JP6353369B2 - スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法 - Google Patents

スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法 Download PDF

Info

Publication number
JP6353369B2
JP6353369B2 JP2014557404A JP2014557404A JP6353369B2 JP 6353369 B2 JP6353369 B2 JP 6353369B2 JP 2014557404 A JP2014557404 A JP 2014557404A JP 2014557404 A JP2014557404 A JP 2014557404A JP 6353369 B2 JP6353369 B2 JP 6353369B2
Authority
JP
Japan
Prior art keywords
thin film
sputtering
oxide semiconductor
sputtering target
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014557404A
Other languages
English (en)
Other versions
JPWO2014112368A1 (ja
Inventor
望 但馬
望 但馬
一晃 江端
一晃 江端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Publication of JPWO2014112368A1 publication Critical patent/JPWO2014112368A1/ja
Application granted granted Critical
Publication of JP6353369B2 publication Critical patent/JP6353369B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は、酸化物半導体や透明導電膜等の酸化物薄膜作製用のスパッタリングターゲット、そのターゲットを用いて作製される薄膜、その薄膜を含む薄膜トランジスタ及びそれらの製造方法に関する。
薄膜トランジスタ(TFT)等の電界効果型トランジスタは、半導体メモリ集積回路の単位電子素子、高周波信号増幅素子、液晶駆動用素子等として広く用いられており、現在、最も多く実用されている電子デバイスである。なかでも、近年における表示装置のめざましい発展に伴い、液晶表示装置(LCD)、エレクトロルミネッセンス表示装置(EL)、フィールドエミッションディスプレイ(FED)等の各種の表示装置において、表示素子に駆動電圧を印加して表示装置を駆動させるスイッチング素子として、TFTが多用されている。
電界効果型トランジスタの主要部材である半導体層(チャネル層)の材料としては、シリコン半導体化合物が最も広く用いられている。一般に、高速動作が必要な高周波増幅素子や集積回路用素子等には、シリコン単結晶が用いられている。一方、液晶駆動用素子等には、大面積化の要求から非晶質性シリコン半導体(アモルファスシリコン)が用いられている。
アモルファスシリコンの薄膜は、比較的低温で形成できるものの、結晶性の薄膜に比べてスイッチング速度が遅いため、表示装置を駆動するスイッチング素子として使用したときに、高速な動画の表示に追従できない場合がある。具体的に、解像度がVGAである液晶テレビでは、移動度が0.5〜1cm/Vsのアモルファスシリコンが使用可能であったが、解像度がSXGA、UXGA、QXGAあるいはそれ以上になると2cm/Vs以上の移動度が要求される。また、画質を向上させるため駆動周波数を上げるとさらに高い移動度が必要となる。
一方、結晶性のシリコン系薄膜は、移動度は高いものの、製造に際して多大なエネルギーと工程数を要する等の問題や、大面積化が困難という問題があった。例えば、シリコン系薄膜を結晶化する際に800℃以上の高温や、高価な設備を使用するレーザーアニールが必要である。また、結晶性のシリコン系薄膜は、通常TFTの素子構成がトップゲート構成に限定されるためマスク枚数の削減等コストダウンが困難であった。
このような問題を解決するために、酸化インジウム、酸化亜鉛及び酸化ガリウムからなる酸化物半導体膜を使用した薄膜トランジスタが検討されている。一般に、酸化物半導体薄膜の作製は酸化物焼結体からなるターゲット(スパッタリングターゲット)を用いたスパッタリングで行われる。
例えば、一般式InGaZnO、InGaZnOで表されるホモロガス結晶構造を示す化合物からなるターゲットが知られている(特許文献1、2及び3)。
しかしながら、このターゲットでは焼結密度(相対密度)を上げるために、酸化性雰囲気で焼結する必要があるが、その場合、ターゲットの抵抗を下げるため、焼結後に高温での還元処理が必要であった。また、ターゲットを長期間使用していると得られた膜の特性や成膜速度が大きく変化する、焼結時に異常成長したInGaZnOやInGaZnOによる異常放電が起きる、成膜時にパーティクルの発生が多い等の問題があった。異常放電が頻繁に起きると、プラズマ放電状態が不安定となり、安定した成膜が行われず、膜特性に悪影響を及ぼす。
一方、ガリウムを含まずに、酸化インジウム及び酸化亜鉛からなる非晶質酸化物半導体膜を用いた薄膜トランジスタも提案されている(特許文献4)。
しかしながら、成膜時の酸素分圧を高くしないとTFTのノーマリーオフ動作を実現できないといった問題があった。
また、酸化インジウム、酸化亜鉛に酸化アルミニウムを添加したスパッタリングターゲットが開示されている(特許文献5)。
しかしながら、ターゲットの結晶相については検討されておらず、そのターゲットを用いて作製された薄膜の移動度が5cm/Vs未満と低移動度であり、酸化インジウム、酸化亜鉛及び酸化アルミニウム材料が本来持っている移動度を引き出せていなかった。
以上のように、酸化物半導体用スパッタリングターゲットとして好ましい酸化インジウム、酸化亜鉛及び酸化アルミニウムターゲットの結晶相は明らかではなかった。
特開平8−245220号公報 特開2007−73312号公報 国際公開第2009/084537号公報 国際公開第2005/088726号公報 特開2012−54335号公報
本発明は、インジウム元素(In)、亜鉛元素(Zn)及びアルミニウム元素(Al)を含有し、高密度かつ低抵抗のスパッタリングターゲットを提供することを目的とする。
また、本発明は、高い移動度と高い信頼性を有するTFTを実現可能なスパッタリングターゲットを提供することを目的とする。
上記目的を達成するため、本発明者らは鋭意研究を行い、インジウム元素(In)、亜鉛元素(Zn)及びアルミニウム元素(Al)を含有し、Inで表されるビックスバイト構造化合物とIn(ZnO)(mは整数)で表わされるホモロガス構造化合物とを含むスパッタリングターゲットは、相対密度が98%以上、比抵抗が10mΩcm以下であり、そのターゲットを用いて作製した薄膜をチャネル層に用いたTFTは電界効果移動度5cm/Vs以上の高移動度、かつ高信頼性を示すことを見出し、本発明を完成させた。
本発明によれば、以下のスパッタリングターゲット等が提供される。
1.インジウム元素(In)、亜鉛元素(Zn)及びアルミニウム元素(Al)を含有し、Inで表されるビックスバイト構造化合物とIn(ZnO)(mは整数)で表わされるホモロガス構造化合物を含むスパッタリングターゲット。
2.前記In(ZnO)(mは整数)で表わされるホモロガス構造化合物にAlが固溶している1に記載のスパッタリングターゲット。
3.前記インジウム元素、亜鉛元素及びアルミニウム元素の原子比が、下記式(1)〜(3)を満たす1又は2に記載のスパッタリングターゲット。
0.10≦In/(In+Zn+Al)≦0.70 (1)
0.10≦Zn/(In+Zn+Al)≦0.90 (2)
0.01≦Al/(In+Zn+Al)≦0.30 (3)
(式中、In、Zn及びAlは、それぞれ、スパッタリングターゲット中における各元素の原子比を示す。)
4.相対密度が98%以上である1〜3のいずれかに記載のスパッタリングターゲット。
5.バルク比抵抗が10mΩcm以下である1〜4のいずれかに記載のスパッタリングターゲット。
6.少なくともインジウム元素(In)、亜鉛元素(Zn)及びアルミニウム元素(Al)を混合して混合物を得る混合工程、
前記混合物を成形して成形体を得る成形工程、及び
前記成形体を焼結する焼結工程を有し、
前記焼結工程は、酸素含有雰囲気で、700〜900℃において1〜5時間、温度を保持する仮焼き工程を含む、1〜5のいずれかに記載のスパッタリングターゲットの製造方法。
7.1〜5のいずれかに記載のスパッタリングターゲットを用いて、スパッタリング法により成膜してなる酸化物半導体薄膜。
8.水蒸気、酸素ガス及び亜酸化窒素ガスから選択される1以上と希ガスを含有する混合気体の雰囲気下において、1〜5のいずれかに記載のスパッタリングターゲットを用いてスパッタリング法で酸化物半導体薄膜を成膜する酸化物半導体薄膜の製造方法。
9.前記酸化物半導体薄膜の成膜を、少なくとも水蒸気と希ガスを含有する混合気体の雰囲気下において行う8に記載の酸化物半導体薄膜の製造方法。
10.前記混合気体中に含まれる水蒸気の割合が分圧比で0.1%〜25%である8又は9に記載の酸化物半導体薄膜の製造方法。
11.前記混合気体中に含まれる酸素ガスの割合が分圧比で0.1%〜50%である8〜10のいずれかに記載の酸化物半導体薄膜の製造方法。
12.前記酸化物半導体薄膜の成膜を、真空チャンバー内に所定の間隔を置いて並設された3枚以上のターゲットに対向する位置に、基板を順次搬送し、前記各ターゲットに対して交流電源から負電位及び正電位を交互に印加する場合に、前記交流電源からの出力の少なくとも1つを、分岐して接続した2枚以上のターゲットの間で、電位を印加するターゲットの切替を行いながら、ターゲット上にプラズマを発生させて基板表面に成膜するスパッタリング方法で行う8〜11のいずれかに記載の酸化物半導体薄膜の製造方法。
13.前記交流電源の交流パワー密度が3W/cm以上、20W/cm以下である12に記載の酸化物半導体薄膜の製造方法。
14.前記交流電源の周波数が10kHz〜1MHzである12又は13に記載の酸化物半導体薄膜の製造方法。
15.7に記載の酸化物半導体薄膜をチャネル層として有する薄膜トランジスタ。
16.7に記載の酸化物半導体薄膜の上に、少なくともSiNx(xは任意の数値)を含有する保護膜を有する薄膜トランジスタ。
17.電界効果移動度が5cm/Vs以上である15又は16に記載の薄膜トランジスタ。
18.15〜17のいずれかに記載の薄膜トランジスタを備える表示装置。
本発明によれば、インジウム元素(In)、亜鉛元素(Zn)及びアルミニウム元素(Al)を含有し、高密度かつ低抵抗のスパッタリングターゲットを提供できる。
実施例1で得た焼結体のX線チャートである。 実施例2で得た焼結体のX線チャートである。 実施例3で得た焼結体のX線チャートである。 実施例4で得た焼結体のX線チャートである。 本発明の一実施形態に用いるスパッタリング装置を示す図である。
以下、本発明のスパッタリングターゲット、酸化物薄膜、薄膜トランジスタ、表示装置及びこれらの製造方法について詳細に説明するが、本発明は下記実施態様及び実施例に限定されるものではない。
本発明のスパッタリングターゲットは、インジウム元素(In)、亜鉛元素(Zn)及びアルミニウム元素(Al)を含有し、In(ZnO)(mは整数)で表わされるホモロガス構造化合物とInで表されるビックスバイト構造を含む。上記ビックスバイト構造及びホモロガス構造はX線回折により確認できる。
ビックスバイト(bixbyite)は、希土類酸化物C型又はMn(I)型酸化物とも言われる。「透明導電膜の技術」((株)オーム社出版、日本学術振興会、透明酸化物・光電子材料第166委員会編、1999)等に開示されている通り、化学量論比がM(Mは陽イオン、Xは陰イオンで通常酸素イオン)で、一つの単位胞はM16分子、合計80個の原子(Mが32個、Xが48個)により構成されている。
ビックスバイト構造は、X線回折で、JCPDS(Joint Committee of Powder Diffraction Standards)データベースのNo.06−0416のピークパターンか、又は類似の(シフトした)パターンを示す。
また、結晶構造中の原子やイオンが一部他の原子で置換された置換型固溶体、他の原子が格子間位置に加えられた侵入型固溶体もビックスバイト構造化合物に含まれる。
ホモロガス構造とは、異なる物質の結晶層を何層か重ね合わせた長周期を有する「自然超格子」構造から成る結晶構造である。結晶周期ないし各薄膜層の厚さが、ナノメーター程度の場合、これら各層の化学組成や層の厚さの組み合わせによって、単一の物質あるいは各層を均一に混ぜ合わせた混晶の性質とは異なる固有の特性が得られる。そして、ホモロガス相の結晶構造は、例えばターゲットを粉砕したパウダーにおけるX線回折パターンが、組成比から想定されるホモロガス相の結晶構造X線回折パターンと一致することから確認できる。具体的には、JCPDSカードやThe Inorganic Crystal Structure Database (ICSD)から得られるホモロガス相の結晶構造X線回折パターンと一致することから確認することができる。
ホモロガス構造をとる酸化物結晶としては、RAO(MO)で表される酸化物結晶が挙げられる。ここで、RとAは、正三価の金属元素であり、例えば、In、Ga、Al、Fe、Bが挙げられる。Mは、正二価の金属元素であり、例えば、Zn、Mgが挙げられる。また、mは、例えば、整数であり、好ましくは、0.1〜10、より好ましくは、0.5〜7、さらに好ましくは、1〜5である。
さらに、In(ZnO)(mは整数)で表わされるホモロガス構造化合物にAlが固溶していると好ましい。これは、スパッタリングターゲットがIn2−xAl(ZnO)(xは0<x<2を満たす)で表される、非化学量論的な酸化物を含むことを意味する。この非化学量論的な化合物が形成されることによって、Al量を厳密に制御しなくても高抵抗なAlが形成されにくく、低抵抗で高密度なスパッタリングターゲットを製造できる。
In(ZnO)(mは整数)で表わされるホモロガス構造化合物にAlが固溶しているかどうかは、X線回折パターンから算出される結晶の軸長から確かめることができる。
X線回折パターンから算出されたIn(ZnO)(mは整数)で表わされるホモロガス構造化合物結晶の結晶軸長(a軸、b軸、c軸)が、JCPDSデータベースあるいはICSDでX線回折パターンと一致する結晶の結晶軸長よりも小さく、かつ、mの値が対応する、InAlO(ZnO)(mは整数)で表わされるホモロガス構造化合物結晶の結晶軸長(a軸、b軸、c軸)よりも大きい時、In(ZnO)(mは整数)で表わされるホモロガス構造化合物にAlが固溶しているといえる。
例えば、InZnのホモロガス構造は、X線回折で、ICSDの#162450のピークパターンか、あるいは類似の(シフトした)パターンを示すものである。ICSDの#162450によると、a=3.352Å、b=3.352Å、c=42.488Åである。また、InAlZnのホモロガス構造は、X線回折で、JCPDSデータベースのNo.40−0260のピークパターンか、あるいは類似の(シフトした)パターンを示すものである。JCPDSデータベースのNo.40−0260によると、a=3.281Å、b=3.281Å、c=41.35Åである。
X線回折パターンから算出されたIn(ZnO)で表わされるホモロガス構造化合物結晶の結晶軸長a、b、cが、3.281Å<a<3.352Å、3.281Å<b<3.352Å、41.35Å<b<42.488Åを満たす時、Alは固溶しているといえる。
本発明のスパッタリングターゲットは、各元素の原子比が下記式(1)〜(3)を満たすことが好ましい。
0.10≦In/(In+Zn+Al)≦0.70 (1)
0.10≦Zn/(In+Zn+Al)≦0.90 (2)
0.01≦Al/(In+Zn+Al)≦0.30 (3)
(式中、In、Zn及びAlは、それぞれ、スパッタリングターゲット中における各元素の原子比を示す。)
上記式(1)において、In元素の量が0.10以上であると、スパッタリングターゲットを製造する際にバルク抵抗値が下がりやすくなり、密度低下が防ぐことができるため、安定してDCスパッタリングを行うことができる。
一方、In元素の量が0.70以下であると、そのターゲットを用いて作製した薄膜のキャリア濃度が過剰にならずに、薄膜を半導体として利用することができる。
以上からInの濃度は、0.10≦In/(In+Zn+Al)≦0.70であることが好ましい。In元素の量[In/(In+Zn+Al)]は、より好ましくは0.15〜0.70であり、さらに好ましくは、0.20〜0.65である。
上記式(2)において、Zn元素の量が0.10以上であると、In(ZnO)(mは整数)若しくはInAlO(ZnO)で表わされるホモロガス構造化合物が形成されやすくなることで、高抵抗なAlが形成されにくくなり、スパッタリングターゲットを低抵抗で高密度にしやすくなる。
一方、Zn元素の量が0.90以下であると、得られる薄膜のウェットエッチャントへの溶解速度が速くなりすぎることを防ぐことができる。
以上からZnの濃度は、0.10≦Zn/(In+Zn+Al)≦0.90であることが好ましい。
Zn元素の量[Zn/(In+Zn+Al)]は、より好ましくは0.15〜0.80であり、さらに好ましくは、0.20〜0.70である。
上記式(3)において、Al元素の量が0.01以上であると、作製した薄膜のキャリア濃度が過剰になることを防ぐことができ、半導体として利用することができる。また、チャネル層を成膜し、TFTに適用した場合に信頼性を向上させることができる。
一方、Al元素の量が0.30以下であると、ターゲット中にAlが生成されるのを防ぐことができ、ターゲットを低抵抗にすることができる。
以上からAlの濃度は、0.01≦Al/(In+Zn+Al)≦0.30であることが好ましい。Al元素の量[Al/(In+Zn+Al)]は、より好ましくは0.02〜0.30であり、さらに好ましくは、0.02〜0.25である。
スパッタリングターゲットに含まれる各元素の原子比は、誘導結合プラズマ発光分析装置(ICP−AES)により、含有元素を定量分析して求めることができる。
具体的に、溶液試料をネブライザーで霧状にして、アルゴンプラズマ(約6000〜8000℃)に導入すると、試料中の元素は熱エネルギーを吸収して励起され、軌道電子が基底状態から高いエネルギー準位の軌道に移る。この軌道電子は10−7〜10−8秒程度で、より低いエネルギー準位の軌道に移る。この際にエネルギーの差を光として放射し発光する。この光は元素固有の波長(スペクトル線)を示すため、スペクトル線の有無により元素の存在を確認できる(定性分析)。
また、それぞれのスペクトル線の大きさ(発光強度)は試料中の元素数に比例するため、既知濃度の標準液と比較することで試料濃度を求めることができる(定量分析)。
定性分析で含有されている元素を特定後、定量分析で含有量を求め、その結果から各元素の原子比を求める。
上記のように、スパッタリングターゲットに含有される金属元素は、実質的にIn、Zn及びAlからなっており、本発明の効果を損なわない範囲で他に不可避不純物を含んでいてもよい。
本発明において「実質的」とは、スパッタリングターゲットとしての効果が上記In、Zn及びAlに起因すること、又はスパッタリングターゲットの金属元素の95重量%以上100重量%以下(好ましくは98重量%以上100重量%以下)がIn、Zn及びAlであることを意味する。
本発明のスパッタリングターゲットは、好ましくは相対密度が98%以上である。大型基板(1Gサイズ以上)にスパッタ出力を上げて酸化物半導体薄膜を成膜する場合は、相対密度が98%以上であることが好ましい。相対密度とは、加重平均より算出した理論密度に対して相対的に算出した密度である。各原料の密度の加重平均より算出した密度が理論密度であり、これを100%とする。
相対密度が98%以上であれば、安定したスパッタリング状態が保たれる。大型基板でスパッタ出力を上げて成膜する場合は、相対密度が98%未満ではターゲット表面が黒化したり、異常放電が発生したりする場合がある。相対密度はより好ましくは98.5%以上、さらにより好ましくは99%以上である。
相対密度はアルキメデス法により測定した実測密度と理論密度とから算出できる。相対密度は、好ましくは100%以下である。100%以下であると、金属粒子が焼結体に発生したり、低級酸化物が生成したりすることを防ぐことができ、成膜時の酸素供給量を厳密に調整しなくても済む。
また、焼結後に、還元性雰囲気下での熱処理操作等の後処理工程等を行って密度を調整することもできる。還元性雰囲気は、アルゴン、窒素、水素等の雰囲気や、それらの混合気体雰囲気が用いられる。
本発明のスパッタリングターゲットは、相対密度が98%以上であり、かつバルク比抵抗が10mΩcm以下であることが好ましい。これにより、本発明のスパッタリングターゲットをスパッタリングする際には、異常放電の発生を抑制することができる。本発明のスパッタリングターゲットは、高品質の酸化物半導体薄膜を、効率的に、安価に、かつ省エネルギーで成膜することができる。
バルク比抵抗は、例えば、実施例に記載の方法により測定することができる。
バルク比抵抗は、例えば0.01Ωcm以上である。
本発明のスパッタリングターゲット中の結晶の最大粒径は8μm以下であることが望ましい。結晶が粒径8μm以下であるとノジュールの発生を防ぐことができる。
スパッタによってターゲット表面が削られる場合、その削られる速度が結晶面の方向によって異なり、ターゲット表面に凹凸が発生する。この凹凸の大きさはスパッタリングターゲット中に存在する結晶粒径に依存している。結晶粒径が小さいとスパッタリングターゲットの凹凸が小さくなり、ノジュールが発生しにくくなると考えられる。
これらのスパッタリングターゲットの結晶の最大粒径は、スパッタリングターゲットの形状が円形の場合、円の中心点(1箇所)と、その中心点で直交する2本の中心線上の中心点と周縁部との中間点(4箇所)の合計5箇所において、また、スパッタリングターゲットの形状が四角形の場合には、その中心点(1箇所)と、四角形の対角線上の中心点と角部との中間点(4箇所)の合計5箇所において100μm四方の枠内で観察される最大径を有する粒子についてその最大径を測定し、これらの5箇所の枠内のそれぞれに存在する最大粒子の粒径の平均値で表す。粒径は、結晶粒の長径について測定する。結晶粒は走査型電子顕微鏡(SEM)により観察することができる。
本発明のスパッタリングターゲットの製造方法は以下の3工程を含む。
(1)少なくともインジウム元素(In)、亜鉛元素(Zn)及びアルミニウム元素(Al)を混合して混合物を得る混合工程
(2)上記混合物を成形して成形体を得る成形工程
(3)酸素含有雰囲気で上記成形体を焼結する焼結工程
以下、各工程について説明する。
(1)少なくともインジウム元素(In)、亜鉛元素(Zn)及びアルミニウム元素(Al)を混合して混合物を得る混合工程
原料化合物は特に制限されず、In、Zn及びAlを含む化合物であり、焼結体が以下の原子比を有することができる化合物を用いることが好ましい。
0.10≦In/(In+Zn+Al)≦0.70 (1)
0.10≦Zn/(In+Zn+Al)≦0.90 (2)
0.01≦Al/(In+Zn+Al)≦0.30 (3)
(式中、In、Zn及びAlは、それぞれ、スパッタリングターゲットにおける各元素の原子比を示す。)
例えば、酸化インジウム、酸化亜鉛及びアルミニウム金属の組み合わせや、酸化インジウム、酸化亜鉛及び酸化アルミニウムの組合せ等が挙げられる。尚、原料は粉末であることが好ましい。
原料は、酸化インジウム、酸化亜鉛及び酸化アルミニウムの混合粉末であることが好ましい。
原料に単体金属を用いた場合、例えば、酸化インジウム、酸化亜鉛及びアルミニウム金属の組み合わせを原料粉末として用いた場合、得られる焼結体中にアルミニウムの金属粒が存在し、成膜中にターゲット表面の金属粒が溶融してターゲットから放出されないことがあり、得られる膜の組成と焼結体の組成が大きく異なってしまう場合がある。
原料粉末の平均粒径は、好ましくは0.1μm〜1.2μmであり、より好ましくは0.1μm〜1.0μm以下である。原料粉末の平均粒径はレーザー回折式粒度分布装置等で測定することができる。
例えば、平均粒径が0.1μm〜1.2μmのIn粉末、平均粒径が0.1μm〜1.2μmのZnO粉末及び平均粒径が0.1μm〜1.2μmのAl粉末を含んだ酸化物を原料粉末とし、これらを、上記式(1)〜(3)を満たす割合で調合する。
混合方法については以下の工程(2)とともに説明する。
(2)混合物を成形して成形体を得る成形工程
工程(1)の混合方法、工程(2)の成形方法は特に限定されず、公知の方法を用いて行うことができる。例えば、酸化インジウム粉、酸化亜鉛及び酸化アルミニウム粉を含んだ酸化物の混合粉を含む原料粉末に、水系溶媒を配合し、得られたスラリーを12時間以上混合した後、固液分離・乾燥・造粒し、引き続き、この造粒物を型枠に入れて成形する。
混合については、湿式又は乾式によるボールミル、振動ミル、ビーズミル等を用いることができる。均一で微細な結晶粒及び空孔を得るには、短時間で凝集体の解砕効率が高く、添加物の分散状態も良好となるビーズミル混合法が最も好ましい。
ボールミルによる混合時間は、好ましくは15時間以上、より好ましくは19時間以上とする。混合時間が不足すると最終的に得られる焼結体中にAl等の高抵抗の化合物が生成するおそれがあるからである。
ビーズミルによる粉砕、混合時間は、装置の大きさ、処理するスラリー量によって異なるが、スラリー中の粒度分布がすべて1μm以下と均一になるように適宜調整する。
また、混合する際にはバインダーを任意量だけ添加し、同時に混合を行うと好ましい。バインダーには、ポリビニルアルコール、酢酸ビニル等を用いることができる。
次に、原料粉末スラリーから造粒粉を得る。造粒に際しては、急速乾燥造粒を行うことが好ましい。急速乾燥造粒するための装置としては、スプレードライヤが広く用いられている。具体的な乾燥条件は、乾燥するスラリーのスラリー濃度、乾燥に用いる熱風温度、風量等の諸条件により決定されるため、実施に際しては、予め最適条件を求めておくことが必要となる。
自然乾燥を行うと、原料粉末の比重差によって沈降速度が異なるため、In粉末、ZnO粉末及びAl粉末の分離が起こり、均一な造粒粉が得られなくなるおそれがある。この不均一な造粒粉を用いて焼結体を作製すると、焼結体内部にAl等が存在して、スパッタリングにおける異常放電の原因となる場合がある。
造粒粉に対して、通常、金型プレス又は冷間静水圧プレス(CIP)により、例えば1.2ton/cm以上の圧力で成形を施して成形体を得る。
(3)酸素含有雰囲気で成形体を焼結する焼結工程
焼結工程は、昇温工程、仮焼き工程、保持工程を含む。また、昇温工程の途中には、1〜5時間、700〜900℃の範囲内において温度を保持する仮焼き工程を含む。これにより、ターゲットの密度が上昇しやすくなり、スパッタ時のノジュールの発生をより抑制できるため好ましい。また、ターゲットが所望の組成からずれてしまうことを防ぐことができる。
焼結時の昇温速度は、通常8℃/分以下であり、好ましくは4℃/分以下であり、より好ましくは3℃/分以下であり、さらに好ましくは2℃/分以下である。昇温速度が8℃/分以下であるとクラックが発生しにくい。
昇温が完了した後、1200〜1650℃の焼結温度で5〜50時間保持して焼結を行う(保持工程)。焼結温度は好ましくは1300〜1600℃である。焼結時間は好ましくは10〜20時間である。
焼結温度が1200℃以上かつ焼結時間が5時間以上であると、Al等がターゲット内部に形成されるのを防ぐことができる。一方、焼成温度が1650℃以下で焼成時間が50時間以下であると、著しい結晶粒成長により平均結晶粒径の増大を防ぐことができ、製造の効率も下がらない。
本発明で用いる焼結方法としては、常圧焼結法の他、ホットプレス、酸素加圧、熱間等方圧加圧等の加圧焼結法も採用することができる。ただし、製造コストの低減、大量生産の可能性、容易に大型の焼結体を製造できるといった観点から、常圧焼結法を採用することが好ましい。
常圧焼結法では、成形体を大気雰囲気、又は酸化性ガス雰囲気、好ましくは酸化性ガス雰囲気にて焼結する。酸化性ガス雰囲気とは、好ましくは酸素ガス雰囲気である。酸素ガス雰囲気は、酸素濃度が、例えば10〜100体積%の雰囲気であることが好ましい。本発明のスパッタリングターゲットの製造方法においては、昇温過程にて酸素ガス雰囲気を導入することで、焼結体密度をより高くすることができる。
上記焼結工程で得られた焼結体のバルク抵抗をターゲット全体で均一化するために、必要に応じて還元工程を設けてもよい。
還元方法としては、例えば、還元性ガスによる方法や真空焼成又は不活性ガスによる還元等が挙げられる。
還元性ガスによる還元処理の場合、水素、メタン、一酸化炭素、又はこれらのガスと酸素との混合ガス等を用いることができる。
不活性ガス中での焼成による還元処理の場合、窒素、アルゴン、又はこれらのガスと酸素との混合ガス等を用いることができる。
還元処理時の温度は、通常100〜800℃、好ましくは200〜800℃である。また、還元処理の時間は、通常0.01〜10時間、好ましくは0.05〜5時間である。
以上をまとめると、例えば、酸化インジウム粉と酸化亜鉛粉及び酸化アルミニウム粉との混合粉を含む原料粉末に、水系溶媒を配合し、得られたスラリーを12時間以上混合した後、固液分離・乾燥・造粒し、引き続き、この造粒物を型枠に入れて成形し、その後、得られた成形物を酸素含有雰囲気で、平均昇温速度を8℃/分以下とし、1〜5時間、700〜900℃の範囲内において温度を保持して仮焼し、1200〜1650℃で5〜50時間焼成することで焼結体を得ることができる。
上記で得られた焼結体を加工することにより本発明のスパッタリングターゲットとすることができる。具体的には、焼結体をスパッタリング装置への装着に適した形状に切削加工することでスパッタリングターゲット素材とし、該ターゲット素材をバッキングプレートに接着することでスパッタリングターゲットとすることができる。
焼結体をターゲット素材とするには、焼結体を、例えば平面研削盤で研削して表面粗さRaが0.5μm以下の素材とする。ここで、さらにターゲット素材のスパッタ面に鏡面加工を施して、平均表面粗さRaが1000オングストローム以下としてもよい。
鏡面加工(研磨)は、機械的な研磨、化学研磨、メカノケミカル研磨(機械的な研磨と化学研磨の併用)等の、公知の研磨技術を用いることができる。例えば、固定砥粒ポリッシャー(ポリッシュ液:水)で#2000以上にポリッシングしたり、又は遊離砥粒ラップ(研磨材:SiCペースト等)にてラッピング後、研磨材をダイヤモンドペーストに換えてラッピングしたりすることによって得ることができる。このような研磨方法には特に制限はない。
ターゲット素材の表面は200〜10,000番のダイヤモンド砥石により仕上げを行うことが好ましく、400〜5,000番のダイヤモンド砥石により仕上げを行うことが特に好ましい。200番より大きく、10,000番より小さいダイヤモンド砥石を使用するとターゲット素材が割れにくくなる。
ターゲット素材の表面粗さRaが0.5μm以下であり、方向性のない研削面を備えていることが好ましい。Raが0.5μm以下であり、研磨面の方向性をなくすと、異常放電が起きたり、パーティクルが発生したりすることを防ぐことができる。
次に、得られたターゲット素材を清浄処理する。清浄処理にはエアーブロー又は流水洗浄等を使用できる。エアーブローで異物を除去する際には、ノズルの向い側から集塵機で吸気を行なうとより有効に除去できる。
尚、以上のエアーブローや流水洗浄では限界があるので、さらに超音波洗浄等を行なうこともできる。この超音波洗浄は周波数25〜300kHzの間で多重発振させて行なう方法が有効である。例えば周波数25〜300kHzの間で、25kHz刻みに12種類の周波数を多重発振させて超音波洗浄を行なうのが好ましい。
ターゲット素材の厚みは通常2〜20mm、好ましくは3〜12mm、特に好ましくは4〜6mmである。
上記のようにして得られたターゲット素材をバッキングプレートへボンディングすることによって、スパッタリングターゲットを得ることができる。また、複数のターゲット素材を1つのバッキングプレートに取り付け、実質1つのターゲットとしてもよい。
本発明の酸化物半導体薄膜は、上記説明した本発明のスパッタリングターゲットを用いて、スパッタリング法により成膜することにより得られる。
本発明の酸化物半導体薄膜は、インジウム、亜鉛、アルミニウム、酸素からなり、通常、原子比は(1)〜(3)のとおりである
0.10≦In/(In+Zn+Al)≦0.70 (1)
0.10≦Zn/(In+Zn+Al)≦0.90 (2)
0.01≦Al/(In+Zn+Al)≦0.30 (3)
(式中、In、Zn及びAlは、それぞれ、酸化物半導体薄膜における各元素の原子比を示す。)
上記式(1)において、In元素の量が0.10以上であると、薄膜のキャリア濃度が大幅に低下することなく、薄膜を半導体として利用することができる。
一方、In元素の量が0.70以下であると、得られた薄膜のキャリア濃度が高くなりすぎるのを防ぐことができ、薄膜を半導体として利用することができる。
上記式(2)において、Zn元素の量が0.10以上であると、得られる膜を非晶質膜として安定させることができる。
一方、Zn元素の量が0.90以下であると、得られる薄膜のウェットエッチャントへの溶解速度が速くなりすぎることが防ぐことができ、ウェットエッチングが容易になる。
Zn元素の量[Zn/(In+Zn+Al)]は、より好ましくは0.15〜0.80であり、さらに好ましくは、0.20〜0.70である。
上記式(3)において、Al元素の量が0.01以上であると、成膜時の酸素分圧を低く抑えることができる。Al元素は酸素との結合が強いため、成膜時の酸素分圧を下げることが出来る。また、チャネル層を成膜し、TFTに適用した場合に信頼性を向上させることができる。
一方、Al元素の量が0.30以下であると、チャネル層を成膜し、TFTに適用した場合に移動度が低くなることを防ぐことができる。
本発明のスパッタリングターゲットは、高い導電性を有することから成膜速度の速いDCスパッタリング法を適用することができる。
本発明のスパッタリングターゲットは、上記DCスパッタリング法に加えて、RFスパッタリング法、ACスパッタリング法、パルスDCスパッタリング法にも適用することができ、異常放電のないスパッタリングが可能である。
酸化物半導体薄膜は、上記スパッタリングターゲットを用いて、蒸着法、イオンプレーティング法、パルスレーザー蒸着法等により作製することもできる。
スパッタリングガス(雰囲気)としては、アルゴン等の希ガスと酸化性ガスとの混合ガスを用いることができる。酸化性ガスとはO、CO、O、水蒸気(HO)、NO等が挙げられる。スパッタリングガスは、希ガスと、水蒸気、酸素ガス及び亜酸化窒素ガスから選ばれる一種以上を含有する混合気体が好ましく、少なくとも希ガスと水蒸気を含有する混合気体であることがより好ましい。
酸化物半導体薄膜のキャリア濃度は、通常1019cm−3以下であり、好ましくは1013〜1018cm−3であり、さらに好ましくは1014〜1018cm−3であり、特に好ましくは1015〜1018/cm−3である。
酸化物層のキャリア濃度が1019cm−3以下であると、薄膜トランジスタ等の素子を構成した際に、漏れ電流の発生を防ぐことができる。また、ノーマリーオンになってしまったり、on−off比が小さくなってしまったりすることを防ぐことができ、トランジスタ性能が発揮することができる。
酸化物半導体薄膜のキャリア濃度は、ホール効果測定方法により測定することができる。
スパッタリング成膜時の酸素分圧比は0.1%以上50%以下とすることが好ましい。酸素分圧比が50%以下の条件で作製した薄膜は、キャリア濃度が低下しすぎることを防ぐことができる。
より好ましくは、酸素分圧比は0.1%〜30%である。
本発明における酸化物薄膜堆積時のスパッタガス(雰囲気)に含まれる水蒸気(水分子)の分圧比、即ち、[水蒸気(HO)]/([水蒸気(HO)]+[希ガス]+[その他のガス分子])は、0.1〜25%であることが好ましい。
また、水の分圧比が25%以下であると、膜密度の低下を抑えることができ、Inの5s軌道の重なりが小さくなることを防ぐことができるので、移動度が低下しにくくなる。スパッタリング時の雰囲気中の水の分圧比は0.7〜13%がより好ましく、1〜6%が特に好ましい。
スパッタリングにより成膜する際の基板温度は、25〜120℃であることが好ましく、さらに好ましくは25〜100℃、特に好ましくは25〜90℃である。成膜時の基板温度が120℃以下であると、成膜時に導入する酸素等の取り込みが減少することがなくなり、加熱後の薄膜のキャリア濃度が1019/cm−3以下にすることができる。また、成膜時の基板温度が25℃よりも高いと薄膜の膜密度が向上しやすく、TFTの移動度が向上しやすくなる。
スパッタリングによって得られた酸化物薄膜を、さらに150〜500℃に15分〜5時間保持してアニール処理を施すことが好ましい。成膜後のアニール処理温度は200℃以上450℃以下であることがより好ましく、250℃以上350℃以下であることがさらに好ましい。上記アニールを施すことにより、半導体特性が得られる。
また、加熱時の雰囲気は、特に限定されるわけではないが、キャリア制御性の観点から、大気雰囲気、酸素流通雰囲気が好ましい。
酸化物薄膜の後処理アニール工程においては、酸素の存在下又は不存在下でランプアニール装置、レーザーアニール装置、熱プラズマ装置、熱風加熱装置、接触加熱装置等を用いることができる。
スパッタリング時におけるターゲットと基板との間の距離は、基板の成膜面に対して垂直方向に好ましくは1〜15cmであり、さらに好ましくは2〜8cmである。この距離が1cm以上の場合、基板に到達するターゲット構成元素の粒子の運動エネルギーが大きくなりすぎることを防ぐことができ、良好な膜特性を得ることができる。また、膜厚及び電気特性の面内分布が生じにくくなる。一方、ターゲットと基板との間隔が15cm以下の場合、基板に到達するターゲット構成元素の粒子の運動エネルギーが小さくなりすぎずに、緻密な膜を得ることができ、良好な半導体特性を得ることができる。
酸化物薄膜の成膜は、磁場強度が300〜1500ガウスの雰囲気下でスパッタリングすることが望ましい。磁場強度が300ガウス以上の場合、プラズマ密度を高くすることができ、高抵抗のスパッタリングターゲットでも、スパッタリングすることができる。一方、1500ガウス以下であると、膜厚及び膜中の電気特性の制御性が向上する。
気体雰囲気の圧力(スパッタ圧力)は、プラズマが安定して放電できる範囲であれば特に限定されないが、好ましくは0.1〜3.0Paであり、さらに好ましくは0.1〜1.5Paであり、特に好ましくは0.1〜1.0Paである。スパッタ圧力が3.0Pa以下の場合、スパッタ粒子の平均自由工程が短くなって、薄膜の密度が低下することを防ぐことができる。また、スパッタ圧力が0.1Pa以上である場合、成膜時に膜中に微結晶が生成することを防ぎやすくなる。尚、スパッタ圧力とは、アルゴン等の希ガス、水蒸気、酸素ガス等を導入した後のスパッタ開始時の系内の全圧をいう。
また、酸化物半導体薄膜の成膜を、次のような交流スパッタリングで行ってもよい。
真空チャンバー内に所定の間隔を置いて並設された3枚以上のターゲットに対向する位置に、基板を順次搬送し、各ターゲットに対して交流電源から負電位及び正電位を交互に印加して、ターゲット上にプラズマを発生させて基板表面上に成膜する。
このとき、交流電源からの出力の少なくとも1つを、分岐して接続された2枚以上のターゲットの間で、電位を印加するターゲットの切替を行いながら行う。即ち、上記交流電源からの出力の少なくとも1つを分岐して2枚以上のターゲットに接続し、隣り合うターゲットに異なる電位を印加しながら成膜を行う。
尚、交流スパッタリングによって酸化物半導体薄膜を成膜する場合も、例えば、希ガスと、水蒸気、酸素ガス及び亜酸化窒素ガスから選ばれる一以上とを含有する混合気体の雰囲気下においてスパッタリングを行うことが好ましく、少なくとも希ガスと水蒸気を含有する混合気体の雰囲気下においてスパッタリングを行うことが特に好ましい。
ACスパッタリングで成膜した場合、工業的に大面積均一性に優れた酸化物層が得られると共に、ターゲットの利用効率の向上が期待出来る。
また、1辺が1mを超える大面積基板にスパッタ成膜する場合には、たとえば特開2005−290550号公報記載のような大面積生産用のACスパッタ装置を使用することが好ましい。
特開2005−290550号公報記載のACスパッタ装置は、具体的には、真空槽と、真空槽内部に配置された基板ホルダと、この基板ホルダと対向する位置に配置されたスパッタ源とを有する。図5にACスパッタ装置のスパッタ源の要部を示す。スパッタ源は、複数のスパッタ部を有し、板状のターゲット31a〜31fをそれぞれ有し、各ターゲット31a〜31fのスパッタされる面をスパッタ面とすると、各スパッタ部はスパッタ面が同じ平面上に位置するように配置される。各ターゲット31a〜31fは長手方向を有する細長に形成され、各ターゲットは同一形状であり、スパッタ面の長手方向の縁部分(側面)が互いに所定間隔を空けて平行に配置される。従って、隣接するターゲット31a〜31fの側面は平行になる。
真空槽の外部には、交流電源17a〜17cが配置されており、各交流電源17a〜17cの二つの端子のうち、一方の端子は隣接する二つの電極のうちの一方の電極に接続され、他方の端子は他方の電極に接続されている。各交流電源17a〜17cの2つの端子は正負の異なる極性の電圧を出力するようになっており、ターゲット31a〜31fは電極に密着して取り付けられているので、隣接する2つのターゲット31a〜31fには互いに異なる極性の交流電圧が交流電源17a〜17cから印加される。従って、互いに隣接するターゲット31a〜31fのうち、一方が正電位に置かれる時には他方が負電位に置かれた状態になる。
電極のターゲット31a〜31fとは反対側の面には磁界形成手段40a〜40fが配置されている。各磁界形成手段40a〜40fは、外周がターゲット31a〜31fの外周と略等しい大きさの細長のリング状磁石と、リング状磁石の長さよりも短い棒状磁石とをそれぞれ有している。
各リング状磁石は、対応する1個のターゲット31a〜31fの真裏位置で、ターゲット31a〜31fの長手方向に対して平行に配置されている。上述したように、ターゲット31a〜31fは所定間隔を空けて平行配置されているので、リング状磁石もターゲット31a〜31fと同じ間隔を空けて配置されている。
ACスパッタで、酸化物ターゲットを用いる場合の交流パワー密度は、3W/cm以上、20W/cm以下が好ましい。パワー密度が3W/cm以上の場合、成膜速度が速くなり、経済的に生産が可能となる。20W/cm以下であると、ターゲットが破損を防止することができる。より好ましいパワー密度は3W/cm〜15W/cmである。
ACスパッタの周波数は10kHz〜1MHzの範囲が好ましい。10kHz以上であると、騒音の問題が発生しにくくなる。1MHz以下であるとプラズマが広がりすぎず、所望のターゲット位置以外でスパッタが行われ、均一性が損なわれることを防ぐことができる。より好ましいACスパッタの周波数は20kHz〜500kHzである。
上記以外のスパッタリング時の条件等は、上述したものから適宜選択すればよい。
本発明の酸化物半導体薄膜は、薄膜トランジスタに使用でき、特にチャネル層として好適に使用できる。
本発明の薄膜トランジスタは、上記説明した本発明の酸化半導体薄膜をチャネル層として有していれば、その素子構成は特に限定されず、公知の各種の素子構成を採用することができる。
本発明の薄膜トランジスタにおけるチャネル層の膜厚は、通常10〜300nm、好ましくは20〜250nm、より好ましくは30〜200nm、さらに好ましくは35〜120nm、特に好ましくは40〜80nmである。チャネル層の膜厚が10nm以上の場合、大面積に成膜した際の膜厚を均一性にしやすくなり、作製したTFTの特性が面内で不均一になりにくくなる。一方、膜厚が300nm以下の場合、成膜時間が長くなりすぎない。
本発明の薄膜トランジスタにおけるチャネル層は、通常、N型領域で用いられるが、P型Si系半導体、P型酸化物半導体、P型有機半導体等の種々のP型半導体と組合せてPN接合型トランジスタ等の各種の半導体デバイスに利用することができる。
本発明の薄膜トランジスタは、上記チャネル層上に保護膜を備えることが好ましい。本発明の薄膜トランジスタにおける保護膜は、少なくともSiNを含有することが好ましい。SiNはSiOと比較して緻密な膜を形成できるため、TFTの劣化抑制効果が高いという利点を有する。
尚、xは任意の数であり、SiNは化学量論比が一定でなくともよい。
保護膜は、SiNの他に例えばSiO、Al、Ta、TiO、MgO、ZrO、CeO、KO、LiO、NaO、RbO、Sc、Y、HfO、CaHfO、PbTiO、BaTa、Sm、SrTiO又はAlN等の酸化物等を含むことができる。
本発明の薄膜トランジスタの電界効果移動度は、好ましくは5cm/Vs以上であり、より好ましくは10cm/Vs以上である。電界効果移動度は、例えば100cm/Vs以下である。
本発明のインジウム元素(In)、亜鉛元素(Zn)及びアルミニウム元素(Al)を含有する酸化物半導体薄膜は、Alを含有しているためCVDプロセスによる耐還元性が向上し、保護膜を作製するプロセスによりバックチャネル側が還元されにくく、保護膜としてSiNを用いることができる。
保護膜を形成する前に、チャネル層に対し、オゾン処理、酸素プラズマ処理、二酸化窒素プラズマ処理もしくは亜酸化窒素プラズマ処理を施すことが好ましい。このような処理は、チャネル層を形成した後、保護膜を形成する前であれば、どのタイミングで行ってもよいが、保護膜を形成する直前に行うことが望ましい。このような前処理を行うことによって、チャネル層における酸素欠陥の発生を抑制することができる。
また、TFT駆動中に酸化物半導体膜中の水素が拡散すると、閾値電圧のシフトが起こりTFTの信頼性が低下するおそれがある。チャネル層に対し、オゾン処理、酸素プラズマ処理もしくは亜酸化窒素プラズマ処理を施すことにより、薄膜構造中においてIn−OHの結合が安定化され酸化物半導体膜中の水素の拡散を抑制することができる。
薄膜トランジスタは、通常、基板、ゲート電極、ゲート絶縁層、有機半導体層(チャネル層)、ソース電極及びドレイン電極を備える。チャネル層については上述した通りであり、基板については公知の材料を用いることができる。
本発明の薄膜トランジスタにおけるゲート絶縁膜を形成する材料にも特に制限はなく、一般に用いられている材料を任意に選択できる。具体的には、例えば、SiO、SiN、Al、Ta、TiO、MgO、ZrO、CeO、KO、LiO、NaO、RbO、Sc、Y、HfO、CaHfO、PbTiO、BaTa、SrTiO、Sm、AlN等の化合物を用いることができる。これらのなかでも、好ましくはSiO、SiN、Al、Y、HfO、CaHfOであり、より好ましくはSiO、SiN、HfO、Alである。
ゲート絶縁膜は、例えばプラズマCVD(Chemical Vapor Deposition;化学気相成長)法により形成することができる。
プラズマCVD法によりゲート絶縁膜を形成し、その上にチャネル層を成膜した場合、ゲート絶縁膜中の水素がチャネル層に拡散し、チャネル層の膜質低下やTFTの信頼性低下を招くおそれがある。チャネル層の膜質低下やTFTの信頼性低下を防ぐために、チャネル層を成膜する前にゲート絶縁膜に対してオゾン処理、酸素プラズマ処理、二酸化窒素プラズマ処理もしくは亜酸化窒素プラズマ処理を施すことが好ましい。このような前処理を行うことによって、チャネル層の膜質の低下やTFTの信頼性低下を防ぐことができる。
尚、上記の酸化物の酸素数は、必ずしも化学量論比と一致していなくともよく、例えば、SiOでもSiOでもよい。
ゲート絶縁膜は、異なる材料からなる2層以上の絶縁膜を積層した構造でもよい。また、ゲート絶縁膜は、結晶質、多結晶質、非晶質のいずれであってもよいが、工業的に製造しやすい多結晶質又は非晶質であることが好ましい。
本発明の薄膜トランジスタにおけるドレイン電極、ソース電極及びゲート電極の各電極を形成する材料に特に制限はなく、一般に用いられている材料を任意に選択することができる。例えば、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物、ZnO、SnO等の透明電極や、Al、Ag、Cu、Cr、Ni、Mo、Au、Ti、Ta等の金属電極、又はこれらを含む合金の金属電極を用いることができる。
ドレイン電極、ソース電極及びゲート電極の各電極は、異なる2層以上の導電層を積層した多層構造とすることもできる。特にソース・ドレイン電極は低抵抗配線への要求が強いため、AlやCu等の良導体をTiやMo等の密着性に優れた金属でサンドイッチして使用してもよい。
本発明の薄膜トランジスタは、電界効果型トランジスタ、論理回路、メモリ回路、差動増幅回路等各種の集積回路にも適用できる。さらに、電界効果型トランジスタ以外にも静電誘起型トランジスタ、ショットキー障壁型トランジスタ、ショットキーダイオード、抵抗素子にも適応できる。
本発明の薄膜トランジスタの構成は、ボトムゲート、ボトムコンタクト、トップコンタクト等公知の構成を制限なく採用することができる。
特にボトムゲート構成が、アモルファスシリコンやZnOの薄膜トランジスタに比べ高い性能が得られるので有利である。ボトムゲート構成は、製造時のマスク枚数を削減しやすく、大型ディスプレイ等の用途の製造コストを低減しやすいため好ましい。
本発明の薄膜トランジスタは、表示装置に好適に用いることができる。
大面積のディスプレイ用としては、チャンネルエッチ型のボトムゲート構成の薄膜トランジスタが特に好ましい。チャンネルエッチ型のボトムゲート構成の薄膜トランジスタは、フォトリソ工程時のフォトマスクの数が少なく低コストでディスプレイ用パネルを製造できる。中でも、チャンネルエッチ型のボトムゲート構成及びトップコンタクト構成の薄膜トランジスタが移動度等の特性が良好で工業化しやすいため特に好ましい。
実施例1〜4
[焼結体の製造]
原料粉体として下記の酸化物粉末を使用した。尚、酸化物粉末の平均粒径はレーザー回折式粒度分布測定装置SALD−300V(島津製作所製)で測定し、平均粒径はメジアン径D50を採用した。
酸化インジウム粉:平均粒径0.98μm
酸化亜鉛粉:平均粒径0.96μm
酸化アルミニウム粉:平均粒径0.98μm
上記の粉体を、表1に示す原子比(百分率)になるように秤量し、均一に微粉砕混合後、成形用バインダーを加えて造粒した。次に、この原料粒を金型へ均一に充填し、コールドプレス機にてプレス圧140MPaで加圧成形した。
得られた成形体を、表1に示す焼結温度及び焼結時間で、焼結炉で焼結して焼結体を得た。昇温中(仮焼き工程を含む)は酸素雰囲気とし、その他は大気中(雰囲気)とした。300℃から800℃まで1℃/分で昇温し、800℃から焼結温度までは1℃/分で昇温した。仮焼き工程として、800℃で3時間保持する工程を含めた。焼結時間経過後の降温速度は15℃/分とした。
得られた焼結体の相対密度をアルキメデス法により測定した実測密度と理論密度とから算出した。結果を表1に示す。実施例1〜4の焼結体は相対密度98%以上であることを確認した。
また、得られた焼結体のバルク比抵抗(導電性)を抵抗率計(三菱化学(株)製、ロレスタ)を使用して四探針法(JIS R 1637)に基づき測定した。結果を表1に示す。表1に示すように実施例1〜4の焼結体のバルク比抵抗は、10mΩcm以下であった。
[焼結体の分析]
得られた焼結体についてICP−AES分析を行い、表1に示す原子比であることを確認した。
また、得られた焼結体についてX線回折(XRD)測定装置により結晶構造を調べた。XRDの測定条件は以下のとおりである。
・装置:(株)リガク製Ultima−III
・X線:Cu−Kα線(波長1.5406Å、グラファイトモノクロメータにて単色化)
・2θ−θ反射法、連続スキャン(1.0°/分)
・サンプリング間隔:0.02°
・スリット DS、SS:2/3°、RS:0.6mm
実施例1〜4で得られた焼結体のX線回折チャートを図1〜4に示す。
チャートを分析した結果、実施例1の焼結体では、InZnのホモロガス構造とInのビックスバイト構造が観測された。
結晶構造はJCPDSカード又はICSDで確認することができる。
InZnのホモロガス構造はICSD#162450であり、Inのビックスバイト構造はJCPDSカードNo.06−0416である。
実施例1について、X線回折チャートからInZnに帰属される結晶相の軸長は、a軸:3.332Å、b軸:3.332Å、c軸:42.252Åであるのに対して、ICSD#162450から確認できるInZnで表されるホモロガス構造の結晶相の軸長は、a軸:3.352Å、b軸:3.352Å、c軸:42.488Åであり、JCPDSカードNo.40−0260から確認できるInAlZnで表されるホモロガス構造の結晶相の軸長はa軸:3.281Å、b軸:3.281Å、c軸:41.35Åであることから、AlがInZnに固溶していることがわかる。
XRDの結果から、実施例2〜4に関してもInZnで表わされるホモロガス構造化合物とInで表わされるビックス構造化合物が含まれることが分かった。
実施例1〜4の焼結体では、In(ZnO)(mは整数)で表わされるホモロガス構造化合物とInで表わされるビックスバイト構造化合物が同時に形成されているため、焼結体密度が98%であり、かつバルク比抵抗が10mΩcmであることが分かった。また、得られたX線回折チャートから算出されるIn(ZnO)の結晶相の軸長はいずれも、対応するJCPDSカード又はICSDに記載のIn(ZnO)の結晶相の軸長よりも小さく、対応するJCPDSカード又はICSDに記載のInAlO(ZnO)の結晶相の軸長よりも大きいことから、AlがIn(ZnO)に固溶していることがわかる。
[スパッタリングターゲットの製造]
実施例1〜4で得られた焼結体の表面を平面研削盤で研削し、側辺をダイヤモンドカッターで切断し、バッキングプレートに貼り合わせ、それぞれ直径4インチのスパッタリングターゲットを作製した。
また、それぞれ幅200mm、長さ1700mm、厚さ10mmの6枚のターゲットをACスパッタリング成膜用に作製した。
[異常放電の有無の確認]
得られた直径4インチのスパッタリングターゲットをDCスパッタリング装置に装着し、雰囲気としてアルゴンガスに水蒸気を分圧比で2%添加した混合ガスを使用し、スパッタ圧0.4Pa、基板温度を室温とし、DC出力400Wにて、10kWh連続スパッタを行った。スパッタ中の電圧変動をデータロガーに蓄積し、異常放電の有無を確認した。結果を表1に示す。
尚、上記異常放電の有無は、電圧変動をモニターして異常放電を検出することにより行った。具体的には、5分間の測定時間中に発生する電圧変動がスパッタ運転中の定常電圧の10%以上あった場合を異常放電とした。特にスパッタ運転中の定常電圧が0.1秒間に±10%変動する場合は、スパッタ放電の異常放電であるマイクロアークが発生しており、素子の歩留まりが低下し、量産化に適さないおそれがある。
[ノジュール発生の有無の確認]
また、得られた直径4インチのスパッタリングターゲットを用いて、雰囲気としてアルゴンガスに水素ガスを分圧比で3%添加した混合ガスを使用し、40時間連続してスパッタリングを行い、ノジュールの発生の有無を確認した。
尚、スパッタ条件は、スパッタ圧0.4Pa、DC出力100W、基板温度は室温とした。水素ガスは、ノジュールの発生を促進するために雰囲気ガスに添加した。
ノジュールは、円形のスパッタリングターゲットの中心点(1箇所)と、その中心点で直交する2本の中心線上の中心点と周縁部との中間点(4箇所)の合計5箇所において、スパッタリング後のターゲット表面の変化を実体顕微鏡により50倍に拡大して観察し、視野3mm中に発生した長径20μm以上のノジュールについて数平均を計測する方法を採用した。発生したノジュール数を表1に示す。実施例1〜4のスパッタリングターゲット表面において、ノジュールは観測されなかった。
比較例1〜2
表1に示す原子比(百分率)で原料粉末を混合し、表1に示す焼結温度、焼結時間で焼結した他は、実施例1と同様に焼結体及びスパッタリングターゲットを製造し、評価した。結果を表1に示す。
比較例1のスパッタリングターゲットにおいて、スパッタ時に異常放電が発生し、ターゲット表面にはノジュールが観測された。
比較例2のスパッタリングターゲットは、抵抗が高く、スパッタリングすることができなかった。
比較例1のスパッタリングターゲットには、ZnOのウルツ構造、ZnAlのスピネル構造が観測された。
ZnOのウルツ構造はICSD#57156であり、ZnAlのスピネル構造はJCPDSカードNo.05−0669で確認することができる。
比較例2のスパッタリングターゲットには、Inのビックスバイト構造、Alのコランダム構造が確認された。
Inのビックスバイト構造はJCPDSカードNo.06−0416で、Alのコランダム構造はJCPDSカードNo.10−173で確認することができる。
比較例の焼結体では、In(ZnO)(mは整数)で表わされるホモロガス構造化合物とInで表わされるホモロガス構造化合物が同時に観測されず、またAlやZnOが観測されたため、焼結体の密度が低下し、バルク抵抗が増大することが分かった。その結果、ノジュールが発生したり、スパッタリングが不可能となったりしたと考えられる。
Figure 0006353369
実施例5〜8
[酸化物半導体薄膜の製造]
マグネトロンスパッタリング装置に、実施例1〜4で作製した表2に示す組成の4インチターゲットを装着し、基板としてスライドガラス(コーニング社製♯1737)をそれぞれ装着した。DCマグネトロンスパッタリング法により、スライドガラス上に膜厚50nmの非晶質膜を成膜した。成膜時には、表2に示す分圧比(%)でArガス、Oガス、及び水蒸気を導入した。
スパッタ条件は以下のとおりである。
・基板温度:25℃(但し、実施例6は80℃)
・到達圧力:8.5×10−5Pa
・雰囲気ガス:Arガス、Oガス、水蒸気(分圧比は表2を参照)
・スパッタ圧力(全圧):0.4Pa
・投入電力:DC100W
・S(基板)−T(ターゲット)距離:70mm
次いで、非晶質膜を形成した基板を、大気中、300℃で60分加熱して酸化物半導体膜を形成した。この酸化物半導体膜が形成されたガラス基板をホール効果測定用素子として用いてResiTest8300型(東陽テクニカ社製)にセットし、室温でホール効果を評価した。結果を表2に示す。
また、ICP−AES分析により、酸化物半導体薄膜に含まれる各元素の原子比がスパッタリングターゲットと同じであることを確認した。
さらに、ガラス基板上に成膜した薄膜についてX線回折測定装置により結晶構造を調べた。実施例5〜8では、薄膜堆積直後は回折ピークが観測されず非晶質であることを確認した。また、大気中、300℃で60分加熱処理(アニール)した後も回折ピークが観測されず非晶質であることを確認した。
XRDの測定条件は以下のとおりである。
・装置:(株)リガク製Ultima−III
・X線:Cu−Kα線(波長1.5406Å、グラファイトモノクロメータにて単色化)
・2θ−θ反射法、連続スキャン(1.0°/分)
・サンプリング間隔:0.02°
・スリット DS、SS:2/3°、RS:0.6mm
[薄膜トランジスタの製造]
基板として、膜厚100nmの熱酸化膜付きの導電性シリコン基板を使用した。熱酸化膜がゲート絶縁膜として機能し、導電性シリコン部がゲート電極として機能する。
表2に示す成膜条件、上記のスパッタ条件にて、スパッタ成膜し、ゲート絶縁膜上に膜厚50nmの非晶質薄膜を作製した。レジストとしてOFPR♯800(東京応化工業株式会社製)を使用し、塗布、プレベーク(80℃、5分)、露光した。現像後、ポストベーク(120℃、5分)し、シュウ酸にてエッチングし、所望の形状にパターニングした。その後、熱風加熱炉内にて300℃で60分加熱処理(アニール処理)を行った。
その後、リフトオフ法によりMo(100nm)をスパッタ成膜により成膜し、ソース/ドレイン電極を所望の形状にパターニングした。さらに保護膜を形成する前段階の処理として、酸化物半導体膜に対し、亜酸化窒素プラズマ処理を施した。その後、プラズマCVD法(PECVD)にてSiOを成膜して保護膜とした。フッ酸を用いてコンタクトホールを開口し、薄膜トランジスタを作製した。
作製した薄膜トランジスタについて、電界効果移動度(μ)、S値及び閾値電圧(Vth)を評価した。これらの特性値は、半導体パラメーターアナライザー(ケースレーインスツルメンツ株式会社製4200SCS)を用い、室温、遮光環境下(シールドボックス内)で測定した。
また、作製したトランジスタについて、ドレイン電圧(Vd)を1V及びゲート電圧(Vg)を−15〜25Vとして伝達特性を評価した。結果を表2に示す。尚、電界効果移動度(μ)は、線形移動度から算出し、Vg−μの最大値で定義した。
次に、実施例5〜8のTFTに対し、DCバイアスストレス試験を行った。表2に、Vg=15V、Vd=15VのDCストレス(ストレス温度80℃下)を10000秒印加した前後における、閾値電圧シフト(Vthの変化量)ΔVthを示す。本発明のTFTでは閾値電圧の変動が非常に小さく、DCストレスに対して影響を受けにくいことが分かる。
比較例3
比較例1で作製した4インチターゲットを用いて実施例5と同様にして酸化物半導体薄膜及び薄膜トランジスタを作製し、評価した。成膜条件及び結果を表2に示す。尚、比較例2のスパッタリングターゲットは、抵抗が高く、スパッタリングは不可能であった。
表2に示すように、比較例3の素子は電界効果移動度が5cm/Vs未満であり、実施例5〜8と比べて大幅に低いことが分かる。
また、比較例3のTFTに対し、DCバイアスストレス試験を行った。結果を表2に示す。比較例3のTFTでは、閾値電圧が1V以上変動して著しい特性の劣化が生じた。
Figure 0006353369
実施例9〜12
特開2005−290550号公報に開示された成膜装置を用い、実施例1〜4で作製した表3に示す組成の4インチターゲットについてACスパッタリングを行い、薄膜トランジスタを作製した。成膜条件は表3に示すとおりである。ソース・ドレインパターニングをドライエッチングで行った他は実施例5と同様にして薄膜トランジスタ及び薄膜評価用素子を作製し、評価した。結果を表3に示す。
ACスパッタリングは、図5に示す装置を用いて行った。実施例1〜3で作製した幅200mm、長さ1700mm、厚さ10mmの6枚のターゲット31a〜31fを、図5に示すようにそれぞれの長さ方向が平行となるよう2mmの間隔で配置した。磁界形成手段40a〜40fの幅はターゲット31a〜31fと同じ200mmであった。ガス供給系からスパッタガスであるAr並びに、水蒸気及び/又はOをそれぞれ系内に導入した。
例えば実施例9では、成膜雰囲気は0.5Pa、交流電源のパワーは3W/cm(=10.2kW/3400cm)とし、周波数は10kHzとした。
以上の条件で成膜速度を調べるために10秒成膜し、得られた薄膜の膜厚を測定すると8nmであった。成膜速度は48nm/分と高速であり、量産に適していた。
また、ICP−AES分析により、酸化物薄膜に含まれる各元素の原子比がスパッタリングターゲットと同じであることを確認した。
また、このようにして得られた膜厚50nmの薄膜付きガラス基板を電気炉に入れ、空気中300℃、60分(大気雰囲気下)の条件で熱処理後、1cmのサイズに切出し、4探針法によるホール測定を行った。その結果、キャリア濃度が7.3×1017cm−3となり、十分半導体化していることが確認できた。
また、XRD測定から薄膜堆積直後は非晶質であり、空気中300℃、60分の熱処理後も非晶質であることを確認した。
比較例4
比較例1で作製した幅200mm、長さ1700mm、厚さ10mmの6枚のターゲットを用いて成膜条件を、表3に記載のものに変更した他は実施例9と同様にして酸化物半導体薄膜、薄膜評価用素子及び薄膜トランジスタを作製し、評価した。結果を表3に示す。
表3に示すように、比較例4の素子は電界効果移動度が10cm/Vs未満であり、実施例9〜12と比べて大幅に電界効果移動度が低いことが分かる。
Figure 0006353369
本発明のスパッタリングターゲットは、酸化物半導体や透明導電膜等の酸化物薄膜の作製に使用できる。また、本発明の酸化物薄膜は、透明電極、薄膜トランジスタの半導体層、酸化物薄膜層等に使用できる。
上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。

Claims (13)

  1. 焼結体を含むスパッタリングターゲットであって、
    前記焼結体、インジウム元素(In)、亜鉛元素(Zn)、アルミニウム元素(Al)、酸素元素(O)及び不可避不純物のみからなり、Inで表されるビックスバイト構造化合物とIn(ZnO)(mは整数)で表わされるホモロガス構造化合物を含み、ZnOで表される結晶相を含まず、
    前記焼結体において、前記In(ZnO)(mは整数)で表わされるホモロガス構造化合物にAlが固溶している
    スパッタリングターゲット。
  2. 前記焼結体が、結晶相として、前記In で表されるビックスバイト構造化合物及び前記In (ZnO) (mは整数)で表わされるホモロガス構造化合物のみを含む請求項1に記載のスパッタリングターゲット。
  3. 前記焼結体において、前記インジウム元素、前記亜鉛元素及び前記アルミニウム元素の原子比が、下記式(1)〜(3)を満たす請求項1又は2に記載のスパッタリングターゲット。
    0.10≦In/(In+Zn+Al)≦0.70 (1)
    0.10≦Zn/(In+Zn+Al)≦0.90 (2)
    0.01≦Al/(In+Zn+Al)≦0.30 (3)
    (式中、In、Zn及びAlは、それぞれ、前記焼結体中における各元素の原子比を示す。)
  4. 前記焼結体の相対密度が98%以上である請求項1〜3のいずれかに記載のスパッタリングターゲット。
  5. 前記焼結体のバルク比抵抗が10mΩcm以下である請求項1〜4のいずれかに記載のスパッタリングターゲット。
  6. 少なくともインジウム元素(In)、亜鉛元素(Zn)及びアルミニウム元素(Al)を混合して混合物を得る混合工程、
    前記混合物を成形して成形体を得る成形工程、及び
    前記成形体を焼結する焼結工程を有し、
    前記焼結工程は、酸素含有雰囲気で、700〜900℃において1〜5時間、温度を保持する仮焼き工程を含む、請求項1〜5のいずれかに記載のスパッタリングターゲットの製造方法。
  7. 水蒸気、酸素ガス及び亜酸化窒素ガスから選択される1以上と希ガスを含有する混合気体の雰囲気下において、請求項1〜5のいずれかに記載のスパッタリングターゲットを用いてスパッタリング法で酸化物半導体薄膜を成膜する酸化物半導体薄膜の製造方法。
  8. 前記酸化物半導体薄膜の成膜を、少なくとも水蒸気と希ガスを含有する混合気体の雰囲気下において行う請求項に記載の酸化物半導体薄膜の製造方法。
  9. 前記混合気体中に含まれる水蒸気の割合が分圧比で0.1%〜25%である請求項7又は8に記載の酸化物半導体薄膜の製造方法。
  10. 前記混合気体中に含まれる酸素ガスの割合が分圧比で0.1%〜50%である請求項7〜9のいずれかに記載の酸化物半導体薄膜の製造方法。
  11. 前記酸化物半導体薄膜の成膜を、真空チャンバー内に所定の間隔を置いて並設された3枚以上のターゲットに対向する位置に、基板を順次搬送し、前記各ターゲットに対して交流電源から負電位及び正電位を交互に印加する場合に、前記交流電源からの出力の少なくとも1つを、分岐して接続した2枚以上のターゲットの間で、電位を印加するターゲットの切替を行いながら、ターゲット上にプラズマを発生させて基板表面に成膜するスパッタリング方法で行う請求項7〜10のいずれかに記載の酸化物半導体薄膜の製造方法。
  12. 前記交流電源の交流パワー密度が3W/cm以上、20W/cm以下である請求項11に記載の酸化物半導体薄膜の製造方法。
  13. 前記交流電源の周波数が10kHz〜1MHzである請求項11又は12に記載の酸化物半導体薄膜の製造方法。
JP2014557404A 2013-01-15 2014-01-15 スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法 Active JP6353369B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013004727 2013-01-15
JP2013004727 2013-01-15
PCT/JP2014/000148 WO2014112368A1 (ja) 2013-01-15 2014-01-15 スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法

Publications (2)

Publication Number Publication Date
JPWO2014112368A1 JPWO2014112368A1 (ja) 2017-01-19
JP6353369B2 true JP6353369B2 (ja) 2018-07-04

Family

ID=51209464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014557404A Active JP6353369B2 (ja) 2013-01-15 2014-01-15 スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法

Country Status (3)

Country Link
JP (1) JP6353369B2 (ja)
TW (1) TWI602939B (ja)
WO (1) WO2014112368A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6267297B1 (ja) * 2016-08-29 2018-01-24 Jx金属株式会社 焼結体、スパッタリングターゲット及びその製造方法
JP6343695B2 (ja) * 2017-03-01 2018-06-13 Jx金属株式会社 酸化インジウム−酸化亜鉛系(izo)スパッタリングターゲット及びその製造方法
JP2020196660A (ja) * 2019-05-30 2020-12-10 株式会社コベルコ科研 酸化物焼結体及びスパッタリングターゲット
WO2020241227A1 (ja) * 2019-05-30 2020-12-03 株式会社コベルコ科研 酸化物焼結体及びスパッタリングターゲット

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2695605B2 (ja) * 1992-12-15 1998-01-14 出光興産株式会社 ターゲットおよびその製造方法
CN101650955B (zh) * 2003-03-04 2011-08-24 Jx日矿日石金属株式会社 溅射靶、光信息记录介质用薄膜及其制造方法
JP5348132B2 (ja) * 2008-04-16 2013-11-20 住友金属鉱山株式会社 薄膜トランジスタ型基板、薄膜トランジスタ型液晶表示装置および薄膜トランジスタ型基板の製造方法
WO2009142289A1 (ja) * 2008-05-22 2009-11-26 出光興産株式会社 スパッタリングターゲット、それを用いたアモルファス酸化物薄膜の形成方法、及び薄膜トランジスタの製造方法
KR101671543B1 (ko) * 2008-11-20 2016-11-01 이데미쓰 고산 가부시키가이샤 ZnO-SnO₂-In₂O₃계 산화물 소결체 및 비정질 투명 도전막
WO2012117695A1 (ja) * 2011-02-28 2012-09-07 シャープ株式会社 半導体装置及びその製造方法並びに表示装置
CN103459655B (zh) * 2011-03-24 2016-02-03 出光兴产株式会社 烧结体及其制造方法
JP5318932B2 (ja) * 2011-11-04 2013-10-16 株式会社コベルコ科研 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法

Also Published As

Publication number Publication date
WO2014112368A1 (ja) 2014-07-24
TWI602939B (zh) 2017-10-21
TW201435119A (zh) 2014-09-16
JPWO2014112368A1 (ja) 2017-01-19

Similar Documents

Publication Publication Date Title
JP5301021B2 (ja) スパッタリングターゲット
JP5965338B2 (ja) スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法
WO2014073210A1 (ja) スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法
JP6622855B2 (ja) スパッタリングターゲット、酸化物半導体薄膜及び当該酸化物半導体薄膜を備える薄膜トランジスタ
JP6284710B2 (ja) スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法
JP2014214359A (ja) スパッタリングターゲット、酸化物半導体薄膜及び当該酸化物半導体薄膜を備える薄膜トランジスタ
JP2014218706A (ja) スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法
JP6059513B2 (ja) スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法
JP6353369B2 (ja) スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法
JP5762204B2 (ja) スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法
WO2014112369A1 (ja) スパッタリングターゲット、酸化物半導体薄膜及びこれらの製造方法
JP2013127118A (ja) スパッタリングターゲット
JP6141332B2 (ja) スパッタリングターゲット、酸化物半導体薄膜及びそれらの製造方法
JP6188712B2 (ja) スパッタリングターゲット
JP6006055B2 (ja) スパッタリングターゲット
JP6470352B2 (ja) 酸化物半導体薄膜
JP6052967B2 (ja) スパッタリングターゲット

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20170606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170616

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20170621

RD15 Notification of revocation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7435

Effective date: 20170621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180608

R150 Certificate of patent or registration of utility model

Ref document number: 6353369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150