JP6358101B2 - Abnormality diagnosis device - Google Patents

Abnormality diagnosis device Download PDF

Info

Publication number
JP6358101B2
JP6358101B2 JP2015004189A JP2015004189A JP6358101B2 JP 6358101 B2 JP6358101 B2 JP 6358101B2 JP 2015004189 A JP2015004189 A JP 2015004189A JP 2015004189 A JP2015004189 A JP 2015004189A JP 6358101 B2 JP6358101 B2 JP 6358101B2
Authority
JP
Japan
Prior art keywords
estimated
amount
sensor
output
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015004189A
Other languages
Japanese (ja)
Other versions
JP2016130457A (en
Inventor
藤井 宏明
宏明 藤井
真吾 中田
真吾 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2015004189A priority Critical patent/JP6358101B2/en
Priority to PCT/JP2016/000057 priority patent/WO2016114111A1/en
Priority to US15/519,943 priority patent/US10072542B2/en
Priority to DE112016000329.3T priority patent/DE112016000329T5/en
Publication of JP2016130457A publication Critical patent/JP2016130457A/en
Application granted granted Critical
Publication of JP6358101B2 publication Critical patent/JP6358101B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1466Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a soot concentration or content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/204Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using an exhaust gas igniter, e.g. a spark or glow plug, without introducing fuel into exhaust duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0812Particle filter loading
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/02Air cleaners
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

本発明は、内燃機関の排出ガス中の粒子状物質を捕集するフィルタを備えたシステムの異常診断装置に関する発明である。   The present invention relates to an abnormality diagnosis apparatus for a system including a filter that collects particulate matter in exhaust gas from an internal combustion engine.

車両に搭載される内燃機関においては、燃費規制の強化に伴って、筒内噴射式のガソリンエンジンの需要増加が予想されている。しかし、筒内噴射式のガソリンエンジンは、吸気ポート噴射式のガソリンエンジンに比べて、PM(Particulate Matter:粒子状物質)の排出量が多くなるという問題がある。この対策として、エンジンの排気通路にエンジンから排出されるPMを捕集するフィルタを配置するようにしたものがある。   In internal combustion engines mounted on vehicles, demand for in-cylinder gasoline engines is expected to increase as fuel efficiency regulations are tightened. However, the in-cylinder injection type gasoline engine has a problem that the amount of PM (Particulate Matter) emission increases as compared with the intake port injection type gasoline engine. As a countermeasure, there is one in which a filter for collecting PM discharged from the engine is disposed in the exhaust passage of the engine.

このようなPM捕集用のフィルタの異常診断技術として、例えば、特許文献1(特開2007−315275号公報)に記載されたものがある。このものは、PM捕集用のフィルタの下流側に排出ガス中のPM量を検出するPMセンサを設け、フィルタの捕集効率が所定値以上となる条件下において、PMセンサで検出したPM量が判定値を越えたか否かによってフィルタの故障の有無を判定するようにしている。   As an abnormality diagnosis technique of such a filter for collecting PM, for example, there is one described in Patent Document 1 (Japanese Patent Laid-Open No. 2007-315275). This is provided with a PM sensor that detects the amount of PM in the exhaust gas downstream of the filter for collecting PM, and the amount of PM detected by the PM sensor under the condition that the collection efficiency of the filter exceeds a predetermined value. Whether or not there is a filter failure is determined based on whether or not the value exceeds the determination value.

また、従来、PM捕集用のフィルタにおいては、フィルタに設けられた複数のセルのうちの一部のセルの入口側が閉鎖されて残りのセル(つまり入口側が開放されたセル)の出口側が閉鎖された構造としたものがある。   Conventionally, in a filter for collecting PM, the inlet side of some of the plurality of cells provided in the filter is closed and the outlet side of the remaining cells (that is, cells whose inlet side is opened) is closed. There is what was made the structure.

特開2007−315275号公報JP 2007-315275 A

上記従来のフィルタは、入口側が開放されたセルに流入した排出ガスのほぼ全てが、セルを区画する多孔質の隔壁(仕切壁)を通過して、出口側が開放されたセルから流出し、排出ガスが隔壁を通過する際に排出ガス中のPMを捕集するようにしたものであるが、排気の圧力損失が増大するという欠点がある。   In the above conventional filter, almost all of the exhaust gas flowing into the cell with the inlet side opened passes through the porous partition wall (partition wall) that partitions the cell, flows out of the cell with the outlet side opened, and is discharged. Although the PM in the exhaust gas is collected when the gas passes through the partition wall, there is a drawback that the pressure loss of the exhaust gas increases.

そこで、本出願人は、フィルタによる排気の圧力損失を低減するために、複数のセルのうちの一部のセルの入口側が閉鎖されて残りのセルのうち出口側が開放されたセルを少なくとも一つ以上有する構造(又は一部のセルの出口側が閉鎖されて残りのセルのうち入口側が開放されたセルを少なくとも一つ以上有する構造)の片栓フィルタを備えたシステムを研究しているが、その研究過程で次のような新たな課題が判明した。   In order to reduce the pressure loss of the exhaust gas by the filter, the applicant of the present invention has at least one cell in which the inlet side of some of the plurality of cells is closed and the outlet side of the remaining cells is opened. We are studying a system with a single plug filter having the above structure (or a structure having at least one cell in which the outlet side of some cells is closed and the inlet side among the remaining cells is opened). The following new issues were found during the research process.

図8に示すように、従来のフィルタは、PM堆積量が増加した後はPM捕集率がほぼ100%に維持されるが、片栓フィルタは、PM堆積量が増加した後もPM捕集率が従来のフィルタよりも低い捕集率(100%よりも低い捕集率)に維持される。   As shown in FIG. 8, in the conventional filter, the PM collection rate is maintained at almost 100% after the PM accumulation amount is increased. However, in the single plug filter, the PM collection amount is increased even after the PM accumulation amount is increased. The rate is maintained at a lower collection rate than the conventional filter (collection rate lower than 100%).

このため、片栓フィルタを備えたシステムでは、図9に示すように、片栓フィルタの異常によりPM捕集率が低下した場合に、センサ検出PM量(PMセンサで検出したPM量)が増加するだけでなく、図10に示すように、エンジンの異常によりエンジンから排出されるPM量が増加した場合にも、センサ検出PM量が増加する。また、PMセンサ自体の異常によりセンサ検出PM量が増加する可能性もある。従って、上記特許文献1の技術のように、PMセンサで検出したPM量を判定値と比較するだけでは、エンジンの異常と片栓フィルタの異常とPMセンサの異常とを区別して判定することができず、エンジンと片栓フィルタとPMセンサのいずれかに異常が発生した場合に、その異常箇所を特定することができない。   For this reason, in a system equipped with a single plug filter, as shown in FIG. 9, when the PM collection rate decreases due to an abnormality of the single plug filter, the sensor detected PM amount (the PM amount detected by the PM sensor) increases. In addition, as shown in FIG. 10, when the amount of PM discharged from the engine increases due to engine abnormality, the sensor detected PM amount increases. In addition, the PM amount detected by the sensor may increase due to abnormality of the PM sensor itself. Therefore, as in the technique of the above-mentioned Patent Document 1, only by comparing the PM amount detected by the PM sensor with the determination value, it is possible to distinguish between the engine abnormality, the one-piece filter abnormality, and the PM sensor abnormality. When an abnormality occurs in any one of the engine, the single-ended filter, and the PM sensor, the abnormality location cannot be specified.

そこで、本発明が解決しようとする課題は、内燃機関と片栓フィルタとPMセンサのいずれかに異常が発生した場合に、その異常箇所を特定することができる異常診断装置を提供することにある。   Therefore, the problem to be solved by the present invention is to provide an abnormality diagnosis device capable of specifying an abnormality location when an abnormality occurs in any of the internal combustion engine, the single plug filter, and the PM sensor. .

上記課題を解決するために、本発明は、内燃機関(11)の排出ガス中の粒子状物質(以下「PM」と表記する)を捕集するフィルタであって該フィルタに設けられた複数のセル(33)のうちの一部のセルの入口側が閉鎖されて残りのセルのうち出口側が開放されたセルを少なくとも一つ以上有する構造又は一部のセルの出口側が閉鎖されて残りのセルのうち入口側が開放されたセルを少なくとも一つ以上有する構造の片栓フィルタ(31)と、この片栓フィルタ(31)の上流側排気圧と下流側排気圧との差を検出する差圧センサ(36)と、片栓フィルタ(31)を通過した排出ガス中のPM量を検出するPMセンサ(32)と、片栓フィルタ(31)に流入するPM量と片栓フィルタ(31)に捕集されるPM量と片栓フィルタ(31)から流出するPM量のうちのいずれか一つのPM量である診断用PM量を内燃機関(11)の運転条件に基づいて推定する第1の推定手段(30)と、診断用PM量を差圧センサ(36)の出力に基づいて推定する第2の推定手段(30)と、診断用PM量をPMセンサ(32)の出力に基づいて推定する第3の推定手段(30)と、第1の推定手段(30)で推定した診断用PM量(以下「内燃機関(11)の運転条件に基づいた推定PM量」という)と、第2の推定手段(30)で推定した診断用PM量(以下「差圧センサ(36)の出力に基づいた推定PM量」という)と、第3の推定手段(30)で推定した診断用PM量(以下「PMセンサ(32)の出力に基づいた推定PM量」という)とを比較して、内燃機関(11)の異常と片栓フィルタ(31)の異常とPMセンサ(32)の異常とを区別して判定する異常診断手段(30)とを備えた構成としたものである。   In order to solve the above problems, the present invention is a filter for collecting particulate matter (hereinafter referred to as “PM”) in exhaust gas of an internal combustion engine (11), and a plurality of filters provided on the filter. A structure having at least one cell in which the inlet side of some of the cells (33) is closed and the outlet side of the remaining cells is open or the outlet side of some of the cells is closed and Of these, a single plug filter (31) having a structure having at least one cell whose inlet side is opened, and a differential pressure sensor (for detecting a difference between the upstream exhaust pressure and the downstream exhaust pressure of the single plug filter (31)) 36), a PM sensor (32) for detecting the amount of PM in the exhaust gas that has passed through the single plug filter (31), and the amount of PM flowing into the single plug filter (31) and the single plug filter (31). PM amount and single plug filter (3 ) First estimating means (30) for estimating a diagnostic PM amount that is any one of the PM amounts outflowing from the internal combustion engine (11), and the diagnostic PM amount Second estimation means (30) for estimating based on the output of the differential pressure sensor (36), third estimation means (30) for estimating the diagnostic PM amount based on the output of the PM sensor (32), The diagnostic PM amount estimated by the first estimating means (30) (hereinafter referred to as "estimated PM amount based on the operating condition of the internal combustion engine (11)") and the diagnostic PM amount estimated by the second estimating means (30) The PM amount (hereinafter referred to as “estimated PM amount based on the output of the differential pressure sensor (36)”) and the diagnostic PM amount estimated by the third estimating means (30) (hereinafter referred to as “output of the PM sensor (32)”) The estimated PM amount based on the difference between the internal combustion engine (11) It is obtained by a structure having a with Katasen filter (31) of the abnormality and PM sensor (32) of the abnormality and the abnormality diagnosing means for determining to distinguish (30) and.

内燃機関と片栓フィルタとPMセンサが全て正常であれば、内燃機関の運転条件に基づいた推定PM量と、差圧センサの出力に基づいた推定PM量と、PMセンサの出力に基づいた推定PM量とがほぼ一致するはずである。しかし、内燃機関と片栓フィルタとPMセンサのいずれかに異常が発生すると、その異常箇所に対応した推定PM量が他の推定PM量と異なってくる。従って、内燃機関の運転条件に基づいた推定PM量と、差圧センサの出力に基づいた推定PM量と、PMセンサの出力に基づいた推定PM量とを比較すれば、内燃機関の異常と片栓フィルタの異常とPMセンサの異常とを区別して判定することができる。これにより、内燃機関と片栓フィルタとPMセンサのいずれかに異常が発生した場合に、その異常箇所を特定することができる。   If the internal combustion engine, the single-ended filter, and the PM sensor are all normal, the estimated PM amount based on the operating condition of the internal combustion engine, the estimated PM amount based on the output of the differential pressure sensor, and the estimation based on the output of the PM sensor The PM amount should almost match. However, when an abnormality occurs in any one of the internal combustion engine, the single-ended filter, and the PM sensor, the estimated PM amount corresponding to the abnormal portion is different from other estimated PM amounts. Therefore, if the estimated PM amount based on the operating condition of the internal combustion engine, the estimated PM amount based on the output of the differential pressure sensor, and the estimated PM amount based on the output of the PM sensor are compared, abnormalities in the internal combustion engine and It is possible to distinguish between the abnormality of the plug filter and the abnormality of the PM sensor. Thereby, when an abnormality occurs in any of the internal combustion engine, the single plug filter, and the PM sensor, the abnormal part can be identified.

図1は本発明の一実施例におけるエンジン制御システムの概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of an engine control system in one embodiment of the present invention. 図2は片栓フィルタの排出ガス流れ方向に沿った断面図である。FIG. 2 is a cross-sectional view of the single-ended filter along the exhaust gas flow direction. 図3は片栓フィルタの入口側の排出ガス流れ方向に対して直角方向に沿った断面図である。FIG. 3 is a cross-sectional view taken along the direction perpendicular to the direction of exhaust gas flow on the inlet side of the single-ended filter. 図4は片栓フィルタの出口側の排出ガス流れ方向に対して直角方向に沿った断面図である。FIG. 4 is a cross-sectional view taken along a direction perpendicular to the exhaust gas flow direction on the outlet side of the single plug filter. 図5はリニアタイプのPMセンサの出力特性図である。FIG. 5 is an output characteristic diagram of a linear type PM sensor. 図6は積算タイプのPMセンサの出力特性図である。FIG. 6 is an output characteristic diagram of the integration type PM sensor. 図7は差圧センサ出力とPM堆積量との関係を示す図である。FIG. 7 is a diagram showing the relationship between the differential pressure sensor output and the PM accumulation amount. 図8はPM堆積量とPM捕集率との関係を示す図である。FIG. 8 is a diagram showing the relationship between the PM deposition amount and the PM collection rate. 図9はフィルタ異常によりPM捕集率が低下した場合のセンサ検出PM量の挙動を示すタイムチャートである。FIG. 9 is a time chart showing the behavior of the sensor detected PM amount when the PM collection rate decreases due to filter abnormality. 図10はエンジン異常によりエンジン排出PM量が増加した場合のセンサ検出PM量の挙動を示すタイムチャートである。FIG. 10 is a time chart showing the behavior of the sensor detected PM amount when the engine exhaust PM amount increases due to engine abnormality. 図11はエンジン運転条件に基づいた推定PM量の推定方法を説明する図である。FIG. 11 is a diagram for explaining an estimation method of the estimated PM amount based on the engine operating conditions. 図12はエンジン異常の場合の各推定PM量の関係を示す図である。FIG. 12 is a diagram showing the relationship between the estimated PM amounts when the engine is abnormal. 図13はフィルタ異常の場合の各推定PM量の関係を示す図である。FIG. 13 is a diagram showing the relationship between the estimated PM amounts in the case of a filter abnormality. 図14はフィルタ再生異常の場合の各推定PM量の関係を示す図である。FIG. 14 is a diagram showing the relationship between estimated PM amounts in the case of filter regeneration abnormality. 図15はPMセンサ異常の場合の各推定PM量の関係を示す図である。FIG. 15 is a diagram showing the relationship between the estimated PM amounts in the case of PM sensor abnormality. 図16は異常診断ルーチンの処理の流れを示すフローチャート(その1)である。FIG. 16 is a flowchart (No. 1) showing the flow of processing of the abnormality diagnosis routine. 図17は異常診断ルーチンの処理の流れを示すフローチャート(その2)である。FIG. 17 is a flowchart (No. 2) showing the flow of processing of the abnormality diagnosis routine.

以下、本発明を実施するための形態を具体化した一実施例を説明する。
まず、図1に基づいてエンジン制御システムの概略構成を説明する。
Hereinafter, an embodiment embodying a mode for carrying out the present invention will be described.
First, a schematic configuration of the engine control system will be described with reference to FIG.

筒内噴射式の内燃機関であるエンジン11は、燃料としてガソリンを筒内に直接噴射する筒内噴射式のガソリンエンジンである。このエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、モータ15によって開度調節されるスロットルバルブ16と、このスロットルバルブ16の開度(スロットル開度)を検出するスロットル開度センサ17とが設けられている。   An engine 11 that is an in-cylinder internal combustion engine is an in-cylinder injection gasoline engine that directly injects gasoline as fuel into a cylinder. An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of the engine 11, and an air flow meter 14 for detecting the intake air amount is provided downstream of the air cleaner 13. A throttle valve 16 whose opening is adjusted by a motor 15 and a throttle opening sensor 17 for detecting the opening (throttle opening) of the throttle valve 16 are provided on the downstream side of the air flow meter 14.

更に、スロットルバルブ16の下流側には、サージタンク18が設けられ、このサージタンク18に、吸気管圧力を検出する吸気管圧力センサ19が設けられている。また、サージタンク18には、エンジン11の各気筒に空気を導入する吸気マニホールド20が設けられ、エンジン11の各気筒には、それぞれ筒内に燃料(ガソリン)を直接噴射する燃料噴射弁21が取り付けられている。また、エンジン11のシリンダヘッドには、各気筒毎に点火プラグ22が取り付けられ、各気筒の点火プラグ22の火花放電によって各気筒内の混合気に着火される。   Further, a surge tank 18 is provided on the downstream side of the throttle valve 16, and an intake pipe pressure sensor 19 for detecting the intake pipe pressure is provided in the surge tank 18. The surge tank 18 is provided with an intake manifold 20 that introduces air into each cylinder of the engine 11. Each cylinder of the engine 11 has a fuel injection valve 21 that directly injects fuel (gasoline) into the cylinder. It is attached. An ignition plug 22 is attached to the cylinder head of the engine 11 for each cylinder, and the air-fuel mixture in each cylinder is ignited by spark discharge of the ignition plug 22 of each cylinder.

一方、エンジン11の排気管23には、排出ガスの空燃比又はリッチ/リーン等を検出する排出ガスセンサ24(空燃比センサ又は酸素センサ等)が設けられ、この排出ガスセンサ24の下流側に、排出ガス中のCO,HC,NOX 等を浄化する三元触媒等の触媒25が設けられている。 On the other hand, the exhaust pipe 23 of the engine 11 is provided with an exhaust gas sensor 24 (such as an air-fuel ratio sensor or an oxygen sensor) that detects the air-fuel ratio or rich / lean of the exhaust gas. A catalyst 25 such as a three-way catalyst for purifying CO, HC, NO x and the like in the gas is provided.

また、エンジン11の排気管23のうちの触媒25の下流側には、エンジン11の排出ガス中のPM(Particulate Matter:粒子状物質)を捕集する片栓フィルタ31が設けられている。触媒25と片栓フィルタ31は、一つのケース内に収容するようにしても良いし、別々のケース内に収容するようにしても良い。更に、片栓フィルタ31の下流側には、片栓フィルタ31を通過した排出ガス中のPM量を検出するPMセンサ32が設けられている。   A single plug filter 31 that collects PM (Particulate Matter) in the exhaust gas of the engine 11 is provided on the downstream side of the catalyst 25 in the exhaust pipe 23 of the engine 11. The catalyst 25 and the single plug filter 31 may be accommodated in one case or in separate cases. Furthermore, a PM sensor 32 that detects the amount of PM in the exhaust gas that has passed through the single plug filter 31 is provided on the downstream side of the single plug filter 31.

また、片栓フィルタ31の上流側排気圧と下流側排気圧との差(前後差圧)を検出する差圧センサ36が設けられている。尚、片栓フィルタ31の上流側と下流側に、それぞれ排気圧を検出する圧力センサを設け、上流側の圧力センサで検出した上流側排気圧と下流側の圧力センサで検出した下流側排気圧との差(前後差圧)を算出するようにしても良い。この場合、上流側及び下流側の圧力センサが差圧センサとしての役割を果たす。   In addition, a differential pressure sensor 36 is provided for detecting a difference (front-rear differential pressure) between the upstream exhaust pressure and the downstream exhaust pressure of the single plug filter 31. Pressure sensors that detect the exhaust pressure are provided on the upstream side and the downstream side of the single plug filter 31 respectively, and the upstream exhaust pressure detected by the upstream pressure sensor and the downstream exhaust pressure detected by the downstream pressure sensor. The difference (pressure difference between before and after) may be calculated. In this case, the upstream and downstream pressure sensors serve as differential pressure sensors.

また、エンジン11のシリンダブロックには、冷却水温を検出する冷却水温センサ26や、ノッキングを検出するノックセンサ27が取り付けられている。また、クランク軸28の外周側には、クランク軸28が所定クランク角回転する毎にパルス信号を出力するクランク角センサ29が取り付けられ、このクランク角センサ29の出力信号に基づいてクランク角やエンジン回転速度が検出される。   A cooling water temperature sensor 26 that detects the cooling water temperature and a knock sensor 27 that detects knocking are attached to the cylinder block of the engine 11. A crank angle sensor 29 that outputs a pulse signal every time the crankshaft 28 rotates by a predetermined crank angle is attached to the outer peripheral side of the crankshaft 28, and the crank angle and the engine are determined based on the output signal of the crank angle sensor 29. The rotation speed is detected.

これら各種センサの出力は、電子制御ユニット(以下「ECU」と表記する)30に入力される。このECU30は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御用のプログラムを実行することで、エンジン運転状態に応じて、燃料噴射量、点火時期、スロットル開度(吸入空気量)等を制御する。   Outputs of these various sensors are input to an electronic control unit (hereinafter referred to as “ECU”) 30. The ECU 30 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium), so that the fuel injection amount and the ignition timing are determined according to the engine operating state. The throttle opening (intake air amount) and the like are controlled.

図2乃至図4に示すように、片栓フィルタ31は、排出ガス流れ方向(入口側から出口側に向かう方向)に延びる複数のセル33が多孔質の隔壁(仕切壁)34によって区画形成され、複数のセル33のうちの一部のセル33の入口側の端部が封止部材35で閉鎖されて、全てのセル33の出口側が開放された構造となっている。本実施例では、入口側が閉鎖されて出口側が開放されたセル(以下「入口閉鎖セル」という)33Aと、入口側と出口側が両方とも開放されたセル(以下「両側開放セル」という)33Bとが隣り合うように交互に配置されている。   As shown in FIGS. 2 to 4, the single plug filter 31 has a plurality of cells 33 extending in the exhaust gas flow direction (direction from the inlet side to the outlet side) partitioned by a porous partition wall (partition wall) 34. The end portion on the inlet side of some of the cells 33 among the plurality of cells 33 is closed by the sealing member 35, and the outlet side of all the cells 33 is open. In this embodiment, a cell 33A in which the inlet side is closed and the outlet side is opened (hereinafter referred to as “inlet closed cell”) 33A, and a cell in which both the inlet side and the outlet side are opened (hereinafter referred to as “double-side open cell”) 33B; Are alternately arranged so as to be adjacent to each other.

この片栓フィルタ31は、両側開放セル33Bの入口側からセル33B内に排出ガスが流入すると、両側開放セル33B内の圧力が上昇して、入口閉鎖セル33A内の圧力が両側開放セル33B内の圧力に対して相対的に低くなる。このため、両側開放セル33Bから排出ガスの一部が、多孔質の隔壁34を通過して入口閉鎖セル33A内に流入して、入口閉鎖セル33Aの出口側からセル33A外へ流出する。その際、排出ガス中のPM(例えば粒径が20〜100nmのSOOT粒子)が隔壁34の気孔内(気孔の内壁面)や表層壁面に付着して捕集される。また、排出ガス中の不燃性物質(例えばエンジン11のオイルに起因する灰分)であるアッシュも隔壁34の気孔内や表層壁面に付着して捕集される。   In the single plug filter 31, when exhaust gas flows into the cell 33B from the inlet side of the both-side open cell 33B, the pressure in the both-side open cell 33B rises, and the pressure in the inlet-closed cell 33A is increased in the both-side open cell 33B. Relative to the pressure of. For this reason, a part of the exhaust gas from the both-side open cell 33B passes through the porous partition wall 34, flows into the inlet closed cell 33A, and flows out of the cell 33A from the outlet side of the inlet closed cell 33A. At that time, PM (for example, SOOT particles having a particle diameter of 20 to 100 nm) in the exhaust gas is collected by adhering to the pores (inner wall surfaces of the pores) and the surface wall surfaces of the partition walls 34. In addition, ash, which is a non-combustible substance in the exhaust gas (for example, ash due to the oil of the engine 11), is also collected by adhering to the pores of the partition wall 34 and the surface wall surface.

また、PMセンサ32は、出力特性がリニアタイプのPMセンサを用いることが望ましいが、出力特性が積算タイプのPMセンサを用いるようにしても良い。図5に示すように、リニアタイプのPMセンサは、排出ガス中のPM量に応じてセンサ出力がリニアに変化する。一方、図6に示すように、積算タイプのPMセンサは、PMセンサに付着するPM量の積算値が一定値以上になると、そのPM量の積算値に応じてセンサ出力が変化する。   The PM sensor 32 is preferably a PM sensor having a linear output characteristic, but may be a PM sensor having an integral output characteristic. As shown in FIG. 5, in the linear type PM sensor, the sensor output changes linearly according to the amount of PM in the exhaust gas. On the other hand, as shown in FIG. 6, in the integration type PM sensor, when the integrated value of the PM amount adhering to the PM sensor exceeds a certain value, the sensor output changes in accordance with the integrated value of the PM amount.

また、図7に示すように、片栓フィルタ31のPM堆積量(片栓フィルタ31に堆積したPM量)に応じて、片栓フィルタ31の前後差圧が変化して、差圧センサ36の出力が変化するため、差圧センサ36の出力から片栓フィルタ31のPM堆積量を求めることができる。   Also, as shown in FIG. 7, the differential pressure across the single plug filter 31 changes according to the amount of PM deposited on the single plug filter 31 (the amount of PM deposited on the single plug filter 31). Since the output changes, the PM accumulation amount of the single plug filter 31 can be obtained from the output of the differential pressure sensor 36.

ところで、PM捕集用の片栓フィルタ31を備えたシステムでは、片栓フィルタ31のPM堆積量が多くなり過ぎると、排気の圧力損失が大きくなる。このため、ECU30は、片栓フィルタ31に捕集されたPMを燃焼させて除去する再生制御を実施して、片栓フィルタ31を再生させる(片栓フィルタ31のPM堆積量を減少させる)ようにしている。再生制御としては、例えば、所定の燃料カット実行条件が成立したとき(例えば減速時)に実行される燃料カット制御がある。また、片栓フィルタ31のPM堆積量が所定の上限値を越えたときに、再生制御として例えば空燃比をリーンにする制御や排気温度を上昇させる制御等を実行する。   By the way, in the system provided with the single plug filter 31 for collecting PM, if the amount of PM deposited on the single plug filter 31 is too large, the pressure loss of the exhaust gas becomes large. For this reason, the ECU 30 performs regeneration control for burning and removing the PM collected by the single plug filter 31 so as to regenerate the single plug filter 31 (reducing the amount of PM deposited on the single plug filter 31). I have to. The regeneration control includes, for example, fuel cut control that is executed when a predetermined fuel cut execution condition is satisfied (for example, during deceleration). Further, when the PM accumulation amount of the single plug filter 31 exceeds a predetermined upper limit value, for example, control for making the air-fuel ratio lean or control for increasing the exhaust temperature is executed as regeneration control.

図8に示すように、従来のフィルタは、PM堆積量が増加した後はPM捕集率がほぼ100%に維持されるが、片栓フィルタ31は、PM堆積量が増加した後もPM捕集率が従来のフィルタよりも低い捕集率(100%よりも低い捕集率)に維持される。   As shown in FIG. 8, in the conventional filter, the PM collection rate is maintained at almost 100% after the PM accumulation amount is increased. The collection rate is maintained at a lower collection rate than the conventional filter (collection rate lower than 100%).

このため、片栓フィルタ31を備えたシステムでは、図9に示すように、片栓フィルタ31の異常によりPM捕集率が低下した場合に、センサ検出PM量(PMセンサ32で検出したPM量)が増加するだけでなく、図10に示すように、エンジン11の異常によりエンジン11から排出されるPM量が増加した場合にも、センサ検出PM量が増加する。また、PMセンサ32自体の異常によりセンサ検出PM量が増加する可能性もある。従って、PMセンサ32で検出したPM量を判定値と比較するだけでは、エンジン11の異常と片栓フィルタ31の異常とPMセンサ32の異常とを区別して判定することができず、エンジン11と片栓フィルタ31とPMセンサ32のいずれかに異常が発生した場合に、その異常箇所を特定することができない。   For this reason, in the system including the single plug filter 31, as shown in FIG. 9, when the PM collection rate decreases due to an abnormality of the single plug filter 31, the sensor detected PM amount (the PM amount detected by the PM sensor 32). ) Increases, as shown in FIG. 10, the sensor detected PM amount also increases when the PM amount discharged from the engine 11 increases due to an abnormality in the engine 11. Further, the PM amount detected by the sensor may increase due to abnormality of the PM sensor 32 itself. Therefore, by simply comparing the PM amount detected by the PM sensor 32 with the determination value, the abnormality of the engine 11, the abnormality of the single plug filter 31, and the abnormality of the PM sensor 32 cannot be distinguished and determined. When an abnormality occurs in either the single plug filter 31 or the PM sensor 32, the abnormal part cannot be specified.

そこで、本実施例では、ECU30により後述する図16及び図17の異常診断ルーチンを実行することで、次のような異常診断を行う。
まず、フィルタ流入PM量(片栓フィルタ31に流入するPM量)とフィルタ捕集PM量(片栓フィルタ31に捕集されるPM量)とフィルタ流出PM量(片栓フィルタ31から流出するPM量)のうちのいずれか一つのPM量を診断用PM量とし、その診断用PM量を3通りの推定方法で推定する。本実施例では、診断用PM量としてフィルタ流入PM量を次の第1〜第3の推定方法で推定する。
Therefore, in this embodiment, the following abnormality diagnosis is performed by executing abnormality diagnosis routines of FIGS. 16 and 17 described later by the ECU 30.
First, the filter inflow PM amount (the PM amount flowing into the single plug filter 31), the filter collection PM amount (the PM amount collected by the single plug filter 31), and the filter outflow PM amount (the PM flowing out from the single plug filter 31) 1) is set as a diagnostic PM amount, and the diagnostic PM amount is estimated by three estimation methods. In this embodiment, the filter inflow PM amount is estimated by the following first to third estimation methods as the diagnostic PM amount.

第1の推定方法では、エンジン11の運転条件に基づいてフィルタ流入PM量を推定する。この第1の推定方法でエンジン11の運転条件に基づいて推定したフィルタ流入PM量を「エンジン運転条件に基づいた推定PM量」という。   In the first estimation method, the filter inflow PM amount is estimated based on the operating condition of the engine 11. The filter inflow PM amount estimated based on the operating condition of the engine 11 by the first estimating method is referred to as “estimated PM amount based on the engine operating condition”.

第2の推定方法では、差圧センサ36の出力に基づいてフィルタ流入PM量を推定する。この第2の推定方法で差圧センサ36の出力に基づいて推定したフィルタ流入PM量を「差圧センサ出力に基づいた推定PM量」という。   In the second estimation method, the filter inflow PM amount is estimated based on the output of the differential pressure sensor 36. The filter inflow PM amount estimated based on the output of the differential pressure sensor 36 by this second estimation method is referred to as “estimated PM amount based on the differential pressure sensor output”.

第3の推定方法では、PMセンサ32の出力に基づいてフィルタ流入PM量を推定する。この第3の推定方法でPMセンサ32の出力に基づいて推定したフィルタ流入PM量を「PMセンサ出力に基づいた推定PM量」という。   In the third estimation method, the filter inflow PM amount is estimated based on the output of the PM sensor 32. The filter inflow PM amount estimated based on the output of the PM sensor 32 by the third estimation method is referred to as “estimated PM amount based on the PM sensor output”.

この後、エンジン運転条件に基づいた推定PM量と、差圧センサ出力に基づいた推定PM量と、PMセンサ出力に基づいた推定PM量とを比較して、エンジン11の異常と片栓フィルタ31の異常とPMセンサ32の異常とを区別して判定する。   Thereafter, the estimated PM amount based on the engine operating condition, the estimated PM amount based on the differential pressure sensor output, and the estimated PM amount based on the PM sensor output are compared, and the abnormality of the engine 11 and the single plug filter 31 are compared. And the abnormality of the PM sensor 32 are distinguished and determined.

エンジン11と片栓フィルタ31とPMセンサ32が全て正常であれば、エンジン運転条件に基づいた推定PM量と、差圧センサ出力に基づいた推定PM量と、PMセンサ出力に基づいた推定PM量とがほぼ一致するはずである。しかし、エンジン11と片栓フィルタ31とPMセンサ32のいずれかに異常が発生すると、その異常箇所に対応した推定PM量が他の推定PM量と異なってくる。従って、エンジン運転条件に基づいた推定PM量と、差圧センサ出力に基づいた推定PM量と、PMセンサ出力に基づいた推定PM量とを比較すれば、エンジン11の異常と片栓フィルタ31の異常とPMセンサ32の異常とを区別して判定することができる。   If the engine 11, the single plug filter 31, and the PM sensor 32 are all normal, the estimated PM amount based on the engine operating conditions, the estimated PM amount based on the differential pressure sensor output, and the estimated PM amount based on the PM sensor output Should almost match. However, when an abnormality occurs in any of the engine 11, the single plug filter 31, and the PM sensor 32, the estimated PM amount corresponding to the abnormal portion is different from other estimated PM amounts. Therefore, if the estimated PM amount based on the engine operating condition, the estimated PM amount based on the differential pressure sensor output, and the estimated PM amount based on the PM sensor output are compared, the abnormality of the engine 11 and the one plug filter 31 The abnormality and the abnormality of the PM sensor 32 can be distinguished and determined.

具体的には、第1の推定方法では、図11に示すように、エンジン回転速度、エンジン負荷(例えば吸気管圧力や吸入空気量等)、冷却水温、運転履歴等に基づいて、エンジン排出PM量(例えばエンジン11から排出された所定時間当りのPM量)をマップ又は数式等により算出する。エンジン排出PM量のマップ又は数式等は、予め試験データや設計データ等に基づいて作成され、ECU30のROMに記憶されている。このエンジン排出PM量をフィルタ流入PM量PMEとする。
フィルタ流入PM量PME=エンジン排出PM量
このようにして、エンジン11の運転条件に基づいて推定(算出)したフィルタ流入PM量PMEを、エンジン運転条件に基づいた推定PM量PMEとする。
Specifically, in the first estimation method, as shown in FIG. 11, the engine exhaust PM based on the engine speed, engine load (for example, intake pipe pressure, intake air amount, etc.), cooling water temperature, operation history, and the like. The amount (for example, the PM amount discharged from the engine 11 per predetermined time) is calculated by a map or a mathematical expression. A map or numerical formula of the engine exhaust PM amount is created in advance based on test data, design data, and the like, and is stored in the ROM of the ECU 30. This engine exhaust PM amount is defined as a filter inflow PM amount PME.
Filter inflow PM amount PME = engine exhaust PM amount Thus, the filter inflow PM amount PME estimated (calculated) based on the operating condition of the engine 11 is set as the estimated PM amount PME based on the engine operating condition.

第2の推定方法では、まず、差圧センサ36の出力に基づいて片栓フィルタ31のPM捕集量(例えば片栓フィルタ31に捕集された所定時間当りのPM量)を算出する。この場合、例えば、差圧センサ36の出力に応じたPM堆積量をマップ又は数式等により算出し、このPM堆積量の今回値と前回値との差(所定時間当りのPM堆積量)をPM捕集量として算出する。また、現在のPM堆積量に応じてPM捕集率をマップ又は数式等により算出する。PM堆積量やPM捕集率のマップ又は数式等は、予め試験データや設計データ等に基づいて作成され、ECU30のROMに記憶されている。この後、PM捕集量とPM捕集率とを用いて、次式によりフィルタ流入PM量PMDを算出する。
フィルタ流入PM量PMD=PM捕集量/PM捕集率
このようにして、差圧センサ36の出力に基づいて推定(算出)したフィルタ流入PM量PMDを、差圧センサ出力に基づいた推定PM量PMDとする。
In the second estimation method, first, based on the output of the differential pressure sensor 36, the amount of PM trapped by the single plug filter 31 (for example, the amount of PM collected by the single plug filter 31 per predetermined time) is calculated. In this case, for example, the PM accumulation amount corresponding to the output of the differential pressure sensor 36 is calculated by a map or a mathematical formula, and the difference between the current PM value and the previous value (PM accumulation amount per predetermined time) is calculated as PM. Calculated as the amount collected. Further, the PM collection rate is calculated by a map or a mathematical formula according to the current PM accumulation amount. A map or formula of the PM accumulation amount and PM collection rate is created in advance based on test data, design data, and the like, and is stored in the ROM of the ECU 30. Thereafter, the filter inflow PM amount PMD is calculated by the following equation using the PM collection amount and the PM collection rate.
Filter inflow PM amount PMD = PM collection amount / PM collection rate In this way, the filter inflow PM amount PMD estimated (calculated) based on the output of the differential pressure sensor 36 is estimated PM based on the differential pressure sensor output. The amount is PMD.

第3の推定方法では、まず、PMセンサ32の出力に基づいてセンサ検出PM量(例えば片栓フィルタ31を通過した所定時間当りのPM量)を算出する。この後、センサ検出PM量とPM捕集率とを用いて、次式によりフィルタ流入PM量PMPを算出する。
フィルタ流入PM量PMP=センサ検出PM量/(1−PM捕集率)
このようにして、PMセンサ32の出力に基づいて推定(算出)したフィルタ流入PM量PMPを、PMセンサ出力に基づいた推定PM量PMPとする。
In the third estimation method, first, based on the output of the PM sensor 32, a sensor detected PM amount (for example, a PM amount per predetermined time that has passed through the single plug filter 31) is calculated. Thereafter, the filter inflow PM amount PMP is calculated by the following equation using the sensor detected PM amount and the PM collection rate.
Filter inflow PM amount PMP = sensor detected PM amount / (1-PM collection rate)
Thus, the filter inflow PM amount PMP estimated (calculated) based on the output of the PM sensor 32 is set as the estimated PM amount PMP based on the PM sensor output.

以上のようにして、各推定PM量PME,PMD,PMPを算出した後、エンジン運転条件に基づいた推定PM量PMEと、差圧センサ出力に基づいた推定PM量PMDと、PMセンサ出力に基づいた推定PM量PMPとを比較する。   After calculating the estimated PM amounts PME, PMD, and PMP as described above, the estimated PM amount PME based on the engine operating conditions, the estimated PM amount PMD based on the differential pressure sensor output, and the PM sensor output The estimated PM amount PMP is compared.

その結果、図12に示すように、差圧センサ出力に基づいた推定PM量PMDとPMセンサ出力に基づいた推定PM量PMPとが一致し、且つ、エンジン運転条件に基づいた推定PM量PMEが差圧センサ出力に基づいた推定PM量PMD及びPMセンサ出力に基づいた推定PM量PMPよりも小さい場合には、エンジン11の異常と判定する。   As a result, as shown in FIG. 12, the estimated PM amount PMD based on the differential pressure sensor output matches the estimated PM amount PMP based on the PM sensor output, and the estimated PM amount PME based on the engine operating condition is When the estimated PM amount PMD based on the differential pressure sensor output and the estimated PM amount PMP based on the PM sensor output are smaller, it is determined that the engine 11 is abnormal.

つまり、差圧センサ出力に基づいた推定PM量PMDとPMセンサ出力に基づいた推定PM量PMPとが一致する場合には、片栓フィルタ31とPMセンサ32は正常と判断することができる。それらの推定PM量PMD,PMPよりもエンジン運転条件に基づいた推定PM量PMEの方が小さい場合には、エンジン11の異常によりエンジン11から排出されるPM量が過多の状態と判断して、エンジン11の異常(PM発生量が異常に多い状態)と判定することができる。   That is, when the estimated PM amount PMD based on the differential pressure sensor output matches the estimated PM amount PMP based on the PM sensor output, it can be determined that the single plug filter 31 and the PM sensor 32 are normal. When the estimated PM amount PME based on the engine operating conditions is smaller than those estimated PM amounts PMD and PMP, it is determined that the PM amount discharged from the engine 11 due to an abnormality in the engine 11 is excessive. It can be determined that the engine 11 is abnormal (a state in which the PM generation amount is abnormally large).

図13に示すように、エンジン運転条件に基づいた推定PM量PMEとPMセンサ出力に基づいた推定PM量PMPとが一致し、且つ、差圧センサ出力に基づいた推定PM量PMDがエンジン運転条件に基づいた推定PM量PME及びPMセンサ出力に基づいた推定PM量PMPよりも小さい場合には、片栓フィルタ31の異常と判定する。   As shown in FIG. 13, the estimated PM amount PME based on the engine operating condition matches the estimated PM amount PMP based on the PM sensor output, and the estimated PM amount PMD based on the differential pressure sensor output is equal to the engine operating condition. Is smaller than the estimated PM amount PME based on the PM sensor output and the estimated PM amount PMP based on the PM sensor output, it is determined that the one-sided filter 31 is abnormal.

つまり、エンジン運転条件に基づいた推定PM量PMEとPMセンサ出力に基づいた推定PM量PMPとが一致する場合には、エンジン11とPMセンサ32は正常と判断することができる。それらの推定PM量PME,PMPよりも差圧センサ出力に基づいた推定PM量PMDの方が小さい場合には、片栓フィルタ31のPM堆積量が過少の状態と判断して、片栓フィルタ31の異常(PM捕集率が異常に低い状態)と判定することができる。   That is, when the estimated PM amount PME based on the engine operating condition matches the estimated PM amount PMP based on the PM sensor output, it can be determined that the engine 11 and the PM sensor 32 are normal. If the estimated PM amount PMD based on the differential pressure sensor output is smaller than the estimated PM amounts PME and PMP, it is determined that the PM accumulation amount of the single plug filter 31 is too small. It is possible to determine that there is an abnormality (a state where the PM collection rate is abnormally low).

図14に示すように、エンジン運転条件に基づいた推定PM量PMEとPMセンサ出力に基づいた推定PM量PMPとが一致し、且つ、差圧センサ出力に基づいた推定PM量PMDがエンジン運転条件に基づいた推定PM量PME及びPMセンサ出力に基づいた推定PM量PMPよりも大きい場合には、片栓フィルタ31の再生異常と判定する。   As shown in FIG. 14, the estimated PM amount PME based on the engine operating condition matches the estimated PM amount PMP based on the PM sensor output, and the estimated PM amount PMD based on the differential pressure sensor output is equal to the engine operating condition. Is larger than the estimated PM amount PME based on the PM sensor output and the estimated PM amount PMP based on the PM sensor output, it is determined that the regeneration of the single plug filter 31 is abnormal.

つまり、エンジン運転条件に基づいた推定PM量PMEとPMセンサ出力に基づいた推定PM量PMPとが一致する場合には、エンジン11とPMセンサ32は正常と判断することができる。それらの推定PM量PME,PMPよりも差圧センサ出力に基づいた推定PM量PMDの方が大きい場合には、片栓フィルタ31のPM堆積量が過多の状態と判断して、片栓フィルタ31の再生異常(再生制御によりPMが正常に除去されていない状態)と判定することができる。   That is, when the estimated PM amount PME based on the engine operating condition matches the estimated PM amount PMP based on the PM sensor output, it can be determined that the engine 11 and the PM sensor 32 are normal. If the estimated PM amount PMD based on the differential pressure sensor output is larger than the estimated PM amounts PME, PMP, it is determined that the PM accumulation amount of the single plug filter 31 is excessive, and the single plug filter 31 Regeneration abnormality (a state where PM is not normally removed by regeneration control).

図15に示すように、エンジン運転条件に基づいた推定PM量PMEと差圧センサ出力に基づいた推定PM量PMDとが一致し、且つ、PMセンサ出力に基づいた推定PM量PMPがエンジン運転条件に基づいた推定PM量PME及び差圧センサ出力に基づいた推定PM量PMDと異なる場合には、PMセンサ32の異常と判定する。   As shown in FIG. 15, the estimated PM amount PME based on the engine operating condition matches the estimated PM amount PMD based on the differential pressure sensor output, and the estimated PM amount PMP based on the PM sensor output is equal to the engine operating condition. When the estimated PM amount PME based on the difference between the estimated PM amount PME and the estimated PM amount PMD based on the differential pressure sensor output is determined to be abnormal.

つまり、エンジン運転条件に基づいた推定PM量PMEと差圧センサ出力に基づいた推定PM量PMDとが一致する場合には、エンジン11と片栓フィルタ31は正常と判断することができる。それらの推定PM量PME,PMDとPMセンサ出力に基づいた推定PM量PMPとが異なる場合には、PMセンサ32が正常に機能していない状態と判断して、PMセンサ32の異常と判定することができる。   That is, when the estimated PM amount PME based on the engine operating conditions matches the estimated PM amount PMD based on the differential pressure sensor output, it can be determined that the engine 11 and the single plug filter 31 are normal. If these estimated PM amounts PME, PMD and the estimated PM amount PMP based on the PM sensor output are different, it is determined that the PM sensor 32 is not functioning normally and it is determined that the PM sensor 32 is abnormal. be able to.

以上説明した本実施例の異常診断は、ECU30によって図16及び図17に示す異常診断ルーチンに従って実行される。以下、このルーチンの処理内容を説明する。
図16及び図17に示す異常診断ルーチンは、ECU30の電源オン期間中に所定周期で繰り返し実行され、特許請求の範囲でいう異常診断手段としての役割を果たす。
The abnormality diagnosis of the present embodiment described above is executed by the ECU 30 according to the abnormality diagnosis routine shown in FIGS. The processing contents of this routine will be described below.
The abnormality diagnosis routines shown in FIGS. 16 and 17 are repeatedly executed at a predetermined period during the power-on period of the ECU 30, and serve as abnormality diagnosis means in the claims.

本ルーチンが起動されると、まず、ステップ101で、エンジン運転条件(エンジン回転速度、エンジン負荷、冷却水温、運転履歴等)を取得する。この後、ステップ102に進み、差圧センサ36の出力を取得した後、ステップ103に進み、PMセンサ32の出力を取得する。   When this routine is started, first, in step 101, engine operating conditions (engine speed, engine load, cooling water temperature, operating history, etc.) are acquired. Thereafter, the process proceeds to step 102 and the output of the differential pressure sensor 36 is acquired. Then, the process proceeds to step 103 and the output of the PM sensor 32 is acquired.

この後、ステップ104に進み、エンジン運転条件に基づいた推定PM量PMEを算出する。具体的には、エンジン回転速度、エンジン負荷(例えば吸気管圧力や吸入空気量等)、冷却水温、運転履歴等に基づいて、エンジン排出PM量をマップ又は数式等により算出し、このエンジン排出PM量をフィルタ流入PM量PMEとする。
フィルタ流入PM量PME=エンジン排出PM量
Thereafter, the process proceeds to step 104, and an estimated PM amount PME based on the engine operating condition is calculated. Specifically, based on the engine speed, engine load (for example, intake pipe pressure, intake air amount, etc.), cooling water temperature, operation history, etc., the engine exhaust PM amount is calculated by a map or numerical formula, and this engine exhaust PM. Let the amount be the filter inflow PM amount PME.
Filter inflow PM amount PME = Engine exhaust PM amount

このようにして、エンジン11の運転条件に基づいて推定(算出)したフィルタ流入PM量PMEを、エンジン運転条件に基づいた推定PM量PMEとする。このステップ104の処理が特許請求の範囲でいう第1の推定手段としての役割を果たす。   Thus, the filter inflow PM amount PME estimated (calculated) based on the operating condition of the engine 11 is set as the estimated PM amount PME based on the engine operating condition. The processing in step 104 serves as a first estimation means in the claims.

この後、ステップ105に進み、差圧センサ出力に基づいた推定PM量PMDを算出する。具体的には、差圧センサ36の出力に基づいて片栓フィルタ31のPM捕集量を算出し、このPM捕集量とPM捕集率とを用いて、次式によりフィルタ流入PM量PMDを算出する。
フィルタ流入PM量PMD=PM捕集量/PM捕集率
Thereafter, the process proceeds to step 105, and an estimated PM amount PMD based on the differential pressure sensor output is calculated. Specifically, the PM collection amount of the single-ended filter 31 is calculated based on the output of the differential pressure sensor 36, and the filter inflow PM amount PMD is calculated by the following equation using the PM collection amount and the PM collection rate. Is calculated.
Filter inflow PM amount PMD = PM collection amount / PM collection rate

このようにして、差圧センサ36の出力に基づいて推定(算出)したフィルタ流入PM量PMDを、差圧センサ出力に基づいた推定PM量PMDとする。このステップ105の処理が特許請求の範囲でいう第2の推定手段としての役割を果たす。   The filter inflow PM amount PMD estimated (calculated) based on the output of the differential pressure sensor 36 in this way is set as the estimated PM amount PMD based on the differential pressure sensor output. The processing in step 105 serves as second estimating means in the claims.

この後、ステップ106に進み、PMセンサ出力に基づいた推定PM量PMPを算出する。具体的には、PMセンサ32の出力に基づいてセンサ検出PM量を算出し、このセンサ検出PM量とPM捕集率とを用いて、次式によりフィルタ流入PM量PMPを算出する。
フィルタ流入PM量PMP=センサ検出PM量/(1−PM捕集率)
Thereafter, the process proceeds to step 106, and an estimated PM amount PMP based on the PM sensor output is calculated. Specifically, the sensor detected PM amount is calculated based on the output of the PM sensor 32, and the filter inflow PM amount PMP is calculated by the following equation using the sensor detected PM amount and the PM collection rate.
Filter inflow PM amount PMP = sensor detected PM amount / (1-PM collection rate)

このようにして、PMセンサ32の出力に基づいて推定(算出)したフィルタ流入PM量PMPを、PMセンサ出力に基づいた推定PM量PMPとする。このステップ106の処理が特許請求の範囲でいう第3の推定手段としての役割を果たす。   Thus, the filter inflow PM amount PMP estimated (calculated) based on the output of the PM sensor 32 is set as the estimated PM amount PMP based on the PM sensor output. The processing in step 106 serves as third estimating means in the claims.

以上のようにして、各推定PM量PME,PMD,PMPを算出した後、図17のステップ107に進み、エンジン運転条件に基づいた推定PM量PMEと差圧センサ出力に基づいた推定PM量PMDとの差の絶対値|PME−PMD|が所定のマージンK1 以下であるか否かを判定する。ここで、マージンK1 は、推定PM量PMEの推定ばらつき(推定誤差)と推定PM量PMDの推定ばらつきとを考慮して設定した値であり、例えば、推定PM量PMEの推定ばらつきと推定PM量PMDの推定ばらつきのうちの最大値、或は、推定PM量PMEの推定ばらつきと推定PM量PMDの推定ばらつきとの合計値に設定されている。   After calculating the estimated PM amounts PME, PMD, and PMP as described above, the process proceeds to step 107 in FIG. 17, and the estimated PM amount PME based on the engine operating condition and the estimated PM amount PMD based on the differential pressure sensor output It is determined whether or not the absolute value | PME-PMD | of the difference between the two is equal to or less than a predetermined margin K1. Here, the margin K1 is a value set in consideration of the estimated variation (estimation error) of the estimated PM amount PME and the estimated variation of the estimated PM amount PMD. For example, the margin K1 is an estimated variation of the estimated PM amount PME and the estimated PM amount. It is set to the maximum value of the estimated variation of PMD or the total value of the estimated variation of the estimated PM amount PME and the estimated variation of the estimated PM amount PMD.

このステップ107で、差の絶対値|PME−PMD|がマージンK1 以下であると判定された場合には、エンジン運転条件に基づいた推定PM量PMEと差圧センサ出力に基づいた推定PM量PMDとが一致していると判断する。この場合、ステップ108に進み、エンジン運転条件に基づいた推定PM量PMEとPMセンサ出力に基づいた推定PM量PMPとの差の絶対値|PME−PMP|が所定のマージンK2 以下であるか否かを判定する。ここで、マージンK2 は、推定PM量PMEの推定ばらつきと推定PM量PMPの推定ばらつきとを考慮して設定した値であり、例えば、推定PM量PMEの推定ばらつきと推定PM量PMPの推定ばらつきのうちの最大値、或は、推定PM量PMEの推定ばらつきと推定PM量PMPの推定ばらつきとの合計値に設定されている。   If it is determined in step 107 that the absolute value | PME-PMD | of the difference is equal to or less than the margin K1, the estimated PM amount PME based on the engine operating condition and the estimated PM amount PMD based on the differential pressure sensor output Is determined to match. In this case, the process proceeds to step 108, and whether or not the absolute value | PME-PMP | of the difference between the estimated PM amount PME based on the engine operating condition and the estimated PM amount PMP based on the PM sensor output is equal to or less than a predetermined margin K2. Determine whether. Here, the margin K2 is a value set in consideration of the estimated variation of the estimated PM amount PME and the estimated variation of the estimated PM amount PMP, for example, the estimated variation of the estimated PM amount PME and the estimated variation of the estimated PM amount PMP. Or the total value of the estimated variation of the estimated PM amount PME and the estimated variation of the estimated PM amount PMP.

このステップ108で、差の絶対値|PME−PMP|がマージンK2 以下であると判定された場合には、エンジン運転条件に基づいた推定PM量PMEとPMセンサ出力に基づいた推定PM量PMPとが一致していると判断する。この場合、ステップ113に進み、エンジン11と片栓フィルタ31とPMセンサ32が全て正常と判定する。   If it is determined in step 108 that the absolute value of the difference | PME−PMP | is equal to or less than the margin K2, the estimated PM amount PME based on the engine operating condition and the estimated PM amount PMP based on the PM sensor output Are determined to match. In this case, the process proceeds to step 113, and it is determined that the engine 11, the single plug filter 31, and the PM sensor 32 are all normal.

これに対して、上記ステップ108で、差の絶対値|PME−PMP|がマージンK2 よりも大きいと判定された場合には、PMセンサ出力に基づいた推定PM量PMPがエンジン運転条件に基づいた推定PM量PME及び差圧センサ出力に基づいた推定PM量PMDと異なると判断する。この場合、ステップ114に進み、PMセンサ32が正常に機能していない状態と判断して、PMセンサ32の異常と判定する。   On the other hand, if it is determined in step 108 that the absolute value | PME-PMP | of the difference is larger than the margin K2, the estimated PM amount PMP based on the PM sensor output is based on the engine operating condition. It is determined that the estimated PM amount PMD is different from the estimated PM amount PMD based on the estimated PM amount PME and the differential pressure sensor output. In this case, the process proceeds to step 114, where it is determined that the PM sensor 32 is not functioning normally, and it is determined that the PM sensor 32 is abnormal.

一方、上記ステップ107で、差の絶対値|PME−PMD|がマージンK1 よりも大きいと判定された場合には、エンジン運転条件に基づいた推定PM量PMEと差圧センサ出力に基づいた推定PM量PMDとが一致していないと判断する。この場合、ステップ109に進み、エンジン運転条件に基づいた推定PM量PMEとPMセンサ出力に基づいた推定PM量PMPとの差の絶対値|PME−PMP|がマージンK2 以下であるか否かを判定する。   On the other hand, if it is determined in step 107 that the absolute value | PME-PMD | of the difference is larger than the margin K1, the estimated PM amount PME based on the engine operating condition and the estimated PM based on the differential pressure sensor output It is determined that the amount PMD does not match. In this case, the process proceeds to step 109, and whether or not the absolute value | PME-PMP | of the difference between the estimated PM amount PME based on the engine operating condition and the estimated PM amount PMP based on the PM sensor output is equal to or less than the margin K2. judge.

このステップ109で、差の絶対値|PME−PMP|がマージンK2 以下であると判定された場合には、エンジン運転条件に基づいた推定PM量PMEとPMセンサ出力に基づいた推定PM量PMPとが一致していると判断する。この場合、ステップ110に進み、エンジン運転条件に基づいた推定PM量PMEと差圧センサ出力に基づいた推定PM量PMDとの差(PME−PMD)がマージンK1 よりも大きいか否かを判定する。   If it is determined in step 109 that the absolute value | PME-PMP | of the difference is equal to or less than the margin K2, the estimated PM amount PME based on the engine operating condition and the estimated PM amount PMP based on the PM sensor output Are determined to match. In this case, the process proceeds to step 110, and it is determined whether or not the difference (PME-PMD) between the estimated PM amount PME based on the engine operating condition and the estimated PM amount PMD based on the differential pressure sensor output is larger than the margin K1. .

このステップ110で、差(PME−PMD)がマージンK1 よりも大きいと判定された場合には、差圧センサ出力に基づいた推定PM量PMDが他の推定PM量PME,PMPよりも小さいと判断する。この場合、ステップ115に進み、片栓フィルタ31のPM堆積量が過少の状態と判断して、片栓フィルタ31の異常(PM捕集率が異常に低い状態)と判定する。   If it is determined in step 110 that the difference (PME-PMD) is larger than the margin K1, it is determined that the estimated PM amount PMD based on the differential pressure sensor output is smaller than the other estimated PM amounts PME, PMP. To do. In this case, the process proceeds to step 115, where it is determined that the PM accumulation amount of the single plug filter 31 is too small, and it is determined that the single plug filter 31 is abnormal (the PM collection rate is abnormally low).

これに対して、上記ステップ110で、差(PME−PMD)がマージンK1 以下であると判定された場合には、差圧センサ出力に基づいた推定PM量PMDが他の推定PM量PME,PMPよりも大きいと判断する。この場合、ステップ116に進み、片栓フィルタ31のPM堆積量が過多の状態と判断して、片栓フィルタ31の再生異常(再生制御によりPMが正常に除去されていない状態)と判定する。   On the other hand, if it is determined in step 110 that the difference (PME−PMD) is equal to or less than the margin K1, the estimated PM amount PMD based on the differential pressure sensor output becomes the other estimated PM amounts PME, PMP. It is judged that it is larger than. In this case, the process proceeds to step 116, where it is determined that the PM accumulation amount of the single plug filter 31 is excessive, and it is determined that regeneration of the single plug filter 31 is abnormal (a state where PM is not normally removed by the regeneration control).

一方、上記ステップ109で、差の絶対値|PME−PMP|がマージンK2 よりも大きいと判定された場合には、エンジン運転条件に基づいた推定PM量PMEとPMセンサ出力に基づいた推定PM量PMPとが一致していないと判断する。この場合、ステップ111に進み、差圧センサ出力に基づいた推定PM量PMDとPMセンサ出力に基づいた推定PM量PMPとの差の絶対値|PMD−PMP|が所定のマージンK3 以下であるか否かを判定する。ここで、マージンK3 は、推定PM量PMDの推定ばらつきと推定PM量PMPの推定ばらつきとを考慮して設定した値であり、例えば、推定PM量PMDの推定ばらつきと推定PM量PMPの推定ばらつきのうちの最大値、或は、推定PM量PMDの推定ばらつきと推定PM量PMPの推定ばらつきとの合計値に設定されている。   On the other hand, if it is determined in step 109 that the absolute value | PME-PMP | of the difference is larger than the margin K2, the estimated PM amount PME based on the engine operating condition and the estimated PM amount based on the PM sensor output It is determined that the PMP does not match. In this case, the process proceeds to step 111, where is the absolute value | PMD-PMP | of the difference between the estimated PM amount PMD based on the differential pressure sensor output and the estimated PM amount PMP based on the PM sensor output equal to or less than a predetermined margin K3? Determine whether or not. Here, the margin K3 is a value set in consideration of the estimated variation of the estimated PM amount PMD and the estimated variation of the estimated PM amount PMP, for example, the estimated variation of the estimated PM amount PMD and the estimated variation of the estimated PM amount PMP. Or the total value of the estimated variation of the estimated PM amount PMD and the estimated variation of the estimated PM amount PMP.

このステップ111で、差の絶対値|PMD−PMP|がマージンK3 以下であると判定された場合には、差圧センサ出力に基づいた推定PM量PMDとPMセンサ出力に基づいた推定PM量PMPとが一致していると判断する。この場合、ステップ112に進み、差圧センサ出力に基づいた推定PM量PMDとエンジン運転条件に基づいた推定PM量PMEとの差(PMD−PME)がマージンK1 よりも大きいか否かを判定する。   When it is determined in step 111 that the absolute value | PMD-PMP | of the difference is equal to or less than the margin K3, the estimated PM amount PMD based on the differential pressure sensor output and the estimated PM amount PMP based on the PM sensor output Is determined to match. In this case, the process proceeds to step 112, and it is determined whether or not the difference (PMD-PME) between the estimated PM amount PMD based on the differential pressure sensor output and the estimated PM amount PME based on the engine operating condition is larger than the margin K1. .

このステップ112で、差(PMD−PME)がマージンK1 よりも大きいと判定された場合には、エンジン運転条件に基づいた推定PM量PMEが他の推定PM量PMD,PMPよりも小さいと判断する。この場合、ステップ117に進み、エンジン11の異常によりエンジン11から排出されるPM量が過多の状態と判断して、エンジン11の異常(PM発生量が異常に多い状態)と判定する。   If it is determined in step 112 that the difference (PMD-PME) is larger than the margin K1, it is determined that the estimated PM amount PME based on the engine operating condition is smaller than the other estimated PM amounts PMD and PMP. . In this case, the process proceeds to step 117, where it is determined that the PM amount discharged from the engine 11 is excessive due to an abnormality in the engine 11, and it is determined that the engine 11 is abnormal (a state in which the PM generation amount is abnormally large).

以上説明した本実施例では、エンジン11の運転条件に基づいてフィルタ流入PM量PMEを推定し、このフィルタ流入PM量PMEを、エンジン運転条件に基づいた推定PM量PMEとする。また、差圧センサ36の出力に基づいてフィルタ流入PM量PMDを推定し、このフィルタ流入PM量PMDを、差圧センサ出力に基づいた推定PM量PMDとする。更に、PMセンサ32の出力に基づいてフィルタ流入PM量PMPを推定し、このフィルタ流入PM量PMPを、PMセンサ出力に基づいた推定PM量PMPとする。そして、エンジン運転条件に基づいた推定PM量PMEと、差圧センサ出力に基づいた推定PM量PMDと、PMセンサ出力に基づいた推定PM量PMPとを比較して、エンジン11の異常と片栓フィルタ31の異常とPMセンサ32の異常とを区別して判定するようにしている。   In the present embodiment described above, the filter inflow PM amount PME is estimated based on the operating condition of the engine 11, and this filter inflow PM amount PME is set as the estimated PM amount PME based on the engine operating condition. Further, the filter inflow PM amount PMD is estimated based on the output of the differential pressure sensor 36, and this filter inflow PM amount PMD is set as the estimated PM amount PMD based on the differential pressure sensor output. Further, the filter inflow PM amount PMP is estimated based on the output of the PM sensor 32, and this filter inflow PM amount PMP is set as the estimated PM amount PMP based on the PM sensor output. Then, the estimated PM amount PME based on the engine operating condition, the estimated PM amount PMD based on the differential pressure sensor output, and the estimated PM amount PMP based on the PM sensor output are compared, and the abnormality of the engine 11 and the single plug The abnormality of the filter 31 and the abnormality of the PM sensor 32 are distinguished and determined.

エンジン11と片栓フィルタ31とPMセンサ32が全て正常であれば、エンジン運転条件に基づいた推定PM量PMEと、差圧センサ出力に基づいた推定PM量PMDと、PMセンサ出力に基づいた推定PM量PMPとがほぼ一致するはずである。しかし、エンジン11と片栓フィルタ31とPMセンサ32のいずれかに異常が発生すると、その異常箇所に対応した推定PM量が他の推定PM量と異なってくる。従って、エンジン運転条件に基づいた推定PM量PMEと、差圧センサ出力に基づいた推定PM量PMDと、PMセンサ出力に基づいた推定PM量PMPとを比較すれば、エンジン11の異常と片栓フィルタ31の異常とPMセンサ32の異常とを区別して判定することができる。これにより、エンジン11と片栓フィルタ31とPMセンサ32のいずれかに異常が発生した場合に、その異常箇所を特定することができる。   If the engine 11, the single plug filter 31, and the PM sensor 32 are all normal, the estimated PM amount PME based on the engine operating conditions, the estimated PM amount PMD based on the differential pressure sensor output, and the estimation based on the PM sensor output The PM amount PMP should substantially match. However, when an abnormality occurs in any of the engine 11, the single plug filter 31, and the PM sensor 32, the estimated PM amount corresponding to the abnormal portion is different from other estimated PM amounts. Therefore, if the estimated PM amount PME based on the engine operating condition, the estimated PM amount PMD based on the differential pressure sensor output, and the estimated PM amount PMP based on the PM sensor output are compared, the abnormality of the engine 11 and the single plug The abnormality of the filter 31 and the abnormality of the PM sensor 32 can be distinguished and determined. Thereby, when an abnormality occurs in any of the engine 11, the single plug filter 31, and the PM sensor 32, the abnormal part can be specified.

また、本実施例では、各推定PM量を比較する際に推定PM量の推定ばらつき(推定誤差)を考慮したマージンを設けるようにしている。これにより、各推定PM量に推定ばらつきが含まれていても、各推定PM量を適正に比較することができ、推定ばらつきに起因する誤判定を防止することができる。   In the present embodiment, a margin is provided in consideration of estimation variation (estimation error) of estimated PM amounts when comparing the estimated PM amounts. Thereby, even if estimation variation is included in each estimated PM amount, each estimated PM amount can be properly compared, and erroneous determination caused by the estimated variation can be prevented.

尚、上記実施例では、診断用PM量としてフィルタ流入PM量を推定するようにしたが、これに限定されず、診断用PM量としてフィルタ捕集PM量又はフィルタ流出PM量を3通りの推定方法で推定し、各推定PM量を比較して、エンジン11の異常と片栓フィルタ31の異常とPMセンサ32の異常とを区別して判定するようにしても良い。   In the above embodiment, the filter inflow PM amount is estimated as the diagnostic PM amount. However, the present invention is not limited to this, and the filter collection PM amount or the filter outflow PM amount is estimated in three ways as the diagnostic PM amount. The estimation may be performed by a method, and the estimated PM amounts may be compared to distinguish between the abnormality of the engine 11, the abnormality of the single plug filter 31, and the abnormality of the PM sensor 32.

また、上記実施例では、一部のセルの入口側が閉鎖されて全てのセルの出口側が開放された構造の片栓フィルタを備えたシステムに本発明を適用したが、これに限定されず、一部のセルの出口側が閉鎖されて全てのセルの入口側が開放された構造の片栓フィルタを備えたシステムに本発明を適用しても良い。   In the above embodiment, the present invention is applied to a system including a single plug filter having a structure in which the inlet sides of some cells are closed and the outlet sides of all cells are opened. However, the present invention is not limited to this. The present invention may be applied to a system including a single plug filter having a structure in which the outlet side of some cells is closed and the inlet sides of all cells are opened.

また、上記実施例では、一部のセルの入口側が閉鎖されて全てのセルの出口側が開放された構造の片栓フィルタを備えたシステムに本発明を適用したが、これに限定されず、一部のセルの入口側が閉鎖されて残りのセル(入口側が開放されたセル)のうち一部のセルの出口側が閉鎖された構造の片栓フィルタを備えたシステムに本発明を適用しても良い。或は、一部のセルの出口側が閉鎖されて全てのセルの入口側が開放された構造の片栓フィルタや、一部のセルの出口側が閉鎖されて残りのセル(出口側が開放されたセル)のうち一部のセルの入口側が閉鎖された構造の片栓フィルタを備えたシステムに本発明を適用しても良い。要は、一部のセルの入口側と出口側が両方とも開放された構造の片栓フィルタを備えたシステムであれば、本発明を適用することができる。   In the above embodiment, the present invention is applied to a system including a single plug filter having a structure in which the inlet sides of some cells are closed and the outlet sides of all cells are opened. However, the present invention is not limited to this. The present invention may be applied to a system including a single plug filter having a structure in which the inlet side of some cells is closed and the outlet side of some of the remaining cells (cells whose inlet side is opened) is closed. . Alternatively, a single plug filter having a structure in which the outlet side of some cells is closed and the inlet side of all cells is opened, or the remaining cells (cells in which the outlet side is opened) with the outlet side of some cells closed The present invention may be applied to a system including a single-ended filter having a structure in which the inlet side of some of the cells is closed. In short, the present invention can be applied to any system provided with a single plug filter having a structure in which both the inlet side and the outlet side of some cells are open.

また、上記実施例では、筒内噴射式ガソリンエンジンを搭載したシステムに本発明を適用したが、これに限定されず、片栓フィルタを備えたシステムであれば、ディーゼルエンジンや吸気ポート噴射式ガソリンエンジンを搭載したシステムであっても、本発明を適用して実施できる。   In the above embodiment, the present invention is applied to a system equipped with an in-cylinder injection gasoline engine. However, the present invention is not limited to this, and a diesel engine or an intake port injection gasoline may be used as long as the system includes a single plug filter. Even a system equipped with an engine can be implemented by applying the present invention.

11…エンジン(内燃機関)、30…ECU(第1の推定手段,第2の推定手段,第3の推定手段,異常診断手段)、31…片栓フィルタ、32…PMセンサ、33…セル、36…差圧センサ   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 30 ... ECU (1st estimation means, 2nd estimation means, 3rd estimation means, abnormality diagnosis means), 31 ... Single plug filter, 32 ... PM sensor, 33 ... Cell, 36 ... Differential pressure sensor

Claims (6)

内燃機関(11)の排出ガス中の粒子状物質(以下「PM」と表記する)を捕集するフィルタであって該フィルタに設けられた複数のセル(33)のうちの一部のセルの入口側が閉鎖されて残りのセルのうち出口側が開放されたセルを少なくとも一つ以上有する構造又は一部のセルの出口側が閉鎖されて残りのセルのうち入口側が開放されたセルを少なくとも一つ以上有する構造の片栓フィルタ(31)と、
前記片栓フィルタ(31)の上流側排気圧と下流側排気圧との差を検出する差圧センサ(36)と、
前記片栓フィルタ(31)を通過した排出ガス中のPM量を検出するPMセンサ(32)と、
前記片栓フィルタ(31)に流入するPM量と前記片栓フィルタ(31)に捕集されるPM量と前記片栓フィルタ(31)から流出するPM量のうちのいずれか一つのPM量である診断用PM量を前記内燃機関(11)の運転条件に基づいて推定する第1の推定手段(30)と、
前記診断用PM量を前記差圧センサ(36)の出力に基づいて推定する第2の推定手段(30)と、
前記診断用PM量を前記PMセンサ(32)の出力に基づいて推定する第3の推定手段(30)と、
前記第1の推定手段(30)で推定した診断用PM量(以下「内燃機関(11)の運転条件に基づいた推定PM量」という)と、前記第2の推定手段(30)で推定した診断用PM量(以下「差圧センサ(36)の出力に基づいた推定PM量」という)と、前記第3の推定手段(30)で推定した診断用PM量(以下「PMセンサ(32)の出力に基づいた推定PM量」という)とを比較して、前記内燃機関(11)の異常と前記片栓フィルタ(31)の異常と前記PMセンサ(32)の異常とを区別して判定する異常診断手段(30)と
を備えていることを特徴とする異常診断装置。
A filter that collects particulate matter (hereinafter referred to as “PM”) in the exhaust gas of the internal combustion engine (11), and is a part of a plurality of cells (33) provided in the filter. A structure having at least one cell in which the inlet side is closed and the outlet side is opened among the remaining cells, or at least one cell in which the outlet side of some of the cells is closed and the inlet side is opened A single-ended filter (31) having a structure comprising:
A differential pressure sensor (36) for detecting a difference between an upstream exhaust pressure and a downstream exhaust pressure of the single plug filter (31);
A PM sensor (32) for detecting the amount of PM in the exhaust gas that has passed through the single plug filter (31);
Any one of the amount of PM flowing into the single plug filter (31), the amount of PM collected by the single plug filter (31), and the amount of PM flowing out of the single plug filter (31) First estimating means (30) for estimating a certain PM amount for diagnosis based on operating conditions of the internal combustion engine (11);
Second estimating means (30) for estimating the diagnostic PM amount based on the output of the differential pressure sensor (36);
Third estimation means (30) for estimating the diagnostic PM amount based on the output of the PM sensor (32);
Diagnostic PM amount estimated by the first estimating means (30) (hereinafter referred to as "estimated PM amount based on operating conditions of the internal combustion engine (11)") and estimated by the second estimating means (30) Diagnostic PM amount (hereinafter referred to as “estimated PM amount based on output of differential pressure sensor (36)”) and diagnostic PM amount (hereinafter referred to as “PM sensor (32)” estimated by the third estimating means (30). The estimated PM amount based on the output of the internal combustion engine (11) ", and distinguishing between the abnormality of the internal combustion engine (11), the abnormality of the single plug filter (31), and the abnormality of the PM sensor (32). An abnormality diagnosis device comprising: an abnormality diagnosis means (30).
前記異常診断手段(30)は、前記差圧センサ(36)の出力に基づいた推定PM量と前記PMセンサ(32)の出力に基づいた推定PM量とが一致し、且つ、前記内燃機関(11)の運転条件に基づいた推定PM量が前記差圧センサ(36)の出力に基づいた推定PM量及び前記PMセンサ(32)の出力に基づいた推定PM量よりも小さい場合に、前記内燃機関(11)の異常と判定することを特徴とする請求項1に記載の異常診断装置。   The abnormality diagnosing means (30) matches the estimated PM amount based on the output of the differential pressure sensor (36) with the estimated PM amount based on the output of the PM sensor (32), and the internal combustion engine ( 11) when the estimated PM amount based on the operating condition of 11) is smaller than the estimated PM amount based on the output of the differential pressure sensor (36) and the estimated PM amount based on the output of the PM sensor (32). The abnormality diagnosis device according to claim 1, wherein the abnormality diagnosis device determines that the abnormality is in the engine (11). 前記異常診断手段(30)は、前記内燃機関(11)の運転条件に基づいた推定PM量と前記PMセンサ(32)の出力に基づいた推定PM量とが一致し、且つ、前記差圧センサ(36)の出力に基づいた推定PM量が前記内燃機関(11)の運転条件に基づいた推定PM量及び前記PMセンサ(32)の出力に基づいた推定PM量よりも小さい場合に、前記片栓フィルタ(31)の異常と判定することを特徴とする請求項1又は2に記載の異常診断装置。   The abnormality diagnosing means (30) is configured such that an estimated PM amount based on an operating condition of the internal combustion engine (11) matches an estimated PM amount based on an output of the PM sensor (32), and the differential pressure sensor When the estimated PM amount based on the output of (36) is smaller than the estimated PM amount based on the operating condition of the internal combustion engine (11) and the estimated PM amount based on the output of the PM sensor (32), the piece The abnormality diagnosis device according to claim 1, wherein the abnormality is determined as an abnormality of the plug filter (31). 前記異常診断手段(30)は、前記内燃機関(11)の運転条件に基づいた推定PM量と前記PMセンサ(32)の出力に基づいた推定PM量とが一致し、且つ、前記差圧センサ(36)の出力に基づいた推定PM量が前記内燃機関(11)の運転条件に基づいた推定PM量及び前記PMセンサ(32)の出力に基づいた推定PM量よりも大きい場合に、前記片栓フィルタ(31)の再生異常と判定することを特徴とする請求項1乃至3のいずれかに記載の異常診断装置。   The abnormality diagnosing means (30) is configured such that an estimated PM amount based on an operating condition of the internal combustion engine (11) matches an estimated PM amount based on an output of the PM sensor (32), and the differential pressure sensor When the estimated PM amount based on the output of (36) is larger than the estimated PM amount based on the operating condition of the internal combustion engine (11) and the estimated PM amount based on the output of the PM sensor (32), the piece The abnormality diagnosis device according to claim 1, wherein the abnormality is determined as a regeneration abnormality of the plug filter (31). 前記異常診断手段(30)は、前記内燃機関(11)の運転条件に基づいた推定PM量と前記差圧センサ(36)の出力に基づいた推定PM量とが一致し、且つ、前記PMセンサ(32)の出力に基づいた推定PM量が前記内燃機関(11)の運転条件に基づいた推定PM量及び前記差圧センサ(36)の出力に基づいた推定PM量と異なる場合に、前記PMセンサ(32)の異常と判定することを特徴とする請求項1乃至4のいずれかに記載の異常診断装置。   The abnormality diagnosis means (30) is configured such that an estimated PM amount based on an operating condition of the internal combustion engine (11) matches an estimated PM amount based on an output of the differential pressure sensor (36), and the PM sensor When the estimated PM amount based on the output of (32) is different from the estimated PM amount based on the operating condition of the internal combustion engine (11) and the estimated PM amount based on the output of the differential pressure sensor (36), the PM The abnormality diagnosis device according to any one of claims 1 to 4, wherein the abnormality of the sensor (32) is determined. 前記異常診断手段(30)は、前記推定PM量を比較する際に該推定PM量の推定ばらつきを考慮したマージンを設けることを特徴とする請求項1乃至5のいずれかに記載の異常診断装置。   6. The abnormality diagnosis apparatus according to claim 1, wherein the abnormality diagnosis means (30) provides a margin in consideration of an estimation variation of the estimated PM amount when comparing the estimated PM amount. .
JP2015004189A 2015-01-13 2015-01-13 Abnormality diagnosis device Expired - Fee Related JP6358101B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015004189A JP6358101B2 (en) 2015-01-13 2015-01-13 Abnormality diagnosis device
PCT/JP2016/000057 WO2016114111A1 (en) 2015-01-13 2016-01-07 Abnormality diagnosis device
US15/519,943 US10072542B2 (en) 2015-01-13 2016-01-07 Abnormality diagnosis device
DE112016000329.3T DE112016000329T5 (en) 2015-01-13 2016-01-07 Abnormalitätsdiagnosevorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015004189A JP6358101B2 (en) 2015-01-13 2015-01-13 Abnormality diagnosis device

Publications (2)

Publication Number Publication Date
JP2016130457A JP2016130457A (en) 2016-07-21
JP6358101B2 true JP6358101B2 (en) 2018-07-18

Family

ID=56405663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015004189A Expired - Fee Related JP6358101B2 (en) 2015-01-13 2015-01-13 Abnormality diagnosis device

Country Status (4)

Country Link
US (1) US10072542B2 (en)
JP (1) JP6358101B2 (en)
DE (1) DE112016000329T5 (en)
WO (1) WO2016114111A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016211712B4 (en) 2016-06-29 2018-07-26 Continental Automotive Gmbh Method for checking the functionality of a particle sensor
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3930725B2 (en) 2001-11-20 2007-06-13 日野自動車株式会社 Particulate filter abnormality detection device
JP4434038B2 (en) * 2004-04-05 2010-03-17 株式会社デンソー Exhaust gas purification device for internal combustion engine
JP4363289B2 (en) * 2004-09-21 2009-11-11 株式会社デンソー Exhaust gas purification device for internal combustion engine
JP2007315275A (en) 2006-05-25 2007-12-06 Nissan Motor Co Ltd Exhaust gas purifying filter failure diagnosis device and method
DE602008004638D1 (en) * 2008-06-25 2011-03-03 Fiat Ricerche Method for determining the amount of particulates collected in a particulate filter
JP2011220233A (en) * 2010-04-09 2011-11-04 Mazda Motor Corp Failure determination method for particulate filter and its device
JPWO2012046484A1 (en) 2010-10-06 2014-02-24 日本碍子株式会社 Exhaust gas purification device
JP5115873B2 (en) * 2010-12-08 2013-01-09 株式会社デンソー Particulate filter failure detection device
DE102011086118B4 (en) * 2011-11-10 2014-07-10 Continental Automotive Gmbh Method and system for an exhaust particulate filter
JP2013104349A (en) * 2011-11-14 2013-05-30 Toyota Motor Corp Filter failure determination system
GB2517376B (en) * 2012-05-22 2018-03-21 Toyota Motor Co Ltd Exhaust gas purification apparatus for internal combustion engine

Also Published As

Publication number Publication date
WO2016114111A1 (en) 2016-07-21
DE112016000329T5 (en) 2017-10-19
JP2016130457A (en) 2016-07-21
US20170328248A1 (en) 2017-11-16
US10072542B2 (en) 2018-09-11

Similar Documents

Publication Publication Date Title
JP6358101B2 (en) Abnormality diagnosis device
JP4363211B2 (en) Abnormality detection device for exhaust gas purification device of internal combustion engine
JP2007315275A (en) Exhaust gas purifying filter failure diagnosis device and method
JP6323354B2 (en) Exhaust gas purification device for internal combustion engine
JP4403944B2 (en) Exhaust gas purification device for internal combustion engine
AU2011342304A1 (en) DPF system
CN105089759A (en) Method and apparatus for diagnosis of detachment of assembly of exhaust cleaning component
JP2016136011A (en) Control device of internal combustion engine
JP6251143B2 (en) Control device for spark ignition engine
WO2016114110A1 (en) Internal combustion engine control device
JP5772791B2 (en) Filter abnormality judgment device
JP2008223516A (en) Failure diagnosis device of exhaust gas recirculation device for engine
JP6436075B2 (en) Failure diagnosis device for exhaust purification system
JP5413248B2 (en) Exhaust gas purification system for internal combustion engine
WO2020066931A1 (en) Estimation device and vehicle
JP2006057523A (en) Failure diagnosis device for engine control system
JP6365319B2 (en) PM sensor abnormality diagnosis device
JP4380354B2 (en) Additive valve abnormality diagnosis device for internal combustion engine
JP2012211561A (en) Degradation determination device
JP2017115810A (en) Abnormality diagnosis device for exhaust emission control system
JP5366015B2 (en) Exhaust gas purification device for internal combustion engine
JP6107574B2 (en) Exhaust gas purification device for internal combustion engine
JP2019116876A (en) Sensor diagnostic system
JP2006242067A (en) Abnormality diagnosing device for intake system sensor
JP6278002B2 (en) Failure diagnosis device for exhaust purification system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180604

R151 Written notification of patent or utility model registration

Ref document number: 6358101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees