JP6363827B2 - Method for producing cuprous oxide nanoparticles - Google Patents

Method for producing cuprous oxide nanoparticles Download PDF

Info

Publication number
JP6363827B2
JP6363827B2 JP2013176437A JP2013176437A JP6363827B2 JP 6363827 B2 JP6363827 B2 JP 6363827B2 JP 2013176437 A JP2013176437 A JP 2013176437A JP 2013176437 A JP2013176437 A JP 2013176437A JP 6363827 B2 JP6363827 B2 JP 6363827B2
Authority
JP
Japan
Prior art keywords
activated carbon
cuprous oxide
light
sample
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013176437A
Other languages
Japanese (ja)
Other versions
JP2015044705A (en
Inventor
貴広 大久保
貴広 大久保
充宏 牛尾
充宏 牛尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okayama University NUC
Original Assignee
Okayama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okayama University NUC filed Critical Okayama University NUC
Priority to JP2013176437A priority Critical patent/JP6363827B2/en
Publication of JP2015044705A publication Critical patent/JP2015044705A/en
Application granted granted Critical
Publication of JP6363827B2 publication Critical patent/JP6363827B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、亜酸化銅ナノ粒子の製造方法に関するものである。   The present invention relates to a method for producing cuprous oxide nanoparticles.

亜酸化銅は、赤色の粉末顔料で、船底へのフジツボなどの付着を防止する船底塗料用防汚剤として使用されているが、古くから半導体材料としても知られており、昨今では、光起電力素子として利用されている。   Cuprous oxide is a red powder pigment that has been used as an antifouling agent for ship bottom paint to prevent barnacles from sticking to the ship bottom, but it has long been known as a semiconductor material. It is used as a power element.

亜酸化銅の製造方法としては、銅塩含有溶液にアルカリ溶液と還元糖を添加して亜酸化銅粉末を製造する方法や、塩酸含有塩化銅溶液に金属銅などを溶解させて塩化第二銅を塩化第一銅に還元し、得られた溶液をアルカリ溶液と反応させて亜酸化銅を生成する方法などが知られている。   As a method for producing cuprous oxide, a method of producing a cuprous oxide powder by adding an alkali solution and a reducing sugar to a copper salt-containing solution, or a method of dissolving cuprous chloride by dissolving metal copper or the like in a hydrochloric acid-containing copper chloride solution. There is known a method for reducing cuprate to cuprous chloride and reacting the resulting solution with an alkaline solution to produce cuprous oxide.

あるいは、銅化合物と、錯化剤と、水酸化アルカリとを溶解した溶液中に光触媒を添加して、光照射することにより溶液中の銅イオンを還元し、亜酸化銅粉末を製造する方法も提案されている(例えば、特許文献1参照。)。   Alternatively, a method of producing a cuprous oxide powder by adding a photocatalyst to a solution in which a copper compound, a complexing agent, and an alkali hydroxide are dissolved, and reducing the copper ions in the solution by light irradiation. It has been proposed (see, for example, Patent Document 1).

本発明者らは、単層カーボンナノチューブに酢酸銅を担持させ、真空加熱処理することにより、一価の銅イオンが増加する現象をX線吸収分光法(XAFS)により見出した。   The present inventors have found a phenomenon that monovalent copper ions are increased by X-ray absorption spectroscopy (XAFS) when copper acetate is supported on single-walled carbon nanotubes and subjected to vacuum heat treatment.

このことから、単層カーボンナノチューブに酢酸銅を液相で吸着させた後、150℃で真空加熱脱気し、さらに水蒸気を飽和蒸気圧にまで吸着させることによって、亜酸化銅が生成可能であることを確認した。   From this fact, cuprous oxide can be produced by adsorbing copper acetate on the single-walled carbon nanotubes in the liquid phase, then vacuum degassing at 150 ° C., and further adsorbing water vapor to the saturated vapor pressure. It was confirmed.

特開2002−308620号公報JP 2002-308620 A

このように亜酸化銅の作製に関する新規なメカニズムを見出したものの、単層カーボンナノチューブを用いた場合には、製造コストが高コスト化しやすく、安価な材料の利用を検討する必要があった。   Thus, although a novel mechanism related to the production of cuprous oxide was found, when single-walled carbon nanotubes were used, it was easy to increase the manufacturing cost, and it was necessary to consider the use of inexpensive materials.

そこで、単層カーボンナノチューブの代替として活性炭を利用することを検討し、研究開発を行う中で、本発明を成すに至ったものである。   Therefore, the present invention has been accomplished while studying the use of activated carbon as an alternative to single-walled carbon nanotubes and conducting research and development.

本発明の亜酸化銅の製造方法では、活性炭に酢酸銅を液相で吸着させる第1の工程と、酢酸銅の銅を吸着させた活性炭を真空加熱脱気する第2の工程と、真空加熱脱気された活性炭に対して水蒸気を飽和蒸気圧まで吸着させる第3の工程と、活性炭に可視光を照射する第4の工程とを有するものである。   In the cuprous oxide production method of the present invention, the first step of adsorbing copper acetate on the activated carbon in the liquid phase, the second step of vacuum heating and degassing the activated carbon adsorbed copper of copper acetate, and vacuum heating It has a 3rd process which makes water vapor adsorb | suck to saturated vapor pressure with respect to the deaerated activated carbon, and a 4th process which irradiates visible light to activated carbon.

特に、活性炭に形成されている微細孔の直径の平均を1nm以下としていることにも特徴を有するものである。 In particular, it is also characterized in that the average diameter of the micropores formed in the activated carbon is 1 nm or less.

本発明によれば、安価な活性炭を利用して亜酸化銅を製造することができ、亜酸化銅の製造コストを低減することができる。しかも、可視光による還元反応によって亜酸化銅を生成することができ、還元剤レスの製造を可能とすることができることによっても、製造コストを低減することができる。   According to the present invention, cuprous oxide can be manufactured using inexpensive activated carbon, and the manufacturing cost of cuprous oxide can be reduced. In addition, cuprous oxide can be generated by a reduction reaction using visible light, and the manufacturing cost can be reduced by enabling the production of a reducing agent-less.

亜酸化銅の生成を確認するためのXRDパターンのグラフである。It is a graph of the XRD pattern for confirming the production | generation of cuprous oxide. サンプルCの活性炭の細孔径分布のグラフである。4 is a graph of pore size distribution of activated carbon of Sample C. サンプルDの活性炭の細孔径分布のグラフである。4 is a graph of pore size distribution of activated carbon of sample D. サンプルAのXRDパターンのグラフである。It is a graph of the XRD pattern of sample A. サンプルBのXRDパターンのグラフである。It is a graph of the XRD pattern of sample B. サンプルCのXRDパターンのグラフである。It is a graph of the XRD pattern of sample C. サンプルDのXRDパターンのグラフである。It is a graph of the XRD pattern of sample D.

本発明の亜酸化銅の製造方法は、活性炭に酢酸銅を液相で吸着させる第1の工程と、酢酸銅の銅を吸着させた活性炭を真空加熱脱気する第2の工程と、真空加熱脱気された活性炭に対して水蒸気を飽和蒸気圧まで吸着させる第3の工程と、活性炭に可視光を照射する第4の工程とを有し、可視光による還元反応によって亜酸化銅を生成しているものである。以下において実施例を示しながら、本発明を詳説する。   The method for producing cuprous oxide of the present invention includes a first step of adsorbing copper acetate in a liquid phase on activated carbon, a second step of vacuum heating and degassing the activated carbon adsorbed copper of copper acetate, and vacuum heating. It has a third step of adsorbing water vapor to the saturated vapor pressure on the degassed activated carbon and a fourth step of irradiating the activated carbon with visible light, and produces cuprous oxide by a reduction reaction with visible light. It is what. Hereinafter, the present invention will be described in detail with reference to examples.

まず、可視光による還元反応によって亜酸化銅が生成された事例を説明する。ここでは、活性炭ではなく単層カーボンナノチューブを用いている。   First, the case where cuprous oxide was produced | generated by the reduction reaction by visible light is demonstrated. Here, single-walled carbon nanotubes are used instead of activated carbon.

暗所下で、単層カーボンナノチューブに酢酸銅の銅を担持させ、150℃で真空加熱脱気し、さらに水蒸気を飽和蒸気圧にまで吸着させた。   In the dark, single-walled carbon nanotubes were loaded with copper acetate, vacuum degassed at 150 ° C., and water vapor was adsorbed to the saturated vapor pressure.

酢酸銅の銅を担持した単層カーボンナノチューブに、次の4種類の処理をそれぞれ施し、XRDにより亜酸化銅の生成の確認を行った。4種類の処理のち、処理(a)では、暗所下で100℃まで加熱した。処理(b)では、500〜600nmの波長の光をカットする波長カットフィルターを通してキセノンランプの光を照射した。処理(c)では、425〜530nmの波長の光をカットする波長カットフィルターを通してキセノンランプの光を照射した。処理(d)では、470nm以下の波長の光をカットする波長カットフィルターを通してキセノンランプの光を照射した。 The single-walled carbon nanotube carrying copper acetate was subjected to the following four types of treatment, and the production of cuprous oxide was confirmed by XRD. After the four types of treatments, the treatment (a) was heated to 100 ° C. in the dark. In the process (b), the light of the xenon lamp was irradiated through a wavelength cut filter that cuts light having a wavelength of 500 to 600 nm. In the process (c), light from a xenon lamp was irradiated through a wavelength cut filter that cuts light having a wavelength of 425 to 530 nm. In the treatment (d), the light from the xenon lamp was irradiated through a wavelength cut filter that cuts light having a wavelength of 470 nm or less .

処理(a)〜(d)に対する結果を図1に示す。図1において、横軸の36 2θ/deg近傍で現れるピークが亜酸化銅の生成を示すピークであり、500〜530nmの波長の光を照射することにより亜酸化銅が生成されることが確認できた。   The results for the processes (a) to (d) are shown in FIG. In FIG. 1, the peak appearing in the vicinity of 36 2θ / deg on the horizontal axis is a peak indicating the production of cuprous oxide, and it can be confirmed that cuprous oxide is produced by irradiating light with a wavelength of 500 to 530 nm. It was.

まず、活性炭として、サンプルA、サンプルB、サンプルC、サンプルDの4種類の活性炭を準備した。サンプルAは、αs解析の結果、平均細孔サイズが0.63nmであった。サンプルBは、αs解析の結果、平均細孔サイズが1.03nmであった。サンプルCは、図2に示す細孔径分布を示すものであった。サンプルDは、図3に示す細孔径分布を示すものであった。 First, four types of activated carbons, Sample A, Sample B, Sample C, and Sample D, were prepared as activated carbon. As a result of α s analysis, Sample A had an average pore size of 0.63 nm. As a result of α s analysis, Sample B had an average pore size of 1.03 nm. Sample C showed the pore size distribution shown in FIG. Sample D showed the pore size distribution shown in FIG.

<第1の工程>
各活性炭を50mgずつアンプル管内に入れ、0.26Mの酢酸銅水溶液を5ml加えて、アンプル管の口を封じ、30℃において24時間以上撹拌しながら活性炭に酢酸銅の銅を吸着させた。その後、撹拌させた活性炭を吸引濾過して洗浄した。このとき、吸引濾過を行いながらピペットを用いて20mlの蒸留水を滴下することにより洗浄した。
<First step>
50 mg of each activated carbon was placed in an ampule tube, 5 ml of 0.26 M aqueous solution of copper acetate was added, the mouth of the ampule tube was sealed, and copper acetate was adsorbed on the activated carbon while stirring at 30 ° C. for 24 hours or more. Then, the activated carbon which was stirred was filtered by suction and washed. At this time, it was washed by dropping 20 ml of distilled water using a pipette while performing suction filtration.

<第2の工程>
第1の工程において酢酸銅の銅を吸着させた活性炭を真空加熱脱気した。このとき、真空度は10-4torr以下とすることが望ましく、温度は200℃以下でよく、好適には120〜180℃程度が望ましい。真空加熱脱気の処理時間は長ければ長いほどよい。
<Second step>
In the first step, the activated carbon on which copper acetate was adsorbed was vacuum-heated and degassed. At this time, the degree of vacuum is preferably 10 −4 torr or less, the temperature may be 200 ° C. or less, and preferably about 120 to 180 ° C. The longer the processing time for vacuum heating and degassing, the better.

<第3の工程>
真空加熱脱気された活性炭に対して水蒸気を飽和蒸気圧まで吸着させた。なお、後段の工程で光照射を行うため、暗所下で行った。
<Third step>
Water vapor was adsorbed to the saturated vapor pressure on the activated carbon degassed by vacuum heating. In addition, in order to perform light irradiation in the latter process, it performed in the dark place.

<第4の工程>
水蒸気を飽和蒸気圧まで吸着させた活性炭に、キセノンランプを用いて可視光を照射した。
<4th process>
Visible light was irradiated to activated carbon in which water vapor was adsorbed to a saturated vapor pressure using a xenon lamp.

図4は、サンプルA(平均細孔サイズ0.63nm)のXRDパターンのグラフである。特に、上側のグラフは、500nm以上の波長の光を照射した場合であり、下側のグラフは、400〜500nmの波長の光を照射した場合である。図4より、亜酸化銅が生成されることが確認できた。特に、500nm以下の波長の光が照射された場合でも、亜酸化銅が生成されている。 FIG. 4 is a graph of the XRD pattern of Sample A (average pore size 0.63 nm). In particular, the upper graph is a case where light having a wavelength of 500 nm or more is irradiated, and the lower graph is a case where light having a wavelength of 400 to 500 nm is irradiated. From FIG. 4, it was confirmed that cuprous oxide was produced. In particular, cuprous oxide is generated even when light having a wavelength of 500 nm or less is irradiated.

図5は、サンプルB(平均細孔サイズ1.03nm)のXRDパターンのグラフである。特に、上側のグラフは、500nm以上の波長の光を照射した場合であり、下側のグラフは、400〜500nm以上の波長の光を照射した場合である。図5より、500nm以上の波長の光の照射により、かろうじて亜酸化銅が生成されていることが確認できる。   FIG. 5 is a graph of the XRD pattern of Sample B (average pore size 1.03 nm). In particular, the upper graph is a case where light having a wavelength of 500 nm or more is irradiated, and the lower graph is a case where light having a wavelength of 400 to 500 nm or more is irradiated. From FIG. 5, it can be confirmed that cuprous oxide is barely generated by irradiation with light having a wavelength of 500 nm or more.

図6は、サンプルCのXRDパターンのグラフであり、第4の工程で385〜740の波長の光を照射したが、亜酸化銅の生成は確認できなかった。   FIG. 6 is a graph of the XRD pattern of Sample C, and irradiation with light having a wavelength of 385 to 740 was performed in the fourth step, but formation of cuprous oxide could not be confirmed.

図7は、サンプルDのXRDパターンのグラフであり、第4の工程で385〜740の波長の光を照射したが、亜酸化銅の生成は確認できなかった。   FIG. 7 is a graph of the XRD pattern of Sample D. Irradiation with light having a wavelength of 385 to 740 was performed in the fourth step, but formation of cuprous oxide could not be confirmed.

以上のことから、500〜530nmの波長の可視光による還元反応によって亜酸化銅が生成可能であることが確認でき、特に、活性炭のような安価なカーボン材料を用いても亜酸化銅を生成可能であることから、亜酸化銅をより安価に製造することが可能となる。しかも還元剤レスとすることができることによっても、製造コストをより低減することができる。   From the above, it can be confirmed that cuprous oxide can be generated by a reduction reaction with visible light having a wavelength of 500 to 530 nm. In particular, cuprous oxide can be generated even using an inexpensive carbon material such as activated carbon. Therefore, cuprous oxide can be produced at a lower cost. In addition, the manufacturing cost can be further reduced by the fact that no reducing agent can be used.

なお、活性炭はできるだけ微細な細孔を有していることが望ましく、細孔の直径の平均が1nm以下であることが望ましい。特に、図4から明らかなように、細孔の直径が小さくなることで、可視光による還元反応が生じる波長域を広げることができ、反応効率の向上が期待できる。   The activated carbon desirably has as fine pores as possible, and the average pore diameter is desirably 1 nm or less. In particular, as can be seen from FIG. 4, by reducing the diameter of the pores, it is possible to widen the wavelength range in which the reduction reaction by visible light occurs and to improve the reaction efficiency.

また、可視光による還元反応を利用する関係上、その前工程では、還元反応が生じない環境下で行われることが望ましく、第1〜3の工程を、500〜530nmの波長の光が除去された環境下で行うことにより、第4の工程での効率を向上させることができる。   In addition, because of the use of a visible light reduction reaction, it is desirable that the previous process be performed in an environment where no reduction reaction occurs, and the light having a wavelength of 500 to 530 nm is removed in the first to third processes. By performing it under a different environment, the efficiency in the fourth step can be improved.

Claims (1)

活性炭に酢酸銅を液相で吸着させる第1の工程と、
前記酢酸銅の銅を吸着させた活性炭を真空加熱脱気する第2の工程と、
真空加熱脱気された活性炭に対して水蒸気を飽和蒸気圧まで吸着させる第3の工程と、
活性炭に可視光を照射する第4の工程と
を有する亜酸化銅の製造方法において、
前記活性炭は、前記活性炭に形成されている微細孔の直径の平均が1nm以下である亜酸化銅の製造方法
A first step of adsorbing copper acetate on activated carbon in a liquid phase;
A second step of vacuum heating and degassing the activated carbon adsorbed copper of the copper acetate;
A third step of adsorbing water vapor to saturated vapor pressure with respect to the activated carbon degassed by vacuum heating;
In the manufacturing method of cuprous oxide which has the 4th process of irradiating visible light to activated carbon ,
The activated carbon is a method for producing cuprous oxide, wherein the average diameter of the micropores formed in the activated carbon is 1 nm or less .
JP2013176437A 2013-08-28 2013-08-28 Method for producing cuprous oxide nanoparticles Active JP6363827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013176437A JP6363827B2 (en) 2013-08-28 2013-08-28 Method for producing cuprous oxide nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013176437A JP6363827B2 (en) 2013-08-28 2013-08-28 Method for producing cuprous oxide nanoparticles

Publications (2)

Publication Number Publication Date
JP2015044705A JP2015044705A (en) 2015-03-12
JP6363827B2 true JP6363827B2 (en) 2018-07-25

Family

ID=52670587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013176437A Active JP6363827B2 (en) 2013-08-28 2013-08-28 Method for producing cuprous oxide nanoparticles

Country Status (1)

Country Link
JP (1) JP6363827B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004262941A (en) * 2003-02-13 2004-09-24 Asahi Kasei Chemicals Corp Deodorizing, antibacterial and antifungal coating composition
WO2005060610A2 (en) * 2003-12-11 2005-07-07 The Trustees Of Columbia University In The City Ofnew York Nano-sized particles, processes of making, compositions and uses thereof
EP2239053A1 (en) * 2009-04-09 2010-10-13 baseclick GmbH Click chemistry on heterogeneous catalysts
JP5866690B2 (en) * 2009-09-04 2016-02-17 国立研究開発法人産業技術総合研究所 Method for producing spherical nanoparticles and spherical nanoparticles obtained by the production method

Also Published As

Publication number Publication date
JP2015044705A (en) 2015-03-12

Similar Documents

Publication Publication Date Title
Li et al. Insight into photocatalytic activity, universality and mechanism of copper/chlorine surface dual-doped graphitic carbon nitride for degrading various organic pollutants in water
Guo et al. Structure-controlled three-dimensional BiOI/MoS2 microspheres for boosting visible-light photocatalytic degradation of tetracycline
Etman et al. Facile water-based strategy for synthesizing MoO3–x nanosheets: efficient visible light photocatalysts for dye degradation
Hou et al. Highly efficient photocatalytic hydrogen evolution in ternary hybrid TiO2/CuO/Cu thoroughly mesoporous nanofibers
Ge et al. TiO 2 nanotube arrays loaded with reduced graphene oxide films: facile hybridization and promising photocatalytic application
Yang et al. Tuning the morphology of g-C3N4 for improvement of Z-scheme photocatalytic water oxidation
Wu et al. Hydrothermal carbonization of carboxymethylcellulose: One-pot preparation of conductive carbon microspheres and water-soluble fluorescent carbon nanodots
Qian et al. Low-temperature nitrogen doping in ammonia solution for production of N-doped TiO2-hybridized graphene as a highly efficient photocatalyst for water treatment
Jiang et al. Chitosan hydrogel films as a template for mild biosynthesis of CdS quantum dots with highly efficient photocatalytic activity
Bao et al. Adsorption of dyes on hierarchical mesoporous TiO2 fibers and its enhanced photocatalytic properties
Wang et al. Nanostructured hybrid shells of r-GO/AuNP/m-TiO2 as highly active photocatalysts
Cheng et al. Facile synthesis of three-dimensional chitosan–graphene mesostructures for reactive black 5 removal
Ghosh et al. The characteristic study and sonocatalytic performance of CdSe–graphene as catalyst in the degradation of azo dyes in aqueous solution under dark conditions
JP6513401B2 (en) Active carbon fiber having high active surface area
Khasevani et al. Synthesis of BiOI/ZnFe2O4–metal–organic framework and g-C3N4-based nanocomposites for applications in photocatalysis
Guo et al. Layered and poriferous (Al, C)-Ta2O5 mesocrystals supported CdS quantum dots for high-efficiency photodegradation of organic contaminants
Lin et al. Ultrasonic chemical synthesis of CdS-reduced graphene oxide nanocomposites with an enhanced visible light photoactivity
Huang et al. Heterostructured composites consisting of In 2 O 3 nanorods and reduced graphene oxide with enhanced interfacial electron transfer and photocatalytic performance
González-Poggini et al. Two-dimensional nanomaterials for the removal of pharmaceuticals from wastewater: a critical review
Ziarati et al. Designer hydrogenated wrinkled yolk@ shell TiO 2 architectures towards advanced visible light photocatalysts for selective alcohol oxidation
Giannakoudakis et al. Scrolled titanate nanosheet composites with reduced graphite oxide for photocatalytic and adsorptive removal of toxic vapors
Dhandole et al. Vertically aligned titanate nanotubes hydrothermally synthesized from anodized TiO2 nanotube arrays: an efficient adsorbent for the repeatable recovery of Sr ions
Bai et al. Facile preparation of 2D Bi 2 MoO 6 nanosheets–RGO composites with enhanced photocatalytic activity
JP2006219322A (en) Monodisperse spherical carbon porous body
JP6004272B2 (en) Chiral metal oxide structure and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180117

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180629

R150 Certificate of patent or registration of utility model

Ref document number: 6363827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150