JP6363134B2 - Hermetic rotary compressor and refrigeration air conditioner - Google Patents

Hermetic rotary compressor and refrigeration air conditioner Download PDF

Info

Publication number
JP6363134B2
JP6363134B2 JP2016141211A JP2016141211A JP6363134B2 JP 6363134 B2 JP6363134 B2 JP 6363134B2 JP 2016141211 A JP2016141211 A JP 2016141211A JP 2016141211 A JP2016141211 A JP 2016141211A JP 6363134 B2 JP6363134 B2 JP 6363134B2
Authority
JP
Japan
Prior art keywords
cylinder
rotary compressor
suction
chamber
rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016141211A
Other languages
Japanese (ja)
Other versions
JP2018013042A (en
JP2018013042A5 (en
Inventor
香曽我部 弘勝
弘勝 香曽我部
坪野 勇
勇 坪野
康弘 岸
康弘 岸
直洋 土屋
直洋 土屋
謙治 竹澤
謙治 竹澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Johnson Controls Air Conditioning Inc
Original Assignee
Hitachi Johnson Controls Air Conditioning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Johnson Controls Air Conditioning Inc filed Critical Hitachi Johnson Controls Air Conditioning Inc
Priority to JP2016141211A priority Critical patent/JP6363134B2/en
Priority to PCT/JP2017/025110 priority patent/WO2018016364A1/en
Priority to CN201780032185.6A priority patent/CN109154296B/en
Publication of JP2018013042A publication Critical patent/JP2018013042A/en
Publication of JP2018013042A5 publication Critical patent/JP2018013042A5/ja
Application granted granted Critical
Publication of JP6363134B2 publication Critical patent/JP6363134B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

本発明は、例えば空気調和機や冷凍機等に使用される密閉形回転圧縮機及びこの密閉形回転圧縮機を搭載して冷凍サイクルを構成する冷凍空調装置に関するものである。   The present invention relates to a hermetic rotary compressor used in, for example, an air conditioner, a refrigerator, and the like, and a refrigeration air conditioner that includes the hermetic rotary compressor and constitutes a refrigeration cycle.

近年、密閉形回転圧縮機は適用容量範囲の拡大とともに回転圧縮要素であるシリンダを2セット備えた2シリンダタイプの回転圧縮機が標準化されてきている。そして、このような圧縮機において両方のシリンダ室で圧縮作用をなす運転と、負荷に応じて圧縮―停止の切換えを可能とするシリンダを備え機械的能力可変運転(休筒運転)を可能とする回転圧縮機が知られている。また、近年、地球温暖化防止の観点から、冷凍空調システムの冷媒として従来のR410A冷媒に代わって温暖化係数の小さいR32冷媒が注目されてきている。   In recent years, a hermetic rotary compressor has been standardized as a two-cylinder type rotary compressor having two sets of cylinders as rotary compression elements as the applicable capacity range is expanded. In such a compressor, an operation that performs compression action in both cylinder chambers and a cylinder that can switch between compression and stop according to the load are provided, and variable mechanical capacity operation (cylinder operation) is enabled. A rotary compressor is known. In recent years, from the viewpoint of preventing global warming, R32 refrigerant having a small global warming coefficient has been attracting attention as a refrigerant for a refrigerating and air-conditioning system instead of the conventional R410A refrigerant.

特許文献1の従来の回転圧縮機では、休筒運転時に休筒運転シリンダからアキュムレータ(吸入タンク)への潤滑油の戻りを規制するのに工数の増大を避け、コストの抑制を図った密閉形回転圧縮機が開示されている。   In the conventional rotary compressor disclosed in Patent Document 1, a closed type is provided which avoids an increase in man-hours and suppresses cost in order to restrict the return of lubricating oil from the cylinderless cylinder to the accumulator (suction tank) during cylinder idle operation. A rotary compressor is disclosed.

特開2014−40812号公報JP 2014-40812 A

特許文献1の密閉形回転圧縮機の圧縮機構部は、吸込み通路と連通するシリンダ室を備えたシリンダと、シリンダ室に偏心運動自在に収納されるローラと、先端部がローラの周壁に当接してシリンダ室を吸込室と圧縮室に区分するブレード(ベーン)と、シリンダ室で圧縮されたガスを密閉ケース内に放出する吐出弁装置とを有するロータリ式圧縮機構部であり、シリンダ室に吸込み通路を介して吸込み圧力を導くとともに、ブレードの先端縁をローラの周壁から離間させて圧縮運転を休止する休筒機構を備え、中間仕切り板6に休筒機構を備えた圧縮機構部と他の圧縮機構部のシリンダ室に形成される吸込み室同士を連通する連通路36を設けたものが記載されている。   The compression mechanism portion of the hermetic rotary compressor of Patent Document 1 includes a cylinder having a cylinder chamber communicating with a suction passage, a roller that is accommodated in the cylinder chamber so as to be able to move eccentrically, and a tip portion that abuts on the peripheral wall of the roller. This is a rotary compression mechanism that has a blade (vane) that divides the cylinder chamber into a suction chamber and a compression chamber, and a discharge valve device that discharges gas compressed in the cylinder chamber into the sealed case. The cylinder is provided with a cylinder resting mechanism for guiding the suction pressure through the passage and stopping the compression operation by separating the tip edge of the blade from the peripheral wall of the roller. There is a description in which a communication passage 36 is provided for communicating suction chambers formed in the cylinder chamber of the compression mechanism section.

特許文献1の、例えば段落0032、0048、0049等には、休筒機構を有する上側のシリンダ室と休筒機構を有さない下側のシリンダ室の吸込室同士を連通路を介して連通し、上側のシリンダ室内に侵入した潤滑油は、アキュムレータには導かれず、連通路から下側のシリンダ室に導かれるため、休筒運転中の第1のシリンダ室からアキュムレータへの潤滑油の戻りが規制されてアキュムレータ内に多量の潤滑油が貯留することが防止され、密閉ケース内の潤滑油不足を防止できる2シリンダタイプの回転式圧縮機が開示されている。   For example, in paragraphs 0032, 0048, and 0049 of Patent Document 1, the suction chambers of the upper cylinder chamber having a cylinder resting mechanism and the lower cylinder chamber having no cylinder resting mechanism are communicated with each other via a communication path. Since the lubricating oil that has entered the upper cylinder chamber is not guided to the accumulator, but is guided to the lower cylinder chamber from the communication path, the lubricating oil returns from the first cylinder chamber to the accumulator during the cylinder deactivation operation. There is disclosed a two-cylinder rotary compressor that is regulated and prevents a large amount of lubricating oil from accumulating in the accumulator and can prevent a shortage of lubricating oil in the sealed case.

この回転式圧縮機では、休筒機構を有する第1のシリンダ室が主軸受に近接し、第2のシリンダ室は中間仕切り板を介して下側に配置されており、機械的能力可変運転(休筒運転)時には主軸受から離間した第2のシリンダ室で圧縮運転が行われるため、第2のシリンダ室に近い副軸受の方が主軸受より軸受負荷が増大して機械損失の増加や軸受の信頼性低下を引き起こしやすい課題がある。   In this rotary compressor, the first cylinder chamber having a cylinder resting mechanism is close to the main bearing, and the second cylinder chamber is disposed below the intermediate partition plate, so that the mechanical capacity variable operation ( Since the compression operation is performed in the second cylinder chamber separated from the main bearing at the time of the idle cylinder operation), the auxiliary bearing closer to the second cylinder chamber increases the bearing load than the main bearing and increases the mechanical loss or the bearing. There is a problem that tends to cause a decrease in reliability.

また、休筒機構を有するシリンダ室が中間仕切り板の下側に配置された場合には、この第1のシリンダ室内に侵入した潤滑油はこのシリンダ室の下方に滞留するため、中間仕切り板に設けられた連通穴に依って上方に位置する運転シリンダ室に充分に導かれず、休筒シリンダ室に潤滑油が残留し偏心回転するローラにより油の撹拌損失が増加する問題があり、機械的能力可変運転(休筒運転)時の圧縮機性能が低下するといった課題がある。   In addition, when the cylinder chamber having the cylinder resting mechanism is disposed below the intermediate partition plate, the lubricating oil that has entered the first cylinder chamber stays below the cylinder chamber. Due to the provided communication hole, it is not sufficiently guided to the operating cylinder chamber located above, and there is a problem that the lubricant loss remains in the idle cylinder chamber and the eccentric rotation roller increases the agitation loss of the oil. There exists a subject that the compressor performance at the time of variable operation (cylinder operation) falls.

本発明の目的は、負荷に応じて圧縮―停止の切換えを可能とするシリンダを備えた密閉形回転圧縮機の、機械的能力可変運転(休筒運転)時の性能・信頼性を向上することのできる密閉形回転圧縮機及びこれを用いた冷凍空調装置を得ることにある。   An object of the present invention is to improve the performance and reliability of a hermetic rotary compressor equipped with a cylinder that can be switched between compression and stop according to a load, during variable mechanical capacity operation (cylinder operation). It is to obtain a hermetic rotary compressor capable of performing the above and a refrigeration air conditioner using the same.

上記目的を達成するために、本発明の密閉形回転圧縮機は、一つの吐出管と二つの吸入パイプが設けられた密閉容器と、該密閉容器内に設けられ、回転軸を回転させる電動機と、該電動機の下方に設けられ、前記回転軸の回転により駆動される二つの回転圧縮要素と、該二つの回転圧縮要素を仕切る仕切り板と、を具備し、各回転圧縮要素は、吸入通路を介して前記吸入パイプと連通するシリンダ室を備えたシリンダと、前記シリンダ室に偏心回転自在に収納されるローラと、前記シリンダ室を吸込室と圧縮室に区画するベーンと、前記シリンダ室で圧縮された作動流体を前記密閉容器内に吐き出す吐出弁装置と、を有し、下側の回転圧縮要素は、圧縮運転を休止する休筒機構と、前記シリンダ室に侵入した潤滑油を吸い上げるシリンダ油流通路を有し、前記仕切り板には、下側の回転圧縮要素の吸込室と上側の回転圧縮要素の吸込室を連通する仕切り板油流通路を配設した。   In order to achieve the above object, a hermetic rotary compressor of the present invention includes a hermetic container provided with one discharge pipe and two suction pipes, an electric motor provided in the hermetic container and rotating a rotating shaft. Two rotary compression elements provided below the electric motor and driven by the rotation of the rotary shaft, and a partition plate for partitioning the two rotary compression elements, each rotary compression element having a suction passage A cylinder having a cylinder chamber that communicates with the suction pipe, a roller that is eccentrically rotatable in the cylinder chamber, a vane that divides the cylinder chamber into a suction chamber and a compression chamber, and compression in the cylinder chamber A discharge valve device that discharges the discharged working fluid into the sealed container, the lower rotary compression element is a cylinder resting mechanism that stops the compression operation, and a cylinder oil that sucks up the lubricating oil that has entered the cylinder chamber Flow It has a road, on the partition plate is disposed a partition plate oil flow passage communicating the suction chamber of the suction chamber and the upper rotary compression element of the rotary compression element of the lower.

本発明によれば、機械的能力可変運転(休筒運転)時の性能・信頼性を向上することができる密閉形回転圧縮機及びこれを用いた年間エネルギ効率に優れた冷凍空調装置を得ることができる効果がある。   According to the present invention, it is possible to obtain a hermetic rotary compressor capable of improving performance and reliability during variable mechanical capacity operation (cylinderless operation) and a refrigeration air conditioner excellent in annual energy efficiency using the same. There is an effect that can.

実施例1の密閉形回転圧縮機の縦断面図Vertical sectional view of the hermetic rotary compressor of Example 1 図1のA−A横断面図AA cross-sectional view of FIG. 図2のB−O−B断面図B-O-B cross section of FIG. 2シリンダ運転状態を示す図3の要部拡大断面図The principal part expanded sectional view of FIG. 3 which shows a 2 cylinder operation state 1シリンダ休筒運転状態を示す図3の要部拡大断面図3 is an enlarged cross-sectional view of the main part of FIG. 実施例1の特徴である油流通路構造を示す図2のC−O−B断面図2 is a cross-sectional view taken along the line C-O-B of FIG. 図6のD−D断面図DD sectional view of FIG. シリンダ中心からベーン近傍のシリンダ内壁面を視た透視図A perspective view of the cylinder inner wall near the vane from the cylinder center 実施例2における図1のA−A横断面図AA cross-sectional view of FIG. 1 in Example 2 図9の要部拡大断面図9 is an enlarged cross-sectional view of the main part of FIG. 図9のシリンダ中心からベーン近傍のシリンダ内壁面を視た透視図FIG. 9 is a perspective view of the cylinder inner wall surface near the vane from the cylinder center of FIG. 本発明の密閉形回転圧縮機を備えた冷凍空調装置の冷凍サイクルの模式図Schematic diagram of the refrigeration cycle of a refrigeration air conditioner equipped with the hermetic rotary compressor of the present invention

以下、本発明の実施例について図を用いて詳細に説明する。各実施例の図における同一符号は同一物または相当物を示す。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The same reference numerals in the drawings of the respective embodiments indicate the same or equivalent.

実施例1の密閉形回転圧縮機を図1から図8を用いて説明する。図1は2シリンダタイプの密閉形回転圧縮機の縦断面図、図2は図1のA−A横断面図、図3は図2のB−O−B断面図、図4は2シリンダ運転状態を示す図3の要部拡大断面図、図5は1シリンダ休筒運転状態を示す図3の要部拡大断面図、図6は実施例1の油流通路構造を示す図2のC−O−B要部拡大断面図、図7は図6のD−D断面図、図8はシリンダ中心からベーン近傍のシリンダ内壁面を視た透視図である。   The hermetic rotary compressor of Example 1 will be described with reference to FIGS. 1 is a longitudinal sectional view of a two-cylinder hermetic rotary compressor, FIG. 2 is a cross-sectional view taken along line AA in FIG. 1, FIG. 3 is a sectional view taken along B-O-B in FIG. 3 is an enlarged cross-sectional view of the main part of FIG. 3 showing the state, FIG. 5 is an enlarged cross-sectional view of the main part of FIG. 3 showing the one-cylinder idle operation state, and FIG. FIG. 7 is a sectional view taken along the line DD of FIG. 6, and FIG. 8 is a perspective view of the cylinder inner wall surface near the vane from the cylinder center.

図1〜図3において、1は一つの吐出管と二つの吸入パイプが設けられた密閉容器で、この密閉容器1の下部に二つの回転圧縮要素部2が収納され、上部にはこれを駆動する電動機部3が収納され、電動機部3と回転圧縮要素部2は垂直配置された回転軸4を介して連結される。電動機部3は、密閉容器1の内面に固定されたステータ3aとこのステータ3aの内側に所定の間隙を保って配設され、回転軸4に固定されたロータ3bから構成される。また、電動機部3は運転周波数を制御するインバータ(図示せず)に電気的に接続される。   1 to 3, reference numeral 1 denotes a sealed container provided with one discharge pipe and two suction pipes. Two rotary compression element portions 2 are accommodated in the lower part of the sealed container 1, and the upper part drives this. The electric motor unit 3 is accommodated, and the electric motor unit 3 and the rotary compression element unit 2 are connected via a rotary shaft 4 arranged vertically. The electric motor unit 3 includes a stator 3 a fixed to the inner surface of the hermetic container 1, and a rotor 3 b that is disposed inside the stator 3 a with a predetermined gap and fixed to the rotating shaft 4. The motor unit 3 is electrically connected to an inverter (not shown) that controls the operating frequency.

回転圧縮要素部2は、仕切り板5の上下に配設される第1の回転圧縮要素部2Aと第2の回転圧縮要素部2Bから構成される。上側の第1の回転圧縮要素部2Aは第1のシリンダ6Aを備え、下側の第2の回転圧縮要素部2Bは第2のシリンダ6Bを備えている。第1のシリンダ6Aは密閉容器1の内面に固定された主軸受7の下面に重ねあわされ、第2のシリンダ6Bの下面には副軸受8が取り付けられる。回転軸4は、主軸受7と副軸受8に回転自在に軸支され、第1のシリンダ6A、第2のシリンダ6Bの内側の位置に略180゜の位相差で2つの偏心部4a、4bを一体に備えている。各偏心部4a、4bの外周にローラ9a、9bが回転自在に嵌合されている。第1のシリンダ6Aと第2のシリンダ6Bは、仕切り板5と主軸受7及び副軸受8で上下面が区画され、第1のシリンダ6A内に第1のシリンダ室10aが形成され、第2のシリンダ6B内に第2のシリンダ室10bが形成される。   The rotary compression element part 2 is composed of a first rotary compression element part 2A and a second rotary compression element part 2B arranged above and below the partition plate 5. The upper first rotary compression element portion 2A includes a first cylinder 6A, and the lower second rotary compression element portion 2B includes a second cylinder 6B. The first cylinder 6A is overlaid on the lower surface of the main bearing 7 fixed to the inner surface of the sealed container 1, and the sub bearing 8 is attached to the lower surface of the second cylinder 6B. The rotating shaft 4 is rotatably supported by the main bearing 7 and the sub-bearing 8, and the two eccentric portions 4a, 4b are positioned at positions inside the first cylinder 6A and the second cylinder 6B with a phase difference of about 180 °. Is integrated. Rollers 9a and 9b are rotatably fitted on the outer circumferences of the eccentric parts 4a and 4b. The first cylinder 6A and the second cylinder 6B are partitioned by the partition plate 5, the main bearing 7 and the auxiliary bearing 8, and a first cylinder chamber 10a is formed in the first cylinder 6A. A second cylinder chamber 10b is formed in the cylinder 6B.

主軸受7には、圧縮された作動流体の吐出空間を形成する吐出カバー7aが取り付けられ、主軸受7の端板に装着された吐出弁装置7bを覆っている。副軸受8にも吐出カバー8aが取り付けられ、副軸受8の端板に装着された吐出弁装置8bを覆っている。主軸受7の吐出弁装置7bは第1のシリンダ室10aに連通し、圧縮作用によりシリンダ室10a内が所定の圧力に上昇したときに開放して、圧縮された作動流体を吐出カバー7a内に吐出する。副軸受8の吐出弁装置8aは第2のシリンダ室10bに連通し、圧縮作用によりシリンダ室10b内が所定の圧力に上昇したときに開放して、圧縮された作動流体を吐出カバー8a内に吐出する。   A discharge cover 7 a that forms a discharge space for compressed working fluid is attached to the main bearing 7, and covers a discharge valve device 7 b that is mounted on an end plate of the main bearing 7. A discharge cover 8 a is also attached to the auxiliary bearing 8 and covers the discharge valve device 8 b mounted on the end plate of the auxiliary bearing 8. The discharge valve device 7b of the main bearing 7 communicates with the first cylinder chamber 10a and opens when the inside of the cylinder chamber 10a rises to a predetermined pressure due to the compression action, and the compressed working fluid is discharged into the discharge cover 7a. Discharge. The discharge valve device 8a of the auxiliary bearing 8 communicates with the second cylinder chamber 10b and opens when the inside of the cylinder chamber 10b rises to a predetermined pressure due to the compression action, and the compressed working fluid is discharged into the discharge cover 8a. Discharge.

第1のシリンダ6Aと第2のシリンダ6Bには、各シリンダ室10a、10b内に往復運動自在に配設されたベーン11a、11bが収納され、各ベーンの後端部にはベーンばね12a、12bが収納され、弾性力で各ベーン先端部をローラ9a、9b外周に当接付勢している。回転軸4の下端は副軸受8下方に露出していて、密閉容器1底部に溜められた潤滑油19中に侵漬している。回転軸4の下端面には給油ポンプが取り付けられ、ここから第2の回転圧縮要素部2Bと第1の回転圧縮要素部2Aを構成する部品の各摺動部に給油通路を介して潤滑油を供給するようになっている。   The first cylinder 6A and the second cylinder 6B accommodate vanes 11a and 11b that are reciprocally disposed in the cylinder chambers 10a and 10b, respectively, and vane springs 12a, 12b is housed, and the tip of each vane is abutted against the outer periphery of the rollers 9a and 9b by elastic force. The lower end of the rotating shaft 4 is exposed below the auxiliary bearing 8 and is immersed in the lubricating oil 19 stored at the bottom of the sealed container 1. An oil supply pump is attached to the lower end surface of the rotary shaft 4, and from there, lubricating oil is passed through oil supply passages to the sliding parts of the parts constituting the second rotary compression element part 2 </ b> B and the first rotary compression element part 2 </ b> A. To supply.

気液分離機能を有する吸入タンク15上部には、外部の冷凍回路から作動流体が流入する吸入管14が接続され、吸入タンク15底部には圧縮機に対する第1の吸入パイプ16aと第2の吸入パイプ16bが接続される。第1の吸入パイプ16aは第1のシリンダ6Aに形成された吸入通路17aを介して第1のシリンダ室10a内に連通し、第2の吸入パイプ16bは第2のシリンダ6Bに形成された吸入通路17bを介して第2のシリンダ室10b内に連通する。   A suction pipe 14 into which a working fluid flows from an external refrigeration circuit is connected to the top of the suction tank 15 having a gas-liquid separation function, and a first suction pipe 16a and a second suction pipe for the compressor are connected to the bottom of the suction tank 15. The pipe 16b is connected. The first suction pipe 16a communicates with the first cylinder chamber 10a via a suction passage 17a formed in the first cylinder 6A, and the second suction pipe 16b is a suction formed in the second cylinder 6B. It communicates with the second cylinder chamber 10b through the passage 17b.

18は密閉容器1内の高圧の作動流体を外部の冷凍回路に流出させる吐出管である。なお、28は圧縮要素部を組立てる固定ボルト、29は下側の吐出カバー8a内に吐出された作動流体を上側の吐出カバー7a内に導く吐出通路である。   Reference numeral 18 denotes a discharge pipe through which the high-pressure working fluid in the sealed container 1 flows out to the external refrigeration circuit. Reference numeral 28 denotes a fixing bolt for assembling the compression element portion, and 29 is a discharge passage for guiding the working fluid discharged into the lower discharge cover 8a into the upper discharge cover 7a.

密閉形回転圧縮機の機械的能力可変運転(休筒運転)を実現する方法としては、特許文献1に開示されているようなブレード(ベーン)の先端部と後端部を同一圧力にして差圧がかからないようにし、ブレードがシリンダ内に突出しないようにブレードを永久磁石で吸着・拘束する方法が知られているが、本実施例ではより簡便な構造で休筒運転を実現することが可能な、電磁力に依ってベーンを機械的に拘束する方法について説明する。   As a method for realizing the mechanical capacity variable operation (cylinderless operation) of the hermetic rotary compressor, the tip and the rear end of the blade (vane) as disclosed in Patent Document 1 are set at the same pressure. There is known a method of attracting and restraining the blade with a permanent magnet so that no pressure is applied and the blade does not protrude into the cylinder, but in this embodiment, it is possible to realize a cylinder resting operation with a simpler structure. A method of mechanically constraining the vane by electromagnetic force will be described.

20はベーン11bの運動を制御するソレノイドで、圧縮機の電源スイッチング回路(図示せず)に電気的に接続されている。20aはソレノイド20の可動鉄芯、20bはソレノイド20を第2のシリンダ6Bに固定する取付具、21は副軸受8の端板に往復運動自在に配設された摺動ピンで、一端が可動鉄芯20aに当接している。22はソレノイド20の電源オフ時に摺動ピン21によるベーンの拘束を解除する復帰ばね、23はベーン11bの下端面に形成され、摺動ピン21の傾斜面を有する端部が係合する溝である。   A solenoid 20 controls the movement of the vane 11b, and is electrically connected to a power supply switching circuit (not shown) of the compressor. 20a is a movable iron core of the solenoid 20, 20b is a fixture for fixing the solenoid 20 to the second cylinder 6B, and 21 is a sliding pin disposed on the end plate of the auxiliary bearing 8 so as to be reciprocally movable. It is in contact with the iron core 20a. Reference numeral 22 denotes a return spring for releasing the restraint of the vane by the sliding pin 21 when the solenoid 20 is turned off. Reference numeral 23 denotes a groove formed on the lower end surface of the vane 11b and engaged with the end portion having the inclined surface of the sliding pin 21. is there.

図4、図5により本実施例の全能力運転と機械的能力可変運転(休筒運転)について説明する。   The full capacity operation and the variable mechanical capacity operation (cylinder operation) of this embodiment will be described with reference to FIGS.

図4は第1のシリンダ室10a及び第2のシリンダ室10bともに圧縮作用をなす全能力(2シリンダ)運転状態を示している。全能力運転では、ソレノイド20に通電しないため、可動鉄芯20aには磁気吸引力が働かず、復帰ばね22のばね力で摺動ピン21は下方に移動し、可動鉄芯20aも下端のストッパ部に当接した状態になっており、ベーン11bにはその運動を規制する機械的拘束は何ら作用していない。このため、電動機に通電され回転軸4が回転駆動すると、第1のシリンダ室10a、第2のシリンダ室10bにおいて第1、第2のローラ9a、9bが偏心運動をなし、各ベーン11a、11bがベーンばね12a、12bにより第1、第2のローラ9a、9b外周に当接付勢されているため、両シリンダ室10a、10b内で通常の圧縮作用が行われ、高圧の作動流体が各吐出カバー7a、8aを介して密閉容器1内に吐出され、密閉容器1上部の吐出管18を通って外部の冷凍サイクルに流出する。   FIG. 4 shows a full-capacity (two-cylinder) operation state in which both the first cylinder chamber 10a and the second cylinder chamber 10b perform a compression action. In full capacity operation, since the solenoid 20 is not energized, no magnetic attractive force acts on the movable iron core 20a, the sliding pin 21 moves downward by the spring force of the return spring 22, and the movable iron core 20a is also a stopper at the lower end. It is in the state contact | abutted to the part, and the mechanical restraint which controls the motion does not act on the vane 11b at all. For this reason, when the electric motor is energized and the rotary shaft 4 is driven to rotate, the first and second rollers 9a and 9b make an eccentric motion in the first cylinder chamber 10a and the second cylinder chamber 10b, and the vanes 11a and 11b. Are pressed against the outer circumferences of the first and second rollers 9a and 9b by the vane springs 12a and 12b, so that a normal compression action is performed in both the cylinder chambers 10a and 10b, and a high-pressure working fluid is It is discharged into the sealed container 1 through the discharge covers 7a and 8a, and flows out to the external refrigeration cycle through the discharge pipe 18 on the upper part of the sealed container 1.

図5は、第1のシリンダ室10aは通常の圧縮運転、第2のシリンダ室10bは休筒運転を行う機械的能力可変運転(1シリンダ休筒運転)を示している。能力半減運転では、ソレノイド20に通電することにより、可動鉄芯20aに磁気吸引力が働き、復帰ばね22のばね力に抗して摺動ピン21を上方に移動し、ベーン11bの下端面に形成された溝23に入る。摺動ピン21がベーン11bの溝23に入ると、ベーン11bがベーンばね12bに押されてもシリンダ室10b内に戻ることはない。このため、電動機に通電され回転軸4が回転駆動し、第1のシリンダ室10a、第2のシリンダ室10bにおいて第1、第2のローラ9a、9bが偏心運動をなしても、第2のシリンダ室10b内はベーン11bにより仕切られないため、シリンダ室10b内の容積変化はなく、圧縮作用を行わないことになる。他方、第1のシリンダ室10a内ではベーン11aがベーンばね12aにより第1のローラ9a外周に当接付勢されているため、シリンダ室10a内で通常の圧縮作用が行われ、高圧の作動流体が吐出カバー7aを介して密閉容器1内に吐出され、密閉容器1上部の吐出管18を通って外部の冷凍サイクルに流出する。なお、単にベーン11bの運動を摺動ピン21により止めるだけでは、圧縮作用は無くすことができるがローラ9bがベーン11bに近接する上死点位置近傍で両者が衝突し、騒音や機械損失が増加する問題が発生しやすくなる。   FIG. 5 shows a variable mechanical capacity operation (one-cylinder idle operation) in which the first cylinder chamber 10a performs normal compression operation and the second cylinder chamber 10b performs idle cylinder operation. In the half-capacity operation, when the solenoid 20 is energized, a magnetic attractive force acts on the movable iron core 20a, and the sliding pin 21 is moved upward against the spring force of the return spring 22, and the lower end surface of the vane 11b is moved. Enter the formed groove 23. When the sliding pin 21 enters the groove 23 of the vane 11b, even if the vane 11b is pushed by the vane spring 12b, it does not return into the cylinder chamber 10b. For this reason, even if the electric motor is energized and the rotating shaft 4 is driven to rotate, the first and second rollers 9a and 9b in the first cylinder chamber 10a and the second cylinder chamber 10b perform an eccentric motion. Since the inside of the cylinder chamber 10b is not partitioned by the vane 11b, there is no volume change in the cylinder chamber 10b and no compression action is performed. On the other hand, since the vane 11a is urged against the outer periphery of the first roller 9a by the vane spring 12a in the first cylinder chamber 10a, a normal compression action is performed in the cylinder chamber 10a, and a high-pressure working fluid is produced. Is discharged into the sealed container 1 through the discharge cover 7a, and flows out to the external refrigeration cycle through the discharge pipe 18 at the top of the sealed container 1. Note that the compression action can be eliminated by simply stopping the movement of the vane 11b with the sliding pin 21, but the roller 9b collides in the vicinity of the top dead center position close to the vane 11b, increasing noise and mechanical loss. Problems are likely to occur.

この問題を解消するため、本実施例ではベーン11bの下端面に形成された溝23に係合する摺動ピン21の端部当接面を傾斜面とし、ソレノイド20の磁気吸引力によりベーン11bの先端部が第2のシリンダ室10bの内壁から寸法δだけ後退した位置までベーン11bを引上げられるようにしている。   In order to solve this problem, in this embodiment, the end contact surface of the sliding pin 21 that engages with the groove 23 formed on the lower end surface of the vane 11 b is an inclined surface, and the vane 11 b is applied by the magnetic attraction force of the solenoid 20. The vane 11b can be pulled up to a position where the front end of the second cylinder chamber 10b is retracted from the inner wall of the second cylinder chamber 10b by a dimension δ.

次に、図6〜図8により本実施例の特徴である休筒機構を備えたシリンダ内の潤滑油の残留を無くす油流通路について説明する。図において、24は休筒運転を行う第2のシリンダ6Bに形成されたシリンダ油流通路で、ベーン11bと吸入通路17bの間の位置にシリンダ6Bを軸方向に貫通する形で形成されている。24aはシリンダ油流通路24の下端をシリンダ室10bに開口するシリンダ切欠き、25は仕切り板5に形成されたシリンダ油流通路24に連通する仕切り板油流通路で、組立ばらつきを考慮しシリンダ油流通路24よりも大径にしている。26は仕切り板油流通路25の上端をシリンダ室10aに開口する運転シリンダ6A側のシリンダ切欠きである。なお、7b’は主軸受7の吐出弁装置7bの吐出ポートに係合する吐出切欠き、8b’は副軸受8の吐出弁装置8bの吐出ポートに係合する吐出切欠きである。   Next, an oil flow passage for eliminating residual lubricant in the cylinder having the cylinder resting mechanism, which is a feature of the present embodiment, will be described with reference to FIGS. In the figure, reference numeral 24 denotes a cylinder oil flow passage formed in the second cylinder 6B performing the cylinder resting operation, and is formed in a form penetrating the cylinder 6B in the axial direction at a position between the vane 11b and the suction passage 17b. . Reference numeral 24a denotes a cylinder notch that opens the lower end of the cylinder oil flow passage 24 into the cylinder chamber 10b, and 25 denotes a partition plate oil flow passage that communicates with the cylinder oil flow passage 24 formed in the partition plate 5. The diameter is larger than that of the flow passage 24. 26 is a cylinder notch on the side of the operating cylinder 6A that opens the upper end of the partition plate oil flow passage 25 into the cylinder chamber 10a. Reference numeral 7b 'denotes a discharge notch that engages with the discharge port of the discharge valve device 7b of the main bearing 7, and 8b' denotes a discharge notch that engages with the discharge port of the discharge valve device 8b of the auxiliary bearing 8.

前述したように、能力半減運転では第2のシリンダ室10b内は吸入タンク15に接続された吸入パイプ16bとこれに連通する吸入通路17bにより低圧状態が継続される。一方、第1のシリンダ室10a内では通常の圧縮運転がなされることから、高圧の作動流体が密閉容器1に吐き出され密閉容器1内は高圧状態になっている。このため、密閉容器1の底部に貯留された潤滑油19が、第2の回転圧縮要素部2Bを構成する各構成部品のクリアランスから第2のシリンダ室10b内に侵入してくる。侵入した潤滑油は重力の作用でこの第2のシリンダ室10bの下方に滞留する。滞留した潤滑油は図8の矢印に示すようにシリンダ油流通路24と仕切り板油流通路25を介して第1の回転圧縮要素部2Aに吸い上げられる。すなわち、第1のシリンダ室10a内において圧縮作用が行われるため、シリンダ切欠き26により開口する仕切り板油流通路25側の圧力は吸入圧力(吸入タンク15内圧力)よりも低い負圧となっている。一方、第2のシリンダ室10b内の圧力は吸入圧力に維持されているため、両者の圧力差により第2のシリンダ室10b内に侵入した潤滑油は、第2のシリンダ6Bの下端部に開口するシリンダ切欠き24aから吸い上げられ、シリンダ油流通路24、仕切り板油流通路25を通ってシリンダ切欠き26より第1のシリンダ室10a内に導かれるようになるため、休筒機構を備えた下側のシリンダ室10b内に残留する潤滑油を無くして油撹拌による損失を抑えることができる。また、シリンダ油流通路24と仕切り板油流通路25を通して導かれた潤滑油供給により、運転シリンダ側の第1の回転圧縮要素部2Aのオイルシール性が向上して性能改善が可能になることから、性能、信頼性に優れた密閉形回転圧縮機が実現できる。   As described above, in the half capacity operation, the second cylinder chamber 10b is kept in a low pressure state by the suction pipe 16b connected to the suction tank 15 and the suction passage 17b communicating with the suction pipe 16b. On the other hand, since the normal compression operation is performed in the first cylinder chamber 10a, the high-pressure working fluid is discharged to the sealed container 1, and the sealed container 1 is in a high-pressure state. For this reason, the lubricating oil 19 stored at the bottom of the hermetic container 1 enters the second cylinder chamber 10b from the clearance of each component constituting the second rotary compression element 2B. The entered lubricating oil stays below the second cylinder chamber 10b due to the action of gravity. The accumulated lubricating oil is sucked up to the first rotary compression element portion 2A through the cylinder oil flow passage 24 and the partition plate oil flow passage 25 as shown by the arrows in FIG. That is, since the compression action is performed in the first cylinder chamber 10a, the pressure on the partition plate oil flow passage 25 side opened by the cylinder notch 26 is a negative pressure lower than the suction pressure (intake tank 15 internal pressure). Yes. On the other hand, since the pressure in the second cylinder chamber 10b is maintained at the suction pressure, the lubricating oil that has entered the second cylinder chamber 10b due to the pressure difference between the two opens to the lower end of the second cylinder 6B. Is sucked up from the cylinder cutout 24a, and is guided into the first cylinder chamber 10a from the cylinder cutout 26 through the cylinder oil flow passage 24 and the partition plate oil flow passage 25. Lubricating oil remaining in the side cylinder chamber 10b can be eliminated, and loss due to oil agitation can be suppressed. In addition, the supply of lubricating oil guided through the cylinder oil flow passage 24 and the partition plate oil flow passage 25 improves the oil sealability of the first rotary compression element portion 2A on the operating cylinder side, thereby enabling performance improvement. A hermetic rotary compressor with excellent performance and reliability can be realized.

本実施例では、シリンダ油流通路24及び仕切り板油流通路25ともに通路面積を、シリンダ室と吸入パイプを接続する第1の吸入通路17a及び第2の吸入通路17bの通路面積よりも十分小さくなるように形成している。これにより、全能力運転時にシリンダ油流通路24及び仕切り板油流通路25が第1の回転圧縮要素部2Aと第2の回転圧縮要素部2Bの作動流体吸入作用に互いに干渉するのを防止し、それぞれの圧縮効率が損なわれることがないようにしている。   In this embodiment, both the cylinder oil flow passage 24 and the partition plate oil flow passage 25 have a passage area sufficiently smaller than the passage areas of the first suction passage 17a and the second suction passage 17b connecting the cylinder chamber and the suction pipe. It is formed as follows. This prevents the cylinder oil flow passage 24 and the partition plate oil flow passage 25 from interfering with each other in the working fluid suction action of the first rotary compression element portion 2A and the second rotary compression element portion 2B during full capacity operation, Each compression efficiency is not impaired.

なお、本実施例では、休筒機構を備えた第2の回転圧縮要素部2Bを副軸受8側に設けるとともに、休筒しない第1の回転圧縮要素部2Aを主軸受7側に設けた。これにより、機械的能力可変運転(休筒運転)時であっても、主軸受7で軸受負荷の大部分を分担することができるので、両回転圧縮要素部の配置を上下入れ替えた構造に比べ、機械損失の増加や軸受の信頼性低下を抑制することができる。   In the present embodiment, the second rotary compression element portion 2B having a cylinder resting mechanism is provided on the auxiliary bearing 8 side, and the first rotary compression element portion 2A that is not cylinder rested is provided on the main bearing 7 side. Thereby, even during the mechanical capacity variable operation (cylinder operation), the main bearing 7 can share most of the bearing load, so compared to a structure in which the arrangement of the rotary compression element portions is changed upside down. In addition, an increase in mechanical loss and a decrease in bearing reliability can be suppressed.

次に、本実施例の密閉形回転圧縮機を組込んだ冷凍空調装置の具体例を図12に示す冷凍サイクル構成図により説明する。図12は本実施例に係わる密閉形回転圧縮機30を備えた冷凍サイクルの模式図である。ここでは作動流体としてR32を冷媒として用いた冷凍サイクルを例に挙げて説明する。R32は、地球温暖化係数(GWP)が冷凍空調システムで従来用いられてきた冷媒R410Aより小さく、地球温暖化防止の観点から近年注目されてきている冷媒である。   Next, a specific example of the refrigerating and air-conditioning apparatus incorporating the hermetic rotary compressor of the present embodiment will be described with reference to the refrigeration cycle configuration diagram shown in FIG. FIG. 12 is a schematic diagram of a refrigeration cycle provided with a hermetic rotary compressor 30 according to the present embodiment. Here, a refrigeration cycle using R32 as a working fluid as a refrigerant will be described as an example. R32 has a global warming potential (GWP) smaller than that of refrigerant R410A conventionally used in refrigeration and air conditioning systems, and has recently been attracting attention from the viewpoint of preventing global warming.

図12において、図1と同一符号を付したものは同一部品であり同一の作用をなし、本実施例の密閉形回転圧縮機30を備えた冷凍サイクル31が示されている。また、32は凝縮器、33は膨張弁、34は蒸発器であり、これらは冷媒配管35により順次接続されることにより、冷凍サイクルを構成している。   In FIG. 12, components denoted by the same reference numerals as those in FIG. Further, 32 is a condenser, 33 is an expansion valve, and 34 is an evaporator, and these are sequentially connected by a refrigerant pipe 35 to constitute a refrigeration cycle.

次に、図12における冷媒の流れを説明する。密閉形回転圧縮機30から吐出された高温、高圧の冷媒は、凝縮器32に入って放熱し温度低下する。この凝縮器32から出た冷媒は膨張弁33に入り低温、低圧の気液二相冷媒となって吐出される。前記膨張弁33を出た気液二相冷媒は、前記蒸発器34に入って吸熱、ガス化して前記密閉形回転圧縮機30に戻り、再び圧縮されて、以下同様のサイクルが繰り返される。これにより、冷凍装置であれば、前記蒸発器34で被冷却物が冷却される。空調装置であれば、前記蒸発器34で室内空気が冷却されて冷房運転されるか、或いは前記凝縮器32で室内空気を加熱して暖房運転がなされる。以上、本実施例の密閉形回転圧縮機30を備えることにより、機械的能力可変運転(休筒運転)時の性能・信頼性に優れた密閉形回転圧縮機を提供することが可能となり、冷凍空調システムの性能及び信頼性の向上を図ることができる。   Next, the flow of the refrigerant in FIG. 12 will be described. The high-temperature and high-pressure refrigerant discharged from the hermetic rotary compressor 30 enters the condenser 32 and dissipates heat to lower the temperature. The refrigerant discharged from the condenser 32 enters the expansion valve 33 and is discharged as a low-temperature, low-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant exiting the expansion valve 33 enters the evaporator 34, absorbs heat and gasifies, returns to the hermetic rotary compressor 30, is compressed again, and the same cycle is repeated thereafter. Thereby, if it is a freezing apparatus, the to-be-cooled object will be cooled by the evaporator 34. If it is an air conditioner, indoor air is cooled by the evaporator 34 and the cooling operation is performed, or the indoor air is heated by the condenser 32 and the heating operation is performed. As described above, by providing the hermetic rotary compressor 30 of the present embodiment, it becomes possible to provide a hermetic rotary compressor having excellent performance and reliability at the time of variable mechanical capacity operation (cylinder operation). The performance and reliability of the air conditioning system can be improved.

以上で説明した、実施例1の構成によれば、休筒シリンダの油撹拌損失低減及び運転シリンダのオイルシール性向上による性能改善が可能になることから、性能、信頼性に優れた密閉形回転圧縮機が実現できる。また、この圧縮機を備えた冷凍空調システムの性能、信頼性の向上を図ることができる。   According to the configuration of the first embodiment described above, it is possible to improve the performance by reducing the oil stirring loss of the idle cylinder and improving the oil sealability of the operating cylinder. A compressor can be realized. Further, it is possible to improve the performance and reliability of the refrigeration air conditioning system including this compressor.

なお、実施例1では、2シリンダタイプの圧縮要素部に適用して説明したが、本発明はこれに限定されるものではなく、3シリンダタイプの圧縮要素部を備えた回転圧縮機にも適用できる。さらに、休筒機構を備えない回転圧縮要素部では、ローラをベーンが弾性的に押圧する構造のものに限定されず、例えばローラとベーンが一体化したスイングタイプの回転圧縮機においても同様の効果が得られる。   In the first embodiment, the description is applied to the compression element portion of the two-cylinder type. However, the present invention is not limited to this, and the present invention is also applied to the rotary compressor including the compression element portion of the three-cylinder type. it can. Further, the rotary compression element portion not provided with the cylinder resting mechanism is not limited to the structure in which the vane is elastically pressed by the vane. For example, the same effect can be obtained in a swing type rotary compressor in which the roller and the vane are integrated. Is obtained.

図9は実施例2の密閉形回転圧縮機の横断面図(図1のA−A断面に相当)、図10は図9の要部拡大断面図、図11は図9のシリンダ中心からベーン近傍のシリンダ内壁面を視た透視図である。図において、図1と同一符号を付したものは同一部品であり同一の作用をなす。   9 is a cross-sectional view of the hermetic rotary compressor of the second embodiment (corresponding to the AA cross section of FIG. 1), FIG. 10 is an enlarged cross-sectional view of the main part of FIG. 9, and FIG. It is the perspective view which looked at the cylinder inner wall surface of the vicinity. In the figure, the same reference numerals as those in FIG. 1 denote the same parts and perform the same functions.

本実施例では、休筒機構を備えた回転圧縮要素のシリンダ室に形成される吸込室と、他の回転圧縮要素のシリンダ室と吸入パイプを接続する吸入通路とを連通する油流通路を配設することにより、休筒機構を備えたシリンダ室内に侵入した潤滑油を油流通路を通して該油流通路が開口する両側空間の圧力差をより効果的に利用して運転シリンダ内に導くこと可能にしたものである。   In this embodiment, an oil flow passage that communicates a suction chamber formed in a cylinder chamber of a rotary compression element provided with a cylinder resting mechanism and a cylinder chamber of another rotary compression element and a suction passage that connects a suction pipe is arranged. By installing, it is possible to guide the lubricating oil that has entered the cylinder chamber equipped with the cylinder resting mechanism into the operating cylinder through the oil flow passage more effectively using the pressure difference between the two spaces where the oil flow passage opens. It is a thing.

図9〜図11において、25aは仕切り板油流通路25に連通しながら油の流通方向を吸入通路17aの下部に導く仕切り板油流通溝、27は仕切り板油流通溝25aと吸入通路17aを連通するシリンダ油流通路である。   9 to 11, reference numeral 25a denotes a partition plate oil circulation groove that guides the oil flow direction to the lower portion of the suction passage 17a while communicating with the partition plate oil flow passage 25, and 27 denotes a cylinder that communicates the partition plate oil circulation groove 25a and the suction passage 17a. It is an oil flow passage.

運転シリンダ側のシリンダ油流通路27が開口する吸入通路17a内の圧力は、第1のシリンダ室10a内の圧力よりも作動流体の流動による動圧効果が働いてより低い負圧となっている。休筒シリンダである第2のシリンダ室10b内の圧力は吸入圧力に維持されているため、両者の圧力差により第2のシリンダ室10b内に侵入した潤滑油は、図11の矢印に示すように、第2のシリンダ6Bの下端部に開口するシリンダ切欠き24aから吸い上げられ、シリンダ油流通路24、仕切り板油流通路25、仕切り板油流通溝25aを通ってシリンダ油流通路27より吸入通路17a内に導かれるようになり、より効果的に休筒シリンダ内に侵入した潤滑油を運転シリンダ側に導くことができる。本実施例においても、実施例1と同様に休筒機構を備えたシリンダ内の潤滑油の残留を無くして密閉形回転圧縮機の性能・信頼性を向上することができる。   The pressure in the suction passage 17a where the cylinder oil flow passage 27 on the operating cylinder side opens is a negative pressure lower than the pressure in the first cylinder chamber 10a due to the dynamic pressure effect due to the flow of the working fluid. . Since the pressure in the second cylinder chamber 10b, which is a closed cylinder, is maintained at the suction pressure, the lubricating oil that has entered the second cylinder chamber 10b due to the pressure difference therebetween is shown by the arrow in FIG. The suction passage 17a is sucked up from the cylinder cutout 24a opened at the lower end of the second cylinder 6B, passes through the cylinder oil flow passage 24, the partition plate oil flow passage 25, and the partition plate oil flow groove 25a from the cylinder oil flow passage 27. Thus, the lubricating oil that has entered the idle cylinder can be more effectively guided to the operating cylinder. Also in the present embodiment, as in the first embodiment, it is possible to improve the performance and reliability of the hermetic rotary compressor by eliminating the residual lubricant in the cylinder provided with the cylinder resting mechanism.

1…密閉容器、2…回転圧縮要素部、2A…第1の回転圧縮要素部、2B…第2の回転圧縮要素部、3…電動機部、3a…ステータ、3b…ロータ、4…回転軸、4a,4b…偏心部、5…仕切り板、6A…第1のシリンダ、6B…第2のシリンダ、7…主軸受、7a…吐出カバー、7b…吐出弁装置、8…副軸受、8a…吐出カバー、8b…吐出弁装置、9a,9b…ローラ、10a…第1のシリンダ室、10b…第2のシリンダ室、11a,11b…ベーン、12a,12b…ベーンばね、14…吸入管、15…吸入タンク、16a,16b…吸入パイプ、17a,17b…吸入通路、18…吐出管、19…潤滑油、20…ソレノイド、20a…可動鉄芯、20b…取付具、21…摺動ピン、22…復帰ばね、23…溝、24…シリンダ油流通路、24a…シリンダ切欠き、25…仕切り板油流通路、25a…仕切り板油流通溝、26…シリンダ切欠き、27…シリンダ油流通路、28…固定ボルト、29…吐出通路、30…密閉形回転圧縮機、31…冷凍サイクル、32…凝縮器、33…膨張弁、34…蒸発器、35…冷媒配管   DESCRIPTION OF SYMBOLS 1 ... Airtight container, 2 ... Rotary compression element part, 2A ... 1st rotary compression element part, 2B ... 2nd rotary compression element part, 3 ... Electric motor part, 3a ... Stator, 3b ... Rotor, 4 ... Rotation shaft, 4a, 4b ... eccentric part, 5 ... partition plate, 6A ... first cylinder, 6B ... second cylinder, 7 ... main bearing, 7a ... discharge cover, 7b ... discharge valve device, 8 ... sub bearing, 8a ... discharge Cover, 8b ... discharge valve device, 9a, 9b ... roller, 10a ... first cylinder chamber, 10b ... second cylinder chamber, 11a, 11b ... vane, 12a, 12b ... vane spring, 14 ... suction pipe, 15 ... Suction tank, 16a, 16b ... suction pipe, 17a, 17b ... suction passage, 18 ... discharge pipe, 19 ... lubricating oil, 20 ... solenoid, 20a ... movable iron core, 20b ... fixture, 21 ... sliding pin, 22 ... Return spring, 23 ... groove, 24 ... cylinder Flow passage, 24a ... Cylinder notch, 25 ... Partition plate oil flow passage, 25a ... Partition plate oil flow groove, 26 ... Cylinder notch, 27 ... Cylinder oil flow passage, 28 ... Fixing bolt, 29 ... Discharge passage, 30 ... Sealed type Rotary compressor, 31 ... refrigeration cycle, 32 ... condenser, 33 ... expansion valve, 34 ... evaporator, 35 ... refrigerant piping

Claims (7)

一つの吐出管と二つの吸入パイプが設けられた密閉容器と、
該密閉容器内に設けられ、回転軸を回転させる電動機と、
該電動機の下方に設けられ、前記回転軸の回転により駆動される二つの回転圧縮要素と、
該二つの回転圧縮要素を仕切る仕切り板と、
を具備する密閉形回転圧縮機であって、
各回転圧縮要素は、吸入通路を介して前記吸入パイプと連通するシリンダ室を備えたシリンダと、前記シリンダ室に偏心回転自在に収納されるローラと、前記シリンダ室を吸込室と圧縮室に区画するベーンと、前記シリンダ室で圧縮された作動流体を前記密閉容器内に吐き出す吐出弁装置と、を有し、
下側の回転圧縮要素は、圧縮運転を休止する休筒機構と、前記シリンダ室に侵入した潤滑油を吸い上げるシリンダ油流通路を有し、
前記仕切り板には、下側の回転圧縮要素の吸込室と上側の回転圧縮要素の吸込室を連通する仕切り板油流通路を配設し
前記シリンダ油流通路は前記シリンダの下端部に開口していることを特徴とする密閉形回転圧縮機。
A sealed container provided with one discharge pipe and two suction pipes;
An electric motor provided in the sealed container and rotating a rotating shaft;
Two rotary compression elements provided below the electric motor and driven by the rotation of the rotary shaft;
A partition plate for partitioning the two rotary compression elements;
A hermetic rotary compressor comprising:
Each rotary compression element includes a cylinder having a cylinder chamber communicating with the suction pipe via a suction passage, a roller housed in the cylinder chamber so as to be eccentrically rotatable, and the cylinder chamber divided into a suction chamber and a compression chamber. And a discharge valve device for discharging the working fluid compressed in the cylinder chamber into the sealed container,
The lower rotary compression element has a cylinder resting mechanism that stops the compression operation, and a cylinder oil flow passage that sucks up the lubricating oil that has entered the cylinder chamber,
The partition plate is provided with a partition plate oil flow passage communicating the suction chamber of the lower rotary compression element and the suction chamber of the upper rotary compression element ,
The hermetic rotary compressor is characterized in that the cylinder oil flow passage is opened at a lower end portion of the cylinder .
一つの吐出管と二つの吸入パイプが設けられた密閉容器と、
該密閉容器内に設けられ、回転軸を回転させる電動機と、
該電動機の下方に設けられ、前記回転軸の回転により駆動される二つの回転圧縮要素と、
該二つの回転圧縮要素を仕切る仕切り板と、
を具備する密閉形回転圧縮機であって、
各回転圧縮要素は、吸入通路を介して前記吸入パイプと連通するシリンダ室を備えたシリンダと、前記シリンダ室に偏心回転自在に収納されるローラと、前記シリンダ室を吸込室と圧縮室に区画するベーンと、前記シリンダ室で圧縮された作動流体を前記密閉容器内に吐き出す吐出弁装置と、を有し、
下側の回転圧縮要素は、圧縮運転を休止する休筒機構と、前記シリンダ室に侵入した潤滑油を吸い上げるシリンダ油流通路を有し、
前記仕切り板には、下側の回転圧縮要素の吸込室と上側の回転圧縮要素の吸入通路を連通する仕切り板油流通路を配設し
前記シリンダ油流通路は前記シリンダの下端部に開口していることを特徴とする密閉形回転圧縮機。
A sealed container provided with one discharge pipe and two suction pipes;
An electric motor provided in the sealed container and rotating a rotating shaft;
Two rotary compression elements provided below the electric motor and driven by the rotation of the rotary shaft;
A partition plate for partitioning the two rotary compression elements;
A hermetic rotary compressor comprising:
Each rotary compression element includes a cylinder having a cylinder chamber communicating with the suction pipe via a suction passage, a roller housed in the cylinder chamber so as to be eccentrically rotatable, and the cylinder chamber divided into a suction chamber and a compression chamber. And a discharge valve device for discharging the working fluid compressed in the cylinder chamber into the sealed container,
The lower rotary compression element has a cylinder resting mechanism that stops the compression operation, and a cylinder oil flow passage that sucks up the lubricating oil that has entered the cylinder chamber,
The partition plate is provided with a partition plate oil flow passage communicating the suction chamber of the lower rotary compression element and the suction passage of the upper rotary compression element ,
The hermetic rotary compressor is characterized in that the cylinder oil flow passage is opened at a lower end portion of the cylinder .
請求項1または請求項2に記載の密閉形回転圧縮機において、
前記下側の回転圧縮要素は、
前記ベーンの先端部を前記ローラの外周に弾性的に押圧した状態で圧縮運転を行い、前記ベーンの先端部を前記ローラの外周から離間させた状態で休筒運転を行うロータリー圧縮機であり、
前記上側の回転圧縮要素は、
前記ベーンの先端部を前記ローラの外周に弾性的に押圧した状態で圧縮運転を行うロータリー圧縮機、
または、前記ベーンと一体化させた前記ローラを用いて圧縮運転を行うスイング圧縮機
であることを特徴とする密閉形回転圧縮機。
The hermetic rotary compressor according to claim 1 or 2,
The lower rotary compression element is
It is a rotary compressor that performs a compression operation in a state where the tip of the vane is elastically pressed against the outer periphery of the roller, and performs a cylinder resting operation in a state where the tip of the vane is separated from the outer periphery of the roller,
The upper rotary compression element is
A rotary compressor that performs a compression operation in a state where the tip of the vane is elastically pressed against the outer periphery of the roller;
Alternatively, the hermetic rotary compressor is a swing compressor that performs a compression operation using the roller integrated with the vane.
請求項1から3何れか一項に記載の密閉形回転圧縮機において、
前記仕切り板油流通路では、前記下側の回転圧縮要素から前記上側の回転圧縮要素に向けて潤滑油が流通することを特徴とする密閉形回転圧縮機。
The hermetic rotary compressor according to any one of claims 1 to 3,
The hermetic rotary compressor is characterized in that in the partition oil flow passage, lubricating oil flows from the lower rotary compression element toward the upper rotary compression element.
請求項1から4何れか一項に記載の密閉形回転圧縮機において、
前記仕切り板油流通路の通路面積を、前記吸入通路の通路面積よりも小さく形成したことを特徴とする密閉形回転圧縮機。
In the hermetic rotary compressor according to any one of claims 1 to 4,
A hermetic rotary compressor characterized in that a passage area of the partition plate oil flow passage is smaller than a passage area of the suction passage.
請求項1から4何れか一項に記載の密閉形回転圧縮機において、
前記作動流体はR32であることを特徴とする密閉形回転圧縮機。
In the hermetic rotary compressor according to any one of claims 1 to 4,
Hermetic rotary compressor wherein the working fluid is characterized by R32 der Rukoto.
密閉形回転圧縮機、凝縮器、膨張装置、及び蒸発器を冷媒配管で接続した冷凍サイクルを備えた冷凍空調装置であって、A refrigerating and air-conditioning apparatus provided with a refrigerating cycle in which a hermetic rotary compressor, a condenser, an expansion device, and an evaporator are connected by a refrigerant pipe,
前記密閉形回転圧縮機は、請求項1から4何れか一項に記載の密閉形回転圧縮機であることを特徴とする冷凍空調装置。  The refrigerating and air-conditioning apparatus according to claim 1, wherein the hermetic rotary compressor is the hermetic rotary compressor according to claim 1.
JP2016141211A 2016-07-19 2016-07-19 Hermetic rotary compressor and refrigeration air conditioner Active JP6363134B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016141211A JP6363134B2 (en) 2016-07-19 2016-07-19 Hermetic rotary compressor and refrigeration air conditioner
PCT/JP2017/025110 WO2018016364A1 (en) 2016-07-19 2017-07-10 Hermetic rotary compressor and refrigeration and air-conditioning device
CN201780032185.6A CN109154296B (en) 2016-07-19 2017-07-10 Hermetic rotary compressor and refrigerating and air-conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016141211A JP6363134B2 (en) 2016-07-19 2016-07-19 Hermetic rotary compressor and refrigeration air conditioner

Publications (3)

Publication Number Publication Date
JP2018013042A JP2018013042A (en) 2018-01-25
JP2018013042A5 JP2018013042A5 (en) 2018-05-24
JP6363134B2 true JP6363134B2 (en) 2018-07-25

Family

ID=60993057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016141211A Active JP6363134B2 (en) 2016-07-19 2016-07-19 Hermetic rotary compressor and refrigeration air conditioner

Country Status (3)

Country Link
JP (1) JP6363134B2 (en)
CN (1) CN109154296B (en)
WO (1) WO2018016364A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112746961A (en) * 2019-10-30 2021-05-04 广东美芝制冷设备有限公司 Rotary compressor and refrigeration cycle device with same
CN110935412B (en) * 2019-12-06 2023-06-09 浙江光华科技股份有限公司 Charging anti-agglomeration device in saturated polyester resin production

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289189A (en) * 2000-04-07 2001-10-19 Matsushita Electric Ind Co Ltd Two-stage compressible refrigerant compressor
CN100404867C (en) * 2005-03-24 2008-07-23 松下电器产业株式会社 Hermetic rotary compressor
JP2007146747A (en) * 2005-11-28 2007-06-14 Matsushita Electric Ind Co Ltd Refrigerating cycle device
JP5005579B2 (en) * 2008-02-27 2012-08-22 東芝キヤリア株式会社 Hermetic compressor and refrigeration cycle apparatus
JP6071190B2 (en) * 2011-12-09 2017-02-01 東芝キヤリア株式会社 Multi-cylinder rotary compressor and refrigeration cycle apparatus
JP6007030B2 (en) * 2012-08-23 2016-10-12 東芝キヤリア株式会社 Rotary compressor and refrigeration cycle equipment

Also Published As

Publication number Publication date
CN109154296A (en) 2019-01-04
CN109154296B (en) 2020-09-01
JP2018013042A (en) 2018-01-25
WO2018016364A1 (en) 2018-01-25

Similar Documents

Publication Publication Date Title
JP4875484B2 (en) Multistage compressor
JP4447859B2 (en) Rotary hermetic compressor and refrigeration cycle apparatus
JP5005579B2 (en) Hermetic compressor and refrigeration cycle apparatus
WO2009096167A1 (en) Expander-integrated compressor and refrigeration cycle device using the same
CN112412801A (en) Oil circuit structure, horizontal scroll compressor and refrigeration equipment
CN102102669B (en) Multi-cylinder rotary compressor and refrigeration circulation device
JP4594301B2 (en) Hermetic rotary compressor
JP6568841B2 (en) Hermetic rotary compressor and refrigeration air conditioner
JP6363134B2 (en) Hermetic rotary compressor and refrigeration air conditioner
JPH02230995A (en) Compressor for heat pump and operating method thereof
JP5564617B2 (en) Hermetic compressor and refrigeration cycle apparatus
JP4398321B2 (en) Refrigeration cycle equipment
JP2010223088A (en) Rotary compressor and air conditioner
JP4018908B2 (en) Refrigeration air conditioner
WO2021149180A1 (en) Compressor
JP6078393B2 (en) Rotary compressor, refrigeration cycle equipment
JP5988828B2 (en) Refrigeration cycle equipment
JP4384368B2 (en) Hermetic rotary compressor and refrigeration / air conditioner
JP7466692B2 (en) Compressor and refrigeration cycle device
CN214403986U (en) Oil circuit structure, horizontal scroll compressor and refrigeration equipment
CN218816979U (en) Compressor and air conditioner
CN217682266U (en) Compressor and air conditioner
CN112412791B (en) Rotary compressor and refrigeration cycle device
JP6324624B2 (en) Refrigerant compressor and vapor compression refrigeration cycle apparatus equipped with the same
JP2024048814A (en) Sealing type rotary compressor and refrigerator including the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180406

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180406

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180604

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180606

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180627

R150 Certificate of patent or registration of utility model

Ref document number: 6363134

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150