JP6356027B2 - Sliding constant velocity universal joint - Google Patents

Sliding constant velocity universal joint Download PDF

Info

Publication number
JP6356027B2
JP6356027B2 JP2014191482A JP2014191482A JP6356027B2 JP 6356027 B2 JP6356027 B2 JP 6356027B2 JP 2014191482 A JP2014191482 A JP 2014191482A JP 2014191482 A JP2014191482 A JP 2014191482A JP 6356027 B2 JP6356027 B2 JP 6356027B2
Authority
JP
Japan
Prior art keywords
spherical
joint member
constant velocity
velocity universal
universal joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014191482A
Other languages
Japanese (ja)
Other versions
JP2016061402A (en
Inventor
康昭 武川
康昭 武川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2014191482A priority Critical patent/JP6356027B2/en
Publication of JP2016061402A publication Critical patent/JP2016061402A/en
Application granted granted Critical
Publication of JP6356027B2 publication Critical patent/JP6356027B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば製紙設備や鉄鋼設備などの各種産業機械の動力伝達機構として、劣悪な環境下で使用される摺動式等速自在継手に関する。   The present invention relates to a sliding type constant velocity universal joint used in a poor environment as a power transmission mechanism of various industrial machines such as papermaking equipment and steel equipment.

例えば、製紙設備や鉄鋼設備などの各種産業機械の動力伝達機構として使用される摺動式等速自在継手には、開口端部を有する外側継手部材と、その外側継手部材との間でボールを介して角度変位および軸方向変位を許容しながらトルクを伝達する内側継手部材とを備えたダブルオフセット型等速自在継手(DOJ)がある。この種の等速自在継手では、外部からの粉塵等の異物や水の侵入およびグリース等の潤滑剤の漏洩を防止するためのシール構造として、ゴムや樹脂製のブーツを採用しているのが一般的である。   For example, in a sliding type constant velocity universal joint used as a power transmission mechanism of various industrial machines such as papermaking equipment and steel equipment, a ball is placed between an outer joint member having an open end and the outer joint member. There is a double offset type constant velocity universal joint (DOJ) including an inner joint member that transmits torque while allowing angular displacement and axial displacement through the joint. This type of constant velocity universal joint uses rubber or resin boots as a seal structure to prevent foreign matter such as dust from entering, water intrusion and leakage of lubricant such as grease. It is common.

しかしながら、各種産業機械の中でも、例えば鉄鋼設備などで使用されるロール駆動力伝達装置は、80℃以上の輻射熱、水蒸気による高温多湿、スケールの飛散、薬品類などによる劣悪な環境下で使用される。そのため、前述したゴムや樹脂製のブーツからなるシール構造の場合、そのブーツが劣化し易く、シール性能および耐久性能の低下により、頻繁なブーツ交換が必要であった。   However, among various industrial machines, for example, a roll driving force transmission device used in steel facilities is used in a poor environment due to radiant heat of 80 ° C. or higher, high temperature and humidity due to water vapor, scattering of scales, chemicals, and the like. . Therefore, in the case of the above-described seal structure composed of rubber or resin boots, the boots are likely to deteriorate, and frequent boot replacement is necessary due to a decrease in sealing performance and durability performance.

このことから、劣悪な環境下で使用する摺動式等速自在継手では、ゴムや樹脂製のブーツからなるシール構造を採用せず、耐久性に優れた金属製の球面シール構造が採用されている(例えば、特許文献1参照)。   For this reason, the sliding constant velocity universal joint used in a poor environment does not employ a seal structure made of rubber or resin boots, but adopts a metal spherical seal structure with excellent durability. (For example, refer to Patent Document 1).

特許文献1で開示された球面シール構造は、外側継手部材の外周面に摺動自在に装着された球面シール内環と、内側継手部材から延びるシャフトの外周面に固定状態で装着された球面シール外環と、外側継手部材の外周面に装着された圧縮コイルばねとで構成されている。   The spherical seal structure disclosed in Patent Document 1 includes a spherical seal inner ring that is slidably mounted on the outer peripheral surface of the outer joint member, and a spherical seal that is fixedly mounted on the outer peripheral surface of the shaft extending from the inner joint member. It is comprised by the outer ring and the compression coil spring with which the outer peripheral surface of the outer joint member was mounted | worn.

球面シール内環の外周には、凸球面が部分的に形成されている。また、球面シール外環の内周には、球面シール内環の凸球面と接する凹球面が部分的に形成されている。さらに、圧縮コイルばねは、外側継手部材と球面シール内環との間に張設されている。   A convex spherical surface is partially formed on the outer periphery of the inner ring of the spherical seal. A concave spherical surface that is in contact with the convex spherical surface of the spherical seal inner ring is partially formed on the inner circumference of the spherical seal outer ring. Further, the compression coil spring is stretched between the outer joint member and the spherical seal inner ring.

この球面シール構造では、球面シール内環の凸球面と球面シール外環の凹球面との間にOリングを介在させると共に、球面シール内環の凸球面が球面シール外環の凹球面と接する方向に圧縮コイルばねの弾性力を付勢することにより、高いシール性を確保している。   In this spherical seal structure, an O-ring is interposed between the convex spherical surface of the spherical seal inner ring and the concave spherical surface of the spherical seal outer ring, and the convex spherical surface of the spherical seal inner ring is in contact with the concave spherical surface of the spherical seal outer ring. By energizing the elastic force of the compression coil spring, high sealing performance is ensured.

特開2009−174616号公報JP 2009-174616 A

ところで、特許文献1で開示された摺動式等速自在継手では、球面シール内環、球面シール外環および圧縮コイルばねからなる金属製の球面シール構造により、ゴムや樹脂製のブーツでは耐え切れない厳しい使用環境下においても、一定の耐熱性、耐水性および耐腐食性を確保するようにしている。   By the way, in the sliding type constant velocity universal joint disclosed in Patent Document 1, a rubber or resin boot is endured by a metal spherical seal structure including a spherical seal inner ring, a spherical seal outer ring, and a compression coil spring. Even under severe usage environments, certain heat resistance, water resistance and corrosion resistance are ensured.

しかしながら、この球面シール構造では、球面シール内環および球面シール外環が外側継手部材の外側で露呈した構造となっている。このことから、等速自在継手の最大作動角を高角度(18°程度)とすることが可能であるが、等速自在継手が高速回転した場合、球面シール内環の凸球面と球面シール外環の凹球面との間から潤滑剤が漏洩し易い。   However, in this spherical seal structure, the spherical seal inner ring and the spherical seal outer ring are exposed outside the outer joint member. Therefore, the maximum operating angle of the constant velocity universal joint can be set to a high angle (about 18 °). However, when the constant velocity universal joint rotates at a high speed, the convex spherical surface of the inner ring of the spherical seal and the outer surface of the spherical seal are Lubricant is likely to leak from between the concave spherical surface of the ring.

また、圧縮コイルばねが外側継手部材の外側で露呈しているため、水蒸気による高温多湿、薬品類などによる劣悪な環境下では、圧縮コイルばねに錆が発生し易い。圧縮コイルばねに錆が発生すると、圧縮コイルばねの耐久性が低下し、球面シール内環に圧縮コイルばねの弾性力を十分に作用させることが困難となり、球面シール内環の凸球面と球面シール外環の凹球面との間から潤滑剤が漏洩するおそれがある。   Further, since the compression coil spring is exposed outside the outer joint member, rust is likely to be generated in the compression coil spring under a poor environment such as high temperature and high humidity due to water vapor or chemicals. When the rust is generated in the compression coil spring, the durability of the compression coil spring is lowered, and it becomes difficult to sufficiently apply the elastic force of the compression coil spring to the inner ring of the spherical seal. There is a risk of the lubricant leaking from between the concave spherical surface of the outer ring.

そこで、本発明は前述の問題点に鑑みて提案されたもので、その目的とするところは、劣悪な環境下においても、高速回転の使用に有効で長期間の安定したシール性を確保し得るシール構造を具備した摺動式等速自在継手を提供することにある。   Therefore, the present invention has been proposed in view of the above-mentioned problems, and the object of the present invention is to ensure effective long-term stable sealing performance in high-speed rotation even in a poor environment. An object of the present invention is to provide a sliding type constant velocity universal joint having a seal structure.

前述の目的を達成するための技術的手段として、本発明は、開口端部を有する外側継手部材と、外側継手部材との間でトルク伝達部材を介して角度変位および軸方向変位を許容しながらトルクを伝達する内側継手部材とを備え、内側継手部材から延びる軸部材と外側継手部材との間に球面シール部を設けた摺動式等速自在継手であって、球面シール部は、軸部材の外周面に固定され、凸球面が外周に部分的に形成された凸球面部材と、外側継手部材から延びる筒状延在部の内周面に軸方向変位可能に設けられ、凸球面部材の凸球面と接する凹球面が内周に部分的に形成された凹球面部材と、外側継手部材の筒状延在部の開口端部と凹球面部材との間に配設され、凹球面部材をその凹球面が凸球面部材の凸球面と接する方向に弾性的に付勢する弾性部材とで構成されていることを特徴とする。   As a technical means for achieving the above-described object, the present invention allows an angular displacement and an axial displacement between an outer joint member having an open end and an outer joint member via a torque transmission member. A sliding type constant velocity universal joint provided with a spherical seal portion between a shaft member extending from the inner joint member and an outer joint member, wherein the spherical seal portion is a shaft member. The convex spherical member is fixed to the outer peripheral surface of the convex spherical member, and the convex spherical surface is partially formed on the outer peripheral surface, and the inner peripheral surface of the cylindrical extending portion extending from the outer joint member is provided so as to be axially displaceable. The concave spherical surface member is disposed between the concave spherical member in which the concave spherical surface that is in contact with the convex spherical surface is partially formed on the inner periphery, and the open spherical end of the cylindrical extending portion of the outer joint member, and the concave spherical member. The concave spherical surface is elastically biased in a direction in contact with the convex spherical surface of the convex spherical member. Characterized in that it is composed of a sexual member.

本発明では、継手作動時、凸球面部材および凹球面部材からなる球面シール部の旋回中心が軸方向に変位しても、弾性部材により凸球面部材の凸球面と凹球面部材の凹球面とが常に弾圧接触する状態を維持してシール性を確保する。   In the present invention, when the joint is actuated, even if the turning center of the spherical seal portion composed of the convex spherical member and the concave spherical member is displaced in the axial direction, the convex spherical surface of the convex spherical member and the concave spherical surface of the concave spherical member are formed by the elastic member. Maintains a state of constant pressure contact to ensure sealability.

本発明の球面シール部は、外側継手部材の筒状延在部の内部に収容された構造となっていることから、球面シール部を構成する凸球面部材および凹球面部材の小型軽量化が図れる。また、継手作動時の潤滑剤の流れを外側継手部材の内部へ戻す作用により、潤滑剤が内部循環するために潤滑剤の漏洩を抑制することができ、高速回転の使用に有効となる。さらに、弾性部材も外側継手部材の筒状延在部の内部に収容された構造となっている。そのため、劣悪な環境下においても、弾性部材が筒状延在部で保護されるため、その弾性部材の耐久性向上が図れる。   Since the spherical seal portion of the present invention has a structure accommodated in the cylindrical extension portion of the outer joint member, the convex spherical member and the concave spherical member constituting the spherical seal portion can be reduced in size and weight. . In addition, due to the action of returning the flow of the lubricant when the joint is operated to the inside of the outer joint member, the lubricant is internally circulated, so that leakage of the lubricant can be suppressed, which is effective for use at high speed rotation. Further, the elastic member is also housed inside the cylindrical extending portion of the outer joint member. For this reason, since the elastic member is protected by the cylindrical extending portion even in a poor environment, the durability of the elastic member can be improved.

本発明における外側継手部材の筒状延在部は、一端が外側継手部材の開口端部に固定されたカバーで構成されていることが望ましい。このような構造を採用すれば、既存の外側継手部材を使用して、その外側継手部材から延びる筒状延在部を容易に構成することができる。   As for the cylindrical extension part of the outside joint member in the present invention, it is desirable to comprise a cover where one end was fixed to the opening end of the outside joint member. If such a structure is employ | adopted, the cylindrical extension part extended from the outer joint member can be easily comprised using the existing outer joint member.

本発明における凸球面部材は、軸部材の外周面に形成された段差と内側継手部材の端面との間に挟み込んだ状態で位置規制された構造を具備することが望ましい。このような構造を採用すれば、常に、凸球面部材が継手センタ間との軸方向位置を保持することができる。   The convex spherical member in the present invention preferably has a structure in which the position is regulated in a state of being sandwiched between the step formed on the outer peripheral surface of the shaft member and the end surface of the inner joint member. If such a structure is adopted, the convex spherical member can always maintain the axial position between the joint centers.

本発明における凹球面部材は、筒状延在部の内周面と摺接する外周面に油溜まり用凹溝が形成された構造を具備することが望ましい。このような構造を採用すれば、筒状延在部に対する凹球面部材の軸方向変位をスムーズに行うことが可能となる。   The concave spherical member in the present invention preferably has a structure in which an oil reservoir concave groove is formed on the outer peripheral surface that is in sliding contact with the inner peripheral surface of the cylindrical extending portion. By adopting such a structure, it is possible to smoothly perform the axial displacement of the concave spherical member with respect to the cylindrical extending portion.

本発明における弾性部材は、一端が筒状延在部の開口端部に係止され、他端が凹球面部材の端面に当接する圧縮コイルばねで構成されていることが望ましい。このように、弾性部材として圧縮コイルばねを採用すれば、凹球面部材に対して軸方向への弾性力を容易に付勢することができる。   The elastic member in the present invention is preferably composed of a compression coil spring having one end locked to the opening end of the cylindrical extending portion and the other end abutting the end surface of the concave spherical member. As described above, when the compression coil spring is employed as the elastic member, the elastic force in the axial direction can be easily applied to the concave spherical member.

本発明によれば、球面シール部が筒状延在部の内部に収容された構造となっていることから、球面シール部を構成する凸球面部材および凹球面部材の小型軽量化が図れる。また、継手作動時の潤滑剤の流れを外側継手部材の内部へ戻す作用により、潤滑剤が内部循環するために潤滑剤の漏洩を抑制することができ、高速回転の使用に有効となる。さらに、弾性部材も筒状延在部の内部に収容された構造となっているため、劣悪な環境下においても、弾性部材が筒状延在部で保護され、弾性部材の耐久性向上が図れる。その結果、高温雰囲気で劣悪な環境下においても、高速回転の使用に有効で安定したシール性を確保できるシール構造を具備した長寿命の摺動式等速自在継手を提供できる。   According to the present invention, since the spherical seal portion is accommodated inside the cylindrical extending portion, the convex spherical member and the concave spherical member constituting the spherical seal portion can be reduced in size and weight. In addition, due to the action of returning the flow of the lubricant when the joint is operated to the inside of the outer joint member, the lubricant is internally circulated, so that leakage of the lubricant can be suppressed, which is effective for use at high speed rotation. Furthermore, since the elastic member is also housed in the cylindrical extension portion, the elastic member is protected by the cylindrical extension portion even in a poor environment, and the durability of the elastic member can be improved. . As a result, it is possible to provide a long-life sliding constant velocity universal joint having a seal structure that is effective for use at high speed rotation and can secure a stable sealing property even under a poor environment in a high temperature atmosphere.

本発明に係る摺動式等速自在継手の実施形態で、ダブルオフセット型等速自在継手の全体構成を示す縦断面図である。1 is a longitudinal sectional view showing an overall configuration of a double offset type constant velocity universal joint in an embodiment of a sliding type constant velocity universal joint according to the present invention. 図1の等速自在継手がスライド中立位置で最大作動角をとった状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which the constant velocity universal joint of FIG. 1 took the maximum operating angle in the slide neutral position. 図1の等速自在継手がスライドアウト位置で最大作動角をとった状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which the constant velocity universal joint of FIG. 1 took the maximum operating angle in the slide-out position. 図1の等速自在継手がスライドイン位置で最大作動角をとった状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which the constant velocity universal joint of FIG. 1 took the maximum operating angle in the slide-in position.

本発明の実施形態を以下に詳述する。以下の実施形態では、駆動側と従動側の二軸間で角度変位および軸方向変位の両方を許容する摺動式等速自在継手の一つであるダブルオフセット型等速自在継手(DOJ)を例示するが、他の摺動式等速自在継手として、トリポード型等速自在継手(TJ)やクロスグルーブ型等速自在継手(LJ)にも適用可能である。   Embodiments of the present invention are described in detail below. In the following embodiments, a double offset type constant velocity universal joint (DOJ), which is one of sliding type constant velocity universal joints that allows both angular displacement and axial displacement between the two axes of the driving side and the driven side, is used. As an example, other sliding constant velocity universal joints can be applied to tripod type constant velocity universal joints (TJ) and cross groove type constant velocity universal joints (LJ).

また、以下の実施形態では、製紙設備や鉄鋼設備などの各種産業機械の中でも、例えば、鉄鋼設備において、各種ロールに駆動力を伝達するロール駆動力伝達装置に組み込まれる等速自在継手を例示する。このロール駆動力伝達装置における等速自在継手は、80℃程度の輻射熱、水蒸気による高温多湿、スケールの飛散、薬品類を含む化学水の飛散などによる高温雰囲気の劣悪な環境下で高速回転の使用に有効な構造を具備する。   Further, in the following embodiments, among various industrial machines such as papermaking equipment and steel equipment, for example, in steel equipment, a constant velocity universal joint incorporated in a roll driving force transmission device that transmits driving force to various rolls is illustrated. . The constant velocity universal joint in this roll driving force transmission device is used for high-speed rotation in a poor environment of high temperature atmosphere due to radiant heat of about 80 ° C, high temperature and humidity due to water vapor, scattering of scale, scattering of chemical water containing chemicals, etc. It has an effective structure.

図1は、作動角0°の状態にある等速自在継手を示す。同図に示す等速自在継手は、外側継手部材10、内側継手部材20、ボール30およびケージ40で主要部が構成されている。   FIG. 1 shows a constant velocity universal joint in an operating angle of 0 °. The constant velocity universal joint shown in the same figure is composed mainly of an outer joint member 10, an inner joint member 20, a ball 30 and a cage 40.

外側継手部材10は、筒状をなし、軸方向に延びる直線状トラック溝11が内周面12の複数箇所に円周方向等間隔で形成されている。内側継手部材20は、軸方向に延びる直線状トラック溝21が外側継手部材10のトラック溝11と対をなして外周面22の複数箇所に円周方向等間隔で形成されている。ボール30は、外側継手部材10のトラック溝11と内側継手部材20のトラック溝21との間に配されてトルクを伝達する。ケージ40は、外側継手部材10の内周面12と内側継手部材20の外周面22との間に介在してボール30を保持する。   The outer joint member 10 has a cylindrical shape, and linear track grooves 11 extending in the axial direction are formed at a plurality of locations on the inner peripheral surface 12 at equal intervals in the circumferential direction. In the inner joint member 20, linear track grooves 21 extending in the axial direction are paired with the track grooves 11 of the outer joint member 10, and are formed at a plurality of positions on the outer peripheral surface 22 at equal intervals in the circumferential direction. The ball 30 is disposed between the track groove 11 of the outer joint member 10 and the track groove 21 of the inner joint member 20 to transmit torque. The cage 40 is interposed between the inner peripheral surface 12 of the outer joint member 10 and the outer peripheral surface 22 of the inner joint member 20 and holds the balls 30.

外側継手部材10の後方開口端部には、金属製のシールプレート13が装着されている。ボール30の数は、6個あるいは8個であるが、それ以外の個数でもよく任意である。内側継手部材20から延びる軸部材であるシャフト23は、その軸端部を内側継手部材20の軸孔に圧入することによりスプライン嵌合でもってトルク伝達可能に内側継手部材20に結合されている。シャフト23は、内側継手部材20の軸方向両端部でC形止め輪24,25により抜け止めされている。   A metal seal plate 13 is attached to the rear opening end of the outer joint member 10. The number of balls 30 is six or eight, but may be any number other than that. The shaft 23, which is a shaft member extending from the inner joint member 20, is coupled to the inner joint member 20 so that torque can be transmitted by spline fitting by pressing the shaft end portion into the shaft hole of the inner joint member 20. The shaft 23 is prevented from coming off by C-shaped retaining rings 24 and 25 at both axial ends of the inner joint member 20.

外側継手部材10と内側継手部材20から延びるシャフト23との間で角度変位(作動角)が付与されると、ケージ40で保持されたボール30は常にどの作動角においても、その作動角の二等分面内に維持され、継手の等速性が確保される。また、この等速自在継手は、内側継手部材20、ボール30およびケージ40からなる内部部品を外側継手部材10の内部で軸方向変位(スライド)可能に配置した構造を具備する。   When an angular displacement (operating angle) is applied between the outer joint member 10 and the shaft 23 extending from the inner joint member 20, the ball 30 held by the cage 40 always has two operating angles at any operating angle. It is maintained in the same plane and the constant velocity of the joint is ensured. The constant velocity universal joint has a structure in which internal components including the inner joint member 20, the ball 30, and the cage 40 are arranged so as to be axially displaceable (slidable) inside the outer joint member 10.

等速自在継手は、内側継手部材20から延びるシャフト23と外側継手部材10との間に球面シール部50を設けた構造を具備する。球面シール部50は、凸球面部材である金属製の球面シール内環51と、凹球面部材である金属製の球面シール外環52と、弾性部材である圧縮コイルばね53とで主要部が構成されている。球面シール部50には、外側継手部材10から延びる筒状延在部である金属製のカバー60が付設されている。   The constant velocity universal joint includes a structure in which a spherical seal portion 50 is provided between the shaft 23 extending from the inner joint member 20 and the outer joint member 10. The spherical seal portion 50 is mainly composed of a metal spherical seal inner ring 51 that is a convex spherical member, a metal spherical seal outer ring 52 that is a concave spherical member, and a compression coil spring 53 that is an elastic member. Has been. The spherical seal portion 50 is provided with a metal cover 60 that is a cylindrical extending portion extending from the outer joint member 10.

球面シール内環51は、凸球面54が外周に部分的に形成されている。球面シール内環51は、シャフト23の内側継手部材近傍の根元部位に外嵌され、シャフト23の外周面に形成された段差26と、内側継手部材20の端面に配置されたC形止め輪25との間に挟み込んだ状態で位置規制されている。このような構造を採用することにより、常に、球面シール内環51が継手センタ間との軸方向位置を保持するようにしている。   The spherical seal inner ring 51 has a convex spherical surface 54 partially formed on the outer periphery. The spherical seal inner ring 51 is externally fitted to the root portion of the shaft 23 in the vicinity of the inner joint member, and a step 26 formed on the outer peripheral surface of the shaft 23 and a C-shaped retaining ring 25 disposed on the end surface of the inner joint member 20. The position is regulated while being sandwiched between the two. By adopting such a structure, the spherical seal inner ring 51 always maintains the axial position between the joint centers.

球面シール外環52は、球面シール内環51の凸球面54と接する凹球面55が内周に部分的に形成されている。球面シール外環52の凹球面55と球面シール内環51の凸球面54とは同一球面寸法としている。球面シール外環52の凹球面55には、環状の凹溝が設けられている。この凹溝に球面シール内環51の凸球面54と弾圧接触するOリング56が嵌め込まれている。このOリング56によりシール性を確保している。Oリング56の素材としては、低摩擦係数を有するフッ素系樹脂が好適である。   In the spherical seal outer ring 52, a concave spherical surface 55 that is in contact with the convex spherical surface 54 of the spherical seal inner ring 51 is partially formed on the inner circumference. The concave spherical surface 55 of the spherical seal outer ring 52 and the convex spherical surface 54 of the spherical seal inner ring 51 have the same spherical dimension. The concave spherical surface 55 of the spherical seal outer ring 52 is provided with an annular concave groove. An O-ring 56 that elastically contacts the convex spherical surface 54 of the spherical seal inner ring 51 is fitted in the concave groove. This O-ring 56 ensures sealing performance. As a material for the O-ring 56, a fluororesin having a low friction coefficient is suitable.

球面シール外環52は、外側継手部材10から延びるカバー60の内周面に軸方向変位(スライド)可能に設けられている。球面シール外環52の外周面は、カバー60の内周面と摺接する。球面シール外環52の外周面には、環状の凹溝が設けられている。この凹溝にカバー60の内周面と弾圧接触するOリング57が嵌め込まれている。このOリング57によりシール性を確保している。Oリング57の素材としては、低摩擦係数を有するフッ素系樹脂が好適である。   The spherical seal outer ring 52 is provided on the inner peripheral surface of the cover 60 extending from the outer joint member 10 so as to be axially displaceable (slidable). The outer peripheral surface of the spherical seal outer ring 52 is in sliding contact with the inner peripheral surface of the cover 60. An annular concave groove is provided on the outer peripheral surface of the spherical seal outer ring 52. An O-ring 57 that is in elastic contact with the inner peripheral surface of the cover 60 is fitted in the concave groove. This O-ring 57 ensures sealing performance. As a material for the O-ring 57, a fluorine-based resin having a low friction coefficient is suitable.

また、球面シール外環52の外周面には、前述の凹溝よりも軸方向内側部位に、油溜まり用凹溝58が形成されている。この油溜まり用凹溝58は、軸方向二箇所に設けられているが、軸方向一箇所でもよく、その数は任意である。このような油溜まり用凹溝58を設けたことにより、カバー60に対する球面シール外環52の軸方向変位をスムーズに行うことが可能となる。   In addition, an oil sump groove 58 is formed on the outer peripheral surface of the spherical seal outer ring 52 at an axially inner portion than the aforementioned groove. The oil reservoir concave grooves 58 are provided in two axial directions, but may be provided in one axial direction, and the number thereof is arbitrary. By providing such an oil reservoir concave groove 58, the axial displacement of the spherical seal outer ring 52 with respect to the cover 60 can be performed smoothly.

球面シール外環52は、その材質としてS45Cを使用し、凹球面55に高周波焼入れ焼き戻し処理を施し、表面粗さが1.6a以下となるように研削仕上げしている。また、球面シール内環51は、その材質としてS45C+調質を使用し、凸球面54に無電解ニッケル等の表面処理を施し、表面粗さを1.6a以下としている。これら球面シール内環51の凸球面54および球面シール外環52の凹球面55に熱処理が施されていることから、万が一、Oリング56が切断しても、凸球面54および凹球面55の急激な摩耗を抑制することができる。   The spherical seal outer ring 52 uses S45C as its material, and the concave spherical surface 55 is subjected to induction hardening and tempering treatment, and is ground and finished so that the surface roughness is 1.6a or less. Further, the spherical seal inner ring 51 uses S45C + temper as the material, and the convex spherical surface 54 is subjected to a surface treatment such as electroless nickel so that the surface roughness is 1.6a or less. Since the convex spherical surface 54 of the spherical seal inner ring 51 and the concave spherical surface 55 of the spherical seal outer ring 52 are heat-treated, even if the O-ring 56 is cut, the convex spherical surface 54 and the concave spherical surface 55 are suddenly cut. Wear can be suppressed.

カバー60は、その後方開口端部にフランジ部61を有し、そのフランジ部61でのボルト62の締め付けでもって外側継手部材10の前方開口端部に装着されている。また、カバー60の前方開口端部には、蓋体70がボルト71の締め付けでもって装着されている。蓋体70には、継手作動時にシャフト23が最大作動角をとれるように開口部72が形成されている。このように、外側継手部材10に別体のカバー60を装着した構造を採用することにより、既存の外側継手部材10を使用して、その外側継手部材10から延びる筒状延在部を容易に構成することができる。   The cover 60 has a flange portion 61 at the rear opening end thereof, and is attached to the front opening end portion of the outer joint member 10 by tightening the bolt 62 at the flange portion 61. Further, a lid 70 is attached to the front opening end of the cover 60 by tightening bolts 71. An opening 72 is formed in the lid 70 so that the shaft 23 can take the maximum operating angle when the joint is operated. In this way, by adopting a structure in which the separate cover 60 is mounted on the outer joint member 10, it is possible to easily use the existing outer joint member 10 to form a cylindrical extension portion extending from the outer joint member 10. Can be configured.

なお、この実施形態では、別体のカバー60で筒状延在部を構成しているが、外側継手部材10の前方開口端部を軸方向に延設することにより、筒状延在部を外側継手部材10と一体的に構成するようにしてもよい。また、蓋体70についても、この実施形態ではカバー60と別体構造を例示しているが、カバー60と一体化することも可能である。   In addition, in this embodiment, although the cylindrical extension part is comprised with the separate cover 60, the cylindrical extension part is extended by extending the front opening end part of the outer joint member 10 to an axial direction. You may make it comprise integrally with the outer joint member 10. FIG. In addition, in this embodiment, the lid 70 is also illustrated as a separate structure from the cover 60, but can be integrated with the cover 60.

圧縮コイルばね53は、カバー60に取り付けられた蓋体70の内側端面と球面シール外環52の外側端面との間に張設されている。圧縮コイルばね53は、球面シール外環52を軸方向に押圧してその凹球面55が球面シール内環51の凸球面54と接する方向に弾性力を付勢する。このように、弾性部材として圧縮コイルばね53を採用することにより、球面シール外環52に対して軸方向への弾性力を容易に付勢することができる。   The compression coil spring 53 is stretched between the inner end surface of the lid 70 attached to the cover 60 and the outer end surface of the spherical seal outer ring 52. The compression coil spring 53 presses the spherical seal outer ring 52 in the axial direction and biases the elastic force in a direction in which the concave spherical surface 55 contacts the convex spherical surface 54 of the spherical seal inner ring 51. As described above, by adopting the compression coil spring 53 as the elastic member, it is possible to easily bias the elastic force in the axial direction with respect to the spherical seal outer ring 52.

前述のカバー60のフランジ部61には、等速自在継手の内部へ潤滑剤を充填するためのプラグ63が設けられている。外側継手部材10の内部空間、つまり、外側継手部材10と、その外側継手部材10の前方に位置する球面シール外環52および球面シール内環51からなる球面シール部50と、外側継手部材10の後方開口端部にあるシールプレート13で囲まれた空間に、グリース等の潤滑剤が封入される。   The flange portion 61 of the cover 60 is provided with a plug 63 for filling a lubricant into the constant velocity universal joint. The inner space of the outer joint member 10, that is, the outer joint member 10, the spherical seal portion 50 including the spherical seal outer ring 52 and the spherical seal inner ring 51 positioned in front of the outer joint member 10, and the outer joint member 10. A lubricant such as grease is sealed in a space surrounded by the seal plate 13 at the rear opening end.

これにより、外側継手部材10に対して内側継手部材20から延びるシャフト23が作動角をとりながら回転する動作時において、継手内部の摺動部位、つまり、外側継手部材10、内側継手部材20、ボール30およびケージ40で構成される摺動部位での潤滑性を確保するようにしている。   As a result, when the shaft 23 extending from the inner joint member 20 rotates relative to the outer joint member 10 while taking an operating angle, the sliding portion inside the joint, that is, the outer joint member 10, the inner joint member 20, and the ball The lubricity at the sliding portion constituted by 30 and the cage 40 is ensured.

図2は、図1の等速自在継手がスライド中立位置で最大作動角をとった状態を示す。図3は、図1の等速自在継手がスライドアウト位置で最大作動角をとった状態を示す。スライドアウト位置とは、内側継手部材20、ボール30およびケージ40からなる内部部品が外側継手部材10の前方端位置にある状態を意味する。図4は、図1の等速自在継手がスライドイン位置で最大作動角をとった状態を示す。スライドイン位置とは、内部部品が外側継手部材10の後方端位置にある状態を意味する。   FIG. 2 shows a state in which the constant velocity universal joint of FIG. 1 takes a maximum operating angle at the slide neutral position. FIG. 3 shows a state in which the constant velocity universal joint of FIG. 1 takes a maximum operating angle at the slide-out position. The slide-out position means a state in which the internal part composed of the inner joint member 20, the ball 30 and the cage 40 is at the front end position of the outer joint member 10. FIG. 4 shows a state where the constant velocity universal joint of FIG. 1 takes a maximum operating angle at the slide-in position. The slide-in position means a state in which the internal part is at the rear end position of the outer joint member 10.

内部部品は、スライドアウト位置からスライドイン位置までのスライド領域全域に亘って軸方向移動可能となっている。最大作動角は、スライド領域全域のいずれの位置であっても、シャフト23の外周面が球面シール外環52のテーパ状内周面59に当接する状態で規定され、この等速自在継手の場合、12°前後としている。   The internal parts can move in the axial direction over the entire slide area from the slide-out position to the slide-in position. The maximum operating angle is defined in a state where the outer peripheral surface of the shaft 23 is in contact with the tapered inner peripheral surface 59 of the spherical seal outer ring 52 at any position in the entire slide region. , Around 12 °.

図2〜図4に示すように、継手作動時、球面シール内環51および球面シール外環52からなる球面シール部50の旋回中心が軸方向に変位しても、圧縮コイルばね53により、軸方向に変位する球面シール内環51に球面シール外環52が追従し、球面シール内環51の凸球面54と球面シール外環52の凹球面55とが常に弾圧接触する。この状態をスライド領域全域で維持することで、凸球面54と凹球面55間のOリング56によりシール性を確保している。   As shown in FIGS. 2 to 4, even when the pivot center of the spherical seal portion 50 including the spherical seal inner ring 51 and the spherical seal outer ring 52 is displaced in the axial direction during joint operation, The spherical seal outer ring 52 follows the spherical seal inner ring 51 displaced in the direction, and the convex spherical surface 54 of the spherical seal inner ring 51 and the concave spherical surface 55 of the spherical seal outer ring 52 are always in elastic contact. By maintaining this state over the entire slide area, the O-ring 56 between the convex spherical surface 54 and the concave spherical surface 55 ensures sealing performance.

前述の圧縮コイルばね53は、以下の条件に基づいて選定すればよい。つまり、内部部品のスライド領域全域で球面シール内環51の凸球面54と球面シール外環52の凹球面55との間に位置するOリング56のシール性を確保できるように、球面シール外環52の重量抵抗と、カバー60に対する球面シール外環52のOリング57の摺動抵抗の合計抵抗を上回るばね力を有する圧縮コイルばね53を使用すればよい。   The compression coil spring 53 described above may be selected based on the following conditions. That is, the spherical seal outer ring is provided so that the sealing performance of the O-ring 56 located between the convex spherical surface 54 of the spherical seal inner ring 51 and the concave spherical surface 55 of the spherical seal outer ring 52 can be secured over the entire sliding area of the internal part. A compression coil spring 53 having a spring force exceeding the total resistance of the weight resistance of 52 and the sliding resistance of the O-ring 57 of the spherical seal outer ring 52 with respect to the cover 60 may be used.

ここで、球面シール部50は、外側継手部材10から延びるカバー60の内部に収容された構造となっている。このことから、球面シール部50を構成する球面シール内環51および球面シール外環52の小型軽量化が図れる。   Here, the spherical seal portion 50 has a structure accommodated in a cover 60 extending from the outer joint member 10. From this, the spherical seal inner ring 51 and the spherical seal outer ring 52 constituting the spherical seal portion 50 can be reduced in size and weight.

また、継手作動時の潤滑剤の流れを外側継手部材10の内部へ戻す作用により、潤滑剤が内部循環するために潤滑剤の漏洩を抑制することができ、高速回転(1000rpm前後)の使用に有効となる。   Further, the action of returning the flow of the lubricant when the joint is operated to the inside of the outer joint member 10 can suppress the leakage of the lubricant because the lubricant circulates internally, and can be used for high speed rotation (around 1000 rpm). It becomes effective.

さらに、圧縮コイルばね53も外側継手部材10から延びるカバー60の内部に収容された構造となっている。そのため、高温雰囲気(100℃前後)の劣悪な環境下においても、圧縮コイルばね53がカバー60で保護されるため、その圧縮コイルばね53の耐久性を向上させることができる。   Further, the compression coil spring 53 is also housed in a cover 60 extending from the outer joint member 10. Therefore, since the compression coil spring 53 is protected by the cover 60 even in a poor environment of a high temperature atmosphere (around 100 ° C.), the durability of the compression coil spring 53 can be improved.

なお、蓋体70は、ボルト71の取り外しでカバー60から簡単に分離することができる構造となっている。また、そのカバー60もボルト62の取り外しで外側継手部材10から簡単に分離することができる構造となっている。このことから、分解点検が容易となってメンテナンス性の向上が図れる。   The lid 70 has a structure that can be easily separated from the cover 60 by removing the bolt 71. In addition, the cover 60 can be easily separated from the outer joint member 10 by removing the bolt 62. This facilitates overhaul and improves maintenance.

本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。   The present invention is not limited to the above-described embodiments, and can of course be implemented in various forms without departing from the gist of the present invention. It includes the equivalent meanings recited in the claims and the equivalents recited in the claims, and all modifications within the scope.

10 外側継手部材
20 内側継手部材
23 軸部材(シャフト)
26 段差
30 トルク伝達部材(ボール)
50 球面シール部
51 凸球面部材(球面シール内環)
52 凹球面部材(球面シール外環)
53 弾性部材(圧縮コイルばね)
54 凸球面
55 凹球面
58 油溜まり用凹溝
60 筒状延在部(カバー)
10 Outer joint member 20 Inner joint member 23 Shaft member (shaft)
26 Step 30 Torque transmission member (ball)
50 Spherical seal part 51 Convex spherical member (Spherical seal inner ring)
52 Concave spherical member (spherical seal outer ring)
53 Elastic member (compression coil spring)
54 Convex spherical surface 55 Concave spherical surface 58 Groove for oil reservoir 60 Cylindrical extension (cover)

Claims (5)

開口端部を有する外側継手部材と、前記外側継手部材との間でトルク伝達部材を介して角度変位および軸方向変位を許容しながらトルクを伝達する内側継手部材とを備え、前記内側継手部材から延びる軸部材と前記外側継手部材との間に球面シール部を設けた摺動式等速自在継手であって、
前記球面シール部は、前記軸部材の外周面に固定され、凸球面が外周に部分的に形成された凸球面部材と、前記外側継手部材から延びる筒状延在部の内周面に軸方向変位可能に設けられ、前記凸球面部材の凸球面と接する凹球面が内周に部分的に形成された凹球面部材と、前記外側継手部材の筒状延在部の開口端部と凹球面部材との間に配設され、前記凹球面部材をその凹球面が凸球面部材の凸球面と接する方向に弾性的に付勢する弾性部材とで構成されていることを特徴とする摺動式等速自在継手。
An outer joint member having an open end, and an inner joint member that transmits torque while allowing angular displacement and axial displacement between the outer joint member and the outer joint member, from the inner joint member A sliding type constant velocity universal joint provided with a spherical seal portion between the extending shaft member and the outer joint member,
The spherical seal portion is fixed to the outer peripheral surface of the shaft member, and a convex spherical member in which a convex spherical surface is partially formed on the outer periphery, and an inner peripheral surface of a cylindrical extending portion extending from the outer joint member. A concave spherical member provided so as to be displaceable and having a concave spherical surface that is in contact with the convex spherical surface of the convex spherical member partially formed on the inner periphery, an opening end of the cylindrical extension portion of the outer joint member, and a concave spherical member And the like, wherein the concave spherical member is composed of an elastic member that elastically biases the concave spherical member in a direction in which the concave spherical surface is in contact with the convex spherical surface of the convex spherical member. Fast universal joint.
前記外側継手部材の筒状延在部は、一端が外側継手部材の開口端部に固定されたカバーで構成されている請求項1に記載の摺動式等速自在継手。   2. The sliding type constant velocity universal joint according to claim 1, wherein the cylindrical extending portion of the outer joint member is configured by a cover having one end fixed to an opening end portion of the outer joint member. 前記凸球面部材は、軸部材の外周面に形成された段差と内側継手部材の端面との間に挟み込んだ状態で位置規制された構造を具備する請求項1又は2に記載の摺動式等速自在継手。   3. The sliding type according to claim 1, wherein the convex spherical member has a structure in which the position is regulated in a state of being sandwiched between a step formed on the outer peripheral surface of the shaft member and an end surface of the inner joint member. Fast universal joint. 前記凹球面部材は、筒状延在部の内周面と摺接する外周面に油溜まり用凹溝が形成された構造を具備する請求項1〜3のいずれか一項に記載の摺動式等速自在継手。   The sliding type according to any one of claims 1 to 3, wherein the concave spherical member has a structure in which an oil reservoir concave groove is formed on an outer peripheral surface that is in sliding contact with an inner peripheral surface of the cylindrical extending portion. Constant velocity universal joint. 前記弾性部材は、一端が筒状延在部の開口端部に係止され、他端が凹球面部材の端面に当接する圧縮コイルばねで構成されている請求項1〜4のいずれか一項に記載の摺動式等速自在継手。   The elastic member is configured by a compression coil spring having one end locked to the opening end of the cylindrical extending portion and the other end abutting the end surface of the concave spherical member. The sliding type constant velocity universal joint described in 1.
JP2014191482A 2014-09-19 2014-09-19 Sliding constant velocity universal joint Expired - Fee Related JP6356027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014191482A JP6356027B2 (en) 2014-09-19 2014-09-19 Sliding constant velocity universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014191482A JP6356027B2 (en) 2014-09-19 2014-09-19 Sliding constant velocity universal joint

Publications (2)

Publication Number Publication Date
JP2016061402A JP2016061402A (en) 2016-04-25
JP6356027B2 true JP6356027B2 (en) 2018-07-11

Family

ID=55797508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014191482A Expired - Fee Related JP6356027B2 (en) 2014-09-19 2014-09-19 Sliding constant velocity universal joint

Country Status (1)

Country Link
JP (1) JP6356027B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019167970A (en) * 2018-03-22 2019-10-03 日本製鉄株式会社 Gear type shaft coupling for railroad vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5535700B2 (en) * 2010-03-15 2014-07-02 Ntn株式会社 Constant velocity universal joint and power transmission device
JP5901953B2 (en) * 2011-12-06 2016-04-13 Ntn株式会社 Constant velocity universal joint

Also Published As

Publication number Publication date
JP2016061402A (en) 2016-04-25

Similar Documents

Publication Publication Date Title
JP5292397B2 (en) Roller bearing and sealing joint
EP2921732A2 (en) Bearing outer race having a radially inwardly biased seal
JP6356027B2 (en) Sliding constant velocity universal joint
JP2009250342A (en) Constant velocity universal joint
JP6305744B2 (en) Constant velocity universal joint
JP5901953B2 (en) Constant velocity universal joint
US10544837B2 (en) Constant velocity universal joint
JP2010032002A (en) Constant velocity universal joint
JP2013002587A (en) Constant velocity universal joint
JP2007333011A (en) Deep groove ball bearing
WO2016147881A1 (en) Retainer and rolling bearing
JP5143639B2 (en) Fixed constant velocity universal joint
JP6618810B2 (en) Constant velocity universal joint
NO341167B1 (en) Seal assembly
JP2009047255A (en) Clutch-release bearing
JP5859379B2 (en) Constant velocity universal joint
JP2009115138A (en) Seal device
JP2012031936A (en) Constant velocity universal joint
JP2019158034A (en) Constant velocity universal joint
JP2020034063A (en) Constant velocity universal joint
JP4932355B2 (en) Mounting structure for constant velocity universal joint boots
JP2009180372A (en) Constant velocity universal joint boot
JP6901242B2 (en) Power transmission mechanism with sliding constant velocity universal joint
JP2018044607A (en) Sliding-type constant velocity universal joint
JP2018004062A (en) Rolling bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180613

R150 Certificate of patent or registration of utility model

Ref document number: 6356027

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees