辺の主光線の像面への入射角が最も大きくなり、参考式2の第3項の絶対値も最も大きくなる傾向がある。そこで、広角端の光学全長をなるべく短くしようとすると、多くの場合像面への入射角θは正の値をとり、参考式2の第3項は負の値となる。   The variable magnification imaging optical system having the image stabilization function of the present invention also includes an aperture stop S so that the distance from the exit pupil to the image plane increases with the magnification from the wide angle end to the telephoto end. As a result, the subsequent lens group Gr having a positive refractive power moves from the image side to the object side. Therefore, at the wide-angle end where the exit pupil is closest to the image plane, the incident angle of the principal ray on the periphery of the screen to the image plane is the largest, and the absolute value of the third term of the reference formula 2 tends to be the largest. Therefore, when trying to shorten the optical total length at the wide-angle end as much as possible, in many cases, the incident angle θ to the image plane takes a positive value, and the third term of the reference equation 2 becomes a negative value.

本発明の防振機能を備えた変倍結像光学系は、前述した構成にて条件式(1)を満たすことで参考式2の第1項の絶対値が小さくなる。また前述したように参考式2の第3項が負となる。参考式2の係数Kwの絶対値を小さくするには、参考式2の第2項を正の値として、第2項と第3項との和が0に近づくようにしたい。こうすることで、ウォブリング時の像高変化率をより効果的に抑制できる。   In the variable magnification imaging optical system having the image stabilization function of the present invention, the absolute value of the first term of the reference expression 2 becomes small by satisfying the conditional expression (1) with the above-described configuration. As described above, the third term of the reference formula 2 is negative. In order to reduce the absolute value of the coefficient Kw of the reference equation 2, the second term of the reference equation 2 is set to a positive value so that the sum of the second and third terms approaches zero. By doing so, the image height change rate during wobbling can be more effectively suppressed.

そこで、本発明の防振機能を備えた変倍結像光学系は、正の部分レンズ群Rp1により平行に近付いた光束が正の屈折力を有する部分レンズ群Rp2に入射するため、正の屈折力を有する部分レンズ群Rp2から射出される光束は必然的に収束光である。最終的に全系で結像作用をもたらすためには部分レンズ群Rp2より像側の部分レンズ群を通過した光束は収束光でなければならないので、部分レンズ群Rp2より像側の部分レンズ群の結像倍率は正の値である。したがって、参考式2の第2項の値を正として第3項を相殺するためには部分レンズ群Rp2より後の群の焦点距離は負の値である必要がある。   Therefore, in the variable magnification imaging optical system having the image stabilization function of the present invention, the light beam approaching in parallel by the positive partial lens group Rp1 is incident on the partial lens group Rp2 having a positive refractive power. The light beam emitted from the partial lens group Rp2 having power is necessarily convergent light. In order to finally bring about an image forming action in the entire system, the light beam that has passed through the partial lens group closer to the image side than the partial lens group Rp2 must be convergent light. The imaging magnification is a positive value. Therefore, in order to cancel the third term with the value of the second term of the reference formula 2 being positive, the focal length of the group after the partial lens unit Rp2 needs to be a negative value.

参考式2の第2項に関して、分母であるフォーカスレンズ群より像側の部分レンズ群の合成焦点距離とフォーカスレンズ群より像側の部分レンズ群の結像倍率の積は、ニュートンの結像式より、フォーカスレンズ群より像側の部分レンズ群の像側焦点から像面までの長さに他ならない。   Regarding the second term of the reference formula 2, the product of the combined focal length of the partial lens group on the image side from the focus lens group which is the denominator and the imaging magnification of the partial lens group on the image side from the focus lens group is Newton's imaging formula. Therefore, this is nothing but the length from the image-side focal point to the image plane of the partial lens unit on the image side of the focus lens unit.

参考式2の第3項に関して、像面への主光線入射角の正接は、像高を射出瞳から像面までの長さで割った値で近似できる。すなわち、参考式2の第3項は射出瞳から像面までの長さの逆数で近似できる。   Regarding the third term of the reference equation 2, the tangent of the chief ray incident angle on the image plane can be approximated by a value obtained by dividing the image height by the length from the exit pupil to the image plane. That is, the third term of the reference equation 2 can be approximated by the reciprocal of the length from the exit pupil to the image plane.

したがって、参考式2の第2項と第3項の和は、フォーカスレンズ群より像側の部分レンズ群の像側焦点から像面までの長さと、射出瞳から像面までの長さが近い値をとるとき、その絶対値を小さくすることができる。   Therefore, the sum of the second term and the third term of the reference formula 2 is close to the length from the image side focal point to the image plane of the partial lens group on the image side from the focus lens group, and the length from the exit pupil to the image plane. When taking a value, the absolute value can be reduced.

前述したように参考式2の第3項の絶対値は広角端で最も大きくなる傾向がある。参考式の第2項と第3項の和を0に近づける関係は広角端において満たされることは勿論のこと、この関係が変倍の全域において満たされることが最も望ましい。   As described above, the absolute value of the third term of the reference formula 2 tends to become the largest at the wide angle end. It is most desirable that the relationship that brings the sum of the second term and the third term of the reference equation close to 0 is satisfied at the wide angle end, and that this relationship is satisfied in the entire zoom range.

また、本発明の第5の発明である防振機能を備えた変倍結像光学系は、以下に示す条件式(2)を満足することを特徴とする。
(2) 0.45<EXP/Lf<1.50
EXP:無限遠方合焦状態における、射出瞳から像面までの長さ
Lf:無限遠方合焦状態における、前記Rp2を含まずにRp2よりも像側の群の合成系の像側焦点から像面までの長さ
In addition, the variable magnification imaging optical system having the image stabilization function according to the fifth aspect of the present invention satisfies the following conditional expression (2).
(2) 0.45 <EXP / Lf <1.50
EXP: Length from the exit pupil to the image plane in the infinitely far-focused state Lf: In the infinitely far-focused state, the image-side focal point from the image-side focal point of the combined system of the group on the image side relative to Rp2 without including Rp2 Length to

条件式(2)は、ウォブリング時の像高変化率抑制に関する望ましい範囲の条件として、無限遠方合焦状態において、射出瞳から像面までの長さと、Rp2を含まずにRp2よりも像側の群の合成系の像側焦点から像面までの長さを規定したものである。条件式2の範囲を満足することで広角端かつ無限遠方合焦状態において参考式2の第2項と第3項の和の絶対値を小さくすることができ、前述した構成及び条件式1と合わせてウォブリング時の像高変化率を抑制することができる。   Conditional expression (2) is a desirable range of conditions for suppressing the image height change rate during wobbling, in the infinitely focused state, the length from the exit pupil to the image plane, and the image side more than Rp2 without including Rp2. This defines the length from the image side focal point to the image plane of the group composite system. By satisfying the range of conditional expression 2, the absolute value of the sum of the second and third terms of reference expression 2 can be reduced in the in-focus state at the wide-angle end and at infinity. In addition, the image height change rate during wobbling can be suppressed.

尚、条件式(2)について、望ましくはその下限値を0.50に、また上限値を1.35に限定することで、前述の効果をより確実にすることができる。さらに、条件式(2)について、その下限値を0.55に、また、上限値をさらに1.20に限定することで、前述の効果をより確実にすることができる。   Regarding conditional expression (2), the lower limit value is desirably limited to 0.50 and the upper limit value is preferably limited to 1.35, so that the above-described effect can be further ensured. Furthermore, regarding the conditional expression (2), by limiting the lower limit value to 0.55 and further limiting the upper limit value to 1.20, the above-described effect can be further ensured.

また、本発明の防振機能を備えた変倍結像光学系は、前記部分群Rn1より像側に、変倍時に独立した軌跡で移動する正または負の屈折力を有する1の部分群を備えることを特徴とする。部分群Rn1より像側の群においては軸上の結像光束が収斂されると同時に、軸上に結像する光束の主光線と軸外に結像する主光線の通過位置が離れる。このために部分群Rn1より像側に変倍時に独立した軌跡で移動する1の部分群を備えることにより、変倍に際しての非点収差、歪曲収差等の変動を制御するのに有効である。   In the variable magnification imaging optical system having the image stabilization function of the present invention, one partial group having positive or negative refractive power that moves along an independent locus at the time of zooming is arranged closer to the image side than the partial group Rn1. It is characterized by providing. In the group on the image side of the subgroup Rn1, the on-axis imaging light beam is converged, and at the same time, the passing positions of the principal ray of the light beam focused on the axis and the principal ray imaged off-axis are separated. For this reason, the provision of one partial group that moves on the image side from the partial group Rn1 along an independent trajectory at the time of zooming is effective in controlling fluctuations such as astigmatism and distortion during zooming.

また、本発明の防振機能を備えた変倍結像光学系は、前記Rn1より像側の1の部分群が最も像側に位置することを特徴とする。前述したとおり部分群Rn1より像側の部分群を設けることで非点収差や歪曲収差の補正に効果的であるが、部分群Rn1より像側の部分群を2以上とすると移動群が多くなり機構構成が複雑化してしまい、鏡筒の小型化に関して不利となる。   Further, the variable magnification imaging optical system having the image stabilization function of the present invention is characterized in that one partial group closer to the image side than Rn1 is located closest to the image side. As described above, providing an image-side subgroup from the subgroup Rn1 is effective in correcting astigmatism and distortion. However, if there are two or more image-side subgroups from the subgroup Rn1, the number of moving groups increases. The mechanism configuration becomes complicated, which is disadvantageous in terms of downsizing the lens barrel.

多くの場合、ウォブリング時の像高変化率は、距離に対する倍率の変化が大きくなりがちであることや射出瞳位置が像面に近づきがちであることから、画角が大きい光学系において大きな値となる傾向がある。このため、本発明の変倍結像光学系は対角線全画角が50度以上である場合に効果的であり、対角線全画角が75度以上である場合には特に効果的である。また、本発明の結像光学系は広角端の対角線全画角の拡大と変倍率拡大を達成できるため、いわゆる標準ズームレンズに特に適する。当然ながら、広角端の画角が狭い光学系や変倍比の低い光学系でも本発明を適用することによってウォブリング時の像高変化率の抑制が可能である。   In many cases, the rate of change in image height during wobbling tends to be a large value in an optical system with a large angle of view because the change in magnification with respect to distance tends to be large and the exit pupil position tends to approach the image plane. Tend to be. For this reason, the variable magnification imaging optical system of the present invention is effective when the diagonal total field angle is 50 degrees or more, and is particularly effective when the diagonal total field angle is 75 degrees or more. The imaging optical system of the present invention is particularly suitable for a so-called standard zoom lens because it can achieve enlargement of the entire angle of view of the diagonal line at the wide-angle end and enlargement of the variable magnification. Naturally, by applying the present invention to an optical system with a narrow angle of view at the wide-angle end or an optical system with a low zoom ratio, it is possible to suppress the rate of change in image height during wobbling.

次に、本発明の結像光学系に係る実施例のレンズ構成について説明する。なお、以下の説明ではレンズ構成を物体側から像側の順番で記載する。   Next, a lens configuration of an example according to the imaging optical system of the present invention will be described. In the following description, the lens configuration is described in order from the object side to the image side.

以下に、前述した本発明の結像光学系の各実施例の具体的な数値データを示す。   Specific numerical data of each embodiment of the imaging optical system of the present invention described above will be shown below.

[面データ]において、面番号は物体側から数えたレンズ面または開口絞りの番号、rは各面の曲率半径、dは各面の間隔、ndはd線(波長587.56nm)に対する屈折率、vdはd線に対するアッベ数を示している   In [Surface data], the surface number is the number of the lens surface or aperture stop counted from the object side, r is the radius of curvature of each surface, d is the distance between the surfaces, nd is the refractive index with respect to the d-line (wavelength 587.56 nm). , Vd are Abbe numbers for the d line

面番号に付した*(アスタリスク)は、そのレンズ面形状が非球面であることを示している。また、BFはバックフォーカスを表している。   The * (asterisk) attached to the surface number indicates that the lens surface shape is an aspherical surface. BF represents back focus.

面番号に付した(絞り)は、その位置に開口絞りSが位置していることを示している。平面または開口絞りSに対する曲率半径には∞(無限大)を記入している。   The (diaphragm) attached to the surface number indicates that the aperture stop S is located at that position. ∞ (infinity) is entered in the radius of curvature for the plane or aperture stop S.

[非球面データ]には、[面データ]において*を付したレンズ面の非球面形状を与える各係数値を示している。非球面の形状は、光軸に直行する方向への光軸からの変位をy、非球面と光軸の交点から光軸方向への変位(サグ量)をz、基準球面の曲率半径をr、コーニック係数をK、4、6、8、10次の非球面係数をそれぞれA4、A6、A8、A10と置くとき、非球面の座標が以下の式で表されるものとする。

Figure 0006364857
In [Aspherical data], each coefficient value giving the aspherical shape of the lens surface marked with * in [Surface data] is shown. The shape of the aspheric surface is y for the displacement from the optical axis in the direction perpendicular to the optical axis, z for the displacement (sag amount) from the intersection of the aspheric surface and the optical axis in the optical axis direction, and r for the radius of curvature of the reference spherical surface. When the conic coefficients are K, 4, 6, 8, and the 10th-order aspheric coefficients are A4, A6, A8, and A10, respectively, the coordinates of the aspheric surface are expressed by the following equations.
Figure 0006364857

[各種データ]は、ズーム比及び各焦点距離状態における焦点距離等の値を示している。   [Various data] indicates values such as the zoom ratio and the focal length in each focal length state.

[可変間隔データ]は、各焦点距離状態における可変間隔及びBF(バックフォーカス)の値を示している。   [Variable interval data] indicates the value of the variable interval and BF (back focus) in each focal length state.

[レンズ群データ]は、各レンズ群を構成する最も物体側の面番号および群全体の合成焦点距離を示している。   [Lens group data] indicates the surface number of the most object side constituting each lens group and the combined focal length of the entire group.

尚、以下のすべての諸元値において、記載している焦点距離f、曲率半径r、レンズ面間隔d、その他の長さの単位は特記のない限りミリメートル(mm)を使用するが、光学系では比例拡大と比例縮小とにおいても同等の光学性能が得られるので、これに限られるものではない。   In all the following specification values, the focal length f, the radius of curvature r, the lens surface interval d, and other length units described are in millimeters (mm) unless otherwise specified. However, since the same optical performance can be obtained in proportional enlargement and proportional reduction, it is not limited to this.

さらに、図1、図11、図21、図31及び図41に示すレンズ構成図において、Iは像面、中心を通る一点鎖線は光軸である。   Furthermore, in the lens configuration diagrams shown in FIGS. 1, 11, 21, 31, and 41, I is the image plane, and the alternate long and short dash line passing through the center is the optical axis.

図1は、本発明の実施例1の結像光学系のレンズ構成図である。物体側より順に、第1レンズ群G1と第2レンズ群G2と後続レンズ群Grとからなり、第1レンズ群G1は全体として正の屈折力を有しており、物体側に凸面を向けた負メニスカスレンズL1aと物体側に凸面を向けた正メニスカスレンズL1bとからなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL1cとで構成されており、第2レンズ群G2は全体として負の屈折力を有しており、物体側に凸面を向け負メニスカスレンズL2aと、両凹形状の負レンズL2bと、両凸形状の正レンズL2cと、像側に凸面を向けた負メニスカスレンズL2dとで構成されており、負メニスカスレンズL2aの物体側のレンズ面は所定の非球面形状となっている樹脂の層が形成されている。   FIG. 1 is a lens configuration diagram of an imaging optical system according to Example 1 of the present invention. In order from the object side, the first lens group G1, the second lens group G2, and the succeeding lens group Gr are composed. The first lens group G1 has a positive refractive power as a whole, and has a convex surface directed toward the object side. It consists of a cemented lens composed of a negative meniscus lens L1a and a positive meniscus lens L1b with a convex surface facing the object side, and a positive meniscus lens L1c with a convex surface facing the object side. The second lens group G2 is negative as a whole. Negative meniscus lens L2a, biconcave negative lens L2b, biconvex positive lens L2c, negative meniscus lens L2d with convex surface facing the image side The lens surface on the object side of the negative meniscus lens L2a is formed with a resin layer having a predetermined aspherical shape.

後続レンズ群Grは全体として変倍の全域において正の屈折力を有しており、開口絞りSと部分レンズ群Rp1と部分レンズ群Rp2と部分レンズ群Rn1と部分レンズ群Rp3とで構成されており、開口絞りSは部分レンズ群Rp1の物体側に隣接して配置されている。部分レンズ群Rp1は全体として正の屈折力を有しており、物体側に凸面を向けた正メニスカスレンズL3aと、両凹形状の負レンズL3bと両凸形状の正レンズL3cとからなる接合レンズとから構成されており、正メニスカスレンズL3aの両側のレンズ面は所定の非球面形状となっており、正レンズL3cの像側のレンズ面は所定の非球面形状となっている。   The subsequent lens group Gr as a whole has a positive refracting power in the entire zoom range, and is composed of an aperture stop S, a partial lens group Rp1, a partial lens group Rp2, a partial lens group Rn1, and a partial lens group Rp3. The aperture stop S is disposed adjacent to the object side of the partial lens group Rp1. The partial lens group Rp1 has a positive refractive power as a whole, and is a cemented lens including a positive meniscus lens L3a having a convex surface facing the object side, a biconcave negative lens L3b, and a biconvex positive lens L3c. The lens surfaces on both sides of the positive meniscus lens L3a have a predetermined aspherical shape, and the lens surface on the image side of the positive lens L3c has a predetermined aspherical shape.

部分レンズ群Rp2は全体として正の屈折力を有しており、両凸形状の正レンズL4aと像側に凸面を向けた負メニスカスレンズL4bとからなる接合レンズで構成される。部分レンズ群Rp2は無限遠物体から近距離物体へのフォーカシングに際し、光軸に沿って物体側に向かって移動する。   The partial lens group Rp2 has a positive refractive power as a whole, and includes a cemented lens including a biconvex positive lens L4a and a negative meniscus lens L4b with a convex surface facing the image side. The partial lens group Rp2 moves toward the object side along the optical axis during focusing from an infinitely distant object to a close object.

部分レンズ群Rn1は全体として負の屈折力を有しており、両凸形状の正レンズL5aと両凹形状の負レンズL5bとからなる接合レンズで構成され、負レンズL5bの像側のレンズ面は所定の非球面形状となっている。部分レンズ群Rn1は光軸直交方向に移動させることにより防振を行い、Rp1とRn1とは広角端から望遠端への変倍に際して、光軸に沿って同一の軌跡で物体側へ移動する。   The partial lens group Rn1 has a negative refractive power as a whole, and is composed of a cemented lens including a biconvex positive lens L5a and a biconcave negative lens L5b, and a lens surface on the image side of the negative lens L5b. Has a predetermined aspherical shape. The partial lens group Rn1 moves in the direction orthogonal to the optical axis to prevent vibration. Rp1 and Rn1 move to the object side along the optical axis along the optical axis when zooming from the wide-angle end to the telephoto end.

部分レンズ群Rp3は全体として正の屈折力を有しており、像側に凸面を向けた正メニスカスレンズL6aと両凹形状の負レンズL6bと両凸形状の正レンズL6cとから構成される。部分レンズ群Rp3は広角端から望遠端への変倍に際して、光軸に沿って物体側へ移動する。   The partial lens group Rp3 has a positive refractive power as a whole, and includes a positive meniscus lens L6a having a convex surface facing the image side, a biconcave negative lens L6b, and a biconvex positive lens L6c. The partial lens unit Rp3 moves toward the object side along the optical axis when zooming from the wide-angle end to the telephoto end.

続いて、以下に実施例1に係る防振機能を備えた変倍結像光学系の諸元値を示す。
数値実施例1
単位:mm
[面データ]
面番号 r d nd vd
1 88.9384 1.4000 1.90366 31.31
2 53.6570 6.5625 1.49700 81.61
3 1782.7568 0.1500
4 55.0889 5.1411 1.59349 67.00
5 293.6661 (d5)
6* 45.9423 0.1500 1.51840 52.10
7 36.8818 0.7000 1.88300 40.80
8 12.2060 7.3426
9 -23.4239 0.7000 1.77250 49.62
10 117.6751 0.1500
11 35.8095 3.8810 1.84666 23.78
12 -33.8601 2.4922
13 -18.7314 0.7000 1.77250 49.62
14 -49.0755 (d14)
15(絞り) ∞ 0.5000
16* 19.4601 2.5822 1.59201 67.02
17* 96.3029 7.3274
18 -182.4683 0.7000 1.84666 23.78
19 58.0069 3.5047 1.59201 67.02
20* -23.2192 (d20)
21 50.2095 4.8379 1.59282 68.62
22 -16.2044 0.7000 1.83481 42.72
23 -35.7120 (d23)
24 382.7315 1.5986 1.84666 23.78
25 -111.4542 0.7000 1.69350 53.20
26* 21.5947 (d26)
27 -310.3228 4.2380 1.68893 31.16
28 -19.5690 0.4800
29 -18.0669 1.3802 1.91082 35.25
30 173.5921 0.1500
31 34.0802 3.7974 1.54814 45.82
32 -71.7565 (BF)

[非球面データ]
6面 16面 17面 20面 26面
K 0.00000 0.00000 0.00000 0.00000 0.00000
A4 1.81333E-05 1.45391E-05 5.05085E-05 1.34423E-05 -3.53211E-06
A6 -1.10409E-08 3.03636E-09 0.00000E+00 -3.19799E-09 4.09916E-08
A8 -1.55601E-10 4.02338E-10 0.00000E+00 5.14059E-10 0.00000E+00
A10 8.41116E-13 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

[各種データ]
ズーム比 10.50
広角 中間 望遠
焦点距離 18.45 70.00 193.80
Fナンバー 3.48 5.52 6.48
全画角2ω 77.13 22.40 8.28
像高Y 14.20 14.20 14.20
レンズ全長 115.02 157.27 190.83

[可変間隔データ]
広角 中間 望遠
d5 0.8500 29.6682 53.1364
d14 21.2210 5.9819 1.0000
d20 5.9065 5.5821 10.0989
d23 4.6924 5.0168 0.5000
d26 2.1800 2.7258 8.6830
BF 18.3000 46.4273 55.5450

[レンズ群データ]
群 始面 焦点距離
G1 1 90.65
G2 6 -13.63
Gr 15 -
Rp1 15 27.70
Rp2 21 50.07
Rn1 24 -35.18
Rp3 27 504.07
Subsequently, specification values of the variable magnification imaging optical system having the image stabilization function according to the first embodiment are shown below.
Numerical example 1
Unit: mm
[Surface data]
Surface number rd nd vd
1 88.9384 1.4000 1.90366 31.31
2 53.6570 6.5625 1.49700 81.61
3 1782.7568 0.1500
4 55.0889 5.1411 1.59349 67.00
5 293.6661 (d5)
6 * 45.9423 0.1500 1.51840 52.10
7 36.8818 0.7000 1.88300 40.80
8 12.2060 7.3426
9 -23.4239 0.7000 1.77250 49.62
10 117.6751 0.1500
11 35.8095 3.8810 1.84666 23.78
12 -33.8601 2.4922
13 -18.7314 0.7000 1.77250 49.62
14 -49.0755 (d14)
15 (Aperture) ∞ 0.5000
16 * 19.4601 2.5822 1.59201 67.02
17 * 96.3029 7.3274
18 -182.4683 0.7000 1.84666 23.78
19 58.0069 3.5047 1.59201 67.02
20 * -23.2192 (d20)
21 50.2095 4.8379 1.59282 68.62
22 -16.2044 0.7000 1.83481 42.72
23 -35.7120 (d23)
24 382.7315 1.5986 1.84666 23.78
25 -111.4542 0.7000 1.69350 53.20
26 * 21.5947 (d26)
27 -310.3228 4.2380 1.68893 31.16
28 -19.5690 0.4800
29 -18.0669 1.3802 1.91082 35.25
30 173.5921 0.1500
31 34.0802 3.7974 1.54814 45.82
32 -71.7565 (BF)

[Aspherical data]
6 faces 16 faces 17 faces 20 faces 26 faces
K 0.00000 0.00000 0.00000 0.00000 0.00000
A4 1.81333E-05 1.45391E-05 5.05085E-05 1.34423E-05 -3.53211E-06
A6 -1.10409E-08 3.03636E-09 0.00000E + 00 -3.19799E-09 4.09916E-08
A8 -1.55601E-10 4.02338E-10 0.00000E + 00 5.14059E-10 0.00000E + 00
A10 8.41116E-13 0.00000E + 00 0.00000E + 00 0.00000E + 00 0.00000E + 00

[Various data]
Zoom ratio 10.50
Wide angle Medium telephoto Focal length 18.45 70.00 193.80
F number 3.48 5.52 6.48
Full angle 2ω 77.13 22.40 8.28
Image height Y 14.20 14.20 14.20
Total lens length 115.02 157.27 190.83

[Variable interval data]
Wide angle Medium telephoto
d5 0.8500 29.6682 53.1364
d14 21.2210 5.9819 1.0000
d20 5.9065 5.5821 10.0989
d23 4.6924 5.0168 0.5000
d26 2.1800 2.7258 8.6830
BF 18.3000 46.4273 55.5450

[Lens group data]
Group Start surface Focal length
G1 1 90.65
G2 6 -13.63
Gr 15-
Rp1 15 27.70
Rp2 21 50.07
Rn1 24 -35.18
Rp3 27 504.07

図11は、本発明の実施例2の結像光学系のレンズ構成図である。物体側より順に、第1レンズ群G1と第2レンズ群G2と開口絞りSと後続レンズ群Grとからなり、第1レンズ群G1は全体として正の屈折力を有しており、物体側に凸面を向けた負メニスカスレンズL1aと両凸形状の正レンズL1bとからなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL1cとで構成されており、第2レンズ群G2は全体として負の屈折力を有しており、物体側に凸面を向けて負メニスカスレンズL2aと、両凹形状の負レンズL2bと、両凸形状の正レンズL2cと、像側に凸面を向けた負メニスカスレンズL2dとで構成されており、負メニスカスレンズL2aの物体側のレンズ面は所定の非球面形状となっている樹脂の層が形成されている。   FIG. 11 is a lens configuration diagram of the imaging optical system according to Example 2 of the present invention. In order from the object side, the lens unit includes a first lens group G1, a second lens group G2, an aperture stop S, and a subsequent lens group Gr. The first lens group G1 has a positive refractive power as a whole, It consists of a cemented lens composed of a negative meniscus lens L1a having a convex surface and a biconvex positive lens L1b, and a positive meniscus lens L1c having a convex surface facing the object side. The second lens group G2 is negative as a whole. A negative meniscus lens L2a, a biconcave negative lens L2b, a biconvex positive lens L2c, and a negative meniscus lens having a convex surface facing the image side. The lens surface on the object side of the negative meniscus lens L2a is formed with a resin layer having a predetermined aspherical shape.

後続レンズ群Grは全体として変倍の全域において正の屈折力を有しており、開口絞りSと部分レンズ群Rp1と部分レンズ群Rp2と部分レンズ群Rn1と部分レンズ群Rp3とで構成されており、開口絞りSは部分レンズ群Rp1の物体側に隣接して配置されている。部分レンズ群Rp1は全体として正の屈折力を有しており、両凸形状の正レンズL3aと、物体側に凸面を向けた負の屈折力を有するメニスカスレンズL3bと、物体側に凸面を向けた負メニスカスレンズL3cと両凸形状の正レンズL3dとからなる接合レンズとから構成されており、正レンズL3aの両側のレンズ面は所定の非球面形状となっており、正レンズL3dの像側のレンズ面は所定の非球面形状となっている。   The subsequent lens group Gr as a whole has a positive refracting power in the entire zoom range, and is composed of an aperture stop S, a partial lens group Rp1, a partial lens group Rp2, a partial lens group Rn1, and a partial lens group Rp3. The aperture stop S is disposed adjacent to the object side of the partial lens group Rp1. The partial lens group Rp1 has a positive refractive power as a whole, a biconvex positive lens L3a, a meniscus lens L3b having a negative refractive power with a convex surface facing the object side, and a convex surface facing the object side. The negative meniscus lens L3c and a cemented lens composed of a biconvex positive lens L3d. The lens surfaces on both sides of the positive lens L3a have a predetermined aspherical shape, and the image side of the positive lens L3d. The lens surface has a predetermined aspherical shape.

部分レンズ群Rp2は全体として正の屈折力を有しており、両凸形状の正レンズL4aと像側に凸面を向けた負メニスカスレンズL4bとからなる接合レンズから構成される。部分レンズ群Rp2は、無限遠物体から近距離物体へのフォーカシングに際し、光軸に沿って物体側に向かって移動する。   The partial lens group Rp2 has a positive refractive power as a whole, and includes a cemented lens including a biconvex positive lens L4a and a negative meniscus lens L4b having a convex surface facing the image side. The partial lens group Rp2 moves toward the object side along the optical axis during focusing from an infinitely distant object to a close object.

部分レンズ群Rn1は全体として負の屈折力を有しており、物体側に凸面を向けた負メニスカスレンズL5aから構成される。部分レンズ群Rn1は光軸直交方向に移動させることにより防振を行い、Rp1とRn1とは広角端から望遠端への変倍に際して、光軸に沿って同一の軌跡で物体側へ移動する。   The partial lens group Rn1 has a negative refractive power as a whole, and includes a negative meniscus lens L5a having a convex surface directed toward the object side. The partial lens group Rn1 moves in the direction orthogonal to the optical axis to prevent vibration. Rp1 and Rn1 move to the object side along the optical axis along the optical axis when zooming from the wide-angle end to the telephoto end.

部分レンズ群Rp3は全体として正の屈折力を有しており、両凸形状の正レンズL6aと両凹形状の負L6bとからなる接合レンズと、両凸形状の正レンズL6cとから構成される。部分レンズ群Rp3は広角端から望遠端への変倍に際して、光軸に沿って物体側へ移動する。   The partial lens group Rp3 has a positive refractive power as a whole, and includes a cemented lens including a biconvex positive lens L6a and a biconcave negative L6b, and a biconvex positive lens L6c. . The partial lens unit Rp3 moves toward the object side along the optical axis when zooming from the wide-angle end to the telephoto end.

続いて、以下に実施例2にかかる防振機能を備えた変倍結像光学系の諸元値を示す。
数値実施例2
単位:mm
[面データ]
面番号 r d nd vd
1 1000.0000 1.3000 1.90366 31.31
2 155.4458 4.4131 1.59349 67.00
3 -281.2638 0.1500
4 48.1710 5.2198 1.59349 67.00
5 129.3239 (d5)
6* 42.9400 0.1500 1.51840 52.10
7 32.0149 0.7000 1.88300 40.80
8 12.4278 9.9555
9 -23.0454 0.7000 1.59349 67.00
10 116.5316 0.1500
11 41.0019 3.0410 1.84666 23.78
12 -46.8658 3.8189
13 -23.4195 0.7000 1.83481 42.72
14 -53.1141 (d14)
15(絞り) ∞ 0.8855
16* 19.9530 3.7742 1.69680 55.46
17 -317.3546 0.3270
18 31.3536 0.7000 1.51742 52.15
19 21.1098 3.0665
20 153.7901 0.7000 1.90366 31.31
21 21.8927 4.9603 1.59201 67.02
22* -34.4851 (d22)
23* 46.5351 4.1339 1.59201 67.02
24 -23.5065 0.7000 1.72825 28.32
25 -36.8193 (d25)
26 157.6133 0.7000 1.88300 40.80
27 25.2682 (d27)
28 348.7334 4.7294 1.68893 31.16
29 -19.1363 0.7000 1.91082 35.25
30 60.5194 0.9963
31 43.3419 3.2105 1.91082 35.25
32 -108.5314 (BF)

[非球面データ]
6面 16面 22面 23面
K 0.00000 0.00000 0.00000 0.00000
A4 2.46924E-05 -2.51728E-05 9.30288E-08 -1.96126E-05
A6 -3.96619E-08 -3.26044E-09 -1.12701E-08 -2.77319E-08
A8 1.06404E-10 -5.62219E-11 0.00000E+00 0.00000E+00
A10 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

[各種データ]
ズーム比 3.90
広角 中間 望遠
焦点距離 17.51 35.00 68.47
Fナンバー 4.09 4.11 4.13
全画角2ω 79.84 43.58 23.11
像高Y 14.20 14.20 14.20
レンズ全長 107.44 120.26 155.63

[可変間隔データ]
広角 中間 望遠
d5 0.8500 13.9574 36.4918
d14 17.6995 5.4100 1.0000
d22 4.1975 2.1228 3.6387
d25 4.3408 6.4155 4.8996
d27 2.1672 11.3317 15.4394
BF 18.3001 21.1392 34.2804

[レンズ群データ]
群 始面 焦点距離
G1 1 111.43
G2 6 -15.21
Gr 15 -
Rp1 15 27.84
Rp2 23 38.19
Rn1 26 -34.16
Rp3 28 180.65
Subsequently, specification values of the variable magnification imaging optical system having the image stabilization function according to the second example are shown below.
Numerical example 2
Unit: mm
[Surface data]
Surface number rd nd vd
1 1000.0000 1.3000 1.90366 31.31
2 155.4458 4.4131 1.59349 67.00
3 -281.2638 0.1500
4 48.1710 5.2198 1.59349 67.00
5 129.3239 (d5)
6 * 42.9400 0.1500 1.51840 52.10
7 32.0149 0.7000 1.88300 40.80
8 12.4278 9.9555
9 -23.0454 0.7000 1.59349 67.00
10 116.5316 0.1500
11 41.0019 3.0410 1.84666 23.78
12 -46.8658 3.8189
13 -23.4195 0.7000 1.83481 42.72
14 -53.1141 (d14)
15 (Aperture) ∞ 0.8855
16 * 19.9530 3.7742 1.69680 55.46
17 -317.3546 0.3270
18 31.3536 0.7000 1.51742 52.15
19 21.1098 3.0665
20 153.7901 0.7000 1.90366 31.31
21 21.8927 4.9603 1.59201 67.02
22 * -34.4851 (d22)
23 * 46.5351 4.1339 1.59201 67.02
24 -23.5065 0.7000 1.72825 28.32
25 -36.8193 (d25)
26 157.6133 0.7000 1.88300 40.80
27 25.2682 (d27)
28 348.7334 4.7294 1.68893 31.16
29 -19.1363 0.7000 1.91082 35.25
30 60.5194 0.9963
31 43.3419 3.2105 1.91082 35.25
32 -108.5314 (BF)

[Aspherical data]
6 faces 16 faces 22 faces 23 faces
K 0.00000 0.00000 0.00000 0.00000
A4 2.46924E-05 -2.51728E-05 9.30288E-08 -1.96126E-05
A6 -3.96619E-08 -3.26044E-09 -1.12701E-08 -2.77319E-08
A8 1.06404E-10 -5.62219E-11 0.00000E + 00 0.00000E + 00
A10 0.00000E + 00 0.00000E + 00 0.00000E + 00 0.00000E + 00

[Various data]
Zoom ratio 3.90
Wide angle Medium telephoto Focal length 17.51 35.00 68.47
F number 4.09 4.11 4.13
Full angle of view 2ω 79.84 43.58 23.11
Image height Y 14.20 14.20 14.20
Total lens length 107.44 120.26 155.63

[Variable interval data]
Wide angle Medium telephoto
d5 0.8500 13.9574 36.4918
d14 17.6995 5.4100 1.0000
d22 4.1975 2.1228 3.6387
d25 4.3408 6.4155 4.8996
d27 2.1672 11.3317 15.4394
BF 18.3001 21.1392 34.2804

[Lens group data]
Group Start surface Focal length
G1 1 111.43
G2 6 -15.21
Gr 15-
Rp1 15 27.84
Rp2 23 38.19
Rn1 26 -34.16
Rp3 28 180.65

図21は、本発明の実施例3の結像光学系のレンズ構成図である。物体側より順に、第1レンズ群G1と第2レンズ群G2と後続レンズ群Grとからなり、第1レンズ群G1は全体として正の屈折力を有しており、物体側に凸面を向けた負メニスカスレンズL1aと物体側に凸面を向けた正メニスカスレンズL1bとからなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL1cとで構成されており、第2レンズ群G2は全体として負の屈折力を有しており、物体側に凸面を向けて負メニスカスレンズL2aと、両凹形状の負レンズL2bと両凸形状の正レンズL2cとの接合レンズと、像側に凸面を向けた負メニスカスレンズL2dとで構成されており、負メニスカスレンズL2aの物体側のレンズ面は所定の非球面形状となっている樹脂の層が形成されている。   FIG. 21 is a lens configuration diagram of the imaging optical system according to Example 3 of the present invention. In order from the object side, the first lens group G1, the second lens group G2, and the succeeding lens group Gr are composed. The first lens group G1 has a positive refractive power as a whole, and has a convex surface directed toward the object side. It consists of a cemented lens composed of a negative meniscus lens L1a and a positive meniscus lens L1b with a convex surface facing the object side, and a positive meniscus lens L1c with a convex surface facing the object side. The second lens group G2 is negative as a whole. A negative meniscus lens L2a, a cemented lens of a biconcave negative lens L2b and a biconvex positive lens L2c, and a convex surface directed to the image side. A negative meniscus lens L2d is formed, and the object-side lens surface of the negative meniscus lens L2a is formed with a resin layer having a predetermined aspherical shape.

後続レンズ群Grは全体として変倍の全域において正の屈折力を有しており、開口絞りSと部分レンズ群Rp1と部分レンズ群Rp2と部分レンズ群Rn1と部分レンズ群Rp3とで構成されており、開口絞りSは部分レンズ群Rp1の物体側に隣接して配置されている。部分レンズ群Rp1は全体として正の屈折力を有しており、両凸形状の正レンズL3aと、物体側に凸面を向けた負メニスカスレンズL3bと、両凹形状の負レンズL3cと両凸形状の正レンズL3dとからなる接合レンズとから構成され、正レンズL3aの両側のレンズ面は所定の非球面形状となっている。   The subsequent lens group Gr as a whole has a positive refracting power in the entire zoom range, and is composed of an aperture stop S, a partial lens group Rp1, a partial lens group Rp2, a partial lens group Rn1, and a partial lens group Rp3. The aperture stop S is disposed adjacent to the object side of the partial lens group Rp1. The partial lens group Rp1 has a positive refractive power as a whole, and includes a biconvex positive lens L3a, a negative meniscus lens L3b having a convex surface facing the object side, a biconcave negative lens L3c, and a biconvex shape. The lens surfaces on both sides of the positive lens L3a have a predetermined aspherical shape.

部分レンズ群Rp2は全体として正の屈折力を有しており、両凸形状の正レンズL4aと像側に凸面を向けた負メニスカスレンズL4bとからなる接合レンズから構成されており、正レンズL4aの物体側のレンズ面は所定の非球面形状となっている。部分レンズ群Rp2は無限遠物体から近距離物体へのフォーカシングに際し、光軸に沿って物体側に向かって移動する。   The partial lens group Rp2 has a positive refractive power as a whole, and includes a cemented lens including a biconvex positive lens L4a and a negative meniscus lens L4b with a convex surface facing the image side. The positive lens L4a The lens surface on the object side has a predetermined aspherical shape. The partial lens group Rp2 moves toward the object side along the optical axis during focusing from an infinitely distant object to a close object.

部分レンズ群Rn1は全体として負の屈折力を有しており、物体側に凸面を向けた負メニスカスレンズL5aから構成される。部分レンズ群Rn1は光軸直交方向に移動させることにより防振を行い、Rp1とRn1とは広角端から望遠端への変倍に際して、光軸に沿って同一の軌跡で物体側へ移動する。   The partial lens group Rn1 has a negative refractive power as a whole, and includes a negative meniscus lens L5a having a convex surface directed toward the object side. The partial lens group Rn1 moves in the direction orthogonal to the optical axis to prevent vibration. Rp1 and Rn1 move to the object side along the optical axis along the optical axis when zooming from the wide-angle end to the telephoto end.

部分レンズ群Rp3は全体として正の屈折力を有しており、両凸形状の正レンズL6aと両凹形状の負レンズL6bとからなる接合レンズと、両凸形状の正レンズL6cとから構成される。部分レンズ群Rp3は広角端から望遠端への変倍に際して、光軸に沿って物体側へ移動する。   The partial lens group Rp3 has a positive refractive power as a whole, and includes a cemented lens including a biconvex positive lens L6a and a biconcave negative lens L6b, and a biconvex positive lens L6c. The The partial lens unit Rp3 moves toward the object side along the optical axis when zooming from the wide-angle end to the telephoto end.

続いて、以下の実施例3にかかる防振機能を備えた変倍結像光学系の諸元値を示す。
数値実施例3
単位:mm
[面データ]
面番号 r d nd vd
1 1000.0000 1.3000 1.80610 33.27
2 125.9642 4.5596 1.69680 55.46
3 2403.0571 0.1500
4 50.6924 6.4147 1.72916 54.67
5 127.9706 (d5)
6* 40.0812 0.1500 1.51840 52.10
7 30.8772 0.7000 1.88300 40.80
8 13.8795 11.9632
9 -34.3209 1.3207 1.63854 55.45
10 23.6506 3.9697 2.00069 25.46
11 -200.1240 5.3268
12 -23.3207 0.7000 1.83481 42.72
13 -44.6352 (d13)
14(絞り) ∞ 0.5000
15* 21.2221 5.5129 1.69350 53.20
16* -42.0228 0.1500
17 40.1484 0.7000 1.72342 37.99
18 21.1343 4.4833
19 -33.4057 0.7000 1.90366 31.31
20 56.8252 5.8310 1.55332 71.68
21 -20.1946 (d21)
22* 34.6291 5.4402 1.59349 67.00
23 -28.9678 0.7000 1.84666 23.78
24 -41.5920 (d24)
25 101.9361 0.7000 1.88300 40.80
26 27.1183 (d26)
27 34.7609 4.9722 1.84666 23.78
28 -64.9685 0.7000 1.88100 40.14
29 20.5167 0.6608
30* 23.4550 4.6641 1.58913 61.25
31* -817.9440 (BF)


[非球面データ]
6面 15面 16面
K 0.00000 0.00000 0.00000
A4 1.54090E-05 -2.09846E-05 1.94607E-05
A6 -8.78648E-09 8.92040E-09 -1.33501E-08
A8 2.02950E-11 -5.34252E-11 0.00000E+00
A10 8.81301E-14 0.00000E+00 0.00000E+00

22面 30面 31面
K 0.00000 0.00000 0.00000
A4 -9.70335E-06 1.57586E-06 -5.74082E-06
A6 -7.54632E-09 4.34515E-08 9.04528E-09
A8 0.00000E+00 -7.08831E-11 -3.98638E-11
A10 0.00000E+00 0.00000E+00 0.00000E+00


[各種データ]
ズーム比 3.14
広角 中間 望遠
焦点距離 17.52 30.00 54.94
Fナンバー 2.92 2.90 2.92
全画角2ω 80.06 50.16 28.52
像高Y 14.20 14.20 14.20
レンズ全長 117.23 128.48 159.55

[可変間隔データ]
広角 中間 望遠
d5 0.8500 14.9188 33.7809
d13 16.1733 5.9900 1.0000
d21 4.0828 1.9855 4.0154
d24 4.1587 6.2561 4.2261
d26 1.4000 5.0170 12.3483
BF 18.3000 22.0394 31.9117

[レンズ群データ]
群 始面 焦点距離
G1 1 115.89
G2 6 -15.69
Gr 14 -
Rp1 14 34.93
Rp2 22 35.71
Rn1 25 -42.03
Rp3 27 120.65
Subsequently, specification values of the variable magnification imaging optical system having the image stabilization function according to Example 3 below are shown.
Numerical Example 3
Unit: mm
[Surface data]
Surface number rd nd vd
1 1000.0000 1.3000 1.80610 33.27
2 125.9642 4.5596 1.69680 55.46
3 2403.0571 0.1500
4 50.6924 6.4147 1.72916 54.67
5 127.9706 (d5)
6 * 40.0812 0.1500 1.51840 52.10
7 30.8772 0.7000 1.88300 40.80
8 13.8795 11.9632
9 -34.3209 1.3207 1.63854 55.45
10 23.6506 3.9697 2.00069 25.46
11 -200.1240 5.3268
12 -23.3207 0.7000 1.83481 42.72
13 -44.6352 (d13)
14 (Aperture) ∞ 0.5000
15 * 21.2221 5.5129 1.69350 53.20
16 * -42.0228 0.1500
17 40.1484 0.7000 1.72342 37.99
18 21.1343 4.4833
19 -33.4057 0.7000 1.90366 31.31
20 56.8252 5.8310 1.55332 71.68
21 -20.1946 (d21)
22 * 34.6291 5.4402 1.59349 67.00
23 -28.9678 0.7000 1.84666 23.78
24 -41.5920 (d24)
25 101.9361 0.7000 1.88300 40.80
26 27.1183 (d26)
27 34.7609 4.9722 1.84666 23.78
28 -64.9685 0.7000 1.88100 40.14
29 20.5167 0.6608
30 * 23.4550 4.6641 1.58913 61.25
31 * -817.9440 (BF)


[Aspherical data]
6 faces 15 faces 16 faces
K 0.00000 0.00000 0.00000
A4 1.54090E-05 -2.09846E-05 1.94607E-05
A6 -8.78648E-09 8.92040E-09 -1.33501E-08
A8 2.02950E-11 -5.34252E-11 0.00000E + 00
A10 8.81301E-14 0.00000E + 00 0.00000E + 00

22 faces 30 faces 31 faces
K 0.00000 0.00000 0.00000
A4 -9.70335E-06 1.57586E-06 -5.74082E-06
A6 -7.54632E-09 4.34515E-08 9.04528E-09
A8 0.00000E + 00 -7.08831E-11 -3.98638E-11
A10 0.00000E + 00 0.00000E + 00 0.00000E + 00


[Various data]
Zoom ratio 3.14
Wide angle Medium telephoto Focal length 17.52 30.00 54.94
F number 2.92 2.90 2.92
Full angle of view 2ω 80.06 50.16 28.52
Image height Y 14.20 14.20 14.20
Total lens length 117.23 128.48 159.55

[Variable interval data]
Wide angle Medium telephoto
d5 0.8500 14.9188 33.7809
d13 16.1733 5.9900 1.0000
d21 4.0828 1.9855 4.0154
d24 4.1587 6.2561 4.2261
d26 1.4000 5.0170 12.3483
BF 18.3000 22.0394 31.9117

[Lens group data]
Group Start surface Focal length
G1 1 115.89
G2 6 -15.69
Gr 14-
Rp1 14 34.93
Rp2 22 35.71
Rn1 25 -42.03
Rp3 27 120.65

図31は、本発明の実施例4の結像光学系のレンズ構成図である。物体側より順に、第1レンズ群G1と第2レンズ群G2と後続レンズ群Grとからなり、第1レンズ群G1は全体として正の屈折力を有しており、物体側に凸面を向けた負メニスカスレンズL1aと物体側に凸面を向けた正メニスカスレンズL1bとからなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL1cとで構成されており、第2レンズ群G2は全体として負の屈折力を有しており、物体側に凸面を向けた負メニスカスレンズL2aと、像側に凸面を向けた負メニスカスレンズL2bと、物体側に凸面を向けた正メニスカスレンズL2cと、両凹形状の負レンズL2dとで構成されている。   FIG. 31 is a lens configuration diagram of the imaging optical system according to Example 4 of the present invention. In order from the object side, the first lens group G1, the second lens group G2, and the succeeding lens group Gr are composed. The first lens group G1 has a positive refractive power as a whole, and has a convex surface directed toward the object side. It consists of a cemented lens composed of a negative meniscus lens L1a and a positive meniscus lens L1b with a convex surface facing the object side, and a positive meniscus lens L1c with a convex surface facing the object side. The second lens group G2 is negative as a whole. Negative meniscus lens L2a having a convex surface facing the object side, negative meniscus lens L2b having a convex surface facing the image side, positive meniscus lens L2c having a convex surface facing the object side, and biconcave And a negative lens L2d having a shape.

後続レンズ群Grは全体として変倍の全域において正の屈折力を有しており、開口絞りSと部分レンズ群Rp1と部分レンズ群Rp2と部分レンズ群Rn1と部分レンズ群Rn2とで構成されており、開口絞りSは部分レンズ群Rp1の物体側に隣接して配置されている。部分レンズ群Rp1は全体として正の屈折力を有しており、両凸形状の正レンズL3aと、物体側に凸面を向けた負メニスカスレンズL3bと両凸形状の正レンズL3cとからなる接合レンズとから構成されている。   The subsequent lens group Gr as a whole has a positive refracting power in the entire zoom range, and is composed of an aperture stop S, a partial lens group Rp1, a partial lens group Rp2, a partial lens group Rn1, and a partial lens group Rn2. The aperture stop S is disposed adjacent to the object side of the partial lens group Rp1. The partial lens group Rp1 has a positive refractive power as a whole, and is a cemented lens including a biconvex positive lens L3a, a negative meniscus lens L3b having a convex surface facing the object side, and a biconvex positive lens L3c. It consists of and.

部分レンズ群Rp2は全体として正の屈折力を有しており、両凸形状の正レンズL4aと像側に凸面を向けた負メニスカスレンズL4bとからなる接合レンズで構成される。部分レンズ群Rp2は無限遠物体から近距離物体へのフォーカシングに際し、光軸に沿って物体側に向かって移動する。   The partial lens group Rp2 has a positive refractive power as a whole, and includes a cemented lens including a biconvex positive lens L4a and a negative meniscus lens L4b with a convex surface facing the image side. The partial lens group Rp2 moves toward the object side along the optical axis during focusing from an infinitely distant object to a close object.

部分レンズ群Rn1は全体として負の屈折力を有しており、物体側に凸面を向けた負メニスカスレンズL5aと物体側に凸面を向けた正メニスカスレンズL5bとからなる接合レンズで構成されている。部分レンズ群Rn1は光軸直交方向に移動されることにより防振を行い、Rp1とRn1とは広角端から望遠端への変倍に際して、光軸に沿って同一の軌跡で物体側へ移動する。   The partial lens group Rn1 has a negative refractive power as a whole, and is composed of a cemented lens including a negative meniscus lens L5a having a convex surface facing the object side and a positive meniscus lens L5b having a convex surface facing the object side. . The partial lens group Rn1 is moved in the direction orthogonal to the optical axis to prevent vibration, and Rp1 and Rn1 move to the object side along the optical axis along the optical axis when zooming from the wide-angle end to the telephoto end. .

部分レンズ群Rn2は全体として負の屈折力を有しており、像側に凸面を向けた正メニスカスレンズL6aと像側に乙面を向けた負メニスカスレンズL6bと両凸形状の正レンズL6cとから構成されている。部分レンズ群Rp3は広角端から望遠端への変倍に際して、光軸に沿って物体側へ移動する。 The partial lens group Rn2 has a negative refractive power as a whole, and includes a positive meniscus lens L6a having a convex surface facing the image side, a negative meniscus lens L6b having a second surface facing the image side, and a biconvex positive lens L6c. It is composed of The partial lens unit Rp3 moves toward the object side along the optical axis when zooming from the wide-angle end to the telephoto end.

続いて、以下の実施例4にかかわる防振機能を備えた変倍結像光学系の諸元値を示す。
数値実施例4
単位:mm
[面データ]
面番号 r d nd vd
1 91.4616 1.4000 1.88300 40.80
2 39.7423 4.6222 1.49700 81.61
3 288.3850 0.1500
4 43.3901 4.3234 1.59282 68.62
5 563.1412 (d5)
6 35.7568 0.7000 1.83400 37.34
7 19.2082 9.7355
8 -45.9309 0.7000 1.49700 81.61
9 1787.8551 0.1500
10 26.8501 2.6299 1.84666 23.78
11 85.0598 10.4889
12 -30.4904 1.1557 1.51680 64.20
13 60.0213 (d13)
14(絞り) ∞ 1.0454
15 82.7799 2.5897 1.58913 61.25
16 -62.6080 0.1500
17 79.8625 0.7000 1.84666 23.78
18 26.5297 3.8250 1.59349 67.00
19 -48.5780 (d19)
20 31.3046 4.1058 1.58913 61.25
21 -33.8334 0.7000 1.80611 40.73
22 -205.6712 (d22)
23 455.3134 0.7000 1.83481 42.72
24 13.5571 2.5073 1.84666 23.78
25 27.6761 (d25)
26 -63.4206 3.0531 1.54072 47.20
27 -26.7186 9.6995
28 -23.3528 0.7000 1.91082 35.25
29 -148.2424 0.1500
30 82.4302 2.5219 1.67270 32.17
31 -137.2880 BF

[各種データ]
ズーム比 2.77
広角 中間 望遠
焦点距離 70.01 135.00 193.80
Fナンバー 5.09 5.34 5.98
全画角2ω 22.69 11.87 8.29
像高Y 14.20 14.20 14.20
レンズ全長 125.88 147.53 160.88

[可変間隔データ]
広角 中間 望遠
d5 0.8500 27.4464 35.0482
d13 10.7141 4.4893 1.0000
d19 1.5532 4.4753 8.8404
d22 7.7872 4.8651 0.5000
d25 18.2202 2.7840 4.2444
BF 18.2508 34.9617 42.7420

[レンズ群データ]
群 始面 焦点距離
G1 1 92.11
G2 6 -25.39
Gr 14 -
Rp1 14 34.52
Rp2 20 60.87
Rn1 23 -36.04
Rn2 26 -182.03
Subsequently, specification values of the variable magnification imaging optical system provided with the image stabilization function according to Example 4 below are shown.
Numerical Example 4
Unit: mm
[Surface data]
Surface number rd nd vd
1 91.4616 1.4000 1.88300 40.80
2 39.7423 4.6222 1.49700 81.61
3 288.3850 0.1500
4 43.3901 4.3234 1.59282 68.62
5 563.1412 (d5)
6 35.7568 0.7000 1.83400 37.34
7 19.2082 9.7355
8 -45.9309 0.7000 1.49700 81.61
9 1787.8551 0.1500
10 26.8501 2.6299 1.84666 23.78
11 85.0598 10.4889
12 -30.4904 1.1557 1.51680 64.20
13 60.0213 (d13)
14 (Aperture) ∞ 1.0454
15 82.7799 2.5897 1.58913 61.25
16 -62.6080 0.1500
17 79.8625 0.7000 1.84666 23.78
18 26.5297 3.8250 1.59349 67.00
19 -48.5780 (d19)
20 31.3046 4.1058 1.58913 61.25
21 -33.8334 0.7000 1.80611 40.73
22 -205.6712 (d22)
23 455.3134 0.7000 1.83481 42.72
24 13.5571 2.5073 1.84666 23.78
25 27.6761 (d25)
26 -63.4206 3.0531 1.54072 47.20
27 -26.7186 9.6995
28 -23.3528 0.7000 1.91082 35.25
29 -148.2424 0.1500
30 82.4302 2.5219 1.67270 32.17
31 -137.2880 BF

[Various data]
Zoom ratio 2.77
Wide angle Medium telephoto Focal length 70.01 135.00 193.80
F number 5.09 5.34 5.98
Full angle of view 2ω 22.69 11.87 8.29
Image height Y 14.20 14.20 14.20
Total lens length 125.88 147.53 160.88

[Variable interval data]
Wide angle Medium telephoto
d5 0.8500 27.4464 35.0482
d13 10.7141 4.4893 1.0000
d19 1.5532 4.4753 8.8404
d22 7.7872 4.8651 0.5000
d25 18.2202 2.7840 4.2444
BF 18.2508 34.9617 42.7420

[Lens group data]
Group Start surface Focal length
G1 1 92.11
G2 6 -25.39
Gr 14-
Rp1 14 34.52
Rp2 20 60.87
Rn1 23 -36.04
Rn2 26 -182.03

図41は、本発明の実施例5の結像光学系のレンズ構成図である。物体側より順に、第1レンズ群G1と第2レンズ群G2と後続レンズ群Grとからなり、第1レンズ群G1は全体として正の屈折力を有しており、物体側に凸面を向けた負メニスカスレンズL1aと物体側に凸面を向けた正メニスカスレンズL1bとからなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL1cとで構成されており、第2レンズ群G2は全体として負の屈折力を有しており、物体側に凸面を向けた負メニスカスレンズL2aと、両凹形状の負レンズL2bと、物体側に凸面を向けた正メニスカスレンズL2cと、両凹形状の負レンズL2dとで構成されている。   FIG. 41 is a lens configuration diagram of the imaging optical system according to Example 5 of the present invention. In order from the object side, the first lens group G1, the second lens group G2, and the succeeding lens group Gr are composed. The first lens group G1 has a positive refractive power as a whole, and has a convex surface directed toward the object side. It consists of a cemented lens composed of a negative meniscus lens L1a and a positive meniscus lens L1b with a convex surface facing the object side, and a positive meniscus lens L1c with a convex surface facing the object side. The second lens group G2 is negative as a whole. Negative meniscus lens L2a having a convex surface facing the object side, biconcave negative lens L2b, positive meniscus lens L2c having a convex surface facing the object side, and biconcave negative lens L2d.

後続レンズ群Grは全体として変倍の全域において正の屈折力を有しており、開口絞りSと部分レンズ群Rp1と部分レンズ群Rp2と部分レンズ群Rn1と部分レンズ群Rn2炉で構成されており、開口絞りSは部分レンズ群Rp1の物体側に隣接して配置されている。部分レンズ群Rp1は全体として正の屈折力を有しており、両凸形状の正レンズL3aと、物体側に凸面を向けた負メニスカスレンズL3bと両凸形状の正レンズL3cとからなる接合レンズとから構成されている。   The subsequent lens group Gr as a whole has a positive refracting power in the entire zoom range, and is composed of an aperture stop S, a partial lens group Rp1, a partial lens group Rp2, a partial lens group Rn1, and a partial lens group Rn2. The aperture stop S is disposed adjacent to the object side of the partial lens group Rp1. The partial lens group Rp1 has a positive refractive power as a whole, and is a cemented lens including a biconvex positive lens L3a, a negative meniscus lens L3b having a convex surface facing the object side, and a biconvex positive lens L3c. It consists of and.

部分レンズ群Rp2は全体として正の屈折力を有しており、両凸形状の正レンズL4aと像側に凸面を向けた負メニスカスレンズL4bとからなる接合レンズから構成される。部分レンズ群Rp2は無限遠物体から近距離物体へのフォーカシングに際し、光軸に沿って物体側に向かって移動する。   The partial lens group Rp2 has a positive refractive power as a whole, and includes a cemented lens including a biconvex positive lens L4a and a negative meniscus lens L4b having a convex surface facing the image side. The partial lens group Rp2 moves toward the object side along the optical axis during focusing from an infinitely distant object to a close object.

部分レンズ群Rn1は全体として負の屈折力を有しており、両凹形状の負レンズL5aと物体側に凸面を向けた正メニスカスレンズL5bとからなる接合レンズで構成されている。部分レンズ群Rn1は光軸直交方向に移動させることにより防振を行い、Rp1とRn1とは広角端から望遠端への変倍に際して、光軸に沿って同一の軌跡で物体側へ移動する。   The partial lens group Rn1 has a negative refractive power as a whole, and includes a cemented lens including a biconcave negative lens L5a and a positive meniscus lens L5b having a convex surface facing the object side. The partial lens group Rn1 moves in the direction orthogonal to the optical axis to prevent vibration. Rp1 and Rn1 move to the object side along the optical axis along the optical axis when zooming from the wide-angle end to the telephoto end.

部分レンズ群Rn2は全体として負の屈折力を有しており、両凸形状の正レンズL6aと両凹形状の負レンズL6bとから構成されている。部分レンズ群Rn2は広角端から望遠端への変倍に際して、光軸に沿って物体側へ移動する。   The partial lens group Rn2 has a negative refractive power as a whole, and includes a biconvex positive lens L6a and a biconcave negative lens L6b. The partial lens unit Rn2 moves toward the object side along the optical axis when zooming from the wide-angle end to the telephoto end.

続いて、以下の実施例5にかかる防振機能を備えた変倍結像光学系の諸元値を示す。
数値実施例5
単位:mm
[面データ]
面番号 r d nd vd
1 73.7123 1.4000 1.80611 40.73
2 33.8724 5.0579 1.49700 81.61
3 178.9295 0.1500
4 37.3938 4.7098 1.59282 68.62
5 308.9519 (d5)
6 29.6261 0.7000 1.83400 37.34
7 18.0981 14.9759
8 -41.6206 0.7000 1.49700 81.61
9 70.2777 0.1500
10 26.7956 2.6463 1.84666 23.78
11 116.0416 9.1594
12 -24.9275 0.7000 1.51680 64.20
13 77.1502 (d13)
14(絞り) ∞ 1.1798
15 119.3004 2.6913 1.58913 61.25
16 -45.9334 0.1500
17 232.7607 0.7000 1.84666 23.78
18 35.8942 3.7153 1.59349 67.00
19 -37.7991 (d19)
20 30.1303 4.6051 1.58913 61.25
21 -28.6030 0.7000 1.80611 40.73
22 -150.8275 (d22)
23 -514.9050 0.7000 1.83481 42.72
24 15.8106 2.2319 1.84666 23.78
25 30.9062 (d25)
26 82.0049 4.3137 1.58144 40.89
27 -30.2567 0.7000 1.88300 40.80
28 911.4666 BF


[各種データ]
ズーム比 2.77
広角 中間 望遠
焦点距離 70.01 135.00 193.80
Fナンバー 4.90 4.96 5.98
全画角2ω 22.63 11.81 8.23
像高Y 14.20 14.20 14.20
レンズ全長 126.13 148.31 161.13

[可変間隔データ]
広角 中間 望遠
d5 0.8500 22.9854 25.8371
d13 9.0352 5.8518 1.4545
d19 1.5986 7.2077 11.2634
d22 10.6648 5.0557 1.0000
d25 19.9982 2.0187 20.4997
BF 21.9494 43.1585 39.0427

[レンズ群データ]
群 始面 焦点距離
G1 1 77.1337
G2 6 -20.7933
Gr 14 -
Rp1 14 34.232
Rp2 20 57.4291
Rn1 23 -35.3217
Rn2 26 -275.1297
Subsequently, specification values of the variable magnification imaging optical system having the image stabilization function according to Example 5 below are shown.
Numerical Example 5
Unit: mm
[Surface data]
Surface number rd nd vd
1 73.7123 1.4000 1.80611 40.73
2 33.8724 5.0579 1.49700 81.61
3 178.9295 0.1500
4 37.3938 4.7098 1.59282 68.62
5 308.9519 (d5)
6 29.6261 0.7000 1.83400 37.34
7 18.0981 14.9759
8 -41.6206 0.7000 1.49700 81.61
9 70.2777 0.1500
10 26.7956 2.6463 1.84666 23.78
11 116.0416 9.1594
12 -24.9275 0.7000 1.51680 64.20
13 77.1502 (d13)
14 (Aperture) ∞ 1.1798
15 119.3004 2.6913 1.58913 61.25
16 -45.9334 0.1500
17 232.7607 0.7000 1.84666 23.78
18 35.8942 3.7153 1.59349 67.00
19 -37.7991 (d19)
20 30.1303 4.6051 1.58913 61.25
21 -28.6030 0.7000 1.80611 40.73
22 -150.8275 (d22)
23 -514.9050 0.7000 1.83481 42.72
24 15.8106 2.2319 1.84666 23.78
25 30.9062 (d25)
26 82.0049 4.3137 1.58144 40.89
27 -30.2567 0.7000 1.88300 40.80
28 911.4666 BF


[Various data]
Zoom ratio 2.77
Wide angle Medium telephoto Focal length 70.01 135.00 193.80
F number 4.90 4.96 5.98
Full angle 2ω 22.63 11.81 8.23
Image height Y 14.20 14.20 14.20
Total lens length 126.13 148.31 161.13

[Variable interval data]
Wide angle Medium telephoto
d5 0.8500 22.9854 25.8371
d13 9.0352 5.8518 1.4545
d19 1.5986 7.2077 11.2634
d22 10.6648 5.0557 1.0000
d25 19.9982 2.0187 20.4997
BF 21.9494 43.1585 39.0427

[Lens group data]
Group Start surface Focal length
G1 1 77.1337
G2 6 -20.7933
Gr 14-
Rp1 14 34.232
Rp2 20 57.4291
Rn1 23 -35.3217
Rn2 26 -275.1297

また、これらの各実施例における条件式の対応値の一覧を示す。   In addition, a list of corresponding values of the conditional expressions in each of these examples is shown.

[条件式対応値]
条件式/実施例 1 2 3 4 5
(1) |Mw|<0.65 Wide 0.541 0.443 0.272 0.437 0.384
Normal 0.400 0.304 0.137 0.487 0.483
Tele 0.449 0.251 0.057 0.540 0.509
(2) 0.45<EXP/Lf<1.50 Wide 0.746 0.663 0.636 0.813 0.787
Normal 0.820 0.679 0.626 0.818 0.799
Tele 0.864 0.732 0.679 0.847 0.848
[Values for conditional expressions]
Conditional expression / Example 1 2 3 4 5
(1) | Mw | <0.65 Wide 0.541 0.443 0.272 0.437 0.384
Normal 0.400 0.304 0.137 0.487 0.483
Tele 0.449 0.251 0.057 0.540 0.509
(2) 0.45 <EXP / Lf <1.50 Wide 0.746 0.663 0.636 0.813 0.787
Normal 0.820 0.679 0.626 0.818 0.799
Tele 0.864 0.732 0.679 0.847 0.848

G1 第1レンズ群
G2 第2レンズ群
Gr 後続レンズ群
S 開口絞り
I 像面
G1 First lens group G2 Second lens group Gr Subsequent lens group S Aperture stop I Image surface

Claims (4)

物体側から順に、
正の屈折力を有する第1レンズ群G1と、
負の屈折力を有する第2レンズ群G2と、
変倍領域の全域で、全体として正の屈折力を有する後続レンズ群Grとからなり、
開口絞りSは後続レンズ群Grのうち変倍時に独立した軌跡で移動するレンズ群のうち最も物体側のレンズ群に隣接または内部に配置され、
前記後続レンズ群Grは、物体側から順に少なくとも2つの正の屈折力を有する部分レンズ群Rp1と部分レンズ群Rp2とを有し、
さらに前記部分レンズ群Rp2よりも像側に負の屈折力を有する部分レンズ群Rn1を有し、
無限遠物体から近距離物体へのフォーカシングに際して、後続レンズ群Grの前記部分レンズ群Rp2を光軸に沿う方向に物体側へ移動し、
広角端から望遠端への変倍に際して、前記後続レンズ群Grは変倍時に独立した軌跡で移動するレンズ群を少なくとも1つ含み、前記第1レンズ群G1と前記第2レンズ群G2の間隔は増大し、前記第2レンズ群G2と前記後続レンズ群Grの間隔は減少し、
防振に際して前記部分レンズ群Rn1が光軸と略直交方向に動き、
前記後続レンズ群Grは前記部分レンズ群Rn1より像側に変倍時に独立の軌跡で移動する部分レンズ群を有し、
前記後続レンズ群Grの有する変倍時に独立の軌跡で移動する部分レンズ群は最も像側に位置するレンズ群であり、
前記部分レンズ群Rp2の、無限遠合焦時における結像倍率は、変倍の全域において次の条件式を満たし、
(1) |M|<0.65
ただし、
M:後続レンズ群Gr中の前記部分レンズ群Rp2の無限遠合焦時における結像倍率
前記後続レンズ群Grのうち前記部分レンズ群Rp2より像側のすべての群の合成屈折力の符号が負であり、変倍の全域において次の条件式を満たし、
広角端における対角線全画角が50度以上であることを特徴とする防振機能を備えた変倍結像光学系。
(2) 0.626≦EXP/Lf<1.50
ただし、
EXP:無限遠合焦状態における、射出瞳から像面までの長さ
Lf:無限遠合焦状態における、前記部分レンズ群Rp2を含まずにRp2よりも像側の群の合成系の像側焦点から像面までの長さ
From the object side,
A first lens group G1 having a positive refractive power;
A second lens group G2 having negative refractive power;
And a subsequent lens group Gr having a positive refractive power as a whole in the entire zooming region,
The aperture stop S is disposed adjacent to or inside the lens group closest to the object among the lens groups that move in an independent locus during zooming in the subsequent lens group Gr,
The subsequent lens group Gr includes a partial lens group Rp1 and a partial lens group Rp2 having at least two positive refractive powers in order from the object side.
Furthermore, it has a partial lens group Rn1 having a negative refractive power on the image side of the partial lens group Rp2,
When focusing from an infinite object to a close object, the partial lens group Rp2 of the subsequent lens group Gr is moved toward the object side in the direction along the optical axis,
In zooming from the wide-angle end to the telephoto end, the subsequent lens group Gr includes at least one lens group that moves along an independent locus during zooming, and the distance between the first lens group G1 and the second lens group G2 is as follows. The distance between the second lens group G2 and the subsequent lens group Gr decreases,
During the image stabilization, the partial lens group Rn1 moves in a direction substantially orthogonal to the optical axis,
The subsequent lens group Gr has a partial lens group that moves in an independent locus at the time of zooming toward the image side from the partial lens group Rn1.
The partial lens group that moves in an independent locus at the time of zooming that the subsequent lens group Gr has is a lens group that is positioned closest to the image side,
The imaging magnification of the partial lens group Rp2 at the time of focusing on infinity satisfies the following conditional expression in the entire zoom range,
(1) | M | <0.65
However,
M: Imaging magnification at the time of focusing on the partial lens group Rp2 in the subsequent lens group Gr at infinity The sign of the combined refractive power of all the groups on the image side of the partial lens group Rp2 in the subsequent lens group Gp is negative. And satisfies the following conditional expression in the entire zoom range,
A variable magnification imaging optical system having an anti-vibration function, wherein a total angle of view of a diagonal line at a wide-angle end is 50 degrees or more.
(2) 0. 626 ≦ EXP / Lf <1.50
However,
EXP: Length from the exit pupil to the image plane in the infinite focus state Lf: In the infinite focus state, the image-side focal point of the composite system of the group closer to the image side than Rp2 without including the partial lens group Rp2 From image to image plane
物体側から順に、
正の屈折力を有する第1レンズ群G1と、
負の屈折力を有する第2レンズ群G2と、
変倍領域の全域で、全体として正の屈折力を有する後続レンズ群Grとからなり、
開口絞りSは後続レンズ群Grのうち変倍時に独立した軌跡で移動するレンズ群のうち最も物体側のレンズ群に隣接または内部に配置され、
前記後続レンズ群Grは、物体側から順に少なくとも2つの正の屈折力を有する部分レンズ群Rp1と部分レンズ群Rp2とを有し、
さらに前記部分レンズ群Rp2よりも像側に負の屈折力を有する部分レンズ群Rn1を有し、
無限遠物体から近距離物体へのフォーカシングに際して、後続レンズ群Grの前記部分レンズ群Rp2を光軸に沿う方向に物体側へ移動し、
広角端から望遠端への変倍に際して、前記後続レンズ群Grは変倍時に独立した軌跡で移動するレンズ群を少なくとも1つ含み、前記第1レンズ群G1と前記第2レンズ群G2の間隔は増大し、前記第2レンズ群G2と前記後続レンズ群Grの間隔は減少し、
防振に際して前記部分レンズ群Rn1が光軸と略直交方向に動き、
前記後続レンズ群Grは前記部分レンズ群Rn1より像側に変倍時に独立の軌跡で移動する部分レンズ群を有し、
前記後続レンズ群Grの有する変倍時に独立の軌跡で移動する部分レンズ群は最も像側に位置するレンズ群であり、
前記部分レンズ群Rp2の、無限遠合焦時における結像倍率は、変倍の全域において次の条件式を満たし、
(1) |M|<0.65
ただし、
M:後続レンズ群Gr中の前記部分レンズ群Rp2の無限遠合焦時における結像倍率
後続レンズ群Grのうち前記部分レンズ群Rp2より像側のすべての群の合成屈折力の符号が負であって、広角端において次の条件式を満たし、
広角端における対角線全画角が50度以上であることを特徴とする防振機能を備えた変倍結像光学系。
(2) 0.636≦EXP/Lf<1.50
ただし、
EXP:無限遠合焦状態における、射出瞳から像面までの長さ
Lf:無限遠合焦状態における、前記部分レンズ群Rp2を含まずにRp2よりも像側の群の合成系の像側焦点から像面までの長さ

From the object side,
A first lens group G1 having a positive refractive power;
A second lens group G2 having negative refractive power;
And a subsequent lens group Gr having a positive refractive power as a whole in the entire zooming region,
The aperture stop S is disposed adjacent to or inside the lens group closest to the object among the lens groups that move in an independent locus during zooming in the subsequent lens group Gr,
The subsequent lens group Gr includes a partial lens group Rp1 and a partial lens group Rp2 having at least two positive refractive powers in order from the object side.
Furthermore, it has a partial lens group Rn1 having a negative refractive power on the image side of the partial lens group Rp2,
When focusing from an infinite object to a close object, the partial lens group Rp2 of the subsequent lens group Gr is moved toward the object side in the direction along the optical axis,
In zooming from the wide-angle end to the telephoto end, the subsequent lens group Gr includes at least one lens group that moves along an independent locus during zooming, and the distance between the first lens group G1 and the second lens group G2 is as follows. The distance between the second lens group G2 and the subsequent lens group Gr decreases,
During the image stabilization, the partial lens group Rn1 moves in a direction substantially orthogonal to the optical axis,
The subsequent lens group Gr has a partial lens group that moves in an independent locus at the time of zooming toward the image side from the partial lens group Rn1.
The partial lens group that moves in an independent locus at the time of zooming that the subsequent lens group Gr has is a lens group that is positioned closest to the image side,
The imaging magnification of the partial lens group Rp2 at the time of focusing on infinity satisfies the following conditional expression in the entire zoom range,
(1) | M | <0.65
However,
M: the sign of the combined refractive power of all groups on the image side of the partial lens group Rp2 of the imaging magnification before Symbol subsequent lens unit Gr during infinity focusing of the partial lens group Rp2 during subsequent lens group Gr a negative, meets the following condition at the wide angle end,
A variable magnification imaging optical system having an anti-vibration function , wherein a total angle of view of a diagonal line at a wide-angle end is 50 degrees or more .
(2) 0. 636 ≦ EXP / Lf <1.50
However,
EXP: Length from the exit pupil to the image plane in the infinite focus state Lf: In the infinite focus state, the image-side focal point of the composite system of the group closer to the image side than Rp2 without including the partial lens group Rp2 From image to image plane

前記部分レンズ群Rp2は2枚以下のレンズで構成されることを特徴とする請求項1または請求項2に記載の防振機能を備えた変倍結像光学系。
3. The variable magnification imaging optical system having an anti-vibration function according to claim 1, wherein the partial lens group Rp2 includes two or less lenses.
前記部分レンズ群Rn1は2枚以下のレンズで構成されることを特徴とする請求項1乃至請求項3のいずれかに記載の防振機能を備えた変倍結像光学系。   4. The variable magnification imaging optical system having an image stabilization function according to claim 1, wherein the partial lens group Rn1 includes two or less lenses.
JP2014063026A 2013-03-29 2014-03-26 Variable magnification imaging optical system with anti-vibration function Active JP6364857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014063026A JP6364857B2 (en) 2013-03-29 2014-03-26 Variable magnification imaging optical system with anti-vibration function

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013072506 2013-03-29
JP2013072506 2013-03-29
JP2014063026A JP6364857B2 (en) 2013-03-29 2014-03-26 Variable magnification imaging optical system with anti-vibration function

Publications (3)

Publication Number Publication Date
JP2014209226A JP2014209226A (en) 2014-11-06
JP2014209226A5 JP2014209226A5 (en) 2017-01-26
JP6364857B2 true JP6364857B2 (en) 2018-08-01

Family

ID=51903450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014063026A Active JP6364857B2 (en) 2013-03-29 2014-03-26 Variable magnification imaging optical system with anti-vibration function

Country Status (1)

Country Link
JP (1) JP6364857B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6536583B2 (en) * 2014-08-29 2019-07-03 株式会社ニコン Variable magnification optical system and optical apparatus
JP6642071B2 (en) * 2016-02-10 2020-02-05 リコーイメージング株式会社 Zoom lens system
JP6818429B2 (en) * 2016-05-06 2021-01-20 キヤノン株式会社 Zoom lens and imaging device with it
EP3605180B1 (en) * 2017-04-26 2021-11-17 Kyocera Corporation Imaging lens
CN114779454B (en) 2017-09-11 2024-04-16 株式会社尼康 Variable magnification optical system and optical device
US11106023B2 (en) 2017-09-11 2021-08-31 Nikon Corporation Variable magnification optical system, optical apparatus, and method for producing variable magnification optical system
JP2019070706A (en) 2017-10-06 2019-05-09 キヤノン株式会社 Imaging apparatus
JP7188276B2 (en) * 2019-05-23 2022-12-13 コニカミノルタ株式会社 Zoom lenses, imaging optical devices and digital devices
TWI769465B (en) * 2019-08-14 2022-07-01 大陸商廣州立景創新科技有限公司 Optical imaging apparatus with adjustable focal length
JP7270569B2 (en) 2020-03-11 2023-05-10 富士フイルム株式会社 Zoom lens and imaging device
WO2024070667A1 (en) * 2022-09-27 2024-04-04 富士フイルム株式会社 Variable magnification optical system and imaging device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003295250A (en) * 2002-04-05 2003-10-15 Canon Inc Optical system and optical equipment with it
JP4585776B2 (en) * 2004-02-26 2010-11-24 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP4324878B2 (en) * 2005-03-11 2009-09-02 ソニー株式会社 Zoom lens system and imaging apparatus
JP2006301474A (en) * 2005-04-25 2006-11-02 Sony Corp Zoom lens and imaging apparatus
JP5064837B2 (en) * 2007-03-01 2012-10-31 キヤノン株式会社 Zoom lens with anti-vibration function
JP2011085653A (en) * 2009-10-13 2011-04-28 Panasonic Corp Zoom lens system, imaging apparatus and camera
JP2011085654A (en) * 2009-10-13 2011-04-28 Panasonic Corp Zoom lens system, imaging apparatus and camera
JP5836654B2 (en) * 2011-06-14 2015-12-24 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP5776428B2 (en) * 2011-08-05 2015-09-09 ソニー株式会社 Zoom lens and imaging device
KR101919011B1 (en) * 2012-05-11 2018-11-16 삼성전자주식회사 Telephoto zoom lens system and photographing apparatus having the same

Also Published As

Publication number Publication date
JP2014209226A (en) 2014-11-06

Similar Documents

Publication Publication Date Title
JP6364857B2 (en) Variable magnification imaging optical system with anti-vibration function
JP5115848B2 (en) Variable magnification optical system and optical apparatus equipped with the variable magnification optical system
JP5288238B2 (en) Magnifying optical system, optical apparatus equipped with the magnifying optical system, and magnifying method of the magnifying optical system
JP5492658B2 (en) High magnification zoom lens
JP6304967B2 (en) Zoom lens and imaging apparatus having the same
JP5498260B2 (en) Zoom lens unit
JP2013015712A (en) Catadioptric lens system and imaging apparatus
JP6226611B2 (en) Zoom lens and imaging apparatus having the same
JP6436656B2 (en) Zoom lens and imaging apparatus having the same
JP5448574B2 (en) Zoom lens and imaging apparatus having the same
JP2004334185A (en) Zoom lens
JP2015028530A5 (en)
JP2008039838A (en) Zoom lens system, image pickup apparatus, and camera
JP2012242504A (en) Inner focus type optical system
JP6553984B2 (en) Zoom lens and imaging apparatus
JP2009122620A (en) Zoom lens system and camera system
JP2009210741A (en) Zoom lens and optical apparatus equipped with the same
JP2015072499A (en) High magnification zoom lens
JP5885274B2 (en) Zoom lens unit
JP6212279B2 (en) Zoom lens
JP2013205535A (en) Optical system and imaging apparatus including the same
JP2011065185A (en) Zoom lens and imaging apparatus having the same
JP2012242505A (en) Optical system having vibration-proof function
WO2015163368A1 (en) Variable power optical system, optical device, and method of manufacturing variable power optical system
JP2017211496A (en) Large-aperture zoom lens with anti-shake feature

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180320

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180618

R150 Certificate of patent or registration of utility model

Ref document number: 6364857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250