JP6358945B2 - Can lid for canning - Google Patents

Can lid for canning Download PDF

Info

Publication number
JP6358945B2
JP6358945B2 JP2014252228A JP2014252228A JP6358945B2 JP 6358945 B2 JP6358945 B2 JP 6358945B2 JP 2014252228 A JP2014252228 A JP 2014252228A JP 2014252228 A JP2014252228 A JP 2014252228A JP 6358945 B2 JP6358945 B2 JP 6358945B2
Authority
JP
Japan
Prior art keywords
resin film
lid
surface side
metal plate
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014252228A
Other languages
Japanese (ja)
Other versions
JP2016113171A (en
Inventor
伸基 目高
伸基 目高
美津徳 今泉
美津徳 今泉
悠介 脇
悠介 脇
健介 工藤
健介 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOKKAICAN CO.,LTD.
Original Assignee
HOKKAICAN CO.,LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOKKAICAN CO.,LTD. filed Critical HOKKAICAN CO.,LTD.
Priority to JP2014252228A priority Critical patent/JP6358945B2/en
Publication of JP2016113171A publication Critical patent/JP2016113171A/en
Application granted granted Critical
Publication of JP6358945B2 publication Critical patent/JP6358945B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、樹脂被覆金属板を用いた飲料食品等の缶詰用缶蓋に関する。   The present invention relates to a can lid for canned foods and the like using a resin-coated metal plate.

従来、飲料食品等の金属製缶詰用缶体の内面および外面には、熱硬化性樹脂を主成分とする溶剤型塗料が塗布されていた。これは、内容物の風味を保つこと、缶詰用缶体素材である金属の腐食を防止すること、あるいは缶詰用缶体外面の意匠性の向上や印刷面の保護などを目的としていた。しかし、溶剤型塗料は塗膜を形成するために高温での加熱が必要であり、また、加熱時に多量の溶剤が発生するため、作業の安全性および環境への影響の面で問題があった。そのため、最近は、溶剤を用いない熱可塑性樹脂による金属の被覆が提案されている。特に、熱可塑性樹脂の中でもポリエステル樹脂は加工性、耐熱性などに優れることから、ポリエステル樹脂をベースとした金属ラミネート用フィルムの開発が進められている。   Conventionally, a solvent-type paint mainly composed of a thermosetting resin has been applied to the inner and outer surfaces of metal cans such as beverage foods. The purpose of this is to maintain the flavor of the contents, to prevent corrosion of the metal that is the can body material for canning, or to improve the design of the outer surface of the can body for canning and to protect the printing surface. However, solvent-based paints require heating at a high temperature to form a coating film, and a large amount of solvent is generated during heating, which has problems in terms of work safety and environmental impact. . Therefore, recently, metal coating with a thermoplastic resin that does not use a solvent has been proposed. In particular, among thermoplastic resins, polyester resins are excellent in processability and heat resistance, and therefore, development of metal laminate films based on polyester resins has been underway.

ポリエステル等の樹脂フィルムをラミネート(被覆)したラミネート金属板(樹脂被覆金属板)を飲料食品等の缶詰用缶体の缶蓋材に適用した場合、生産性を上げるために、高速に缶蓋の巻締めを行うと、缶蓋外面側フィルムに、フィルム割れやフィルム削れが発生するという問題があった。また、レトルト処理などの高温殺菌処理の際にポリエステル樹脂中の環状三量体が樹脂フィルム表面に析出し意匠性を損なうことや、レトルト処理中に樹脂フィルム層そのものが白く濁ったように変色する現象(白化現象)が発生することなどの問題があった。一方で、缶蓋内面に用いられる樹脂には内容物に対する耐食性(耐内容物性)や、内容物と長期接触した際の密着性が要求される。   When a laminated metal plate (resin-coated metal plate) laminated with a resin film such as polyester is applied to a can lid material for canned foods, etc., the can lid can be When tightening, there was a problem that film cracking or film scraping occurred on the outer surface of the can lid. In addition, the cyclic trimer in the polyester resin is deposited on the surface of the resin film during high-temperature sterilization such as retort treatment, and the design properties are impaired, or the resin film layer itself is discolored so as to become cloudy white during the retort treatment. There were problems such as occurrence of a phenomenon (whitening phenomenon). On the other hand, the resin used for the inner surface of the can lid is required to have corrosion resistance (content resistance) with respect to the contents and adhesion upon long-term contact with the contents.

このような問題を改善する方法として、特許文献1には、金属板の両面に熱可塑性樹脂フィルムを被覆し、缶蓋外面側の熱可塑性樹脂フィルム層の非晶化率を60%以上とし、缶蓋内面側の熱可塑性樹脂フィルム層の一部に配向結晶層を残し耐巻締め性が良好な両面フィルムラミネート缶蓋を提供する技術が開示されている。   As a method for improving such a problem, Patent Document 1 covers both sides of a metal plate with a thermoplastic resin film, and the amorphous ratio of the thermoplastic resin film layer on the outer side of the can lid is 60% or more. A technique for providing a double-sided film laminate can lid having a good anti-winding property by leaving an oriented crystal layer in a part of the thermoplastic resin film layer on the inner surface of the can lid is disclosed.

特許文献2には、缶体外面側にエチレンテレフタレートを主たる繰返し単位とするポリエステルを30〜50質量%、ブチレンテレフタレートを主たる繰返し単位とするポリエステルを50〜70質量%の比率で配合したポリエステルであるフィルムを被覆した金属板が記載されている。これにより、最短半結晶化時間を100秒以下にすることでレトルト処理の熱を利用して結晶化させ、結晶化速度を速くしてフィルムに白斑(白化)が発生することを防止している。この金属板は容器内面側に二層構造となるポリエステル樹脂層を有し、上層のポリエステル樹脂層がポリエチレンテレフタレートもしくは酸成分として、イソフタル酸を6モル%以下の比率で共重合した共重合ポリエチレンテレフタレートであることも記載されている。加えて、上層のポリエステル樹脂層は、オレフィン系ワックスを0.1〜5質量%含有し、下層のポリエステル樹脂層が酸成分としてイソフタル酸を10モル%以上22モル%以下の比率で共重合した共重合ポリエチレンテレフタレートであることも記載されている。同様に、特許文献3〜6には、外面フィルムの耐白化性を向上させる技術が記載されている。   Patent Document 2 is a polyester in which a polyester having ethylene terephthalate as a main repeating unit is blended on the outer surface side of the can body in a ratio of 30 to 50% by mass and polyester having butylene terephthalate as a main repeating unit in a proportion of 50 to 70% by mass. A metal plate coated with a film is described. As a result, the shortest half crystallization time is set to 100 seconds or less to crystallize using the heat of retort treatment, and the crystallization speed is increased to prevent white spots (whitening) from occurring on the film. . This metal plate has a polyester resin layer having a two-layer structure on the inner surface of the container, and the upper polyester resin layer is polyethylene terephthalate or a copolymerized polyethylene terephthalate copolymerized with isophthalic acid at a ratio of 6 mol% or less as an acid component. It is also described that. In addition, the upper polyester resin layer contains 0.1 to 5% by mass of an olefinic wax, and the lower polyester resin layer is copolymerized with isophthalic acid as an acid component at a ratio of 10 mol% to 22 mol%. It is also described that it is a copolymerized polyethylene terephthalate. Similarly, Patent Documents 3 to 6 describe techniques for improving the whitening resistance of the outer film.

特許文献7には、エチレンテレフタレートを主たる繰返し単位とするポリエステル30〜50質量%と、ブチレンテレフタレートを主たる繰返し単位とするポリエステル50〜70質量%とを含有するポリエステル組成物が開示されている。これにより、レトルト処理時の変色を抑制する技術が記載されている。また特許文献7には、樹脂の融点を規定して熱融着させる際に界面を溶融させる技術も記載されている。また、特許文献8および9にも、レトルト処理時の変色を抑制する技術が記載されている。   Patent Document 7 discloses a polyester composition containing 30 to 50% by mass of a polyester mainly composed of ethylene terephthalate and 50 to 70% by mass of a polyester mainly composed of butylene terephthalate. This describes a technique for suppressing discoloration during retort processing. Patent Document 7 also describes a technique for melting the interface when the melting point of the resin is defined and heat-sealed. Patent Documents 8 and 9 also describe techniques for suppressing discoloration during retort processing.

また、特許文献10には、缶内面には接触角が70°〜120°であるポリエステルフィルムを用い、缶外面には、結晶化温度120℃以下であるPET−PBTを貼り合わせて耐白化性を向上させる技術が記載されている。   Further, in Patent Document 10, a polyester film having a contact angle of 70 ° to 120 ° is used on the inner surface of the can, and PET-PBT having a crystallization temperature of 120 ° C. or less is bonded to the outer surface of the can so as to have whitening resistance. Techniques for improving the performance are described.

特開2002−193256号公報JP 2002-193256 A 特開2005−342911号公報JP 2005-342911 A 特開平5−331302号公報Japanese Patent Laid-Open No. 5-331302 特開2000−313755号公報JP 2000-313755 A 特開2001−335682号公報JP 2001-335682 A 特開平6−155660号公報JP-A-6-155660 特開平10−110046号公報Japanese Patent Laid-Open No. 10-110046 特開平09−012743号公報JP 09-012743 A 特開平07−145252号公報JP 07-145252 A 特開2004−168365号公報JP 2004-168365 A

しかしながら、特許文献1に記載の缶蓋は、外面フィルムの良好な耐巻締め性を有するものの、エチレンテレフタレート/イソフタレート共重合体を使用しており、結晶化速度が不十分なためレトルト処理時の耐白化性が不十分であった。また、特許文献2〜6に記載の技術では、外面フィルムの耐白化性を向上させる効果は見られるものの、結晶化状態が考慮されていないため高速で巻締めた場合にもフィルムが削れないようにする耐削れ性の改善にはいたっていない。また、内面側は共重合成分が存在していることで、共重合成分が溶出して耐内容物性に劣る懸念があった。   However, although the can lid described in Patent Document 1 has a good anti-clamping property of the outer film, it uses an ethylene terephthalate / isophthalate copolymer, and the crystallization speed is insufficient, so that the retort treatment is performed. The whitening resistance of was insufficient. Moreover, although the effect of improving the whitening resistance of an outer surface film is seen by the technique of patent documents 2-6, since a crystallization state is not taken into consideration, even if it winds up at high speed, a film does not scrape However, it has not improved the abrasion resistance. Further, since the copolymer component is present on the inner surface side, the copolymer component is eluted and there is a concern that the content resistance is inferior.

特許文献7〜9に記載の技術では、缶体に用いる鋼板には両面同時に熱融着させる必要があるところ、片側の記載しかなく、反対面の樹脂についての開示はない。前述したように缶用鋼板では缶体の内外面に要求される性能が異なるため、異なる種類の樹脂を組み合わせる必要が生じる。異なる種類の樹脂を用いるものの生産性を考慮すると、同時に熱融着することが好ましく、共重合化することで融点をほぼ同等にした樹脂が組み合わされてきたが、共重合化成分を添加する必要があり、コストアップにつながる。融点が大きく異なる場合、高融点側の樹脂を熱融着させるために高融点まで加熱する必要があるが、低融点側の樹脂は融点を超えロール等に付着して生産性を阻害する懸念がある。上記技術では、これらの観点について考慮されていないため、フィルムの密着性に劣り、製品としての競争力に欠けるか、生産性に劣るか、いずれかの懸念があった。   In the techniques described in Patent Documents 7 to 9, the steel plate used in the can needs to be heat-sealed simultaneously on both sides, but only one side is described, and there is no disclosure about the resin on the opposite side. As described above, since the performance required for the inner and outer surfaces of the can body is different in the steel plate for cans, it is necessary to combine different types of resins. Considering the productivity of products using different types of resins, it is preferable to heat-seal at the same time, and resins having melting points almost equal by copolymerization have been combined, but it is necessary to add copolymerization components There will be an increase in cost. When the melting points differ greatly, it is necessary to heat the resin on the high melting point side to the high melting point in order to thermally fuse it, but there is a concern that the resin on the low melting point side may exceed the melting point and adhere to a roll or the like to hinder productivity. is there. In the above technology, since these viewpoints are not taken into consideration, there is a concern that the film adhesion is inferior, the product is not competitive, or the productivity is inferior.

特許文献10に記載の技術では、耐白化性に優れるものの、樹脂の結晶構造が制御されていないため、耐巻締め性が不十分である。また内面側の樹脂がイソフタル酸系共重合PETであるため、共重合成分が溶出して耐内容物性に劣る懸念があった。   Although the technique described in Patent Document 10 is excellent in whitening resistance, since the crystal structure of the resin is not controlled, the anti-winding property is insufficient. Moreover, since the resin on the inner surface side is isophthalic acid-based copolymerized PET, there is a concern that the copolymer component is eluted and the content resistance is inferior.

本発明は、上記課題を解決するためになされたものであって、高速で巻締めを行ってもフィルム削れやフィルム割れが発生せず耐巻締め性に優れ、レトルト処理後の外観の意匠性、耐内容物性に優れ、フィルムの密着性を保持することが可能な樹脂被覆金属板を用いた缶詰用缶蓋を提供することを目的とする。   The present invention was made in order to solve the above-mentioned problems, and even if it is fastened at a high speed, it does not cause film scraping or film cracking and is excellent in anti-winding resistance. An object of the present invention is to provide a can lid for canning using a resin-coated metal plate that has excellent content resistance and can maintain the adhesion of a film.

本発明の発明者らは、飲料食品等向け缶詰用缶蓋の内外面フィルムの組み合わせと結晶構造について鋭意検討し、内外面の結晶構造を制御することにより上記課題を解決できることを見出した。   The inventors of the present invention diligently studied the combination and crystal structure of the inner and outer surface films of can lids for canned foods and the like, and found that the above problems can be solved by controlling the crystal structure of the inner and outer surfaces.

本発明にかかわる缶詰用缶蓋は、金属板の両面が熱可塑性樹脂フィルムにより被覆された樹脂被覆金属板を用いた缶詰用缶蓋において、前記樹脂被覆金属板は、該金属板の缶蓋の外面側となる面にポリブチレンテレフタレート(PBT)とポリエチレンテレフタレート(PET)とを主体とした熱可塑性樹脂フィルムAが熱融着され、缶蓋の内面側となる面にポリエチレンテレフタレート(PET)を主体とした熱可塑性樹脂フィルムBが熱融着されて構成され、前記外面側の樹脂フィルムAのPBT/PETの組成比(wt%)が、(PBT/PET)=(40/60)〜(80/20)で、前記内面側の樹脂フィルムBがPET95mol%以上であり、前記内面側樹脂フィルムBのPET由来の融点が250℃以上265℃以下であり、かつ、前記外面側樹脂フィルムAにおけるPBT由来の融点より25℃以上高く、前記外面側樹脂フィルムAは、レーザーラマン分光法で樹脂フィルム表面に対し水平である偏光面で測定した1615±10cm−1のラマンバンド強度(I)と、垂直である偏光面で測定した1615±10cm−1のラマンバンド強度(I90)とのラマンバンド強度比(I90/I)が、0.60以上であり、前記内面側樹脂フィルムBは、レーザーラマン分光法で樹脂フィルム表面に対し水平である偏光面で測定した1730±10cm−1のラマンバンドの半値幅が、15〜20cm−1であることを特徴とする。 The can lid for canning according to the present invention is a can lid using a resin-coated metal plate in which both surfaces of the metal plate are coated with a thermoplastic resin film, wherein the resin-coated metal plate is a can lid of the metal plate. A thermoplastic resin film A mainly composed of polybutylene terephthalate (PBT) and polyethylene terephthalate (PET) is heat-sealed on the outer surface, and polyethylene terephthalate (PET) is mainly formed on the inner surface of the can lid. The thermoplastic resin film B was thermally fused, and the composition ratio (wt%) of PBT / PET of the resin film A on the outer surface side was (PBT / PET) = (40/60) to (80 / 20), the resin film B on the inner surface side is not less than 95 mol%, and the melting point derived from PET of the inner surface side resin film B is not less than 250 ° C. and not more than 265 ° C. And, wherein the outer surface side resin film higher 25 ° C. or higher than the melting point of from PBT in A, the outer surface side resin film A, laser Raman spectroscopy 1615 ± 10 cm on the resin film surface was measured by the polarization plane is horizontal -1 The Raman band intensity ratio (I 90 / I 0 ) between the Raman band intensity (I 0 ) and the Raman band intensity (I 90 ) of 1615 ± 10 cm −1 measured with a perpendicular polarization plane is 0.60 or more The inner side resin film B has a half band width of 1730 ± 10 cm −1 measured by a laser Raman spectroscopy with a polarization plane that is horizontal with respect to the resin film surface, and is 15 to 20 cm −1. It is characterized by.

本発明によれば、高速で缶蓋の巻締めを行ってもフィルム削れやフィルム傷が発生せず耐巻締め性に優れ、レトルト処理後の外観の意匠性、耐内容物性に優れ、フィルムの密着性を保持可能な缶詰用缶蓋を提供することができる。   According to the present invention, even if the can lid is tightened at a high speed, no film scraping or film scratches are generated, and the anti-winding resistance is excellent, the appearance design after retort processing is excellent, and the content resistance is excellent. The can lid | cover for cans which can maintain adhesiveness can be provided.

図1は、本発明に適用されるレーザーラマン分光法の説明図である。FIG. 1 is an explanatory diagram of laser Raman spectroscopy applied to the present invention. 図2は、本発明に適用される樹脂フィルムの熱融着方法の説明図である。FIG. 2 is an explanatory diagram of a resin film thermal fusion method applied to the present invention. 図3は、樹脂フィルムラミネート金属板から形成された缶蓋説明図である。FIG. 3 is an explanatory view of a can lid formed from a resin film laminated metal plate. 図4は、図3の缶蓋のI−I断面図である。4 is a cross-sectional view taken along the line II of the can lid of FIG. 3. 図5は、缶蓋を缶胴に巻締めした缶体の説明図である。FIG. 5 is an explanatory diagram of a can body in which a can lid is wound around a can body.

以下、本発明の缶体を形成する缶蓋を一実施形態として、図面を参照して、詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。   Hereinafter, a can lid for forming a can body of the present invention will be described in detail with reference to the drawings as an embodiment. In addition, this invention is not limited by this embodiment.

<レーザーラマン分光法>
まず、図1を参照し、本発明に適用されるレーザーラマン分光法の測定方法について説明する。図1に示すように、金属板1の両面に樹脂フィルム2がラミネートされた樹脂被覆金属板10において、一方の面の樹脂フィルム2に対して、レーザー発振器3から発振されたレーザー光4を入射し、散乱したラマン散乱光5を分光器6で分光する。レーザーラマン分光法で照射されるレーザー光4のビーム径はレンズ7により可変となっており、必要な測定領域サイズでの結晶化度の評価が可能となる。そして、照射されるレーザー光4のビーム径を絞ることによって、樹脂フィルム2の微小領域における結晶化度の評価が可能になる。本実施の形態では、図1に示すレーザーラマン分光法の測定方法により、樹脂フィルム2の厚さ方向断面の、任意の部位における結晶化度を評価した。
<Laser Raman spectroscopy>
First, with reference to FIG. 1, the measuring method of the laser Raman spectroscopy applied to this invention is demonstrated. As shown in FIG. 1, in a resin-coated metal plate 10 in which a resin film 2 is laminated on both surfaces of a metal plate 1, a laser beam 4 oscillated from a laser oscillator 3 is incident on the resin film 2 on one surface. Then, the scattered Raman scattered light 5 is split by the spectroscope 6. The beam diameter of the laser beam 4 irradiated by the laser Raman spectroscopy is variable by the lens 7, and the crystallinity can be evaluated with a necessary measurement region size. And the crystallinity degree in the micro area | region of the resin film 2 can be evaluated by restrict | squeezing the beam diameter of the laser beam 4 irradiated. In this Embodiment, the crystallinity degree in arbitrary site | parts of the thickness direction cross section of the resin film 2 was evaluated with the measuring method of the laser Raman spectroscopy shown in FIG.

ここで、レーザーラマン分光法から求められる1730cm−1近傍のラマンバンド(C=O伸縮振動由来)のピーク半値幅は、樹脂フィルム2の密度と反比例の関係にあることが知られている。一方で、樹脂フィルム2の密度と体積分率結晶化度との間には、以下の式(1)の関係があることが知られている。 Here, it is known that the peak half-value width of the Raman band in the vicinity of 1730 cm −1 (derived from C═O stretching vibration) obtained from laser Raman spectroscopy is inversely proportional to the density of the resin film 2. On the other hand, it is known that there is a relationship of the following formula (1) between the density of the resin film 2 and the volume fraction crystallinity.

Figure 0006358945
Figure 0006358945

したがって、1730cm−1近傍のラマンバンド(C=O伸縮振動由来)のピーク半値幅を測定することによって、レーザー光4を照射した部分の樹脂フィルム2の密度を求めることができる。更に上記式(1)に従って、樹脂フィルム2の体積分率結晶化度(以後、結晶化度と称す)を求めることができる。 Therefore, the density of the resin film 2 in the portion irradiated with the laser beam 4 can be obtained by measuring the peak half-value width of the Raman band (derived from C = O stretching vibration) in the vicinity of 1730 cm −1 . Furthermore, according to the above formula (1), the volume fraction crystallinity (hereinafter referred to as crystallinity) of the resin film 2 can be obtained.

また、レーザーラマン分光法で1615cm−1近傍に見られるラマンバンドはベンゼン環C=C伸縮振動由来である。C=C伸縮振動については、照射するレーザー光4を偏光させて、樹脂フィルム2表面に対し水平である偏光面で測定したラマンバンド強度と垂直である偏光面で測定したラマンバンド強度との比から結晶化度を測定することが可能である。 Further, the Raman band seen in the vicinity of 1615 cm −1 by laser Raman spectroscopy is derived from the benzene ring C═C stretching vibration. For C = C stretching vibration, the ratio of the Raman band intensity measured on the polarization plane that is horizontal to the surface of the resin film 2 and the Raman band intensity measured on the polarization plane that is perpendicular to the surface of the resin film 2 by polarizing the irradiated laser beam 4. It is possible to measure the crystallinity from

<金属板>
本発明に用いられる樹脂被覆金属板10の下地となる金属板1には、缶詰用缶体の缶蓋や缶胴の金属材料として使用されている表面処理鋼板やアルミニウム板を用いることができる。金属板1には、下層が金属クロム、上層がクロム水酸化物となる二層皮膜の表面処理鋼板であるティンフリースチール(以下TFS)等が好適であるが、それに限定されず、クロムを他の金属に置き換えたクロムフリー表面処理鋼板を使用することができる。TFSの場合、金属クロム、およびクロム水酸化物層の付着量は特に限定されないが、加工性や耐食性の観点から、金属クロム層は70〜200mg/m、クロム水酸化物層は10〜30mg/mの範囲とすることが望ましい。
<Metal plate>
A surface-treated steel plate or an aluminum plate used as a metal material for a can lid or can body of a can body can be used for the metal plate 1 as a base of the resin-coated metal plate 10 used in the present invention. The metal plate 1 is preferably tin-free steel (hereinafter referred to as TFS), which is a surface-treated steel sheet having a two-layer coating in which the lower layer is metallic chromium and the upper layer is chromium hydroxide, but is not limited thereto. It is possible to use a chromium-free surface-treated steel plate replaced with the above metal. In the case of TFS, the amount of metal chromium and chromium hydroxide layer deposited is not particularly limited, but from the viewpoint of workability and corrosion resistance, the metal chromium layer is 70 to 200 mg / m 2 , and the chromium hydroxide layer is 10 to 30 mg. / M 2 is preferable.

<金属板に被覆される樹脂フィルム>
本発明に用いられる樹脂被覆金属板10において、金属板1の2つの面のうち、樹脂被覆金属板10から缶蓋が形成される際に缶蓋の外面側となる面に熱融着される樹脂フィルム2は、ポリブチレンテレフタレート(PBT)と、ポリエチレンテレフタレート(PET)とを主体とした熱可塑性樹脂フィルムAで構成される。また、缶蓋の内面側となる面に熱融着される樹脂フィルム2は、ポリエチレンテレフタレート(PET)を主体とした熱可塑性樹脂フィルムBで構成される。
<Resin film coated on metal plate>
In the resin-coated metal plate 10 used in the present invention, of the two surfaces of the metal plate 1, when the can lid is formed from the resin-coated metal plate 10, it is heat-sealed to the surface on the outer surface side of the can lid. The resin film 2 is composed of a thermoplastic resin film A mainly composed of polybutylene terephthalate (PBT) and polyethylene terephthalate (PET). The resin film 2 that is heat-sealed to the inner surface of the can lid is composed of a thermoplastic resin film B mainly composed of polyethylene terephthalate (PET).

外面側の樹脂フィルムAのPBT/PETの組成比(wt%)が、(PBT/PET)=(40/60)〜(80/20)で、内面側の樹脂フィルムBがPET95mol%以上であり、熱可塑性樹脂フィルムAにおけるPBT由来の融点は熱可塑性樹脂フィルムBのPET由来の融点より25℃以上低い。   The PBT / PET composition ratio (wt%) of the resin film A on the outer surface side is (PBT / PET) = (40/60) to (80/20), and the resin film B on the inner surface side is 95% by mole or more of PET. The melting point derived from PBT in the thermoplastic resin film A is 25 ° C. or more lower than the melting point derived from the PET of the thermoplastic resin film B.

外面側の樹脂フィルムAは、レーザーラマン分光法で樹脂フィルム2表面に対し水平である偏光面で測定した1615±10cm−1のラマンバンド強度(I)と、垂直である偏光面で測定した1615±10cm−1のラマンバンド強度(I90)とのラマンバンド強度比(I90/I)が、0.60以上、好ましくは0.70以上である。ここで、表面に対し水平である偏光面で測定された1615±10cm−1のラマンバンド強度(I)は、表面方向の結晶成分が多いほど大きな値となる。一方、垂直である偏光面で測定された1615±10cm−1のラマンバンド強度(I90)は、厚み方向の結晶成分が多いほど大きな値になる。よって、ラマンバンド強度比(I90/I)が大きな値になれば、表面方向の結晶成分が減少し、厚み方向の結晶成分が増加することを意味する。 The resin film A on the outer surface side was measured with a Raman band intensity (I 0 ) of 1615 ± 10 cm −1 measured by a laser Raman spectroscopy with a polarization plane horizontal to the surface of the resin film 2 and a polarization plane perpendicular to the surface. The Raman band intensity ratio (I 90 / I 0 ) to the Raman band intensity (I 90 ) of 1615 ± 10 cm −1 is 0.60 or more, preferably 0.70 or more. Here, the Raman band intensity (I 0 ) of 1615 ± 10 cm −1 measured with a polarization plane that is horizontal to the surface becomes larger as the crystal component in the surface direction increases. On the other hand, the Raman band intensity (I 90 ) of 1615 ± 10 cm −1 measured on the vertical polarization plane increases as the crystal component in the thickness direction increases. Therefore, if the Raman band intensity ratio (I 90 / I 0 ) becomes a large value, it means that the crystal component in the surface direction decreases and the crystal component in the thickness direction increases.

缶蓋13を缶胴19の端縁フレンジ部に二重巻締めして巻締部20を形成する際には、巻締めロールが缶蓋外面側の樹脂フィルムAの表面を加圧しながら、表面方向に沿って高速で移動する。延伸された樹脂フィルムAは、延伸過程で表面方向の結晶成分が大きくなっている。その状態で巻締めが行われると、弱い分子間で結合が切れやすく、樹脂フィルムAの損傷を招く。そこで樹脂フィルムAに対して垂直方向の結晶成分が必要となってくる。その割合は、ラマンバンド強度比が0.60以上であればよい。更に、ラマンバンド強度比が0.70以上であることが好ましい。ラマンバンド強度比が0.60未満の場合、表面方向の結晶成分が多いため、高速巻締め時に樹脂フィルムAが削れてしまう。また、同時に熱融着される缶蓋13内面側の樹脂フィルムBの結晶化度が変化し、樹脂フィルムBの密着性が劣化する。   When the can lid 13 is double-rolled onto the edge flange portion of the can body 19 to form the winding portion 20, the winding roll pressurizes the surface of the resin film A on the outer surface of the can lid, Move at high speed along the direction. The stretched resin film A has a large crystal component in the surface direction during the stretching process. When tightening is performed in this state, the bonds between the weak molecules are easily broken and the resin film A is damaged. Therefore, a crystal component in the direction perpendicular to the resin film A is required. The ratio should just be a Raman band intensity ratio 0.60 or more. Furthermore, the Raman band intensity ratio is preferably 0.70 or more. When the Raman band intensity ratio is less than 0.60, since there are many crystal components in the surface direction, the resin film A is scraped during high-speed winding. Further, the crystallinity of the resin film B on the inner surface side of the can lid 13 which is simultaneously heat-sealed changes, and the adhesion of the resin film B deteriorates.

一方、缶蓋13内面側の樹脂フィルムBは、レーザーラマン分光法で樹脂フィルムBの表面に対し水平である偏光面で測定した1730±10cm−1のラマンバンドの半値幅が、15〜20cm−1、好ましくは、16〜19cm−1とする。このラマンバンドの半値幅が15cm−1より小さい場合、低融点である外面側の樹脂フィルムAが製造過程でラミロール等に付着してしまい、製造性を阻害する。このラマンバンドの半値幅が20cm−1より大きいと、結晶化が不十分なため内面側の樹脂フィルムBの密着性が不十分となり、耐内容物性にも劣る。 On the other hand, the resin film B on the inner surface side of the can lid 13 has a half-width of a Raman band of 1730 ± 10 cm −1 measured by a laser Raman spectroscopy with a polarization plane horizontal to the surface of the resin film B of 15 to 20 cm −. 1 , preferably 16-19 cm −1 . When the half-value width of this Raman band is smaller than 15 cm −1 , the resin film A on the outer surface side having a low melting point adheres to Ramirol or the like during the production process, thereby impairing the productivity. If the half-value width of this Raman band is larger than 20 cm −1 , crystallization is insufficient, so that the adhesiveness of the resin film B on the inner surface side is insufficient, and the content resistance is inferior.

缶蓋に用いる樹脂被覆金属板10を製造する場合、缶蓋13外面側の樹脂フィルムAと内面側の樹脂フィルムBとは同時に熱融着が行われるため、外面側の樹脂フィルムAを上記のような結晶化度にするには内面側の樹脂フィルムBを適正に選択する必要がある。検討の結果、内面側樹脂フィルムBのPET由来の融点が250℃以上265℃以下であり、外面側の樹脂フィルムAにおけるPBT由来の融点より25℃以上高いことが適正であることが分かった。融点差が25℃未満だと、外面側の樹脂フィルムAの結晶化度を下げることができず、ラマンバンド強度比で0.60以上を達成できない。融点差を25℃以上にするためには、PET由来の融点を250℃以上にする必要がある。一方、PET由来の融点が265℃を超えると、外面側の樹脂フィルムAの融点を大きく超えて、製造時に後述するラミロールに樹脂フィルム2Aが付着するというトラブルが発生しかねない。   When the resin-coated metal plate 10 used for the can lid is manufactured, the resin film A on the outer surface side of the can lid 13 and the resin film B on the inner surface side are simultaneously heat-sealed. In order to achieve such crystallinity, it is necessary to appropriately select the resin film B on the inner surface side. As a result of the examination, it was found that it is appropriate that the melting point derived from PET of the inner surface side resin film B is 250 ° C. or higher and 265 ° C. or lower, which is 25 ° C. higher than the melting point derived from PBT in the outer surface side resin film A. When the difference in melting point is less than 25 ° C., the crystallinity of the resin film A on the outer surface cannot be lowered, and the Raman band intensity ratio cannot be 0.60 or more. In order to make the melting point difference 25 ° C. or higher, the melting point derived from PET needs to be 250 ° C. or higher. On the other hand, if the melting point derived from PET exceeds 265 ° C., the melting point of the resin film A on the outer surface side may be greatly exceeded, and a trouble may occur that the resin film 2A adheres to a lami roll described later during production.

ここで、図2を参照し、内外面樹脂フィルム2を熱融着する方法について説明する。例えば、図2に示すように、金属板1を金属帯加熱装置11にて一定温度以上に昇温させた後、樹脂フィルム2を圧着ロール12(以後、ラミロール12と称す)により加熱金属板1に圧接させる。これにより、金属板1の表面に樹脂フィルム2を熱融着させて(以降、ラミネートと称する場合もある)、本発明の缶蓋に用いる樹脂被覆金属板10を製造することができる。この場合、ラミロール12を金属板1に圧接させ熱融着させることが必要である。   Here, with reference to FIG. 2, a method for heat-sealing the inner and outer resin films 2 will be described. For example, as shown in FIG. 2, after the metal plate 1 is heated to a certain temperature or more by a metal band heating device 11, the resin film 2 is heated by a pressure-bonding roll 12 (hereinafter referred to as a lami roll 12). Pressure contact. Thereby, the resin film 2 can be manufactured by thermally fusing the resin film 2 to the surface of the metal plate 1 (hereinafter sometimes referred to as “laminate”). In this case, it is necessary that the lami roll 12 is pressed against the metal plate 1 and thermally fused.

以下、ラミネート条件の詳細について説明する。熱融着開始時の金属板1の温度は、樹脂フィルム2の融点を基準として、+5℃〜+40℃の範囲とすることが望ましい。熱融着法によって、金属板1と樹脂フィルム2との層間の密着性を確保するためには、密着界面におけるポリエステル樹脂の熱流動が必要である。金属板1の温度を、樹脂フィルム2の融点を基準として+5℃以上の温度とすることで、各層間における樹脂が熱流動し、界面における濡れ性が相互に良好となって、優れた密着性を得ることができる。金属板1の温度を+40℃超としても、更なる密着性の改善効果が期待できないこと、樹脂フィルム2の溶融が過度となり、ラミロール12表面の型押しによる表面荒れ、ラミロール12への溶融物の転写などの問題が生じる懸念があることにより、+40℃以下とすることが好ましい。   Details of the lamination conditions will be described below. The temperature of the metal plate 1 at the start of heat fusion is preferably in the range of + 5 ° C. to + 40 ° C. based on the melting point of the resin film 2. In order to ensure the adhesion between the metal plate 1 and the resin film 2 by the thermal fusion method, it is necessary to heat the polyester resin at the adhesion interface. By setting the temperature of the metal plate 1 to a temperature of + 5 ° C. or higher based on the melting point of the resin film 2, the resin in each layer is thermally fluidized, the wettability at the interface is mutually good, and excellent adhesion Can be obtained. Even if the temperature of the metal plate 1 is higher than + 40 ° C., further improvement in adhesion cannot be expected, the resin film 2 is excessively melted, the surface is roughened by the embossing of the surface of the lami roll 12, and the melt to the lami roll 12 is not melted. Due to concerns about problems such as transfer, the temperature is preferably set to + 40 ° C. or lower.

ラミネート時に樹脂フィルム2が受ける熱履歴としては、樹脂フィルム2の融点以上で、ラミロールと相互に接している時間が5msec以上であることが望ましい。これは、界面における濡れ性が良好となるためである。相互に接している時間に樹脂フィルム2は熱で金属板1界面近傍から溶融する。樹脂フィルム2の熱伝導度はきわめて小さいため、5〜40msecで樹脂フィルム2表層は融点に達することはないものの、この時間が長くなると融点に近い温度まで上昇し、ラミロール12に溶着する懸念がある。この観点からも40msec以下とすることが望ましい。更に、10〜25msecであれば、より好ましい。   The heat history received by the resin film 2 at the time of laminating is preferably not less than the melting point of the resin film 2 and not less than 5 msec. This is because the wettability at the interface becomes good. The resin film 2 melts from the vicinity of the interface of the metal plate 1 with heat during the time of contact with each other. Since the thermal conductivity of the resin film 2 is extremely small, the surface layer of the resin film 2 does not reach the melting point in 5 to 40 msec. . Also from this viewpoint, it is desirable to set it to 40 msec or less. Furthermore, 10 to 25 msec is more preferable.

このようなラミネート条件を達成するためには、150mpm以上の高速操業に加え、熱融着中の冷却も必要である。例えば、図2中ラミロール12は内部水冷式であり、冷却水を通過させることで、樹脂フィルム2が過度に加熱されるのを抑制することができる。更に、内外面樹脂フィルム1、2それぞれのラミロール12の冷却水温度を独立に変化させることで、樹脂フィルム2の熱履歴をコントロールできるため、好適である。内面側の樹脂フィルム2の方が高融点なので、ラミロール12の温度も高めに設定し、外面側のラミロール12の温度は低めに設定するのが好ましい。たとえば、内面側のラミロール12の温度を120℃にして、外面側のラミロール12の温度を80℃にすると言ったように温度差を設けるのが好ましい。ラミロール12の温度は、50℃〜130℃の範囲で適宜調整すると良い。   In order to achieve such lamination conditions, in addition to high-speed operation of 150 mpm or more, cooling during heat sealing is also necessary. For example, the lami roll 12 in FIG. 2 is an internal water cooling type, and it can suppress that the resin film 2 is heated too much by letting a cooling water pass. Furthermore, it is preferable because the heat history of the resin film 2 can be controlled by independently changing the cooling water temperatures of the inner and outer surface resin films 1 and 2 respectively. Since the resin film 2 on the inner surface side has a higher melting point, it is preferable that the temperature of the Lami roll 12 is set higher and the temperature of the Lami roll 12 on the outer surface side is set lower. For example, it is preferable to provide a temperature difference such that the temperature of the inner side lami roll 12 is 120 ° C. and the temperature of the outer side lami roll 12 is 80 ° C. The temperature of the lami roll 12 is preferably adjusted appropriately in the range of 50 ° C to 130 ° C.

ラミロール12の加圧は、面圧として9.8〜294N/cm(1〜30kgf/cm)とすることが望ましい。ラミロール12の加圧が9.8N/cm未満の場合、たとえ熱融着開始時の温度が樹脂フィルム2の融点に対して+5℃以上で十分な流動性が確保できたとしても、金属板1表面に樹脂フィルム2を押し広げる力が弱いため十分な被覆性が得られない。その結果、密着性、耐食性(耐内容物性)などの性能に影響を及ぼす可能性がある。また、ラミロール12の加圧が294N/cm超となると、樹脂被覆金属板10の性能に不都合は生じないものの、ラミロール12にかかる力が大きく装置に強度が必要となることから設備の大型化を招くため不経済である。よって、ラミロール12の加圧は、好適には9.8〜294N/cmである。 The pressure of the lami roll 12 is desirably 9.8 to 294 N / cm 2 (1 to 30 kgf / cm 2 ) as the surface pressure. When the pressure of the lami roll 12 is less than 9.8 N / cm 2 , even if the temperature at the start of thermal fusion is + 5 ° C. or higher with respect to the melting point of the resin film 2, Since the force which spreads the resin film 2 on one surface is weak, sufficient coverage cannot be obtained. As a result, performance such as adhesion and corrosion resistance (content resistance) may be affected. In addition, if the pressure of the Lami roll 12 exceeds 294 N / cm 2 , there will be no inconvenience in the performance of the resin-coated metal plate 10, but the equipment is increased in size because the force applied to the Lami roll 12 is large and the apparatus needs strength. This is uneconomical. Therefore, the pressure of the lami roll 12 is preferably 9.8 to 294 N / cm 2 .

外面側の樹脂フィルムAは、ポリブチレンテレフタレート(PBT)とポリエチレンテレフタレート(PET)を主体とし、PBT/PET樹脂組成比(wt%)が、(PBT/PET)=(40/60)〜(80/20)である。PBT比率がこの範囲より少ない場合、レトルト処理時に白化してしまい好ましくない。レトルト処理時の白化については後述する。PBT比率が多くなると、水蒸気雰囲気下での加熱により、密着性等が悪化し、好ましくない。   The resin film A on the outer surface side is mainly composed of polybutylene terephthalate (PBT) and polyethylene terephthalate (PET), and the PBT / PET resin composition ratio (wt%) is (PBT / PET) = (40/60) to (80 / 20). When the PBT ratio is less than this range, whitening occurs during retort processing, which is not preferable. Whitening during retort processing will be described later. When the PBT ratio increases, the adhesion and the like deteriorate due to heating in a steam atmosphere, which is not preferable.

内面側に用いる樹脂フィルムBの組成は、ポリエチレンテレフタレートが95mol%以上である。95mol%未満だと、共重合成分を含めたその他成分が混入し、内容物へ溶出し耐内容物性が劣化してしまう。またその他成分の添加により融点が低下してしまい、金属板1との熱融着性(密着性)が劣化する。   The composition of the resin film B used on the inner surface side is 95 mol% or more of polyethylene terephthalate. If it is less than 95 mol%, other components including the copolymer component are mixed in and eluted into the contents, and the resistance to physical properties deteriorates. Moreover, melting | fusing point falls by addition of another component, and the heat-fusability (adhesion) with the metal plate 1 deteriorates.

なお、加工性、耐熱性や耐食性を損なわない範囲で内外面側の樹脂フィルム2の材料に他のジカルボン酸成分、グリコール成分、その他の樹脂成分を共重合させてもよい(内面側では、5mol%未満とする)。ジカルボン酸成分としては、イソフタル酸、ナフタレンジカルボン酸、ジフェニルジカルボン酸、ジフェニルスルホンジカルボン酸、ジフェノキシエタンジカルボン酸、5−ナトリウムスルホイソフタル酸、フタル酸などの芳香族ジカルボン酸、シュウ酸、コハク酸、アジピン酸、セバシン酸、ダイマー酸、マレイン酸、フマル酸などの脂肪族ジカルボン酸、シクロヘキサンジカルボン酸などの脂環族カルボン酸、p−オキシ安息香酸などのオキシカルボン酸などを例示できる。   In addition, other dicarboxylic acid components, glycol components, and other resin components may be copolymerized with the material of the resin film 2 on the inner and outer surface sides within a range not impairing workability, heat resistance, and corrosion resistance (on the inner surface side, 5 mol). %). Dicarboxylic acid components include isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, diphenylsulfone dicarboxylic acid, diphenoxyethanedicarboxylic acid, 5-sodium sulfoisophthalic acid, aromatic dicarboxylic acid such as phthalic acid, oxalic acid, succinic acid, Examples thereof include aliphatic dicarboxylic acids such as adipic acid, sebacic acid, dimer acid, maleic acid and fumaric acid, alicyclic carboxylic acids such as cyclohexanedicarboxylic acid, and oxycarboxylic acids such as p-oxybenzoic acid.

グリコール成分としては、エチレングリコールまたはブタンジオール、プロパンジオール、ペンタンジオール、ヘキサンジオール、ネオペンチルグリコールなどの脂肪族グリコール、シクロヘキサンジメタノールなどの脂環族グリコール、ビスフェノールA、ビスフェノールSなどの芳香族グリコール、ジエチレングリコールなどを例示できる。前記ジカルボン酸成分およびグリコール成分は2種以上を併用してもよい。   Examples of the glycol component include ethylene glycol or aliphatic glycols such as butanediol, propanediol, pentanediol, hexanediol and neopentylglycol, alicyclic glycols such as cyclohexanedimethanol, aromatic glycols such as bisphenol A and bisphenol S, Examples include diethylene glycol. Two or more dicarboxylic acid components and glycol components may be used in combination.

なお、必要に応じて、蛍光増白剤、酸化防止剤、熱安定剤、紫外線吸収剤、可塑剤、顔料、帯電防止剤、結晶核剤等を配合できる。例えば、外面側となる樹脂フィルムAに、ジスアゾ系顔料を使用すれば透明性に優れながら着色力が強く、展延性に富むため、製蓋後も光輝色のある外観が得られる。顔料を添加する場合は、30PHR以下とすることが好ましい。ここで、顔料の添加量は、顔料を添加した樹脂層に対する(下層の樹脂層に添加した場合は、下層の樹脂層に対する)割合(樹脂量に対する外割)である。ジスアゾ系顔料としては、カラーインデックス(C.I.登録の名称)が、ピグメントイエロー12、13、14、16、17、55、81、83、180、181のうちの少なくとも1種類を用いることができる。特に、色調(光輝色)の鮮映性、レトルト殺菌処理環境での耐ブリーディング性(顔料がフィルム表面に析出する現象に対する抑制能)などの観点から、分子量が大きくPET樹脂への溶解性が乏しい顔料が望ましく、分子量が700以上の、ベンズイミダゾロン構造を有するC.I.ピグメントイエロー180がより好ましく用いられる。   If necessary, an optical brightener, an antioxidant, a heat stabilizer, an ultraviolet absorber, a plasticizer, a pigment, an antistatic agent, a crystal nucleating agent, and the like can be blended. For example, if a disazo pigment is used for the resin film A on the outer surface side, since it has excellent transparency and strong coloring power and is excellent in spreadability, an appearance with a brilliant color can be obtained even after the lid is made. When adding a pigment, it is preferable to make it 30 PHR or less. Here, the addition amount of the pigment is a ratio (external ratio to the resin amount) with respect to the resin layer to which the pigment is added (when added to the lower resin layer, with respect to the lower resin layer). As the disazo pigment, at least one of pigment yellow 12, 13, 14, 16, 17, 55, 81, 83, 180, and 181 is used as the color index (CI registered name). it can. In particular, it has a high molecular weight and poor solubility in PET resin from the viewpoints of vividness of color tone (bright color) and bleeding resistance in retort sterilization environment (inhibition ability against the phenomenon that pigment is deposited on the film surface). C. A pigment having a benzimidazolone structure having a molecular weight of 700 or more is desirable. I. Pigment Yellow 180 is more preferably used.

樹脂フィルム2を形成する樹脂材料は、その製法によって限定されることはない。例えば、次の方法(1),(2)などを利用して、樹脂材料を形成することができる。   The resin material which forms the resin film 2 is not limited by the manufacturing method. For example, the resin material can be formed by using the following methods (1) and (2).

(1)テレフタル酸、エチレングリコール、および共重合成分をエステル化反応させ、次いで得られる反応生成物を重縮合させて共重合ポリエステルとする方法。
(2)ジメチルテレフタレート、エチレングリコール、および共重合成分をエステル交換反応させ、次いで得られる反応生成物を重縮合反応させて共重合ポリエステルとする方法。
(1) A method of esterifying terephthalic acid, ethylene glycol, and a copolymer component, and then polycondensing the resulting reaction product to obtain a copolymer polyester.
(2) A method in which dimethyl terephthalate, ethylene glycol, and a copolymer component are subjected to a transesterification reaction, and then a reaction product obtained is subjected to a polycondensation reaction to obtain a copolymer polyester.

共重合ポリエステルの製造においては、必要に応じて、蛍光増白剤、酸化防止剤、熱安定剤、紫外線吸収剤、帯電防止剤などの添加物を添加してもよい。   In the production of the copolyester, additives such as a fluorescent brightener, an antioxidant, a heat stabilizer, an ultraviolet absorber, and an antistatic agent may be added as necessary.

本発明で用いられるポリエステル樹脂は、機械的特性、ラミネート性、フレーバー性を向上させる点からポリエステルの重量平均分子量は、5000〜100000の範囲であるものが好ましく、10000〜80000の範囲が更に好ましい。また、本発明のポリエステル樹脂の厚みは5μm以上、50μm以下であることが好ましく、更に8μm以上30μm以下、特に10μm以上25μm以下の範囲であることが好ましい。   In the polyester resin used in the present invention, the weight average molecular weight of the polyester is preferably in the range of 5,000 to 100,000, more preferably in the range of 10,000 to 80,000 from the viewpoint of improving mechanical properties, laminating properties, and flavor properties. The thickness of the polyester resin of the present invention is preferably 5 μm or more and 50 μm or less, more preferably 8 μm or more and 30 μm or less, particularly preferably 10 μm or more and 25 μm or less.

<レトルト時の白化について>
ポリエステル樹脂フィルム2を被覆させた金属板10を用いて製造された缶蓋13を、缶胴19の端縁部に巻締めた缶体18についてレトルト殺菌処理を行なうと、多くの場合、外面側の樹脂フィルムAが白化する現象が見られる。これは樹脂フィルムA内に微細な気泡が形成され、これら気泡によって光が散乱した結果、白く濁った外観を呈するものである。加えて、この樹脂フィルムAに形成される気泡は以下のような特徴を有する。まず、これらの気泡は、缶体18を乾熱環境下で加熱しても形成されない。また、缶体に内容物を充填せずに空き缶のままレトルト殺菌処理を行っても気泡は形成されない。気泡は外面側の樹脂フィルムAの厚み方向全域にわたって観察されるわけではなく、金属板1に接している界面近傍において観察される。以上の特徴から、レトルト殺菌処理に伴う外面側の樹脂フィルムAでの気泡の形成は、以下のメカニズムによって起こると考えられる。
<About whitening during retort>
In many cases, when the can lid 18 manufactured by using the metal plate 10 coated with the polyester resin film 2 is wound around the end portion of the can body 19 with the retort sterilization treatment, the outer surface side The phenomenon that the resin film A is whitened is observed. This is because fine bubbles are formed in the resin film A, and light is scattered by these bubbles, resulting in a white turbid appearance. In addition, the bubbles formed in the resin film A have the following characteristics. First, these bubbles are not formed even when the can 18 is heated in a dry heat environment. Moreover, even if a retort sterilization process is performed with an empty can without filling the can, no bubbles are formed. The bubbles are not observed over the entire thickness direction of the resin film A on the outer surface side, but are observed in the vicinity of the interface in contact with the metal plate 1. From the above characteristics, it is considered that the formation of bubbles in the outer surface side resin film A accompanying the retort sterilization treatment is caused by the following mechanism.

レトルト殺菌処理開始当初から缶体は高温水蒸気にさらされ、水蒸気の一部は外面側樹脂フィルムAの内部へと浸入し、金属板1との界面近傍まで到達する。レトルト殺菌処理開始当初、外面側樹脂フィルムAと金属板1との界面近傍は内容物によって内面から冷却されているので、界面に侵入した水蒸気は凝縮水となる。次いで、レトルト殺菌処理の時間経過とともに、内容物の温度も上昇し、金属板1との界面の凝縮水は再気化を起こす。気化した水蒸気は再び樹脂フィルムAを通って外へ脱出するが、このときの凝縮水の跡が気泡となると推定される。気泡が金属板1との界面近傍でのみ観察されるのは、凝縮水が形成される場所が界面近傍であるためと考えられる。加えて、熱せられた金属板1との接触により溶けた界面近傍の樹脂が、冷却、固化した後も機械的に軟らかく変形性に富む非晶性樹脂であり、変形しやすく、気泡を形成しやすいためと考えられる。したがって、レトルト殺菌処理時に缶外面側の樹脂フィルムAに気泡が形成されず白化が抑制されるためには、外面側樹脂フィルムAに関して、レトルト殺菌処理の熱で速やかに非晶性ポリエステル層を結晶化させ、非晶層の強度をアップさせることが有効である。   The can body is exposed to high-temperature steam from the beginning of the retort sterilization treatment, and part of the steam enters the inside of the outer surface side resin film A and reaches the vicinity of the interface with the metal plate 1. Since the vicinity of the interface between the outer surface side resin film A and the metal plate 1 is cooled from the inner surface by the contents at the beginning of the retort sterilization treatment, the water vapor that has entered the interface becomes condensed water. Next, with the passage of time for the retort sterilization treatment, the temperature of the contents also rises, and the condensed water at the interface with the metal plate 1 is re-vaporized. The vaporized water vapor escapes again through the resin film A, but it is presumed that the trace of condensed water at this time becomes bubbles. The reason why the bubbles are observed only in the vicinity of the interface with the metal plate 1 is considered that the place where the condensed water is formed is in the vicinity of the interface. In addition, the resin in the vicinity of the interface melted by contact with the heated metal plate 1 is an amorphous resin that is mechanically soft and highly deformable even after cooling and solidification, and is easily deformed and forms bubbles. It is thought to be easy. Therefore, in order to suppress whitening without forming bubbles in the resin film A on the outer surface side of the can during the retort sterilization treatment, the amorphous polyester layer is quickly crystallized with the heat of the retort sterilization treatment. It is effective to increase the strength of the amorphous layer.

以上、説明したように、本実施の形態の樹脂被覆金属板10を用いた缶蓋13を缶胴19の底蓋として巻締めして用いた缶体18によれば、缶蓋13の外面側の樹脂フィルムAは、樹脂被覆金属板10に対し高速で巻締めを行った場合でも、フィルム削れやフィルム割れが発生せず耐巻締め性に優れ、更にレトルト処理後の外観の意匠性に優れ、容器の内面側の樹脂フィルムBは、耐内容物性に優れ、内容物に接触した状態でレトルト処理を施しても密着性を保持することができる。   As described above, according to the can 18 using the can lid 13 using the resin-coated metal plate 10 of the present embodiment as the bottom lid of the can body 19, the outer surface side of the can lid 13 can be used. Even when the resin film A is wound on the resin-coated metal plate 10 at a high speed, the film is not scraped or cracked, and is excellent in anti-winding properties. The resin film B on the inner surface side of the container is excellent in content resistance, and can maintain the adhesion even if the retort treatment is performed in contact with the content.

以上、本発明者によってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者等によりなされる他の実施の形態、実施例および運用技術等は全て本発明の範疇に含まれる。   Although the embodiment to which the invention made by the present inventor is applied has been described above, the present invention is not limited by the description and the drawings that form a part of the disclosure of the present invention according to this embodiment. That is, other embodiments, examples, operational techniques, and the like made by those skilled in the art based on this embodiment are all included in the scope of the present invention.

(実施例)
以下、本発明の実施例について説明する。冷間圧延、焼鈍、調質圧延を施した厚さ0.18mm、幅977mmの鋼板を脱脂、酸洗後、クロムめっきを行い、金属板1としてクロムめっき鋼板(TFS)を製造した。クロムめっきは、CrO、F、SO 2−を含むクロムめっき浴でクロムめっき、中間リンス後、CrO、Fを含む化成処理液で電解した。その際、電解条件(電流密度・電気量等)を調整して、金属クロム付着量とクロム水酸化物付着量とを、Cr換算でそれぞれ120mg/m、15mg/mにした。
(Example)
Examples of the present invention will be described below. A steel plate having a thickness of 0.18 mm and a width of 977 mm subjected to cold rolling, annealing, and temper rolling was degreased, pickled, and then chrome-plated to produce a chromium-plated steel plate (TFS) as the metal plate 1. Chromium plating was performed by chromium plating in a chromium plating bath containing CrO 3 , F , SO 4 2− , intermediate rinsing, and then electrolyzed with a chemical conversion treatment solution containing CrO 3 and F . At that time, the electrolysis conditions (current density, amount of electricity, etc.) were adjusted so that the metal chromium adhesion amount and the chromium hydroxide adhesion amount were 120 mg / m 2 and 15 mg / m 2 in terms of Cr, respectively.

次いで、金属帯のラミネート装置を用い、前記で得たクロムめっき鋼板を金属帯加熱装置で加熱し、ラミロールで前記クロムめっき鋼板の両面に樹脂フィルムをラミネート(熱融着)し、樹脂被覆金属板(ラミネート鋼板)10を製造した。ラミロールは内部水冷式とし、ラミネート中に冷却水を強制循環することにより、樹脂フィルム2接着中のラミネート鋼板10の冷却を行った。レーザーラマン分光法によるラマンバンド強度比は、金属帯へのラミネート条件の変更により調整した。   Next, using a metal strip laminator, the chrome-plated steel sheet obtained above is heated with a metal strip heater, and a resin film is laminated (heat-sealed) on both sides of the chrome-plated steel sheet with a lami roll. (Laminated steel sheet) 10 was manufactured. The lamellar roll was an internal water-cooling type, and cooling water was forcibly circulated during lamination to cool the laminated steel sheet 10 while the resin film 2 was adhered. The Raman band intensity ratio by laser Raman spectroscopy was adjusted by changing the lamination conditions to the metal band.

使用された樹脂フィルム(二軸延伸ポリエステルフィルム)2の特性を下記(1)の方法により測定し評価した。また、以上の方法で製造されたラミネート鋼板10の特性を下記(2)〜(6)の方法により測定し評価した。表1は、ラミネートされた樹脂フィルムの特性およびラミネート条件と、各ラミネート鋼板10の評価結果を示す。   The properties of the used resin film (biaxially stretched polyester film) 2 were measured and evaluated by the following method (1). Moreover, the characteristic of the laminated steel plate 10 manufactured by the above method was measured and evaluated by the following methods (2) to (6). Table 1 shows the characteristics of the laminated resin film, the lamination conditions, and the evaluation results of each laminated steel sheet 10.

(1)レーザーラマン分光法による測定
(1−1)蓋外面側の樹脂フィルムAのラマンバンド強度比(I90/I
ラミネート鋼板10の断面研磨サンプルを作製し、下記測定条件にて、蓋外面側の樹脂フィルムAの断面方向に対して垂直なレーザー偏光面で、1μm毎に1615±10cm−1のラマンバンド強度を測定し、表層側から5μmの測定値の平均値をラマンバンド強度(I)とした。また、樹脂フィルムAの断面方向に平行なレーザー偏光面で、表層側から1μm毎に1615±10cm−1のラマンバンド強度を測定し、表層側から5μmの測定値の平均値をラマンバンド強度(I90)とし、上述したラマンバンド強度比(I=I90/I)を求めた。
(1) Measurement by laser Raman spectroscopy (1-1) Raman band intensity ratio (I 90 / I 0 ) of resin film A on the lid outer surface side
A cross-section polished sample of the laminated steel sheet 10 was prepared, and a Raman band intensity of 1615 ± 10 cm −1 for each 1 μm was measured on the laser polarization plane perpendicular to the cross-sectional direction of the resin film A on the lid outer surface side under the following measurement conditions. The average value of the measured values of 5 μm from the surface layer side was taken as the Raman band intensity (I 0 ). Further, on the laser polarization plane parallel to the cross-sectional direction of the resin film A, the Raman band intensity of 1615 ± 10 cm −1 is measured every 1 μm from the surface layer side, and the average value of the measured values of 5 μm from the surface layer side is determined as the Raman band intensity ( I 90 ), and the above-described Raman band intensity ratio (I = I 90 / I 0 ) was obtained.

(1−2)蓋内面側の樹脂フィルムBのラマンバンド半値幅
ラミネート鋼板10の断面研磨サンプルを作製し、下記測定条件にて、蓋内面側の樹脂フィルムBの断面方向に平行なレーザー偏光面で、1μm毎に1730±10cm−1のラマンバンドの半値幅を測定し、表層側から5μmの測定値の平均値を求めた。
(1-2) Raman band half-width of resin film B on the inner surface side of the lid A cross-sectional polished sample of the laminated steel sheet 10 was prepared, and the laser polarization plane parallel to the cross-sectional direction of the resin film B on the inner surface side of the lid under the following measurement conditions Then, the half-value width of the Raman band of 1730 ± 10 cm −1 was measured every 1 μm, and the average value of the measured values of 5 μm was obtained from the surface layer side.

(測定条件)
励起光源:半導体レーザー(λ=532nm)
顕微倍率:×100
アパーチャ:25μmφ
(Measurement condition)
Excitation light source: Semiconductor laser (λ = 532 nm)
Microscopic magnification: x100
Aperture: 25μmφ

(2)耐巻締め性
ラミネート鋼板10をプレス装置を用いて缶蓋形状に打ち抜き、周知の工程で加工し、平板状のパネル部14の外周部にチャックウオール15が形成され、その外方に湾曲したシーミングパネル16が形成された缶蓋形状とし、シーミングパネル16の内側に周知のシール材17を塗布乾燥して、図3に示す通称200径の缶蓋(底蓋)13を形成した。次いで、1分間に800缶の速度で、溶接缶胴19の端縁フレンジ部に缶蓋13を巻締めた。缶蓋巻締め部20の(外面側)樹脂フィルムAの状態を観察し、以下の評点に従って耐巻締め性を評価した。
(2) Anti-clamping property The laminated steel sheet 10 is punched into a can lid shape using a press device and processed in a well-known process, and a chuck wall 15 is formed on the outer peripheral portion of the flat panel portion 14. A can lid shape having a curved seaming panel 16 is formed, and a known sealing material 17 is applied and dried on the inner side of the seaming panel 16 to form a can lid (bottom lid) 13 having a common name shown in FIG. did. Next, the can lid 13 was wound around the edge flange portion of the welded can body 19 at a speed of 800 cans per minute. The state of the (outer surface side) resin film A of the can lid tightening portion 20 was observed, and the tightening resistance was evaluated according to the following ratings.

(評点)
◎:蓋材50枚のうち、フィルム削れの発生無し。
○:蓋材50枚のうち、1〜5枚でフィルム削れが発生。
△:蓋材50枚のうち、6〜10枚でフィルム削れが発生。
×:蓋材50枚のうち、11枚以上でフィルム削れが発生。
(Score)
A: No occurrence of film shaving out of 50 lid materials.
○: Film scraping occurs in 1 to 5 of 50 lid materials.
(Triangle | delta): Film scraping generate | occur | produced in 6-10 sheets among 50 cover materials.
X: Film scraping occurs in 11 or more of 50 lid materials.

(3)耐レトルト白化性
蓋外面側の樹脂フィルムAの耐レトルト白化性を評価した。具体的には、本発明の缶蓋13を溶接缶胴19の底蓋として巻締めた缶体18内に常温の水道水を充填した後、別途、上蓋21を巻締めて密閉し、図5に示す缶体を形成した。その後、この水充填缶体底部を下向きにして、蒸気式レトルト釜の中に配置し、125℃、30分間、レトルト処理を行った。レトルト処理後、缶蓋13外面側樹脂フィルムAの外観変化を目視で観察し、以下の評点に従って耐レトルト白化性を評価した。
(3) Retort whitening resistance The retort whitening resistance of the resin film A on the lid outer surface side was evaluated. Specifically, after filling can body 18 in which can lid 13 of the present invention is tightened as a bottom lid of welded can body 19 with normal temperature tap water, upper lid 21 is separately wound and sealed, and FIG. The can body shown in FIG. Thereafter, the bottom of the water-filled can was faced down and placed in a steam retort kettle, and retort treatment was performed at 125 ° C. for 30 minutes. After the retort treatment, the appearance change of the outer surface side resin film A of the can lid 13 was visually observed, and the retort whitening resistance was evaluated according to the following scores.

(評点)
◎:外観変化無し。
○:外観にかすかな曇り(フィルム表面積の5%未満)発生。
△:外観にかすかな曇り(フィルム表面積の5%以上10%未満)発生。
×:外観が白濁(フィルム表面積の10%以上で白化発生)。
(Score)
A: No change in appearance.
○: Faint cloudy appearance (less than 5% of the film surface area) occurs.
Δ: Faint cloudy appearance (from 5% to less than 10% of the film surface area).
X: The appearance is cloudy (whitening occurs at 10% or more of the film surface area).

(4)密着性(湿潤密着性)
ラミネート鋼板10の平板サンプル(幅15mm、長さ120mm)を切り出した。切り出されたサンプルの長辺側端部から樹脂フィルム2の一部を剥離する。剥離された樹脂フィルム2を、剥離された方向とは逆方向(角度:180°)に開き、50gの重りを固定して、レトルト処理(125℃、30分)を行った。レトルト処理後の樹脂フィルム2の剥離長さを測定し、密着性として、成形前フィルム湿潤密着性(2次密着性)を以下の評点に従って評価した。
(4) Adhesion (wet adhesion)
A flat plate sample (width 15 mm, length 120 mm) of the laminated steel sheet 10 was cut out. A part of the resin film 2 is peeled off from the long side end of the cut sample. The peeled resin film 2 was opened in a direction opposite to the peeled direction (angle: 180 °), a 50 g weight was fixed, and a retort treatment (125 ° C., 30 minutes) was performed. The peel length of the resin film 2 after the retort treatment was measured, and the film wet adhesion before molding (secondary adhesion) was evaluated as adhesion according to the following rating.

(評点)
◎:10mm未満
○:10mm以上、20mm未満
×:20mm以上
(Score)
◎: Less than 10 mm ○: 10 mm or more, less than 20 mm ×: 20 mm or more

(5)耐内容物性(蓋内面側の樹脂フィルムの被覆性)
上記(2)と同様に溶接缶胴19の底部に本発明の缶蓋13を巻締め、図5に示す形状の缶体18(内容量180ml)を作製した。水道水を充填後、缶体18上部に上蓋21を巻締め密封し、レトルト処理(125℃、30分間)を行った。レトルト処理後に、水充填缶体18が室温になってから、容器上部の蓋を開け、缶体に電解液(NaCl1%溶液)を50ml注入後、缶体と電解液との間に6Vの電圧を付加し、この時に測定される電流値を評価した。以下の評点に従って、耐内容物性として、蓋内面側の樹脂フィルムBの被覆性を評価した。
(5) Resistance to contents (coverability of the resin film on the inner surface of the lid)
Similarly to the above (2), the can lid 13 of the present invention was wound around the bottom of the welded can body 19 to produce a can body 18 (with an internal capacity of 180 ml) having the shape shown in FIG. After filling with tap water, the upper lid 21 was wound and sealed on the upper part of the can 18, and retort treatment (125 ° C., 30 minutes) was performed. After the retort treatment, when the water-filled can 18 reaches room temperature, the lid on the top of the container is opened, 50 ml of electrolyte (NaCl 1% solution) is injected into the can, and a voltage of 6 V is applied between the can and the electrolyte. The current value measured at this time was evaluated. According to the following scores, the covering property of the resin film B on the inner surface side of the lid was evaluated as content resistance.

(評点)
◎:0.01mA以下
○:0.01mA超、0.1mA以下
△:0.1mA超、1mA以下
×:1mA超
(Score)
◎: 0.01 mA or less ○: 0.01 mA or more, 0.1 mA or less △: 0.1 mA or more, 1 mA or less ×: 1 mA or more

(6)製造性
上述の通りに樹脂被覆金属板10の製造を行い、ラミロール12等への樹脂フィルム2の付着有無を観察し、以下の評点に従って製造性を評価した。
(6) Manufacturability The resin-coated metal plate 10 was manufactured as described above, and the presence or absence of the resin film 2 on the lami roll 12 or the like was observed, and the manufacturability was evaluated according to the following ratings.

(評点)
○:フィルム付着無し
×:フィルム付着有り
(Score)
○: No film attached ×: Film attached

Figure 0006358945
Figure 0006358945

表1から、本発明の範囲内であれば、耐巻締め性・耐レトルト白化性・密着性・耐内容物性・製造性いずれも優れることが分かった。   From Table 1, it was found that, within the scope of the present invention, all of the anti-winding resistance, anti-retort whitening resistance, adhesion, content resistance, and manufacturability were excellent.

比較例1,2より、外面側樹脂組成において、PBT比率が低い場合には耐白化性に劣り、PBT比率が高い場合には密着性に劣ることが分かった。また、比較例3〜5より、外面側樹脂フィルムAのラマンバンド強度比が0.60未満の場合には、結晶構造が不適切なため、耐巻締め性に劣ることが分かった。また、比較例6,7より、内面側樹脂フィルムBのラマンバンドの半値幅が、15cm−1より小さい場合には内面側の樹脂フィルム密着性が劣り製造性も劣る一方、20cm−1より高い場合には耐内容物性に劣ることが分かった。 From Comparative Examples 1 and 2, it was found that in the outer surface side resin composition, when the PBT ratio is low, the whitening resistance is poor, and when the PBT ratio is high, the adhesion is poor. Further, from Comparative Examples 3 to 5, it was found that when the Raman band intensity ratio of the outer surface side resin film A is less than 0.60, the crystal structure is inadequate, so that the anti-clamping property is inferior. Moreover, from the comparative examples 6 and 7, when the half width of the Raman band of the inner surface side resin film B is smaller than 15 cm −1 , the resin film adhesion on the inner surface side is inferior and the productivity is also inferior, but higher than 20 cm −1. In some cases, the content resistance was inferior.

1 金属板
2 樹脂フィルム
3 レーザー発振器
4 レーザー光
5 ラマン散乱光
6 分光器
7 レンズ
10 樹脂被覆金属板
11 金属帯加熱装置
12 圧着ロール(ラミロール)
13 缶蓋
14 平板状パネル部
15 チャックウオール
16 シーミングパネル
17 シール材
18 缶体
19 缶胴
20 巻締め部
21 上蓋
DESCRIPTION OF SYMBOLS 1 Metal plate 2 Resin film 3 Laser oscillator 4 Laser light 5 Raman scattered light 6 Spectrometer 7 Lens 10 Resin-coated metal plate 11 Metal belt heating device 12 Crimp roll (Rami roll)
13 Can lid 14 Flat panel portion 15 Chuck wall 16 Seaming panel 17 Sealing material 18 Can body 19 Can body 20 Tightening portion 21 Upper lid

Claims (1)

金属板の両面が熱可塑性樹脂フィルムにより被覆された樹脂被覆金属板を用いた缶詰用缶蓋において、
前記樹脂被覆金属板は、該金属板の缶蓋の外面側となる面にポリブチレンテレフタレート(PBT)とポリエチレンテレフタレート(PET)とを主体とした熱可塑性樹脂フィルムAが熱融着され、缶蓋の内面側となる面にポリエチレンテレフタレート(PET)を主体とした熱可塑性樹脂フィルムBが熱融着されて構成され、
前記外面側樹脂フィルムAのPBT/PETの組成比(wt%)が、(PBT/PET)=(40/60)〜(80/20)で、内面側樹脂フィルムBがPET95mol%以上であり、
前記内面側樹脂フィルムBのPET由来の融点が250℃以上265℃以下であり、かつ、前記外面側樹脂フィルムAにおけるPBT由来の融点より25℃以上高く、
前記外面側樹脂フィルムAは、レーザーラマン分光法で樹脂フィルム表面に対し水平である偏光面で測定した1615±10cm−1のラマンバンド強度(I)と、垂直である偏光面で測定した1615±10cm−1のラマンバンド強度(I90)とのラマンバンド強度比(I90/I)が、0.60以上であり、
前記内面側樹脂フィルムBは、レーザーラマン分光法で樹脂フィルム表面に対し水平である偏光面で測定した1730±10cm−1のラマンバンドの半値幅が、15〜20cm−1であることを特徴とする缶詰用缶蓋。
In a can lid for canning using a resin-coated metal plate in which both surfaces of a metal plate are coated with a thermoplastic resin film,
In the resin-coated metal plate, a thermoplastic resin film A mainly composed of polybutylene terephthalate (PBT) and polyethylene terephthalate (PET) is heat-sealed on the surface of the metal plate that is the outer surface side of the can lid, and the can lid The thermoplastic resin film B mainly composed of polyethylene terephthalate (PET) is heat-fused on the inner surface side of
The composition ratio (wt%) of PBT / PET of the outer surface side resin film A is (PBT / PET) = (40/60) to (80/20), and the inner surface side resin film B is 95% by mole or more of PET,
The melting point derived from PET of the inner surface side resin film B is 250 ° C. or higher and 265 ° C. or lower, and 25 ° C. higher than the melting point derived from PBT in the outer surface side resin film A,
The outer surface side resin film A was measured with a Raman band intensity (I 0 ) of 1615 ± 10 cm −1 measured by a laser Raman spectroscopy with a polarization plane horizontal to the resin film surface, and a measurement plane 1615 measured with a perpendicular polarization plane. The Raman band intensity ratio (I 90 / I 0 ) to the Raman band intensity (I 90 ) of ± 10 cm −1 is 0.60 or more,
The inner surface side resin film B is characterized in that a half band width of a Raman band of 1730 ± 10 cm −1 measured by a laser Raman spectroscopy with a polarization plane horizontal to the resin film surface is 15 to 20 cm −1. Can lid for canning.
JP2014252228A 2014-12-12 2014-12-12 Can lid for canning Active JP6358945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014252228A JP6358945B2 (en) 2014-12-12 2014-12-12 Can lid for canning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014252228A JP6358945B2 (en) 2014-12-12 2014-12-12 Can lid for canning

Publications (2)

Publication Number Publication Date
JP2016113171A JP2016113171A (en) 2016-06-23
JP6358945B2 true JP6358945B2 (en) 2018-07-18

Family

ID=56139727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014252228A Active JP6358945B2 (en) 2014-12-12 2014-12-12 Can lid for canning

Country Status (1)

Country Link
JP (1) JP6358945B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201600128438A1 (en) * 2016-12-20 2018-06-20 Gimac Di Maccagnan Giorgio MANUFACTURING ADDITIVE PROCESS SYSTEM AND RELATED CONTROL METHOD
JP6565957B2 (en) * 2017-02-28 2019-08-28 Jfeスチール株式会社 Resin-coated metal plate for can lids
JP2018140542A (en) * 2017-02-28 2018-09-13 北海製罐株式会社 Can lid for canned food
JP7314952B2 (en) * 2019-07-31 2023-07-26 Jfeスチール株式会社 METHOD FOR MANUFACTURING RESIN-COATED METAL PLATE FOR CONTAINER

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4667595B2 (en) * 2000-12-26 2011-04-13 大和製罐株式会社 Double-sided film laminate can lid and method for producing the same
EP2261731B1 (en) * 2008-07-04 2013-05-15 Mitsui Chemicals, Inc. Polarizing diffusion film, method for producing polarizing diffusion film, and liquid crystal display device comprising polarizing diffusion film
JP5509575B2 (en) * 2008-10-30 2014-06-04 Jfeスチール株式会社 Resin-coated metal plate for containers
MY172271A (en) * 2011-12-26 2019-11-20 Jfe Steel Corp Laminated metal sheet and food can container
JP5811116B2 (en) * 2013-03-01 2015-11-11 Jfeスチール株式会社 Laminated metal plate for 2-piece can and 2-piece laminated can

Also Published As

Publication number Publication date
JP2016113171A (en) 2016-06-23

Similar Documents

Publication Publication Date Title
WO2016093219A1 (en) Resin-coated metal sheet for can lid
KR100193316B1 (en) Laminated metal sheet for drawing-forming cans and drawing-forming cans made of laminated metal sheet_
JP5673860B2 (en) Laminated metal plate and canned food containers
JP6358945B2 (en) Can lid for canning
JPH07507525A (en) laminated metal plate
JP6011753B1 (en) Laminated metal plate for containers
JP2010105263A (en) Resin-coated metal sheet for container
JP2018140542A (en) Can lid for canned food
JP6884640B2 (en) A method for manufacturing a can made of a thermoplastic polyester resin-coated metal plate, a thermoplastic polyester resin-coated metal plate, and a thermoplastic polyester resin-coated metal plate.
JP6565957B2 (en) Resin-coated metal plate for can lids
JP5920279B2 (en) LAMINATED METAL PLATE, METHOD FOR PRODUCING LAMINATED METAL PLATE, AND FOOD CANNED CONTAINER
KR102088853B1 (en) Laminated steel sheet for double-sided resin coated containers
JP2009221315A (en) Film for metal sheet lamination, film-laminated metal sheet and metal container
JP2011255605A (en) Laminated metal sheet for container
JP2020019166A (en) Polyester resin-coated metal plate, method for manufacturing polyester resin-coated metal plate, and container and container lid formed of the polyester resin-coated metal plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180619

R150 Certificate of patent or registration of utility model

Ref document number: 6358945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250