JP6351880B2 - 計画生成装置、計画生成方法及び計画生成プログラム - Google Patents

計画生成装置、計画生成方法及び計画生成プログラム Download PDF

Info

Publication number
JP6351880B2
JP6351880B2 JP2017561480A JP2017561480A JP6351880B2 JP 6351880 B2 JP6351880 B2 JP 6351880B2 JP 2017561480 A JP2017561480 A JP 2017561480A JP 2017561480 A JP2017561480 A JP 2017561480A JP 6351880 B2 JP6351880 B2 JP 6351880B2
Authority
JP
Japan
Prior art keywords
quality
value
quality value
plan generation
correlation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017561480A
Other languages
English (en)
Other versions
JPWO2017122340A1 (ja
Inventor
光輝 柴
光輝 柴
啓文 鈴木
啓文 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2017122340A1 publication Critical patent/JPWO2017122340A1/ja
Application granted granted Critical
Publication of JP6351880B2 publication Critical patent/JP6351880B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41875Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by quality surveillance of production
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41865Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/0227Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions
    • G05B23/0235Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions based on a comparison with predetermined threshold or range, e.g. "classical methods", carried out during normal operation; threshold adaptation or choice; when or how to compare with the threshold
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/0227Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions
    • G05B23/0237Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions based on parallel systems, e.g. comparing signals produced at the same time by same type systems and detect faulty ones by noticing differences among their responses
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32187Correlation between controlling parameters for influence on quality parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • General Factory Administration (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本発明は、生産設備において製造される製品の品質が最良になるように工程計画を生成する計画生成装置、計画生成方法及び計画生成プログラムに関する。
工場で稼働している生産ラインあるいは生産設備は、一般に複数の製造装置で構成されている。複数の製造装置は、それぞれ特定の加工及び検査機能を担っている。これらの製造装置は、前の工程から中間品あるいは部品といった中間製品を受け取り、中間製品を受け取った工程において加工を実施し、加工を実施した中間製品を次の工程に渡す。一般に製造装置による加工においては、中間製品が持つ物理的な大きさ、抵抗値といった電気的特性、あるいはその他の属性値には毎回の作業毎にある程度のバラツキが発生する。さらにそのバラツキ自体も同じ加工をする複数の製造装置であっても異なる分布を有している。
特許文献1の生産管理システムは、複数の加工工程における加工の出来栄えを最適とする製品組合せ情報を事前に外部記憶装置に保存している。また、生産管理システムは、生産される製品の各検査工程での検査及び測定結果情報を記憶する。生産管理システムは、製品組合せ情報と検査及び測定結果情報とに基づき、各製造装置の組合せを決定する。
また、特許文献2の工程計画立案システムは、プロセス別に個々の製造装置を経て得られる装置経路ごとに、装置経路を経て製造された中間製品の品質情報を蓄積したデータベースを備える。工程計画立案システムは、データベースから品質情報を取得することによって、製造装置の組合せによって異なる品質分布情報を統計学的に推定する品質分布推定手段を備えている。また、工程計画立案システムは、品質分布推定手段で得られた品質分布に基づいて、品質規格を満たす製造装置の組合せを判定する。そして、工程計画立案システムは、判定した製造装置の組合せを用いて、装置経路を決定する。
また、特許文献3の製品品質予測では、製品の欠点数あるいは不良品数により品質を定義し、この品質を製造条件と製造条件を線形に組合せた場合の回帰係数とによって線形回帰式に定式化する。また、製品品質予測では、製造条件のバラツキを確率密度関数で表現し、製造条件のうち動的に制御できないものは条件付き確率として表現し、品質を線形回帰式から確率計算をすることで品質を予測している。
特開平11−267952号公報 特開2011−107882号公報 特許第5012660号公報
工場といった製造現場において同じ加工及び検査処理を達成できる複数の装置経路が存在する場合に、最終製品の品質が装置経路に含まれる製造装置単体が示す品質傾向の単純な積み上げでは予測できない。ここで、単純な積み上げとは各製造装置で単体装置としての品質指標値の値が最も良いものを集めて組合せた装置経路を作ることを意味している。直感的にはこのような装置経路で製造された最終製品は最も良い品質傾向を示すと推測される。しかし、実際には各検査工程で確認される品質指標間には相関関係がある場合があり、製造装置の単体品質としては最上でないものの組合せが結果的に最上の製造装置の組合せを上回る場合がある。このように各製造装置の品質を独立に高めるだけでは最終製品の品質の向上に必ずしも寄与しない。
特許文献1では、相関関係のある複数の製造装置について最適な組合せを事前に準備する必要がある。その準備のためには、製品設計者あるいは生産設備設計者の知識や経験による製造装置間の相関関係の把握が必要であり、日々の改善活動から実施される工程改善による変化に追随することは困難である。また、新規の製造装置が導入された場合に、人間がその製造装置を使いながらその製造装置のクセを把握するためには長期間を要する。
特許文献2では、実際に使用された装置経路の品質情報を蓄えて利用するため、実行されていない装置経路については情報がなく、装置経路の候補として対象にならない。よって、特許文献2では必ずしも最適な装置経路が選択されるとは限らない。
特許文献3は回帰分析を利用して製品の品質を定式化しているが、各品質指標の相関を考慮していないため、品質指標間に強い相関がある場合、導出された品質が正しくない場合がある。
本発明は、相関関係のある製造装置に関する情報がない場合でも、生産設備の試験の情報から製造装置間の相関関係を抽出することにより、統計的に最も品質が高くなる装置経路を用いた工程計画を生成することを目的とする。
本発明に係る計画生成装置は、複数の工程を経て生産される製品の工程計画を生成する計画生成装置において、
複数の装置であって各装置が前記複数の工程のいずれかに属する複数の装置のうち1つの装置を第1装置とすると共に前記第1装置により加工された中間製品の品質を表す品質値を第1品質値とし、前記複数の装置のうち前記第1装置が属する工程より前の工程に属する装置を第2装置とすると共に前記第2装置により加工された中間製品の品質値を第2品質値とし、前記第1品質値と前記第2品質値とが相関関係にあるか否かを判定する相関判定部と、
前記第1品質値と前記第2品質値とが相関関係にあると判定された場合に、中間製品の品質の基準を表す品質基準値を用いて、前記第1装置と前記第2装置とが、前記第1品質値における前記品質基準値との第1誤差と前記第2品質値における前記品質基準値との第2誤差とを打ち消し合う装置の組であるか否かを判定する組判定部と、
前記第1装置と前記第2装置とが前記装置の組であると判定された場合に、前記装置の組を用いて、前記工程計画を生成する工程計画生成部とを備える。
本発明に係る計画生成装置は、装置の組合せについて相関関係を判定し、相関関係がある装置の組合せの中から中間製品の品質のブレを打ち消し合う装置の組を判定し、この装置の組を用いて工程計画を生成する。よって、計画生成装置は、品質のブレが少ない高品質の中間製品を生産する装置の組を自動的に抽出し、抽出した装置の組を用いて工程計画を生成することができる。したがって、計画生成装置によれば、最適な工程計画を短時間で自動的に生成することができる。
実施の形態1に係る計画生成装置100と生産設備400との関係を示す図。 実施の形態1に係る計画生成装置100の構成を示す図。 実施の形態1に係る品質情報210の構成を示す図。 実施の形態1に係る計画生成装置100の計画生成方法510及び計画生成プログラム520の計画生成処理S100を示すフロー図。 実施の形態1に係る相関判定部120の相関判定処理S120を示すフロー図。 実施の形態1に係る相関判定処理S120により生成される相関係数情報161の一例を示す図。 実施の形態1に係る装置54x3の品質値Q1_x3に関する品質値関連図。 実施の形態1に係る組判定部130の組判定処理S130を示すフロー図。 実施の形態1の変形例に係る計画生成装置100の構成を示す図。 実施の形態2に係る計画生成装置100aの構成を示す図。 実施の形態2に係る品質情報判定部170と装置切替部180との動作を示す図。
実施の形態1.
***構成の説明***
図1を用いて、本実施の形態に係る計画生成装置100と生産設備400との関係について説明する。
計画生成装置100は、複数の工程50を経て生産される製品53の工程計画151を生成する。図1では、複数の工程50として、工程A50a,工程B50b,・・・,工程Z50zが存在する。
計画生成装置100は、生産計画情報300を取得し、生産計画情報300に含まれる品質規格情報及び生産量の計画値を得る。また、計画生成装置100は、データベース200から各装置の品質情報を得る。計画生成装置100は、得られた情報を用いて、適切な装置の割当を導き出し、各工程に対して工程計画151を提供する。
図1では、生産設備400に原材料51が投入されてから、製品53として出力されるまでを示している。製品53は部品の場合もある。
生産設備400は、複数の装置54を備える。複数の装置54は、各装置が複数の工程50のいずれかに属している。ここで、工程50は、加工工程あるいは製造工程ともいう。また、装置54は、加工装置あるいは製造装置ともいう。
工程A50aはA1号機である装置54a1からAk号機である装置54akまでの装置54を備える。
工程B50bはB1号機である装置54b1からBm号機である装置54bmまでの装置54を備える。
工程Z50zはZ1号機である装置54z1からZf号機である装置54fまでの装置54を備える。ここで、k,m,f,及び後述するnは任意の整数であり各工程に設置されている装置の台数を表す。
検査及び搬送工程55において、原材料51が検査され、工程Aに搬送される。
工程Aでは工程Aの加工処理を装置54a1から装置54akまでの装置により並列に処理できるようになっている。工程B、・・・、工程Zについても同様である。
工程Aにより加工された中間製品52aは、検査及び搬送工程55aにより検査され、工程Bの装置54b1から装置54bmに搬送される。工程Bについても同様である。最終工程である工程Zにより加工された中間製品52zは、検査及び搬送工程55zにより検査され、検査に合格した中間製品52zが最終製品である製品53として搬送される。
それぞれの検査及び搬送工程55では、検査及び搬送対象の中間製品52について、予め決められた品質値を測定する。品質値は、中間製品52の品質を表す指標値である。品質値は品質指標値ともいう。品質値は少なくとも1つであり、一般的には複数である。検査及び搬送工程55では、予め定められた品質基準値BQに基づいて、品質値が許容される範囲の値に収まっているか否かを判定する。品質基準値BQは、中間製品52の品質の基準を表す。品質値としては、中間製品のサイズ、中間製品におけるキズの数といった具体例がある。
検査及び搬送工程55における検査工程で検査に合格した中間製品52が次の工程に搬送される。検査工程で不合格となった中間製品52は、破棄されるかあるいは検査に合格するように再加工するかの判断をするために、別の工程に搬送される。
図1において2重線で囲まれた装置54a1、装置54b2、・・・、装置54z2は、ある製品もしくは製品ロットの装置経路の一例を示している。
ここで、装置経路とは各工程50で使用する装置54の組合せを意味している。各工程50に同じ機能をもつ装置54が複数ある場合、実際の製造時にはどれか1つを選択することになる。すなわち、上記の例では、工程Aの装置群から装置54a1が選択され、工程Bの装置群から装置54b2が選択され、工程Zの装置群から装置54z2が選択されて1つの装置経路が生成されたことを意味する。
各装置の加工結果が全く同じであれば各工程においてどの装置を選択しても同じ品質をもつ最終の製品53が製造されるはずである。しかし、一般には各検査工程を全て合格した場合でも製品53の品質にはある程度のバラツキが発生する。
なお、図1では、図の表記上、工程Zが最終工程となり、検査及び配送工程55zによって最終検査が実施され、保管場所へ搬送される記載となっている。しかし、AからZの工程数を26に制限するものではなく複数の工程数であれば任意の工程数で構わない。
図2を用いて、本実施の形態に係る計画生成装置100の構成について説明する。
本実施の形態において、計画生成装置100は、コンピュータである。計画生成装置100は、プロセッサ901、記憶装置902、入力インタフェース903、通信装置910といったハードウェアを備える。
また、計画生成装置100は、機能構成として、品質情報取得部110と、相関判定部120と、組判定部130と、工程計画生成部140と、記憶部160とを備える。以下の説明では、計画生成装置100における品質情報取得部110と、相関判定部120と、組判定部130と、工程計画生成部140との機能を、計画生成装置100の「部」の機能という。計画生成装置100の「部」の機能は、ソフトウェアで実現される。
また、記憶部160は、記憶装置902で実現される。記憶部160には、品質情報210、相関係数情報161、組合せ情報162、品質基準値BQ164が記憶される。なお、品質基準値BQは品質情報210に含まれていてもよい。
プロセッサ901は、信号線を介して他のハードウェアと接続され、これら他のハードウェアを制御する。
プロセッサ901は、プロセッシングを行うIC(Integrated・Circuit)である。プロセッサ901は、具体的には、CPU(Central・Processing・Unit)である。
記憶装置902は、補助記憶装置及びメモリを含む。補助記憶装置は、具体的には、ROM(Read・Only・Memory)、フラッシュメモリ、又は、HDD(Hard・Disk・Drive)である。メモリは、具体的には、RAM(Random・Access・Memory)である。記憶部160は、記憶装置902により実現される。記憶部160は、具体的にはメモリにより実現されるが、補助記憶装置及びメモリの両方により実現されてもよい。
通信装置910はレシーバ911とトランスミッタ912とを備える。具体的には、通信装置910は通信チップまたはNIC(Network・Interface・Card)である。通信装置910はデータを通信する通信部として機能する。レシーバ911はデータを受信する受信部として機能し、トランスミッタ912はデータを送信する送信部として機能する。
入力インタフェース903は、マウス、キーボード、タッチパネルといった入力装置と接続されるポートである。入力インタフェース903は、具体的には、USB(Universal・Serial・Bus)端子である。なお、入力インタフェース903は、LAN(Local・Area・Network)と接続されるポートであってもよい。
また、計画生成装置100は、出力インタフェースを備えていてもよい。出力インタフェースは、ディスプレイといった出力装置のケーブルが接続されるポートである。出力インタフェースは、例えば、USB端子又はHDMI(登録商標)(High・Definition・Multimedia・Interface)端子である。ディスプレイは、具体的には、LCD(Liquid・Crystal・Display)である。
補助記憶装置には、「部」の機能を実現するプログラムが記憶されている。このプログラムは、メモリにロードされ、プロセッサ901に読み込まれ、プロセッサ901によって実行される。補助記憶装置には、OS(Operating・System)も記憶されている。OSの少なくとも一部がメモリにロードされ、プロセッサ901はOSを実行しながら、「部」の機能を実現するプログラムを実行する。
計画生成装置100は、1つのプロセッサ901のみを備えていてもよいし、複数のプロセッサ901を備えていてもよい。複数のプロセッサ901が「部」の機能を実現するプログラムを連携して実行してもよい。
「部」の処理の結果を示す情報、データ、信号値、及び、変数値は、補助記憶装置、メモリ、又は、プロセッサ901内のレジスタ又はキャッシュメモリに記憶される。
「部」の機能を実現するプログラムは、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ブルーレイ(登録商標)ディスク、DVD(Digital・Versatile・Disc)といった可搬記録媒体に記憶されてもよい。
なお、「部」の機能を実現する工程計画生成プログラム520は、計画生成装置100の「部」として説明している機能を実現するプログラムである。また、工程計画生成プログラムプロダクトと称されるものは、「部」として説明している機能を実現するプログラムが記録された記憶媒体及び記憶装置であり、見た目の形式に関わらず、コンピュータ読み取り可能なプログラムをロードしているものである。
図3を用いて、本実施の形態に係る品質情報210の構成を説明する。
図3に示すように、データベース200の品質情報210には、生産設備400の各工程50の各装置54により加工された中間製品52の品質を表す品質値が蓄積される。図3では、工程Aと、工程Bと、工程Bと最終の工程Zとの間の工程Xとが表されている。工程Xには、装置54x1から装置54xnのn台の装置が属している。
品質情報210は、データベース200に保存されている情報であり、各工程50の後の検査工程で検査された品質値及び各品質値の分布情報を含む。
品質情報210には、工程毎品質情報211が記憶される。すなわち、前工程の工程毎品質情報211α、工程Aの工程毎品質情報211a、工程Bの工程毎品質情報211b、・・・、工程Xの工程毎品質情報211xが保存されている。それぞれの工程毎品質情報211には、各工程50に属する装置54毎の品質値が設定される。
本実施の形態では、品質値として、品質値Q1と品質値Q2とが記憶されるものとする。品質値Q1と品質値Q2とは、異なる種類の品質値である。具体例としては、品質値Q1は中間製品52のサイズであり、品質値Q2は中間製品52のキズの数である。品質値は他の種類の品質指標値であっても構わない。
また、工程毎品質情報211には、対応する工程50に属する複数の装置54に関する情報が含まれる。
工程Aの前段階における工程毎品質情報211αには、品質値Q1αと品質値Q2αとが設定される。工程毎品質情報211αでは最初の加工工程である工程Aより前の段階の検査結果が保存されている。一般に生産設備400に材料あるいは部品といった原材料51が投入される場合、それぞれの品質の確認のため検査が実施される。よって、工程Aより前の段階の工程毎品質情報211αが必要である。また工程毎品質情報211αの品質値は装置54の影響を受けない品質値である。原材料51が購入品の部品である場合、工程毎品質情報211αは、生産設備400によって直接的なコントロールをすることができない品質情報であるため他と区別して扱う。
工程Aにおける工程毎品質情報211aには、工程Aに属する装置毎に品質値Q1と品質値Q2とが設定される。すなわち、品質値Q1については、品質値Q1_a1、品質値Q1_a2、品質値Q1_a3、・・・、品質値Q1_akが設定される。品質値Q2については、品質値Q2_a1、品質値Q2_a2、品質値Q2_a3、・・・、品質値Q2_akが設定される。例えば、品質値Q1_a2は、装置54a2により加工された中間製品52aの品質値Q1であることを表している。
工程Bにおける工程毎品質情報211b及び工程Xにおける工程毎品質情報211xについても上記工程毎品質情報211aの構成と同様である。
すなわち、工程Bにおける工程毎品質情報211bには、品質値Q1_b1、品質値Q1_b2、品質値Q1_b3、・・・、品質値Q1_bmが設定される。また、品質値Q2_b1、品質値Q2_b2、品質値Q2_b3、・・・、品質値Q2_bmが設定される。また、工程Xにおける工程毎品質情報211xには、品質値Q1_x1、品質値Q1_x2、品質値Q1_x3、・・・、品質値Q1_xnが設定される。また、品質値Q2_x1、品質値Q2_x2、品質値Q2_x3、・・・、品質値Q2_xnが設定される。
なお、検査工程で不合格となった中間製品52が次の工程に渡されることはないため、品質情報210は、検査に合格した中間製品52についての品質値のみを含み、不合格となった中間製品52についての品質値は含まない。
***動作の説明***
図4を用いて、本実施の形態に係る計画生成装置100の計画生成方法510及び計画生成プログラム520の計画生成処理S100について説明する。
品質情報取得処理S110において、品質情報取得部110は、レシーバ911を用いて、データベース200から品質情報210を受信する。品質情報取得部110は、受信した品質情報210を記憶装置902の記憶部160に記憶する。品質情報210の構成は、図3で説明した通りである。
相関判定処理S120において、相関判定部120は、生産設備400の複数の装置54のうち1つの装置を第1装置T154とすると共に第1装置T154により加工された中間製品52の品質を表す品質値を第1品質値T1Qとする。そして、相関判定部120は、複数の装置54のうち第1装置T154が属する工程50より前の工程50に属する装置を第2装置T254とすると共に第2装置T254により加工された中間製品52の品質値を第2品質値T2Qとする。そして、相関判定部120は、第1品質値T1Qと第2品質値T2Qとが相関関係にあるか否かを判定する。
図5を用いて、本実施の形態に係る相関判定部120の相関判定処理S120について詳しく説明する。
ステップS151において、相関判定部120は、工程毎に以降の処理を実施する。まず、相関判定部120は、1つの工程50を選択し、選択した工程50に属する複数の装置54から1つの装置54を第1装置T154として選択する。第1装置T154は、処理対象の装置である。具体的には、相関判定部120は、記憶部160に記憶された品質情報210から選択した工程50の工程毎品質情報211を取得し、工程毎品質情報211に含まれる工程50に属する複数の装置54に関する情報に基づいて第1装置T154を選択する。
ステップS152において、相関判定部120は、第1装置T154により加工された中間製品52の品質値を第1品質値T1Qとして、記憶部160に記憶された品質情報210から取得する。第1品質値T1Qは、処理対象の品質値である。具体的には、相関判定部120は、品質情報210の工程毎品質情報211に含まれる第1装置T154に対応する品質値の1つを第1品質値T1Qとして選択する。
具体例として、相関判定部120は、工程Xの装置54x2を第1装置T154とし、品質値Q1_x2を第1品質値T1Qとする。
ステップS153において、相関判定部120は、複数の装置54のうち第1装置T154が属する工程より前の工程に属する装置を第2装置T254とすると共に第2装置T254により加工された中間製品52の品質値を第2品質値T2Qとする。具体的には、相関判定部120は、記憶部160に記憶された品質情報210から工程Xより前の工程の工程毎品質情報211を順に取得し、取得した工程毎品質情報211に含まれる装置54を順に第2装置T254として取得する。また、相関判定部120は、取得した第2装置T254の品質値を順に第2品質値T2Qとして取得する。
具体例として、相関判定部120は、工程Bの装置54b2を第2装置T254とし、品質値Q2_b2を第2品質値T2Qとする。
ステップS154において、相関判定部120は、第1品質値T1Qと第2品質値T2Qとの相関係数を第1相関係数ST1として計算する。
ステップS155において、相関判定部120は、第1品質値T1Qと第2品質値T2Qとが相関関係にあるか否かを判定する。相関判定部120は、第1相関係数ST1を用いて、第1品質値T1Qと第2品質値T2Qとが相関関係にあるか否かを判定する。
具体例として、相関判定部120は、第1品質値T1Qである品質値Q1_x2と、第2品質値T2Qである品質値Q2_b2との相関係数を第1相関係数ST1として算出する。このとき、相関判定部120は、事前に設定した有意水準に基づいて相関があるかどうかに有意差があるか否かを確認し、p値が有意水準に満たない場合には有意差がなく相関がないものと判定する。有意水準は、具体的には5%である。一例として、相関判定部120は、p値が5%以下であり、相関係数が0.2未満の第2品質値T2Qについては第1品質値T1Qとの間に相関関係がないとみなす。
ステップS155において、第1品質値T1Qと第2品質値T2Qとが相関関係にあると判定された場合は、S156aに進む。
ステップS156aにおいて、相関判定部120は、第1品質値T1Qと第2品質値T2Qとの第1相関係数ST1を相関係数情報161として記憶部160に記憶する。
ステップS155において、第1品質値T1Qと第2品質値T2Qとが相関関係にないと判定された場合は、S157に進む。
ステップS156において、相関判定部120は、第2品質値T2Qより時系列順で前に位置する品質値群に第2品質値T2Qと相関のある第3品質値T3Qがあれば、第3品質値T3Qを用いて偏相関係数を算出し、第1相関係数ST1とする。具体的には、相関判定部120は、記憶部160に記憶されている相関係数情報161を用いて、第2装置T254が属する工程より前の工程に属する装置のうち、第2装置T254と相関関係にありかつ第1装置T154とも相関関係にある装置を第3装置T354として検出する。そして、相関判定部120は、第3装置T354の品質値を第3品質値T3Qとし、第3品質値T3Qと第2品質値T2Qとの相関係数である第2相関係数ST2と、第3品質値T3Qと第1品質値T1Qとの相関係数である第3相関係数ST3とに基づいて、第1品質値T1Qと第2品質値T2Qとの偏相関係数を算出する。相関判定部120は、算出した偏相関係数に基づいて、第1品質値T1Qと第2品質値T2Qとが相関関係にあるか否かを判定する。相関判定部120は、第1品質値T1Qと第2品質値T2Qとが相関関係にあると判定した場合、相関係数情報161における第1相関係数ST1を、算出した偏相関係数に置き換える。
ステップS157では、相関判定部120は、第1品質値T1Qより前の全ての品質値について処理済みか否かを判定する。処理済みでない品質値がある場合は、ステップS153に戻り、第2品質値T2Qとして処理済みでない品質値を選択する。処理済みでない品質値がない場合は、S158に進む。
ステップS158では、相関判定部120は、第1装置T154の全ての品質値を第1品質値T1Qとして処理済みか否かを判定する。処理済みでない品質値がある場合は、ステップS152に戻り、第1品質値T1Qとして処理済みでない品質値を選択する。処理済みでない品質値がない場合は、S159に進む。
ステップS159では、相関判定部120は、生産設備400に含まれる全ての複数の装置54を第1装置T154として処理済みか否かを判定する。処理済みでない装置がある場合は、ステップS151に戻り、第1装置T154として処理済みでない装置を選択する。処理済みでない装置がない場合は、処理を終了する。
以上で、相関判定部120は、全ての装置に関連付けられている全ての品質値について、処理対象の品質値より時系列で前の全ての品質値と相関係数を計算した。
図6を用いて、本実施の形態に係る相関判定処理S120により生成される相関係数情報161について説明する。
図6では、工程XのX3号機である装置54x3の品質値Q1_x3及び品質値Q2_x3に対する相関係数を示す相関係数情報161を表している。
以下では、図3に示す工程Xの工程毎品質情報211xの品質値Q1_x3を例に処理の説明をする。上述した相関判定処理S120により相関係数を算出することで、品質値Q1_x3と相関関係をもつ品質値群が抽出できる。
相関判定部120は、相関判定処理S120を実行することにより、品質値Q1_x3と相関関係を有する品質値Q1_x3より時系列で前の品質値を品質情報210から抽出し、相関係数と対応付けて相関係数情報161に記憶する。
図6では、品質値を時系列での前から順に並べて相関係数を設定しているが、相関係数の降順に並び替えて相関係数情報161としてもよい。
相関係数情報161では、p値が5%以下であり有意差がなく、相関係数が0.2未満の品質値については相関関係がないとみなすことができる。ここで、製造される製品あるいは工程に特化した特別な理由がない限り、上記の一般的な値を閾値として利用し、相関関係を判定する。相関関係のない品質値については工程計画を生成する際に特別な考慮は必要ないため、相関係数情報161に格納しない。
図6の相関係数情報161では、工程Xの装置54x3を第1装置T154とし、品質値Q1_x3を第1品質値T1Qとした場合の相関係数の値を示している。この相関係数情報161に記載されている品質値は工程Xよりも前の工程の品質値の一覧である。上記で説明した相関判定処理S120では、相関判定部120は、第1装置T154の第1品質値T1Qと相関関係にあると判定された品質値のみを相関係数情報161に設定していた。
しかし、相関判定部120は、第1品質値T1Qとの相関係数を算出した品質値の全てを相関係数情報161に設定してもよい。この場合、相関判定部120は、相関係数情報161に設定された品質値の中から第1品質値T1Q(具体例では、品質値Q1_x3)と相関関係がある品質値を判定する。
図6では、相関係数情報161には、装置54x3の品質値Q1_x3との相関係数を算出した品質値の全てが設定されている例を示している。
図7を用いて、本実施の形態に係る装置54x3の品質値Q1_x3に関する品質値関連図の一例について説明する。
図7では、品質値Q1_x3に対する相関係数を計算したときに、Q1、Q2、Q1_a1については相関関係があるが、それ以外の品質値については相関関係がないと判断された場合の品質値関連図を示している。相関関係がある組合せには矢印でリンク212,213,215が記載されている。ただし、図7にはリンク214があり、これはQ1とQ1_a2との間に相関関係があることを示している。このような場合、Q1_x3に対するQ1_a2のリンク212に対して計算される相関係数はQ1の影響を含んだ値になる。このため、この影響を除いた偏相関係数を算出する必要がある。よって、相関判定処理S120のステップS156では、現在算出しようとしている工程の前工程に含まれる品質値間の相関関係を考慮した第1相関係数を算出している。
一般に相関係数の算出によって各変数の相関関係を判断しても、どちらが原因でどちらが結果を示しているかは明確ではない。しかし、本実施の形態では、工程Xの品質値の計算をする際には、工程X以前の工程の品質値に対して相関係数を計算するという方法を取るため、相関係数を計算する際の入力値は全て時系列上で工程Xより前に検査された品質値である。このため因果関係が必然的に明確になる。ただし、測定していない別の要因に起因する結果として工程X以前のある品質値と工程Xの品質値が相関関係を持つ場合でも相関関係があるように算出される可能性はある。このため検査結果に影響を与えるような要因については品質値として選択されることが好ましい。実際には検査結果に大きく影響を与えるような要因については前工程の検査工程で確認対象となっていることが多いと仮定しても問題ない。このような理由により、製造ラインが分岐する場合については相関係数を算出しようとする工程に中間製品を提供する工程のみを選択して相関係数を計算する必要がある。分岐した工程については再び製造ラインが合流するまで、その工程に対して影響を与えることがないためである。
次に、図4における組判定処理S130について説明する。
組判定処理S130において、組判定部130は、記憶部160に記憶された相関係数情報161を用いて処理を実行する。
組判定処理S130は第1品質値T1Qと第2品質値T2Qとが相関関係にあると判定された場合に実行される。具体的には、組判定部130は、相関関係にあると判定された品質値の情報である相関係数情報161を用いて、組判定処理S130を実行する。組判定処理S130は、相関判定部120により生成された相関係数情報161を用いて、複数の装置54のうち、できるだけ固定的に組合せたい装置の組540の一覧を抽出し、装置の組540を記憶部160の組合せ情報162に蓄積する処理である。抽出された装置の組540を利用することにより、各品質値のバラツキによる影響を軽減することができる。なお、上述したように、相関係数情報161には製造ラインに含まれる各装置54に結び付いた品質値のうち他の品質値と相関関係を持っている品質値が格納されている。
組判定部130は、中間製品52の品質の基準を表す品質基準値BQを用いて、第1装置T154と第2装置T254とが装置の組540であるか否かを判定する。第1品質値T1Qと品質基準値BQとの誤差を第1誤差31とする。また、第2品質値T2Qと品質基準値との誤差を第2誤差32とする。品質値における品質基準値BQとの誤差を品質値のブレともいう。
装置の組540であるとは、第1品質値T1Qにおける品質基準値BQとの第1誤差31と、第2品質値T2Qにおける品質基準値との第2誤差32とを打ち消し合う装置の組を意味する。
図8を用いて、本実施の形態に係る組判定部130の組判定処理S130について説明する。
ステップS141において、組判定部130は、品質情報210に含まれる品質値について、品質基準値BQからのブレの大きさの降順でソート処理をする。具体的には、組判定部130は、品質値のそれぞれに対して、あらかじめ設定された実行履歴回数分、もしくは予め設定された期間に製造された中間製品52の製造実績情報を入力として、各品質値について平均値を計算する。組判定部130は、算出された平均値と対応する品質基準値BQとの差を求めることで品質基準値BQからのブレを算出する。組判定部130は、上記の手順で算出したブレの絶対値の降順で各品質値をソートする。
ステップS142において、組判定部130は、品質値のソート結果の先頭から処理を進める。ソート結果の先頭に格納されている品質値は品質基準値BQからのブレの絶対値が最も大きい装置についての品質値である。組判定部130は、処理対象の品質値をQとして、ソート結果の先頭から選択する。Qに対しては対応する装置が一意に決まっている。以下において、組判定部130は、Qに対する装置の組540を判定し、記憶部160の組合せ情報162に設定する。現時点では組合せ情報162は空の状態となっている。
ステップS143において、組判定部130は、Qを第1品質値T1Qとし、相関係数情報161を用いて、第1品質値T1Qと相関関係にある品質値を相関係数の降順に選択する。組判定部130は、選択した品質値を第2品質値T2Qとする。
ステップS144において、組判定部130は、第1品質値T1Qに対応する第1装置T154と、第2品質値T2Qに対応する第2装置T254とが、第1品質値T1Qと第2品質値T2Qとのブレを打ち消し合う装置の組540であるか否かを判定する。
具体的には、組判定部130は、第1品質値T1Qと第2品質値T2Qとが負の相関関係にあり、かつ、第1誤差31と第2誤差32との正負が同じ場合に、第1装置T154と第2装置T254とが装置の組540であると判定する。組判定部130は、この装置の組540を記憶部160の組合せ情報162に格納する。また、組判定部130は、第1品質値T1Qと第2品質値T2Qとが正の相関関係にあり、かつ、第1誤差31と第2誤差32との正負が異なる場合に、第1装置T154と第2装置T254とが装置の組540であると判定する。組判定部130は、この装置の組540を記憶部160の組合せ情報162に格納する。
なお、第1誤差31と第2誤差32との正負が同じ場合とは、第1誤差31が正の数でありかつ第2誤差32も正の数の場合、あるいは、第1誤差31が負の数でありかつ第2誤差32も負の数の場合である。また、第1誤差31と第2誤差32との正負が異なる場合とは、第1誤差31が負の数でありかつ第2誤差32が正の数の場合、あるいは、第1誤差31が正の数でありかつ第2誤差32が負の数の場合である。
ステップS142からステップS144では、組判定部130は、Qに対する強い相関(具体的には相関係数>0.7)をもつ品質値から順に以降の処理をすすめていく。組判定部130は、ステップS141の出力であるソート結果の先頭から品質値の検索を開始し、逆の相関があり同じ方向(+−)にブレのある品質値、もしくは正の相関があり逆の方向(+−)にブレのある品質値を選択する。組判定部130は、選択した品質値に対応する装置の組540を組合せ情報162に追加する。品質値のソート結果の先頭から順に確認することで同じ工程に属する複数の装置の中でブレの絶対値が大きなものから先に選択されていくことになる。よって、組合せ情報162に格納される装置の組540の順番は、より大きなブレを解消できる装置の組540から格納されていく。したがって、組合せ情報162に格納される装置の組540は、優先順位の高い装置の組540から順に格納されることになる。
ステップS145において、組判定部130は、ステップS142で選択された品質値を品質値のソート結果から削除する。これは、同じ品質値がQとして複数回選択されないようにするためである。
ステップS146において、組判定部130は、品質情報210に未処理の品質値が存在するか否かを判定し、未処理の品質値が存在しない場合は処理を終了する。組判定部130は、未処理の品質値が存在すると判定すると、ステップS142に戻る。品質値のソート結果に含まれる全ての品質値について処理が終了すると、固定的に割り当てるべき装置の組540を格納した組合せ情報162が得られる。
以上で、組判定処理S130の説明を終わる。
次に、図4における工程計画生成処理S140について説明する。
工程計画生成処理S140において、工程計画生成部140は、第1装置T154と第2装置T254とが組合せるべき装置の組540であると判定された場合に、装置の組540を用いて、工程計画を生成する。具体的には、工程計画生成部140は、組判定部130により生成された組合せ情報162を用いて、品質視点から最良と判定される装置経路を決定し、工程計画151を生成する。
工程計画生成処理S140において、工程計画生成部140は、以下の処理を行う。
工程計画生成部140は、記憶部160から組合せ情報162を取得する。また、工程計画生成部140は、入力装置から入力された生産計画情報300を取得する。組合せ情報162には、固定的に装置の経路とすべき装置の組540が優先順位順に格納されている。工程計画生成部140は、組合せ情報162に格納された装置の組540と生産計画情報300とに基づいて、工程計画151を生成する。
具体的には、工程計画生成部140は、まず、組合せ情報162を用いずに、生産計画情報300のみに基づいて装置経路案を作成する。
その後、工程計画生成部140は、組合せ情報162に格納された優先順位順の装置の組540の一覧を入力として、装置経路案から装置経路を生成する。工程計画生成部140は、優先順位の高い装置の組540から、装置の組540が含まれる装置経路案を装置経路として、製造指示、すなわち工程計画151を割り当てる。優先順位の高い装置の組540を含む装置経路から先に特定することで同じ生産設備400を用いた場合により製品品質が高いと想定される工程計画151を作成することが可能となる。
なお、工程計画生成処理S140において、生成した工程計画151が、予め算出された最終品質の推定結果を満たすか否かをチェックしてもよい。
以下に、工程計画生成部140により製品53の最終品質を統計的に推定する方法について説明する。
工程計画生成部140は、品質情報210を用いて、最終品質の品質値を目的変数として、製造ラインに含まれるその他の品質値を説明変数とする重回帰分析を行い、最終品質を算出する。このとき、各説明変数となる品質値の間に強い相関がある場合は回帰係数が正しく算出されない。よって、工程計画生成部140は、相関係数情報161を用いて、強い相関のある品質値(具体的には相関係数の絶対値が0.7以上の品質値)については説明変数から省いてから重回帰分析を行う。この処理により、最終製品の品質値が相関関係のノイズを省いた形で算出される。また、最終製品の品質値あるいはその他の値を重回帰分析により予測する場合は、必ずしも各工程の後で実施される検査工程で検査される品質値のみではなく、各装置の設定値といった値を含む製造条件を説明変数に加えてもよい。ただし説明変数を増やす場合には、選択した他の説明変数との間に強い相関関係がないことをチェックする必要がある。
計画生成処理S100で利用する品質情報210は、生産設備400の利用状況により、具体的には直近1か月を利用するか、それ以上の期間を利用するか選択することができる。また、製造設備は同じであっても段取り替えという操作により、製造する中間製品を変更する場合がありえる。同じ製造装置であっても異なる中間製品もしくは製品を製造する場合は、仮に検査工程が同じであっても区別して扱うことが一般的である。しかし、更に段取り替えを実施して、もとの中間製品を製造した場合、特に段取り替え作業が製造装置の一部を物理的に入れ替えるような作業であった場合は段取り替えという作業自体により、品質指標値の分布がこれまでと異なる状況になる可能性がある。このような場合は同じ中間製品を製造する製造装置であっても段取り替え毎に区別したデータ収集を実施して、分布を算出する際のデータとして区別してもよい。また供給される部品についてはロット単位で品質値が異なる場合があるため、段取り替え作業に対する対応と同じく、分布を算出する際のデータとしてロットが異なる場合に区別して扱うような対応を加えてもよい。品質値の分布が段取り替えの有無あるいはロットの違いの影響を受けず、それ以前と変化がないようであれば、装置に依存する変化であると判断することができる。影響があるようであれば、同系列のデータのみで算出した分布あるいは相関係数を使うような対応も可能である。
***他の構成***
本実施の形態では、計画生成装置100の外部にデータベース200を備える構成であるが、計画生成装置100の内部にデータベース200を備えていてもよい。つまり、生産設備400の検査工程が、計画生成装置100の内部のデータベース200に直接に品質情報210を設定する構成でもよい。
また、本実施の形態では、計画生成装置100の機能がソフトウェアで実現されるが、変形例として、計画生成装置100の機能がハードウェアで実現されてもよい。
図9を用いて、本実施の形態の変形例に係る計画生成装置100の構成について説明する。
図9に示すように、計画生成装置100は、処理回路909、通信装置910、入力インタフェース903といったハードウェアを備える。
処理回路909は、前述した「部」の機能及び記憶部160を実現する専用の電子回路である。処理回路909は、具体的には、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ロジックIC、GA(Gate・Array)、ASIC(Application・Specific・Integrated・Circuit)、又は、FPGA(Field−Programmable・Gate・Array)である。
「部」の機能は、1つの処理回路909で実現されてもよいし、複数の処理回路909に分散して実現されてもよい。
別の変形例として、計画生成装置100の機能がソフトウェアとハードウェアとの組合せで実現されてもよい。即ち、計画生成装置100の一部の機能が専用のハードウェアで実現され、残りの機能がソフトウェアで実現されてもよい。
プロセッサ901、記憶装置902、及び、処理回路909を、総称して「プロセッシングサーキットリ」という。つまり、計画生成装置100の構成が図2及び図10のいずれに示した構成であっても、「部」の機能は、プロセッシングサーキットリにより実現される。
「部」を「工程」又は「手順」又は「処理」に読み替えてもよい。また、「部」の機能をファームウェアで実現してもよい。
***本実施の形態の効果の説明***
上記の実施の形態の説明では、製造ラインの工程計画を提示する計画生成装置であって、工程別に選択可能な複数の装置がある場合、工程別に個々の装置を経て得られる品質情報を蓄積したデータベースを備える計画生成装置について説明した。計画生成装置は、データベースから該品質情報を取得して、前記生産装置間の製造条件、すなわち品質指標の相関関係を判定する相関関係分析機能と、相関係数情報をもとに生産装置のバラツキを打ち消す組合せを判断する品質分布推定機能とを備える。また、計画生成装置は、前記機能が提供する情報から生産される製品の品質を推測する品質推定機能と、生産装置の組合せを判定する生産装置組合せ判定機能とを備える。また、計画生成装置は、判定した生産装置の組合せに基づいて、工程別に選択可能な複数の生産装置を経て得られる装置経路を決定し、生産計画を提示する工程計画決定機能を備える。
本実施の形態に係る計画生成装置によれば、相関関係のある製造装置に関する情報がない場合でも、生産設備の試験の情報から製造装置間の相関関係を抽出し、工程計画作成時に統計的に最も品質が高くなる装置経路を推薦する機能を提供することができる。
また、本実施の形態に係る計画生成装置によれば、各装置が生成する中間製品の品質だけではなく装置経路を考慮した製造指示の割り当てにより、同じ生産設備を用いていても、製造される製品品質がより高くなるような工程計画を作成することができる。一般にこのような工程計画を作成するためには各装置が持っているクセを十分に理解した技術者の経験に頼る必要がある。また統計的に判断しようとすると、全ての装置経路に対して実際に製造指示を出して、それらの装置経路で製造を行い、結果として測定される品質指標値を統計的判断ができる程度に十分な回数試す必要がある。本実施の形態に係る計画生成装置によれば、製造現場技術者の経験と技術力に依存することなく、自動的に各装置間の相関関係を算出し、それぞれの装置の品質基準値からのブレをできるだけ打ち消す装置の組合せをもつ装置経路を提示することが可能である。
また、本実施の形態に係る計画生成装置によれば、各装置から得られる品質指標値から相関関係を分析する機能を備えているため、以前実行した装置経路でなくても、それぞれの装置単体の品質実績から装置間の相関係数を算出し、相関関係のある装置組合せを考慮することにより任意の装置経路を対象とした最適な装置経路を自動的に判断できる。
なお、工程計画を生成するために、回帰分析の説明変数として選択する品質指標あるいは製造条件の間に強い相関関係がないように選択をする必要がある場合がある。即ち、複数の品質指標あるいは製造条件の関係性を把握しておくことが必要となる場合がある。本実施の形態に係る計画生成装置によれば、各装置から得られる品質指標値から相関関係を分析する機能を備えるので、このような事前知識、専門的な知識あるいは経験がない場合でも、回帰分析の説明変数の選択を自動化することができ、装置経路の判断基準として使用できる。
一般に各加工工程の後には検査工程が設置されており、製造された中間製品が設計通りの品質指標を達成しているか検査される。検査上許容範囲の品質のバラツキであっても、製造された中間製品や部品を多数組合せたり、組合せて加工したりした場合に各装置の品質のバラツキが積み重なることにより、最終製品の品質のバラツキが加算されて大きくなってしまう場合がある。場合によっては最終検査で不合格になる場合がある。
各検査工程で検査される品質指標はそれぞれ全く独立で関係ないものばかりではなく相関関係をもつものも当然ありえるため、同じ工程を実現する装置が複数ある場合は、使用する装置の組合せを工夫することによって、品質のバラツキが互いを打ち消しあうように組合せることも可能であり、これによって、品質のバラツキを小さくすることが可能である。きわめて単純なケースでは組合せる部品のサイズが大きめのものと小さめのものを組合せれば、組み合わされた中間製品のサイズはそれぞれのバラツキの和ではなく、相殺してバラツキが小さくなるということがあり得る。
本実施の形態に係る計画生成装置によれば、上記のような現象を利用して、品質値のブレを小さくできるような装置の組を自動的に抽出し、抽出した装置の組を用いて工程計画を生成することができるので、最適な工程計画を短時間で生成することができる。
また、各製造工程で選択可能な装置の組合せを考慮することにより、同じ装置資産から製造される製品品質を高めることができる既存装置資産の最適な組合せを推薦する装置を提供することができる。
実施の形態2.
本実施の形態では、主に、実施の形態1と異なる点について説明する。
本実施の形態では、生産設備は、生産実行時に動的に次工程の装置を選択できるものとする。本実施の形態では、今動いている検査工程で検査された品質値に基づき、発生したバラツキを解消する可能性が最も高い次工程の装置を動的に推測し、推測された装置に自動的に変更する機能を有する計画生成装置100aについて説明する。
***構成の説明***
図10を用いて、本実施の形態に係る計画生成装置100aの構成について説明する。
本実施の形態において、実施の形態1と同様の機能を有する構成部には同一の符号を付し、その説明を省略する場合がある。
計画生成装置100aは、実施の形態1で説明した計画生成装置100の機能構成に加え、品質情報判定部170と装置切替部180とを備える。また、記憶部160には、実施の形態1で説明した記憶部160に記憶された情報に加え、閾値163が記憶される。計画生成装置100aにおける品質情報取得部110と、相関判定部120と、組判定部130と、工程計画生成部140と、品質情報判定部170と、装置切替部180との機能を、計画生成装置100aの「部」の機能という。計画生成装置100aの「部」の機能は、ソフトウェアで実現される。
***動作の説明***
図11を用いて、本実施の形態に係る品質情報判定部170と装置切替部180との動作について説明する。
ステップS161において、品質情報判定部170は、複数の装置54の各装置により加工された中間製品52の品質値を含む品質情報210に基づいて、複数の装置54の各装置の品質値の平均値AQを算出する。また、品質情報判定部170は、複数の装置54の各装置の現在の品質値と平均値AQとの差分が閾値より大きいか否かを判定する。
具体的には、品質情報判定部170は、品質情報取得部110より、リアルタイムに取得された検査工程の結果である品質情報210を記憶部160から受け取る。品質情報判定部170は、受け取った品質情報210を用いて、装置54の過去の品質分布状況に基づいて装置54の品質値の平均値AQを算出する。また、品質情報判定部170は、受け取った品質情報210から装置54の現在の品質値を取得し、平均値AQとの差分を算出する。
閾値163は、予め記憶部160に記憶されている。
ステップS162において、品質情報判定部170は、差分が閾値163より大きいか否かを判定する。差分が閾値163より大きい場合、品質情報判定部170は、S163に処理を進める。差分が閾値163以下の場合、品質情報判定部170は、S161に戻り、別の装置について処理を行う。
ステップS163において、装置切替部180は、差分が閾値より大きいと判定された装置を判定装置D54として、判定装置D54が属する工程から平均値AQとの差分が閾値以下の品質値を有する装置を切替装置C54として選択する。そして、装置切替部180は、判定装置D54から切替装置C54に経路を切り替える切替指示181を生産設備400に対して送信する。
以上で、品質情報判定部170と装置切替部180との動作についての説明を終わる。
また、装置切替部180は、最終品質値の期待値を計算し、この最終品質値の期待値と現行の装置経路により製造された製品の品質値とを比較し、比較結果により装置経路を切り替えるか否かの判断をしてもよい。具体的には、装置切替部180は、最終品質値の期待値と装置経路により製造された製品の品質値との差分が予め設定した最終品質閾値以内に納まる場合に、自動的に装置経路を現行のものから他の装置経路に切り替えるという判断をする。
以下に、装置切替部180により最終品質値の期待値を計算する方法について説明する。装置切替部180は、最終品質の品質値を目的変数として、製造ラインに含まれるその他の品質値を説明変数とする重回帰分析で算出する。この場合、各説明変数となる品質値の間に強い相関がある場合は回帰係数が正しく算出されないため、実施の形態1の工程計画生成部140のオプションと同様に相関係数情報161から強い相関のある品質値については説明変数から省くものとする。
実施の形態1では、相関関係と各装置の品質値の統計的分布情報から、品質を高める装置経路を提供する方式について説明した。本実施の形態では、リアルタイムに処理することが想定されているため、最終品質の品質値が各品質値によって定式化した方式を採用する。この場合、最終品質は各品質値もしくは製造条件の線形結合で表現され、それぞれの回帰係数は重回帰分析といった分析手法によって事前に求められているものとする。それぞれの装置経路では各品質値の統計的な分布情報が保存されているため、ある品質値が現在選択されている装置経路で想定されている品質値から離れた値を取ったことがリアルタイムに検知できる。よって、同工程の他のどの装置の品質値の平均値に近いかが判定できる。
この結果、これまで測定された現工程より前の工程の品質値を最終品質の説明変数として代入し、今後の工程についてはこれまで蓄積した統計情報から平均値を採取することが可能であるため、これらの値を代入すると最終品質値が予測できることになる。
***本実施の形態の効果の説明***
以上のように、本実施の形態に係る計画生成装置は、製造実行時に各検査工程で測定された品質値の値をリアルタイムに受け取り、過去の品質値の分布状況と比較して装置を切り替える必要があるかどうか判断する品質情報判定部を備える。また、本実施の形態に係る計画生成装置は、動的に次工程で使用する装置を切り替える装置切替部を備える。よって、本実施の形態に係る計画生成装置によれば、今動いている検査工程で検査された品質値に基づき、発生したバラツキを解消する可能性が最も高い次工程の装置を動的に推測し、推測された装置経路に自動的に変更することができる。
また、以上のように、本実施の形態によれば、各検査工程の品質値をモニタリングしておくことで、モニタリングした値に、統計的に想定される最終品質の期待値からの一定のズレが発生したときには装置経路の自動切り替えが可能となる。平均値AQからの差分が、たとえ検査不合格になるレベルではなくても、装置の傾向とは異なるという判断となった場合、装置経路を切り替える。リアルタイムに得られた品質値が平均値に近い別の装置に製造を割り当てたほうが統計的に品質が高くなると考えられる。
以上、本発明の実施の形態について説明したが、この実施の形態の説明において「部」として説明するもののうち、いずれか1つのみを採用してもよいし、いくつかの任意の組合せを採用してもよい。つまり、計画生成装置の機能ブロックは、上記の実施の形態で説明した機能を実現することができれば、任意である。これらの機能ブロックを、どのような組合せ、あるいは任意のブロック構成で計画生成装置を構成しても構わない。また、計画生成装置は、1つの装置でなく、複数の装置から構成された計画生成システムでもよい。
また、実施の形態1及び2について説明したが、これらの2つの実施の形態のうち、複数を部分的に組合せて実施しても構わない。あるいは、これらの2つの実施の形態のうち、1つの実施の形態を部分的に実施しても構わない。その他、これらの2つの実施の形態を、全体としてあるいは部分的に、どのように組合せて実施しても構わない。
なお、上記の実施の形態は、本質的に好ましい例示であって、本発明、その適用物や用途の範囲を制限することを意図するものではなく、必要に応じて種々の変更が可能である。
31 第1誤差、32 第2誤差、50 工程、50a 工程A、50b 工程B、50x 工程X、50z 工程Z、51 原材料、52,52a,52b,52x,52z 中間製品、53 製品、54 装置、55,55a,55b,55z,55x 検査及び搬送工程、100,100a 計画生成装置、110 品質情報取得部、120 相関判定部、130 組判定部、170 品質情報判定部、180 装置切替部、140 工程計画生成部、160 記憶部、161 相関係数情報、162 組合せ情報、163 閾値、164 品質基準値BQ、151,151a,151b,151x,151z 工程計画、200 データベース、170 品質情報判定部、180 装置切替部、181 切替指示、210 品質情報、211,211α,211a,211b,211x 工程毎品質情報、212,213,214,215 リンク、300 生産計画情報、400 生産設備、510 計画生成方法、520 計画生成プログラム、540 装置の組、901 プロセッサ、902 記憶装置、903 入力インタフェース、910 通信装置、911 レシーバ、912 トランスミッタ、909 処理回路、Q,Q1,Q2 品質値、BQ 品質基準値、AQ 平均値、S100 計画生成処理、S110 品質情報取得処理、S120 相関判定処理、S130 組判定処理、S140 工程計画生成処理、ST1 第1相関係数、ST2 第2相関係数、ST3 第3相関係数、T154 第1装置、T254 第2装置、T354 第3装置、T1Q 第1品質値、T2Q 第2品質値、T3Q 第3品質値、C54 切替装置、D54 判定装置。

Claims (7)

  1. 複数の工程を経て生産される製品の工程計画を生成する計画生成装置において、
    複数の装置であって各装置が前記複数の工程のいずれかに属する複数の装置のうち1つの装置を第1装置とすると共に前記第1装置により加工された中間製品の品質を表す品質値を第1品質値とし、前記複数の装置のうち前記第1装置が属する工程より前の工程に属する装置を第2装置とすると共に前記第2装置により加工された中間製品の品質値を第2品質値とし、前記第1品質値と前記第2品質値とが相関関係にあるか否かを判定する相関判定部と、
    前記第1品質値と前記第2品質値とが相関関係にあると判定された場合に、中間製品の品質の基準を表す品質基準値を用いて、前記第1装置と前記第2装置とが、前記第1品質値における前記品質基準値との第1誤差と前記第2品質値における前記品質基準値との第2誤差とを打ち消し合う装置の組であるか否かを判定する組判定部と、
    前記第1装置と前記第2装置とが前記装置の組であると判定された場合に、前記装置の組を用いて、前記工程計画を生成する工程計画生成部と
    を備える計画生成装置。
  2. 前記組判定部は、
    前記第1品質値と前記第2品質値とが負の相関関係にあり、かつ、前記第1誤差と前記第2誤差との正負が同じ場合に、前記第1装置と前記第2装置とが前記装置の組であると判定し、前記第1品質値と前記第2品質値とが正の相関関係にあり、かつ、前記第1誤差と前記第2誤差との正負が異なる場合に、前記第1装置と前記第2装置とが前記装置の組であると判定する請求項1に記載の計画生成装置。
  3. 前記相関判定部は、
    前記第1品質値と前記第2品質値との相関係数を第1相関係数として算出し、前記第1相関係数に基づいて、前記第1品質値と前記第2品質値とが相関関係にあるか否かを判定する請求項1または2に記載の計画生成装置。
  4. 前記相関判定部は、
    前記第2装置が属する工程より前の工程に属する装置のうち、前記第2装置と相関関係にありかつ前記第1装置とも相関関係にある装置を第3装置として検出し、前記第3装置の品質値を第3品質値とし、前記第3品質値と前記第2品質値との相関係数である第2相関係数と、前記第3品質値と前記第1品質値との相関係数である第3相関係数とに基づいて、前記第1品質値と前記第2品質値との偏相関係数を算出し、算出した前記偏相関係数に基づいて、前記第1品質値と前記第2品質値とが相関関係にあるか否かを判定する請求項1に記載の計画生成装置。
  5. 前記計画生成装置は、さらに、
    前記複数の装置の各装置により加工された中間製品の品質値を含む品質情報に基づいて、前記複数の装置の各装置の品質値の平均値を算出し、前記複数の装置の各装置の現在の品質値と前記平均値との差分が閾値より大きいか否かを判定する品質情報判定部と、
    前記差分が前記閾値より大きいと判定された装置を判定装置として、前記判定装置が属する工程から前記平均値との差分が前記閾値以下の品質値を有する装置を切替装置として選択し、前記判定装置から前記切替装置に経路を切り替える装置切替部と
    を備える請求項1から4のいずれか1項に記載の計画生成装置。
  6. 複数の工程を経て生産される製品の工程計画を生成する計画生成装置の計画生成方法において、
    相関判定部が、複数の装置であって各装置が前記複数の工程のいずれかに属する複数の装置のうち1つの装置を第1装置とすると共に前記第1装置により加工された中間製品の品質を表す品質値を第1品質値とし、前記複数の装置のうち前記第1装置が属する工程より前の工程に属する装置を第2装置とすると共に前記第2装置により加工された中間製品の品質値を第2品質値とし、前記第1品質値と前記第2品質値とが相関関係にあるか否かを判定し、
    組判定部が、前記第1品質値と前記第2品質値とが相関関係にあると判定された場合に、中間製品の品質の基準を表す品質基準値を用いて、前記第1装置と前記第2装置とが、前記第1品質値における前記品質基準値との第1誤差と前記第2品質値における前記品質基準値との第2誤差とを打ち消し合う装置の組であるか否かを判定し、
    工程計画生成部が、前記第1装置と前記第2装置とが前記装置の組であると判定された場合に、前記装置の組を用いて、前記工程計画を生成する計画生成方法。
  7. 複数の工程を経て生産される製品の工程計画を生成する計画生成装置の計画生成プログラムにおいて、
    複数の装置であって各装置が前記複数の工程のいずれかに属する複数の装置のうち1つの装置を第1装置とすると共に前記第1装置により加工された中間製品の品質を表す品質値を第1品質値とし、前記複数の装置のうち前記第1装置が属する工程より前の工程に属する装置を第2装置とすると共に前記第2装置により加工された中間製品の品質値を第2品質値とし、前記第1品質値と前記第2品質値とが相関関係にあるか否かを判定する相関判定処理と、
    前記第1品質値と前記第2品質値とが相関関係にあると判定された場合に、中間製品の品質の基準を表す品質基準値を用いて、前記第1装置と前記第2装置とが、前記第1品質値における前記品質基準値との第1誤差と前記第2品質値における前記品質基準値との第2誤差とを打ち消し合う装置の組であるか否かを判定する組判定処理と、
    前記第1装置と前記第2装置とが前記装置の組であると判定された場合に、前記装置の組を用いて、前記工程計画を生成する工程計画生成処理とをコンピュータに実行させる計画生成プログラム。
JP2017561480A 2016-01-15 2016-01-15 計画生成装置、計画生成方法及び計画生成プログラム Expired - Fee Related JP6351880B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/051101 WO2017122340A1 (ja) 2016-01-15 2016-01-15 計画生成装置、計画生成方法及び計画生成プログラム

Publications (2)

Publication Number Publication Date
JPWO2017122340A1 JPWO2017122340A1 (ja) 2018-06-14
JP6351880B2 true JP6351880B2 (ja) 2018-07-04

Family

ID=59310917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017561480A Expired - Fee Related JP6351880B2 (ja) 2016-01-15 2016-01-15 計画生成装置、計画生成方法及び計画生成プログラム

Country Status (6)

Country Link
US (1) US10901401B2 (ja)
JP (1) JP6351880B2 (ja)
CN (1) CN108475049B (ja)
DE (1) DE112016005697T5 (ja)
TW (1) TWI606320B (ja)
WO (1) WO2017122340A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6351880B2 (ja) * 2016-01-15 2018-07-04 三菱電機株式会社 計画生成装置、計画生成方法及び計画生成プログラム
KR102440335B1 (ko) * 2016-10-28 2022-09-02 삼성에스디에스 주식회사 이상 감지 관리 방법 및 그 장치
JP6457474B2 (ja) * 2016-12-20 2019-01-23 ファナック株式会社 検査情報とトレース情報とを使用した製造管理装置及び製造システム
JP7021482B2 (ja) * 2017-09-14 2022-02-17 富士フイルムビジネスイノベーション株式会社 情報処理装置、情報処理システム及びプログラム
US11592488B2 (en) * 2018-02-28 2023-02-28 Denso Corporation Battery monitoring system
EP3767415B1 (en) * 2018-04-19 2023-11-15 Mitsubishi Electric Corporation Device, method, and computer program that identify abnormal facilities
JP6549760B1 (ja) * 2018-06-26 2019-07-24 三菱ケミカルエンジニアリング株式会社 生産システム、生産方法、及び制御装置
JP6481916B1 (ja) * 2018-06-26 2019-03-13 三菱ケミカルエンジニアリング株式会社 生産システム、生産方法及び制御装置
JP6927171B2 (ja) * 2018-08-09 2021-08-25 株式会社豊田中央研究所 評価装置、評価方法、および、コンピュータプログラム
WO2021053782A1 (ja) * 2019-09-19 2021-03-25 オムロン株式会社 生産設備に生じ得る事象の解析装置
JP2024017963A (ja) * 2022-07-28 2024-02-08 株式会社Sumco 管理装置、管理方法、及びウェーハの製造システム

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616475B2 (ja) * 1987-04-03 1994-03-02 三菱電機株式会社 物品の製造システム及び物品の製造方法
US5150289A (en) 1990-07-30 1992-09-22 The Foxboro Company Method and apparatus for process control
US5229948A (en) * 1990-11-03 1993-07-20 Ford Motor Company Method of optimizing a serial manufacturing system
JP3054049B2 (ja) * 1995-02-14 2000-06-19 株式会社クボタ 油圧機器の生産方法
JPH10163080A (ja) 1996-11-27 1998-06-19 Matsushita Electron Corp 半導体製造システム
JP2994321B2 (ja) 1998-03-20 1999-12-27 九州日本電気株式会社 製造工程の生産管理システム
US6728587B2 (en) * 2000-12-27 2004-04-27 Insyst Ltd. Method for global automated process control
JP2002202805A (ja) * 2000-12-28 2002-07-19 Toshiba Corp 受注組立生産システム、及び受注組立生産方法
JP2002251212A (ja) * 2001-02-21 2002-09-06 Toyota Motor Corp 品質管理方法、同システム、および同プログラムを記録した記録媒体
JP4677679B2 (ja) * 2001-03-27 2011-04-27 株式会社デンソー 製品の製造プロセスにおける特性調整方法
US7032816B2 (en) * 2001-12-28 2006-04-25 Kimberly-Clark Worldwide, Inc. Communication between machines and feed-forward control in event-based product manufacturing
US7357298B2 (en) * 2001-12-28 2008-04-15 Kimberly-Clark Worldwide, Inc. Integrating event-based production information with financial and purchasing systems in product manufacturing
US8799113B2 (en) * 2001-12-28 2014-08-05 Binforma Group Limited Liability Company Quality management by validating a bill of materials in event-based product manufacturing
US6904330B2 (en) * 2002-08-07 2005-06-07 Kimberly-Clark Worldwide, Inc. Manufacturing information and troubleshooting system and method
US7171283B2 (en) * 2002-08-07 2007-01-30 Kimberly-Clark Worldwide, Inc. Web guiding system and method
US20050033464A1 (en) * 2003-08-06 2005-02-10 Siemens Dematic Electronics Assembly Systems, Inc. Real time closed-loop process control system for defect prevention
DE10342769A1 (de) * 2003-09-16 2005-04-21 Voith Paper Patent Gmbh System zur computergestützten Messung von Qualitäts- und/oder Prozessdaten
US7209799B2 (en) * 2004-04-14 2007-04-24 Gm Global Technology Operations, Inc. Predictive modeling of machining line variation
JP3705296B1 (ja) * 2004-04-30 2005-10-12 オムロン株式会社 品質制御装置およびその制御方法、品質制御プログラム、並びに該プログラムを記録した記録媒体
US7221987B2 (en) * 2004-06-15 2007-05-22 Kimberly-Clark Worldwide, Inc. Generating a reliability analysis by identifying casual relationships between events in an event-based manufacturing system
JP4239932B2 (ja) * 2004-08-27 2009-03-18 株式会社日立製作所 生産管理システム
US7176475B2 (en) * 2004-11-16 2007-02-13 Omron Corporation Adjusting apparatus, production processing system, and method of controlling adjusting apparatus
US7587804B2 (en) * 2004-12-20 2009-09-15 General Motors Corporation System and method for optimization of product throughput
JP4207915B2 (ja) * 2005-01-24 2009-01-14 オムロン株式会社 品質変動表示装置、品質変動表示方法、品質変動表示プログラム及び該プログラムを記録した記録媒体
US20060218107A1 (en) * 2005-03-24 2006-09-28 The University Of Tennessee Research Foundation Method for controlling a product production process
US8428761B2 (en) * 2005-03-31 2013-04-23 Semiconductor Energy Laboratory Co., Ltd. Production system and production method
JP2006293658A (ja) 2005-04-11 2006-10-26 Hitachi Ltd 複数の部品を組み合わせて形成される製品の製造方法、および部品の組合せ方法
DE102005025338B4 (de) * 2005-05-31 2019-03-14 Siemens Aktiengesellschaft 08.Verfahren zur Bearbeitung eines Werkstückes
US20070059838A1 (en) * 2005-09-13 2007-03-15 Pavilion Technologies, Inc. Dynamic constrained optimization of chemical manufacturing
US7558638B2 (en) * 2006-02-22 2009-07-07 Gm Global Technology Operations, Inc. Applying real-time control to a production system
US7251578B1 (en) * 2006-03-10 2007-07-31 Yahoo! Inc. Method and system of measuring data quality
JP5067542B2 (ja) * 2007-04-27 2012-11-07 オムロン株式会社 複合情報処理装置、複合情報処理方法、プログラム、および記録媒体
US7684892B2 (en) * 2007-10-30 2010-03-23 Gm Global Technology Operations, Inc. Process for generating control sequence of operations
US7809457B2 (en) * 2007-10-30 2010-10-05 Gm Global Technology Operations, Inc. Framework for automatic generation of sequence of operations
JP5012660B2 (ja) * 2008-05-22 2012-08-29 住友金属工業株式会社 製品品質予測および制御方法
KR20120016287A (ko) * 2009-05-22 2012-02-23 오로라 컨트롤 테크놀로지스 인크. 광발전 제품의 생산을 개선하는 방법
US20110040399A1 (en) * 2009-08-14 2011-02-17 Honeywell International Inc. Apparatus and method for integrating planning, scheduling, and control for enterprise optimization
US20110098862A1 (en) * 2009-10-27 2011-04-28 ExxonMobil Research Engineering Company Law Department Multi-stage processes and control thereof
JP5540659B2 (ja) * 2009-11-16 2014-07-02 株式会社Sumco シリコンウェーハの工程計画立案システム、工程計画立案方法及びプログラム
US20110166683A1 (en) * 2010-01-07 2011-07-07 International Business Machines Corporation Real Time WIP Optimizer
JP5296025B2 (ja) * 2010-08-27 2013-09-25 株式会社東芝 半導体装置の製造方法及び製造装置
US8690057B2 (en) * 2012-03-06 2014-04-08 A-I Packaging Solutions, Inc. Radio frequency identification system for tracking and managing materials in a manufacturing process
US9229446B2 (en) * 2012-05-08 2016-01-05 International Business Machines Corporation Production line quality processes
US9536796B2 (en) * 2013-01-02 2017-01-03 Globalfoundries Inc. Multiple manufacturing line qualification
WO2014143729A1 (en) * 2013-03-15 2014-09-18 Affinnova, Inc. Method and apparatus for interactive evolutionary optimization of concepts
FR3029624B1 (fr) * 2014-12-05 2019-06-14 Safran Aircraft Engines Procede de suivi de la fabrication de pieces base sur l'analyse d'indicateurs statistiques en situation d'allegement de controle
FR3029621B1 (fr) * 2014-12-05 2019-06-14 Safran Aircraft Engines Procede de suivi de la fabrication de pieces base sur l'analyse d'indicateurs statistiques ponderes
ES2744748T3 (es) * 2015-01-16 2020-02-26 Heat Control Inc Método de control de la velocidad a la que un proceso anterior alimenta un producto acondicionado a un proceso posterior
JP6351880B2 (ja) * 2016-01-15 2018-07-04 三菱電機株式会社 計画生成装置、計画生成方法及び計画生成プログラム
US20180284739A1 (en) * 2016-03-28 2018-10-04 Mitsubishi Electric Corporation Quality control apparatus, quality control method, and quality control program
DE102016106522A1 (de) * 2016-04-08 2017-10-12 Windmöller & Hölscher Kg Vorrichtung für mindestens einen industriellen automatisierten Prozess
EA037650B1 (ru) * 2016-10-18 2021-04-27 Райфенхойзер Гмбх Унд Ко. Кг Машиненфабрик Способ контроля производственного процесса, способ косвенного выведения систематической зависимости, способ адаптации качества, способ запуска производственного процесса, способ и установка для изготовления экструзионного продукта
EP3339801B1 (en) * 2016-12-20 2021-11-24 Hexagon Technology Center GmbH Self-monitoring manufacturing system, production monitoring unit and use of production monitoring unit
JP7012667B2 (ja) * 2017-01-13 2022-01-28 株式会社Fuji 生産管理装置
US10386818B2 (en) * 2017-06-09 2019-08-20 Honeywell International Inc. Quality management systems, methods, and program products for additive manufacturing supply chains
JP6879888B2 (ja) * 2017-11-17 2021-06-02 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 情報処理装置、情報処理方法、及び、プログラム
JP6988499B2 (ja) * 2018-01-16 2022-01-05 オムロン株式会社 検査管理システム、検査管理装置、検査管理方法
US10621719B2 (en) * 2018-05-03 2020-04-14 The Procter & Gamble Company Systems and methods for inspecting and evaluating qualities of printed regions on substrates for absorbent articles

Also Published As

Publication number Publication date
CN108475049B (zh) 2020-12-04
WO2017122340A1 (ja) 2017-07-20
US20190018397A1 (en) 2019-01-17
US10901401B2 (en) 2021-01-26
TW201725461A (zh) 2017-07-16
DE112016005697T5 (de) 2018-09-06
CN108475049A (zh) 2018-08-31
JPWO2017122340A1 (ja) 2018-06-14
TWI606320B (zh) 2017-11-21

Similar Documents

Publication Publication Date Title
JP6351880B2 (ja) 計画生成装置、計画生成方法及び計画生成プログラム
US7542877B2 (en) Computer system and method for controlling computer system
KR102258942B1 (ko) 인라인 수율 모니터링을 위한 임계 파라메트릭 전기 테스트 파라미터의 자동 결정을 위한 시스템 및 방법
CN110023967B (zh) 故障风险指标估计装置和故障风险指标估计方法
KR102233812B1 (ko) 제조 공정에 있어서 설비로부터의 데이터를 처리하는 방법 및 시스템
WO2008020468A1 (fr) procédé et dispositif d'analyse de programme
JP2006319220A (ja) 異常設備推定装置、異常設備推定方法、異常設備推定プログラム、および、記録媒体
Kakkar et al. Reliability analysis of two unit parallel repairable industrial system
CN109844779B (zh) 用于分析测量-良率相关性的方法和***
CN115878171A (zh) 中间件配置的优化方法、装置、设备及计算机存储介质
US8533635B2 (en) Rule-based root cause and alias analysis for semiconductor manufacturing
Hoffman Condition-based maintenance policy optimization using genetic algorithms and Gaussian Markov improvement algorithm
CN113627730A (zh) 一种企业评估方法、装置、设备及计算机存储介质
CN113344150B (zh) 识别污损码点的方法、装置、介质及电子设备
JP2014203330A (ja) プロダクト品質評価装置及び方法
Mousavi Simultaneous control of the production, maintenance, and inspection strategies for a failure-prone manufacturing system with quality-based financial penalties/incentives
CN113780656A (zh) 基于聚类解耦的复杂产品多源变更传播影响力预测方法
US10580082B2 (en) Flow generating program, flow generating method, and flow generating device
Ungureanu et al. Improving FMEA risk assessment through reprioritization of failures
CN117150225B (zh) 一种基于贝叶斯算法的工业数据的清洗方法及***
KR20200120452A (ko) 린6시그마에 기반한 함정 전투관리체계 아키텍처 설계 방법
Zhou et al. Robust possibilistic programming-based three-way decision approach to product inspection strategy
Sassenburg et al. Optimal release time: numbers or intuition?
CN114745731A (zh) 数据分析的方法、装置、设备及存储介质
JP2023517873A (ja) 寿命初期故障を起こしやすいダイの予測

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180219

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180219

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180605

R150 Certificate of patent or registration of utility model

Ref document number: 6351880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees