JP6345780B2 - ハイバンドコーディングにおける選択的位相補償 - Google Patents

ハイバンドコーディングにおける選択的位相補償 Download PDF

Info

Publication number
JP6345780B2
JP6345780B2 JP2016533203A JP2016533203A JP6345780B2 JP 6345780 B2 JP6345780 B2 JP 6345780B2 JP 2016533203 A JP2016533203 A JP 2016533203A JP 2016533203 A JP2016533203 A JP 2016533203A JP 6345780 B2 JP6345780 B2 JP 6345780B2
Authority
JP
Japan
Prior art keywords
signal
phase
phase adjustment
highband
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016533203A
Other languages
English (en)
Other versions
JP2016539369A (ja
JP2016539369A5 (ja
Inventor
アッティ、ベンカトラマン・エス.
チェビーヤム、ベンカタ・スブラーマンヤム・チャンドラ・セカー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of JP2016539369A publication Critical patent/JP2016539369A/ja
Publication of JP2016539369A5 publication Critical patent/JP2016539369A5/ja
Application granted granted Critical
Publication of JP6345780B2 publication Critical patent/JP6345780B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/08Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/26Pre-filtering or post-filtering
    • G10L19/265Pre-filtering, e.g. high frequency emphasis prior to encoding
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/038Speech enhancement, e.g. noise reduction or echo cancellation using band spreading techniques
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/08Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters
    • G10L19/093Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters using sinusoidal excitation models

Landscapes

  • Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Quality & Reliability (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Circuit For Audible Band Transducer (AREA)

Description

関連出願の相互参照
[0001] 本出願は、本願の譲受人が所有する2013年11月22日に出願された米国仮特許出願第61/907,674号および2014年11月21日に出願された米国特許出願第14/550,589号からの優先権を主張し、その内容全体が参照により明示的に本明細書に援用される。
[0002] 本開示は包括的には、信号処理に関する。
[0003] 技術の進歩は、より小型でより強力なコンピューティングデバイスをもたらした。たとえば、現在、小型で、軽量で、ユーザによって容易に持ち運ばれる、ポータブルワイヤレス電話、携帯情報端末(PDA)、およびページングデバイスなどの、ワイヤレスコンピューティングデバイスを含む、種々のポータブルパーソナルコンピューティングデバイスが存在する。より具体的には、セルラー電話およびインターネットプロトコル(IP)電話などのポータブルワイヤレス電話が、ワイヤレスネットワークを介して音声およびデータパケットを通信することができる。さらに、多くのそのようなワイヤレス電話は、その中に組み込まれている他のタイプのデバイスを含む。たとえば、ワイヤレス電話は、デジタルスチルカメラ、デジタルビデオカメラ、デジタルレコーダ、およびオーディオファイルプレーヤを含むこともできる。
[0004] 従来の電話システム(たとえば、公衆交換電話網(PSTN))では、信号帯域幅は、300ヘルツ(Hz)〜3.4キロヘルツ(kHz)の周波数範囲に限定される。セルラー式テレフォニーおよびボイスオーバーインターネットプロトコル(VoIP)などの広帯域(WB:wideband)適用例では、信号帯域幅は、50Hzから7kHzの周波数範囲に及ぶことがある。超広帯域(SWB:Super wideband)コーディング技法は、最大で約16kHzに及ぶ帯域幅をサポートする。信号帯域幅を3.4kHzにおける狭帯域テレフォニーから16kHzのSWBテレフォニーまで拡張することによって、信号再構成の品質、了解度(intelligibility)、および自然さ(naturalness)を改善することができる。
[0005] SWBコーディング技法は、通常、信号の低周波数部分(たとえば、50Hz〜7kHz、「ローバンド(low-band)」とも呼ばれる)を符号化および伝送することを含む。たとえば、ローバンドは、フィルタパラメータおよび/またはローバンド励起信号(low-band excitation signal)を用いて表され得る。しかしながら、コーディング効率を改善するために、信号のより高い周波数部分(たとえば、7kHz〜16kHz、「ハイバンド(high-band)」とも呼ばれる)は、完全には符号化および伝送されないことがある。代わりに、受信機は、ハイバンドを予測するために信号モデリングを利用することがある。いくつかの実施態様では、予測を助けるために、ハイバンドに関連付けられるデータが受信機に与えられ得る。そのようなデータは「サイド情報(side information)」と呼ばれることがあり、利得情報(gain information)、線スペクトル周波数(LSF:line spectral frequency、線スペクトル対(LSP:line spectral pair)とも呼ばれる)などを含むことができる。ローバンド信号の特性は、サイド情報を生成するために使用され得る;しかしながら、ローバンド信号の特性はハイバンドの1つまたは複数の特徴を不正確に特徴付けるので、サイド情報はハイバンドを表現することはできない。不正確なサイド情報は、受信機におけるハイバンド信号再構成中に可聴アーティファクト(audible artifact)を生成する場合がある。
[0006] ハイバンド時間特性の追跡を改善するために位相不整合補償(phase mismatch compensation)を実行するためのシステムおよび方法が開示される。スピーチエンコーダが、第1の信号(たとえば、オーディオ信号のローバンド部分)の特性を用いて、デコーダにおいてオーディオ信号のハイバンド部分を再構成するために用いられる情報(たとえば、サイド情報)を生成することができる。第1の信号の例は、サイド情報を生成するための、ローバンドの変換された(たとえば、非線形)励起、または変換された励起に基づくハイバンド励起を含むことができる。
[0007] 位相分析器(phase analyzer)が位相調整パラメータ(phase adjustment parameter)を決定し、オーディオ信号のハイバンドを特徴付けるハイバンド残差信号(high-band residual signal)に基づいて第1の信号を調整することができる。たとえば、位相分析器は、ドメイン変換(たとえば、高速フーリエ変換(FFT:Fast Fourier Transform))を利用して、選択的周波数成分のための位相成分(たとえば、第1の信号内およびハイバンド残差信号内のピッチピーク(pitch peak))を決定する。位相成分に対応する値は、位相調整パラメータに量子化され、ハイバンド残差信号に基づいて第1の信号の位相を調整するために位相調整器(phase adjuster)に与えられ得る。別の例では、位相分析器は、ハイバンド残差信号のエネルギーのスペクトルピークを捕捉する正弦波形(sinusoidal waveform)を生成することができる。エネルギーのスペクトルピークを捕捉することは、ハイバンド残差信号の位相を近似する効率的な方法である場合がある。位相、周波数および/または振幅のような正弦波形の成分は、位相調整パラメータに量子化され、ハイバンド残差信号を再構成するために位相調整器に与えられ得る。位相調整パラメータは、オーディオ信号のハイバンド部分を再構成するために、他のサイド情報とともにデコーダに送信され得る。
[0008] 特定の実施形態では、方法が、ハイバンド残差信号に基づいて、エンコーダにおいて、位相調整パラメータを決定することを含む。また、その方法は、位相調整パラメータに基づいて第1の信号の位相を調整することを含む。第1の信号は、オーディオ信号のローバンド部分に関連付けられ得る。また、その方法は、オーディオ信号の符号化されたバージョンからオーディオ信号の再構成中に位相調整を可能にするために、位相調整パラメータをオーディオ信号の符号化されたバージョンに挿入することを含む。その方法はさらに、位相調整パラメータをビットストリームの一部としてスピーチデコーダに送信することを含む。
[0009] 別の特定の実施形態では、装置が、ハイバンド残差信号に基づいて、位相調整パラメータを決定するように構成される位相分析器を含む。また、その装置は、位相調整パラメータに基づいて第1の信号の位相を調整するように構成される位相調整器も含む。第1の信号は、オーディオ信号のローバンド部分に関連付けられ得る。また、その装置は、オーディオ信号の符号化されたバージョンからオーディオ信号の再構成中に位相調整を可能にするために、位相調整パラメータをオーディオ信号の符号化されたバージョンに挿入するように構成されるマルチプレクサを含む。
[0010] 別の特定の実施形態では、非一時的コンピュータ可読媒体が、プロセッサによって実行されるとき、プロセッサに、ハイバンド残差信号に基づいて位相調整パラメータを決定させる命令を含む。また、その命令は、プロセッサに、位相調整パラメータに基づいて第1の信号の位相を調整させるために実行可能である。第1の信号は、オーディオ信号のローバンド部分に関連付けられ得る。また、その命令は、オーディオ信号の符号化されたバージョンからオーディオ信号の再構成中に位相調整を可能にするために、プロセッサに、位相調整パラメータをオーディオ信号の符号化されたバージョンに挿入させるために実行可能である。
[0011] 別の特定の実施形態では、装置が、ハイバンド残差信号に基づいて、位相調整パラメータを決定するための手段を含む。また、その装置は、位相調整パラメータに基づいて第1の信号の位相を調整するための手段を含み、第1の信号はオーディオ信号のローバンド部分に関連付けられる。また、その装置は、オーディオ信号の符号化されたバージョンからオーディオ信号の再構成中に位相調整を可能にするために、位相調整パラメータをオーディオ信号の符号化されたバージョンに挿入するための手段を含む。その装置はさらに、位相調整パラメータをビットストリームの一部としてスピーチデコーダに送信するための手段を含む。
[0012] 別の特定の実施形態では、方法が、デコーダにおいて、エンコーダから符号化されたオーディオ信号を受信することを含む。符号化されたオーディオ信号は、エンコーダにおいて生成されたハイバンド残差信号に基づく位相調整パラメータを含む。その方法はさらに、符号化されたオーディオ信号に基づいて、再構成された第1の信号を生成することを含み、再構成された第1の信号は、オーディオ信号のローバンド部分に関連付けられる、エンコーダにおいて生成された第1の信号の再構成されたバージョンに対応する。また、その方法は、再構成された第1の信号の位相を調整するために、再構成された第1の信号に位相調整パラメータを適用することを含む。その方法はさらに、位相調整済みの再構成された第1の信号に基づいて、オーディオ信号を再構成することを含む。
[0013] 別の特定の実施形態では、装置が、エンコーダから符号化されたオーディオ信号を受信するように構成されるデコーダを含む。符号化されたオーディオ信号は、エンコーダにおいて生成されたハイバンド残差信号に基づく位相調整パラメータを含む。デコーダはさらに、符号化されたオーディオ信号に基づいて、再構成された第1の信号を生成するように構成され、再構成された第1の信号は、オーディオ信号のローバンド部分に関連付けられる、エンコーダにおいて生成された第1の信号の再構成されたバージョンに対応する。また、デコーダは、再構成された第1の信号の位相を調整するために、再構成された第1の信号に位相調整パラメータを適用するように構成される。デコーダはさらに、位相調整済みの再構成された第1の信号に基づいて、オーディオ信号を再構成するように構成される。
[0014] 別の特定の実施形態では、装置が、エンコーダから符号化されたオーディオ信号を受信するための手段を含む。符号化されたオーディオ信号は、エンコーダにおいて生成されたハイバンド残差信号に基づく位相調整パラメータを含む。その装置はさらに、符号化されたオーディオ信号に基づいて、再構成された第1の信号を生成するための手段を含み、再構成された第1の信号は、オーディオ信号のローバンド部分に関連付けられる、エンコーダにおいて生成された第1の信号の再構成されたバージョンに対応する。また、その装置は、再構成された第1の信号の位相を調整するために、再構成された第1の信号に位相調整パラメータを適用するための手段を含む。また、その装置は、位相調整済みの再構成された第1の信号に基づいて、オーディオ信号を再構成するための手段を含む。
[0015] 別の特定の実施形態では、非一時的コンピュータ可読媒体は、プロセッサによって実行されるとき、プロセッサに、エンコーダから符号化されたオーディオ信号を受信させる命令を含む。符号化されたオーディオ信号は、スピーチエンコーダにおいて生成された第1の信号の位相を調整するために、エンコーダにおいて生成されたハイバンド残差信号に基づく位相調整パラメータを含む。命令はさらに、プロセッサに、符号化されたオーディオ信号に基づいて、再構成された第1の信号を生成させるために実行可能であり、再構成された第1の信号は、オーディオ信号のローバンド部分に関連付けられる、エンコーダにおいて生成された第1の信号の再構成されたバージョンに対応する。また、命令は、再構成された第1の信号の位相を調整するために、プロセッサに、再構成された第1の信号に位相調整パラメータを適用させるために実行可能である。命令はさらに、プロセッサに、位相調整済みの再構成された第1の信号に基づいて、オーディオ信号を再構成させるために実行可能である。
[0016] 開示される実施形態のうちの少なくとも1つによって提供される個々の利点は、ハイバンド残差信号と、ハイバンドを記述しているサイド情報を生成するために用いられる第1の信号との間の位相不整合(phase mismatch)を低減することを含む。たとえば、開示される実施形態は、ハイバンド残差信号と、高調波による拡張信号(harmonically extended signal)との間の、またはハイバンド残差信号と、高調波による拡張信号から生成されるハイバンド励起信号(high-band excitation signal)との間の位相不整合を低減することができる。本開示の他の態様、利点、および特徴は、以下のセクション:「図面の簡単な説明」と、「発明を実施するための形態」と、「特許請求の範囲」とを含む、本願全体を再検討した後に明らかになるであろう。
[0017] ハイバンド再構成のための位相調整パラメータを決定するように動作可能であるシステムの特定の実施形態を例示する図。 [0018] 位相分析器および位相調整器の特定の実施形態を例示する図。 [0019] 位相分析器および位相調整器の他の特定の実施形態を例示する図。 [0020] ハイバンド再構成のための位相調整パラメータを決定するように動作可能であるシステムの特定の実施形態を例示する図。 [0021] ハイバンド再構成のための位相調整パラメータを決定するように動作可能であるシステムの別の特定の実施形態を例示する図。 [0022] 位相調整パラメータを用いてオーディオ信号を再構成するように動作可能であるシステムの特定の実施形態を示す図。 [0023] ハイバンド再構成のために位相調整パラメータを使用する方法の特定の実施形態を例示する流れ図。 [0024] 図1〜図7のシステムおよび方法による、信号処理動作を実行するように動作可能なワイヤレスデバイスのブロック図。
[0025] 図1を参照すると、ハイバンド再構成のための位相調整パラメータを決定するように動作可能であるシステムの特定の実施形態が図示され、全体として100で示される。特定の実施形態では、システム100は、符号化システムまたは符号化装置に(たとえば、ワイヤレス電話またはコーダ/デコーダ(CODEC)内に)組み込まれ得る。他の実施形態では、システム100は、セットトップボックス、音楽プレーヤ、ビデオプレーヤ、エンターテインメントユニット、ナビゲーションデバイス、通信デバイス、PDA、定置データユニット、またはコンピュータに組み込まれ得る。
[0026] 以下の説明では、図1のシステム100によって実行される種々の機能は、ある特定の構成要素またはモジュールによって実行されるように説明されることに留意されたい。しかしながら、構成要素およびモジュールのこの分割は、説明のためにすぎない。代替の実施形態では、代わりに、特定の構成要素またはモジュールによって実行される機能は、複数の構成要素またはモジュールに分割されることがある。さらに、代替の実施形態では、図1の2つ以上の構成要素またはモジュールが、単一の構成要素またはモジュールに統合されることがある。図1に示される各構成要素またはモジュールは、ハードウェア(たとえば、フィールドプログラマブルゲートアレイ(FPGA)デバイス、特定用途向け集積回路(ASIC)、デジタルシグナルプロセッサ(DSP)、コントローラなど)を用いて実現される場合があるか、ソフトウェア(たとえば、プロセッサによって実行可能な命令)を用いて実現される場合があるか、またはこれらの任意の組合せを用いて実現される場合がある。
[0027] システム100は、入力オーディオ信号102を受信するように構成される分析フィルタバンク110を含む。たとえば、入力オーディオ信号102は、マイクロフォンまたは他の入力デバイスによって与えられ得る。特定の実施形態では、入力オーディオ信号102は、スピーチを含むことができる。入力オーディオ信号102は、約50Hz〜約16kHzの周波数範囲内のデータを含むSWB信号とすることができる。分析フィルタバンク110は、周波数に基づいて、入力オーディオ信号102をフィルタリングして複数の部分を生成することができる。たとえば、分析フィルタバンク110は、ローバンド信号122とハイバンド信号124とを生成することができる。ローバンド信号122およびハイバンド信号124は、等しい帯域幅または等しくない帯域幅を有する場合があり、重複している場合があるか、重複していない場合がある。代替の実施形態では、分析フィルタバンク110は、3つ以上の出力を生成することができる。
[0028] 図1の例では、ローバンド信号122およびハイバンド信号124は、重複しない周波数帯域を占有する。たとえば、ローバンド信号122およびハイバンド信号124はそれぞれ、50Hz〜7kHzおよび7kHz〜16kHzの重複しない周波数帯域を占有することがある。代替の実施形態では、ローバンド信号122およびハイバンド信号124はそれぞれ、50Hz〜8kHzおよび8kHz〜16kHzの重複しない周波数帯域を占有し得る。別の代替の実施形態では、ローバンド信号122およびハイバンド信号124は重複し(たとえば、それぞれ50Hz〜8kHzおよび7kHz〜16kHz)、それにより、分析フィルタバンク110のローパスフィルタおよびハイパスフィルタが滑らかなロールオフを有することができるようになり、それにより、設計を単純化し、ローパスフィルタおよびハイパスフィルタのコストを低減することができる。ローバンド信号122とハイバンド信号124とを重複させることによって、受信機においてローバンド信号およびハイバンド信号を滑らかに混合できるようになり、結果として、可聴アーティファクト(audible artifact)を少なくすることができる。
[0029] 図1の例はSWB信号の処理を示しているが、これは例示にすぎないことに留意されたい。代替の実施形態では、入力オーディオ信号102は、約50Hz〜約8kHzの周波数範囲を有するWB信号とすることができる。そのような実施形態では、ローバンド信号122は約50Hz〜約6.4kHzの周波数範囲に対応することができ、ハイバンド信号124は約6.4kHz〜約8kHzの周波数範囲に対応することができる。
[0030] システム100は、ローバンド信号122を受信するように構成されたローバンド分析モジュール130を含むことができる。特定の実施形態では、ローバンド分析モジュール130は、コード励起線形予測(CELP:code excited linear prediction)エンコーダの一実施形態を表すことがある。ローバンド分析モジュール130は、線形予測(LP:linear prediction)分析およびコーディングモジュール132と、線形予測係数(LPC:linear prediction coefficient)/LSP変換モジュール134と、量子化器136とを含むことができる。LSPはLSFと呼ばれる場合もあり、2つの用語(LSPおよびLSF)は本明細書において互換的に用いられる場合がある。LP分析およびコーディングモジュール132は、ローバンド信号122のスペクトル包絡線(spectral envelope)を1組のLPCとして符号化することができる。LPCは、オーディオのフレーム(たとえば、16kHzのサンプリングレートにおける320サンプルに相当する20ミリ秒(ms)のオーディオ)ごとに生成される場合があるか、オーディオのサブフレーム(たとえば、5msのオーディオ)ごとに生成される場合があるか、またはこれらの任意の組合せごとに生成される場合がある。フレームまたはサブフレームごとに生成されるLPCの数は、実行されるLP分析の「次数(order)」によって決定され得る。特定の実施形態では、LP分析およびコーディングモジュール132は、第10次LP分析に対応する1組の11個のLPCを生成することができる。
[0031] LPC/LSP変換モジュール134は、LP分析およびコーディングモジュール132によって生成された1組のLPCを(たとえば、1対1変換を用いて)、対応する1組のLSPに変換することができる。代替的には、1組のLPCは、対応する1組のパーコール係数(parcor coefficient)、ログ面積比値(log-area-ratio value)、イミッタンススペクトル対(ISP:immittance spectral pair)、またはイミッタンススペクトル周波数(ISF:immittance spectral frequency)に1対1変換され得る。1組のLPCと1組のLSPとの間の変換は、誤差を生じることなく可逆的にすることができる。
[0032] 量子化器136は、変換モジュール134によって生成された1組のLSPを量子化することができる。たとえば、量子化器136は、複数のエントリ(たとえば、ベクトル)を含む複数のコードブック(codebook)を含む場合があるか、または複数のコードブックに結合される場合がある。1組のLSPを量子化するために、量子化器136は、1組のLSP「に最も近い」(たとえば、最小二乗または平均二乗誤差などの歪み尺度(distortion measure)に基づく)コードブックのエントリを識別することができる。量子化器136は、コードブック内の識別されたエントリの場所に対応するインデックス値または一連のインデックス値を出力することができる。したがって、量子化器136の出力は、ローバンドビットストリーム(low-band bit stream)142に含まれるローバンドフィルタパラメータを表すことができる。
[0033] また、ローバンド分析モジュール130は、ローバンド励起信号144を生成することができる。たとえば、ローバンド励起信号144は、ローバンド分析モジュール130によって実行されるLPプロセス中に生成されるLP残差信号を量子化することによって生成される符号化された信号とすることができる。LP残差信号は、予測誤差を表すことができる。
[0034] システム100は、分析フィルタバンク110からハイバンド信号124を受信し、ローバンド分析モジュール130からローバンド励起信号144を受信するように構成されるハイバンド分析モジュール150をさらに含むことができる。ハイバンド分析モジュール150は、ハイバンド信号124およびローバンド励起信号144に基づいてハイバンドサイド情報(high-band side information)172を生成することができる。たとえば、ハイバンドサイド情報172は、ハイバンドLSP、利得情報、および/または位相情報(たとえば、位相調整パラメータ)を含むことができる。特定の実施形態では、位相情報は、本明細書においてさらに説明されるように、第1の信号180の位相を調整するために用いられるハイバンド残差信号182に基づく位相調整パラメータを含むことができる。
[0035] 例示されるように、ハイバンド分析モジュール150は、LP分析およびコーディングモジュール152と、LPC/LSP変換モジュール154と、量子化器156とを含むことができる。LP分析およびコーディングモジュール152、変換モジュール154、および量子化器156の各々は、ローバンド分析モジュール130の対応する構成要素を参照しながら先に説明されたように機能することができるが、(たとえば、それぞれの係数、LSPなどに対して少ないビットを用いて)比較的低い解像度で機能することができる。LP分析およびコーディングモジュール152は、変換モジュール154によってLSPに変換され、コードブック163に基づいて量子化器156によって量子化される1組のLPCを生成することができる。たとえば、LP分析およびコーディングモジュール152、変換モジュール154、および量子化器156は、ハイバンドサイド情報172に含まれるハイバンドフィルタ情報(たとえば、ハイバンドLSP)を決定するためにハイバンド信号124を使用することができる。ハイバンド残差信号182は、LP分析およびコーディングモジュール152の残差(residual)に対応することができる。
[0036] 量子化器156は、変換モジュール154によって提供されるLSPなどの、1組のスペクトル周波数値を量子化するように構成され得る。他の実施形態では、量子化器156は、LSFまたはLSPに加えて、またはその代わりに、複数の組の1つまたは複数の他のタイプのスペクトル周波数値を受信し、量子化することができる。たとえば、量子化器156は、LP分析およびコーディングモジュール152によって生成された1組のLPCを受信し、量子化することができる。他の例は、量子化器156において受信され、量子化され得る、複数組のパーコール係数、ログ面積比値、およびISFを含む。量子化器156は、入力ベクトル(たとえば、ベクトル形式の1組のスペクトル周波数値)をコードブック163などのテーブルまたはコードブック内の対応するエントリへのインデックスとして符号化するベクトル量子化器を含むことができる。別の例として、量子化器156は1つまたは複数のパラメータを決定するように構成される場合があり、入力ベクトルは、記憶装置から取り出されるのではなく、疎なコードブックの実施形態の場合と同様に、これらのパラメータからデコーダにおいて動的に生成され得る。例示するために、疎なコードブックの例は、3GPP(登録商標)2(第3世代パートナーシップ2)EVRC(Enhanced Variable Rate Codec)のような業界標準規格に従って、CELPおよびコーデックなどのコーディング方式において適用され得る。別の実施形態では、ハイバンド分析モジュール150は、量子化器156を含むことができ、(たとえば、1組のフィルタパラメータに従って)合成信号(synthesized signal)を生成するためにいくつかのコードブックベクトルを使用し、知覚によって重み付けされたドメイン(perceptually weighted domain)などにおいてハイバンド信号124に最も良く整合する合成信号に関連付けられるコードブックベクトルのうち1つを選択するように構成され得る。
[0037] ハイバンド分析モジュール150は、位相分析器190を含むことができる。位相分析器190は、第1の信号180の位相を調整するために、ハイバンド残差信号182に基づいて位相調整パラメータを決定するように構成され得る。第1の特定の実施形態では、位相分析器190は、ハイバンド残差信号182を時間ドメインから周波数ドメインに変換するために、ハイバンド残差信号182に対して変換演算を実行するように構成され得る。たとえば、位相分析器190は、ハイバンド残差信号182に対してFFT演算を実行することができる。ハイバンド残差信号182に対して変換演算を実行することは、ハイバンド残差信号182の対応する数の周波数(たとえば、128個の周波数)を記述するいくつかの変換係数(transform coefficient)(たとえば、128個のフーリエ変換係数)の生成を含むことができる。各変換係数は、特定の周波数におけるハイバンド残差信号182の位相情報および振幅情報を含むことができる。位相情報は、位相調整パラメータを生成するために量子化され得る。たとえば、量子化器(図示せず)が、位相情報を位相調整パラメータに量子化することができる。位相調整パラメータは、位相調整器192に与えられ(ハイバンド残差信号182の位相をより厳密に再現するために第1の信号180の位相を調整するため)、そして、ハイバンドサイド情報172としてマルチプレクサ(MUX)170に与えられ得る。
[0038] 位相分析器190は、周波数ごとに位相調整パラメータを生成するように構成され得るか、または位相分析器190は、選択的な周波数(たとえば、ハイバンド残差信号182のスペクトルピークに関連付けられる周波数)のための位相調整パラメータを生成するように構成され得る。スペクトルピークは、中心から離れた(たとえば、相対的に高いおよび/または相対的に低い)エネルギーピークを見つけるためにハイバンド残差信号182を分析することによって決定され得る。例示であって、限定しない例として、位相分析器190は、ハイバンド(たとえば、7kHz〜16kHz)内の音声フレームのための基本ピッチ周波数(fundamental pitch frequency)の倍数に対応する周波数のための位相調整パラメータを生成することができる。たとえば、音声フレームは、1.5kHzの基本ピッチ周波数を有することができる。位相分析器190は、1.5kHzの倍数(たとえば、7.5kHz、9kHz、10.5kHzなど)において位相調整パラメータを生成することができる。例示であって、限定しない別の例として、位相分析器190は、変換係数の規則的な間隔(regular interval)に対応する周波数のための位相調整パラメータを生成することができる。限定しない例として、位相分析器190は、第10の変換係数、第20の変換係数、第30の変換係数などに対応する周波数のための位相調整パラメータを生成することができる。別の特定の実施形態では、位相分析器190は、第5の変換係数、第10の変換係数、第15の変換係数などに対応する周波数のための位相調整パラメータを生成することができる。間隔が小さくなるにつれて(たとえば、より多くの変換係数が生成されるにつれて)、ハイバンド残差信号182の多くの(そして、より正確な)位相成分が捕捉され得る。
[0039] 第2の特定の実施形態では、位相分析器190は、ハイバンド残差信号182のエネルギーレベルを近似する正弦波形を生成するように構成され得る。たとえば、位相分析器190は、ハイバンド残差信号182のスペクトルピークにおけるエネルギーレベルを近似する「支配的な(dominant)」正弦波形を繰返し探索することができる。エネルギーレベルを近似するために用いられる正弦波形の数は、近似精度(たとえば、正弦波形とハイバンド残差信号182との間の平均二乗誤差を小さくする)と、正弦波形の増えた数に関連付けられる高いビットレートとの間のトレードオフに基づいて決定され得る。各正弦波形の位相成分、振幅成分および周波数成分は、量子化され、位相調整器192に与えられ、ハイバンドサイド情報174としてマルチプレクサ170に与えられ得る。量子化された位相成分は、位相調整パラメータに対応することができる。
[0040] 位相調整器192は、位相調整パラメータに基づいて第1の信号180の位相を調整するように構成され得る。上記の第1の実施形態によれば、位相調整器192は、第1の信号180を時間ドメインから周波数ドメインに変換するために、第1の信号180に対して変換演算(たとえば、FFT演算)を実行するように構成され得る。位相調整器192は、位相分析器190によって生成された位相調整パラメータに従って第1の信号180の位相成分を(周波数ドメインにおいて)置き換えるか、または調整することができる。たとえば、ハイバンド残差信号182の選択された周波数のための位相調整パラメータが、第1の信号180の対応する周波数に適用され得る。第1の信号180の対応する周波数に位相調整パラメータを適用することは、第1の信号180の位相成分をハイバンド残差信号182から抽出された成分に置き換えることができる。
[0041] 上記の第2の実施形態によれば、位相調整器192は、第1の信号180のエネルギーを近似する正弦波形を生成するように構成され得る。また、位相調整器192は、第1の信号180と、第1の信号180のエネルギーレベルを近似する正弦波形との間のエネルギー差に基づいて残差正弦波形を生成するように構成され得る。たとえば、残差波形は、第1の信号180のエネルギーレベルを近似する正弦波形によって捕捉されない第1の信号180の残存エネルギーに対応することができる。位相調整器192は、位相分析器190によって生成される位相調整パラメータを用いて、位相分析器190によって生成された正弦波形を再構成することができる。残差正弦波形は、ハイバンド残差信号182の位相に基づいて第1の信号180の位相を調整するために、図3に関して説明されるように、再構成された正弦波形のスケーリングされたバージョン(scaled version)と合成され得る。
[0042] 本明細書において説明されるように、第1の信号180は、ローバンド信号122のローバンド励起の高調波による拡張バージョン(たとえば、非線形に拡張されたバージョン)とすることができる。たとえば、ローバンド励起信号144は、ローバンド信号122のローバンド励起の高調波による拡張バージョンを生成するために、絶対値演算または二乗演算を受けることができる。代替的には、第1の信号180は、ローバンド信号122のローバンド励起の高調波による拡張バージョンから生成されるハイバンド励起信号とすることができる。たとえば、ハイバンド励起信号を生成するために、ローバンド信号122のローバンド励起の高調波による拡張バージョンと白色雑音が混合され得る。
[0043] 特定の実施形態では、ハイバンドサイド情報172は、ハイバンドLSPならびに位相調整パラメータを含むことができる。たとえば、ハイバンドサイド情報172は、位相分析器190によって生成された位相調整パラメータを含むことができる。
[0044] ローバンドビットストリーム142およびハイバンドサイド情報172は、出力ビットストリーム199を生成するためにマルチプレクサ170によって多重化され得る。出力ビットストリーム199は、入力オーディオ信号102に対応する符号化されたオーディオ信号を表すことができる。たとえば、マルチプレクサ170は、入力オーディオ信号102の再構成中に位相調整を可能にするために、ハイバンドサイド情報172に含まれる位相調整パラメータを、入力オーディオ信号102の符号化されたバージョンに挿入するように構成され得る。出力ビットストリーム199は送信機198によって(たとえば、有線チャネル、ワイヤレスチャネル、または光チャネルを介して)送信され、および/または記憶され得る。受信機では、オーディオ信号(たとえば、スピーカまたは他の出力デバイスに与えられる入力オーディオ信号102の再構成バージョン)を生成するために、デマルチプレクサ(DEMUX)、ローバンドデコーダ、ハイバンドデコーダ、およびフィルタバンクによって逆の動作が実行され得る。ローバンドビットストリーム142を表すために使用されるビットの数は、ハイバンドサイド情報172を表すために使用されるビットの数よりも実質的に多くすることができる。したがって、出力ビットストリーム199内のビットの大部分は、ローバンドデータを表すことができる。ハイバンドサイド情報172は、信号モデルに従ってローバンドデータからハイバンド励起信号を再生するために受信機で使用され得る。たとえば、信号モデルは、ローバンドデータ(たとえば、ローバンド信号122)とハイバンドデータ(たとえば、ハイバンド信号124)との間の予想される1組の関係または相関を表すことができる。したがって、異なる種類のオーディオデータ(たとえば、スピーチ、音楽など)に対して異なる信号モデルが使用される場合があり、使用中の特定の信号モデルは、符号化されたオーディオデータの通信前に、送信機および受信機によってネゴシエートされ得る(または業界標準規格によって規定される)。信号モデルを使用するとき、出力ビットストリーム199からハイバンド信号124を再構成するために、受信機における対応するハイバンド分析モジュールが信号モデルを使用することができるように、送信機におけるハイバンド分析モジュール150は、ハイバンドサイド情報172を生成することができる場合がある。
[0045] 図1のシステム100は、ハイバンド残差信号182と第1の信号180との間の位相不整合を低減することができる。たとえば、システム100は、ハイバンド残差信号182と高調波による拡張信号との間の位相不整合、またはハイバンド残差信号182と、高調波による拡張信号から生成されたハイバンド励起信号との間の位相不整合を低減することができる。位相不整合を低減することは、入力オーディオ信号102のハイバンド再構成中に利得形状推定(gain shape estimation)を改善し、可聴アーティファクトを低減することができる。たとえば、位相不整合を低減することは、第1の信号180(たとえば、ハイバンド信号124の合成されたバージョンを生成するために用いられる入力オーディオ信号102のローバンド部分)と、ハイバンド残差信号182とのタイミング合わせを改善することができる。第1の信号180とハイバンド残差信号182とを合わせることによって、第1の信号180とハイバンド残差信号182との間の利得形状推定をより正確にできるようになり得る。位相調整パラメータは、入力オーディオ信号102のハイバンド再構成中に可聴アーティファクトを低減するためにデコーダに送信され得る。
[0046] 図2を参照すると、位相分析器290および位相調整器292の特定の実施形態が示される。位相分析器290は、図1の位相分析器190に対応することができ、位相調整器292は図1の位相調整器192に対応することができる。位相分析器290は、位相決定モジュール204を含み、位相調整器292は位相調整モジュール210を含む。特定の実施形態では、位相分析器290は、第1の変換モジュール202および第1の逆変換モジュール206も含むことができる。図2の位相分析器290において逆変換モジュール206が示されるが、代替の実施形態では、逆変換モジュール206は位相分析器290内に存在しない場合がある。特定の実施形態では、位相調整器292は第2の変換モジュール208および第2の逆変換モジュール212も含むことができる。
[0047] 第1の変換モジュール202は、図1のハイバンド残差信号182を時間ドメインから周波数ドメイン(たとえば、変換ドメイン)に変換するように構成され得る。たとえば、第1の変換モジュール202は、ハイバンド残差信号182を周波数ドメインハイバンド残差信号282に変換するために、ハイバンド残差信号182に対してFFT演算を実行することができる。
[0048] 周波数ドメインハイバンド残差信号282は、特定の周波数帯域(たとえば、複数の周波数)内の信号特性を表す変換係数によって表され得る。各変換係数は、特定の周波数のための位相情報および特定の周波数のための振幅情報を含むことができる。例示であって、限定しない例として、周波数ドメインハイバンド残差信号282は、7kHzから16kHzに及ぶ周波数を含むことができ、128個のFFT係数を用いて表され得る。各FFT係数は、7kHz〜16kHzの異なる周波数における、ハイバンド残差信号182に関連付けられる位相情報を含むことができる。位相情報は、量子化器(図示せず)によって位相調整パラメータ242として量子化され、位相調整器292に与えられ得る。
[0049] いくつかの実施態様では、位相決定モジュール204は、各FFT係数に対応する周波数のための位相調整パラメータを決定するのは対照的に、選択的なFFT係数(たとえば、特定の変換係数)に対応する周波数のための位相調整パラメータ242を決定するように構成され得る。たとえば、位相決定モジュール204は、ハイバンド(たとえば、7kHz〜16kHz)内の音声フレームのための基本ピッチ周波数の整数倍に対応する周波数のための位相調整パラメータ242を決定することができる。
[0050] 別の例として、位相決定モジュール204は、特定の間隔におけるFFT係数に対応する周波数のための位相調整パラメータ242を決定することができる。非限定的な例として、位相調整パラメータ242は、10ごとのFFT係数に対応する周波数の第1の間隔に関して決定される場合があり、位相決定モジュール204は、ハイバンド残差信号182のスペクトルピークの特定のしきい値(たとえば、スペクトルピークの50%)が第1の間隔を用いて捕捉されるか否かを決定することができる。特定のしきい値が満たされていないと決定するのに応答して、位相調整パラメータ242は、特定のしきい値を満たすために、4ごとのFFT係数(たとえば、より高い分解能)に対応するような、周波数の第2の間隔に関して決定され得る。したがって、周波数の間隔は、スペクトルピークの特定のしきい値を捕捉する位相調整パラメータ242を生成するように調整され得る。また、間隔に対応するデータは量子化され、位相調整パラメータ242とともに、位相調整器292に(そして、マルチプレクサ170)に送信され得る。
[0051] 第1の逆変換モジュール206は、周波数ドメインハイバンド残差信号282を変換して時間ドメインに戻すように構成され得る。たとえば、第1の逆変換モジュール206は、周波数ドメインハイバンド残差信号282を変換してハイバンド残差信号182(たとえば、時間ドメイン信号)に戻すために、周波数ドメインハイバンド残差信号282に対して逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)演算を実行することができる。代替的には、(変換されていない)ハイバンド残差信号182がさらなる処理において使用するために利用可能であるとき、位相分析器290は、第1の逆変換モジュール206を含まなくてもよい。
[0052] 第2の変換モジュール208は、第1の変換モジュール202と実質的に同様に動作することができる。たとえば、第2の変換モジュール208は、周波数ドメインの第1の信号281を生成するために、第1の信号180を時間ドメインから周波数ドメインに変換するように構成され得る。周波数ドメインの第1の信号281は、位相決定モジュール204からの位相調整パラメータ242とともに、位相調整モジュール210に与えられ得る。位相調整モジュール210は、位相調整パラメータ242に従って、周波数ドメインの第1の信号281の位相成分を置き換えるように構成され得る。たとえば、位相調整モジュール210は、調整済みの周波数ドメインの第1の信号283を生成するために、周波数ドメインの第1の信号281の位相を、選択された周波数(たとえば、選択された間隔)における周波数ドメインハイバンド残差信号の位相に置き換えることができる。周波数ドメインの第1の信号281の成分の位相は、ハイバンド残差信号182のFFT表現の位相成分を周波数ドメインの第1の信号281の位相成分(たとえば、第1の信号180のFFT表現)に置き換えることによって置き換えられ得る。
[0053] 第2の逆変換モジュール212は、第1の逆変換モジュール206と実質的に同様に動作することができる。たとえば、第2の逆変換モジュール212は、位相調整済み信号244を生成するために、調整済みの周波数ドメインの第1の信号283を周波数ドメインから時間ドメインに変換するように構成され得る。
[0054] 変換モジュール202、208を用いて、それぞれハイバンド残差信号182および第1の信号180を時間ドメインから周波数ドメインに変換することによって、ハイバンド残差信号182の特定の周波数における位相成分(たとえば、位相調整パラメータ242)を決定し、第1の信号180に適用できるようになる。第1の信号180にハイバンド残差信号182の位相成分を適用することは、そうでなければ結果として可聴アーティファクトを生成する場合がある、ハイバンド残差信号182と第1の信号180との間の位相不整合を相殺することができる。
[0055] 別の特定の実施形態では、位相分析器290は、第1の信号180とハイバンド残差信号182との間の位相不整合を決定することができる。たとえば、第1の変換モジュール202は、第1の信号180のための変換係数と、ハイバンド残差信号182のための対応する変換係数とを決定することができる。位相決定モジュール204は、選択的な周波数成分に関する位相不整合の大きさ(たとえば、第1の信号180およびハイバンド残差信号182内のピッチピーク)を決定することができる。位相不整合の大きさは、位相不整合に基づいて第1の信号180の位相を調整するために、位相調整パラメータ242に量子化され、位相調整器292に与えられ得る。
[0056] 別の実施形態では、位相調整器292は、複数の周波数における第1の信号180の位相を調整することができる。たとえば、位相調整器292は、第1の信号180およびハイバンド残差信号の第1の変換係数に対応する第1の周波数におけるハイバンド残差信号182の位相に基づいて、第1の信号180の位相を調整することができる。また、位相調整器292は、第1の信号180およびハイバンド残差信号182の第2の変換係数に対応する第2の周波数におけるハイバンド残差信号182の位相に基づいて第1の信号180の位相を調整することができる。
[0057] 図3を参照すると、位相分析器390および位相調整器392の特定の実施形態が示される。位相分析器390は図1の位相分析器190に対応することができ、位相調整器392は図1の位相調整器192に対応することができる。位相分析器390は、第1の正弦曲線分析モジュール(sinusoid analysis module)302およびマルチプレクサ(MUX)304を含む。位相調整器392は、第2の正弦曲線分析モジュール308と、第1の正弦曲線再構成モジュール(sinusoid reconstruction module)310と、デマルチプレクサ(DeMUX)312と、第2の正弦曲線再構成モジュール314とを含む。
[0058] ハイバンド残差信号182は、第1の正弦曲線分析モジュール(sinusoid analysis module)302に与えられ得る。第1の正弦曲線分析モジュール302は、ハイバンド残差信号182の特定の時間インスタンスにおいて(たとえば、時間ドメイン分析)、または特定の周波数において(たとえば、周波数ドメイン分析)エネルギーレベルを検出するように構成され得る。検出されたエネルギーレベルに基づいて、第1の正弦曲線分析モジュール302は、エネルギーレベルを近似する正弦波形を生成するように構成され得る。たとえば、第1の正弦曲線分析モジュール302は、検出されたエネルギーレベルの特定の部分(たとえば、スペクトルピーク)を捕捉するように合成され得る正弦波形を生成することができる。本明細書において使用されるときに、「支配的な(dominant)」正弦波形は、近似されている信号のスペクトルピークを捕捉する正弦波形に対応することができる。第1の正弦曲線分析モジュール302は、支配的な正弦曲線の位相情報322を生成するように構成され得る。特定の実施形態では、第1の正弦曲線分析モジュール302は、支配的な正弦波形の振幅情報324および周波数情報326も生成することができる。情報322〜326は、量子化器(図示せず)によって量子化され、マルチプレクサ304によって位相調整パラメータ342として合成され得る。
[0059] 第1の信号180は、第2の正弦曲線分析モジュール308および第1の混合器352に与えられ得る。第2の分析モジュール308は、第1の正弦曲線分析モジュール302と実質的に同様に動作することができる。たとえば、第2の正弦曲線分析モジュール308は、第1の信号180のエネルギーレベルを近似するエネルギーレベルを有する正弦曲線の位相情報332、振幅情報334および周波数情報336を生成することができる。情報322〜336は第1の正弦曲線再構成モジュール310に与えられ得る。
[0060] 第1の正弦曲線再構成モジュール310は、第1の信号182を正弦波形338として再構成するように構成され得る。たとえば、正弦波形338は、情報322〜336に基づいて、第1の信号180のエネルギーレベルを近似することができる。正弦波形338は第1の混合器352に与えられる。第1の混合器352は、正弦波形338と第1の信号180との間のエネルギー差を近似する残差波形340を生成するために、第1の信号180から正弦波形338の成分を減算することができる。
[0061] 位相調整パラメータ342はデマルチプレクサ312に与えられ得る。デマルチプレクサ312は、ハイバンド残差信号182のエネルギーレベルを近似する支配的な正弦波形の位相情報322、振幅情報324および周波数情報326を生成することができる。情報322〜326は第2の正弦曲線再構成モジュール314に与えられ得る。第2の正弦曲線再構成モジュール314は、第1の正弦曲線再構成モジュール310と実質的に同様に動作することができる。たとえば、第2の再構成モジュール314は、情報322〜326に基づいてハイバンド残差信号182のエネルギーレベルを近似する正弦波形を再構成するように構成され、再構成された正弦波形を第2の混合器354(たとえば、スケーラ/乗算器(scaler/multiplier))に与えることができる。第2の混合器354は、スケーリング済みの再構成された正弦波形を生成するために、倍率に基づいて、再構成された正弦波形をスケーリングすることができる。倍率は通常、第1の信号180に関連付けられる再構成された正弦曲線(すなわち、ローバンド信号のローバンド励起またはハイバンド励起の高調波による拡張バージョン)のエネルギーと、ハイバンド残差信号182に関連付けられる再構成された正弦曲線のエネルギーとを正規化するために使用される。残差波形(residual waveform)340は、位相調整済みの第1の信号344を生成するために、混合器356において、スケーリング済みの再構成された正弦波形と混合される。
[0062] 図3の位相分析器390および位相調整器392は、ハイバンド残差信号182と第1の信号180との間の位相不整合を低減することができる。位相調整パラメータ342は、ハイバンドを記述しているサイド情報に含まれ得る。位相不整合を低減することは、入力オーディオ信号102のハイバンド再構成中に利得形状推定を改善し、可聴アーティファクトを低減することができる。たとえば、位相不整合を低減することは、第1の信号180(たとえば、ハイバンド信号124の合成されたバージョンを生成するために用いられる入力オーディオ信号102のローバンド部分)と、ハイバンド残差信号182とのタイミング合わせを改善することができる。第1の信号180とハイバンド残差信号182とを合わせることによって、第1の信号180とハイバンド残差信号182との間の利得形状をより正確に推定できるようになり得る。
[0063] 図4を参照すると、ハイバンド再構成のための位相調整パラメータを決定するために動作可能であるシステム400の特定の実施形態が示される。システム400は、線形予測分析フィルタ404と、非線形変換発生器407と、位相分析器490と、位相調整器492とを含む。
[0064] ローバンド励起信号144は非線形変換発生器407に与えられ得る。図1に関して説明されたように、ローバンド励起信号144は、ローバンド分析モジュール130を用いて、ローバンド信号122(たとえば、入力オーディオ信号102のローバンド部分)から生成され得る。非線形変換発生器407は、ローバンド励起信号144に基づいて、高調波による拡張信号480を生成するように構成され得る。たとえば、非線形変換発生器407は、高調波による拡張信号480を生成するために、ローバンド励起信号144のフレーム(またはサブフレーム)に関して絶対値演算または二乗演算を実行することができる。
[0065] 例示するために、非線形変換発生器407は、約0kHzから16kHzに及ぶ16kHz信号(たとえば、ローバンド励起信号144の帯域幅の約2倍を有する信号)を生成するために、ローバンド励起信号144(たとえば、約0kHzから約8kHzに及ぶ8kHz信号)をアップサンプリングすることができる。16kHz信号のローバンド部分(たとえば、約0kHz〜8kHz)は、ローバンド励起信号144と実質的に同様の高調波を有する場合があり、16kHz信号のハイバンド部分(たとえば、約8kHz〜16kHz)は実質的に高調波を持たない場合がある。非線形変換発生器407は、高調波による拡張信号480を生成するために、16kHz信号のローバンド部分内の「支配的な」高調波を16kHz信号のハイバンド部分に拡張することができる。したがって、高調波による拡張信号480は、非線形演算(たとえば、二乗演算および/または絶対値演算)を用いて、ハイバンドに広がるローバンド励起信号144の高調波による拡張バージョンとすることができる。高調波による拡張信号480は位相調整器492に与えられ得る。高調波による拡張信号480は、図1の第1の信号180に対応することができる。
[0066] ハイバンド信号124は、線形予測分析フィルタ404に与えられ得る。線形予測分析フィルタ404は、ハイバンド信号124(たとえば、入力オーディオ信号102のハイバンド部分)に基づいて、ハイバンド残差信号482を生成するように構成され得る。たとえば、線形予測分析フィルタ404は、ハイバンド信号124のスペクトル包絡線を、ハイバンド信号124の将来のサンブルを予測するために用いられる1組のLPCとして符号化することができる。ハイバンド残差信号482は位相分析器490に与えられ得る。ハイバンド残差信号482は、図1のハイバンド残差信号182に対応することができる。
[0067] 位相分析器490は、図1の位相分析器190、図2の位相分析器290または図3の位相分析器390に対応することができ、実質的に同様に動作することができる。たとえば、位相分析器490は、ハイバンド残差信号482に基づいて位相調整パラメータ442を生成することができる。位相調整パラメータ442は、図2の位相調整パラメータ242または図3の位相調整パラメータ342に対応することができる。位相調整パラメータ442は、ハイバンドサイド情報172として、位相調整器492と、図1のマルチプレクサ170とに与えられ得る。
[0068] 位相調整器492は、図1の位相調整器192、図2の位相調整器292または図3の位相調整器392に対応することができ、実質的に同様に動作することができる。たとえば、位相調整器492は、調整済みの高調波による拡張信号444を生成するために、位相調整パラメータ442に基づいて、高調波による拡張信号480の位相を調整することができる。調整済みの高調波による拡張信号444は、包絡線追跡器402および第1の合成器(combiner)454に与えられ得る。
[0069] 包絡線追跡器402は、調整済みの高調波による拡張信号444を受信し、調整済みの高調波による拡張信号444に対応するローバンド時間ドメイン包絡線403を計算するように構成され得る。たとえば、包絡線追跡器402は、一連の二乗値を生成するために、調整済みの高調波による拡張信号444のフレームの各サンプルの二乗を計算するように構成され得る。包絡線追跡器402は、一連の二乗値に1次無限インパルス応答(IIR:infinite impulse response)ローパスフィルタを適用することなどによって、一連の二乗値に対して平滑化演算を実行するように構成され得る。包絡線追跡器(envelope tracker)402は、ローバンド時間ドメイン包絡線403を生成するために、平滑化されたシーケンスの各サンプルに平方根関数を適用するように構成され得る。ローバンド時間ドメイン包絡線403は雑音合成器(noise combiner)440に与えられ得る。
[0070] 雑音合成器440は、変調された雑音信号420を生成するために、ローバンド時間ドメイン包絡線403を白色雑音発生器(図示せず)によって生成された白色雑音405と合成するように構成され得る。たとえば、雑音合成器440は、ローバンド時間ドメイン包絡線403に従って白色雑音405を振幅変調するように構成され得る。特定の実施形態では、雑音合成器440は、変調された雑音信号420を生成するために、ローバンド時間ドメイン包絡線403に従って、白色雑音405をスケーリングするように構成される乗算器として実現され得る。変調された雑音信号420は第2の合成器456に与えられ得る。
[0071] 第1の合成器454は、第1のスケーリングされた信号を生成するために、混合倍率(mixing factor)(α)に従って、調整済みの高調波による拡張信号444をスケーリングするように構成される乗算器として実現され得る。第2の合成器456は、第2のスケーリングされた信号を生成するために、混合倍率(α)に基づいて、変調された雑音信号420をスケーリングするように構成される乗算器として実現され得る。たとえば、第2の合成器456は、1から混合倍率を引いた差(たとえば、1−α)に基づいて、変調された雑音信号420をスケーリングすることができる。第1のスケーリングされた信号および第2のスケーリングされた信号は混合器411に与えられ得る。
[0072] 混合器411は、混合倍率(α)、調整済みの高調波による拡張信号444および変調された雑音信号420に基づいて、ハイバンド励起信号461を生成することができる。たとえば、混合器411は、ハイバンド励起信号461を生成するために、第1のスケーリングされた信号および第2のスケーリングされた信号を混合することができる。
[0073] 図4のシステム400は、ハイバンド再構成を改善するために、位相調整パラメータ442に基づいて、高調波による拡張信号480の位相を調整することができる。高調波による拡張信号480の位相を調整することは、ハイバンド残差信号482と高調波による拡張信号480との間の位相不整合を低減することができる。位相不整合を低減することは、利得形状推定を改善し、ハイバンド再構成中の可聴アーティファクトを低減することができる。たとえば、位相不整合を低減することは、高調波による拡張信号480およびハイバンド残差信号482のタイミング合わせを改善することができる。高調波による拡張信号480およびハイバンド残差信号482を合わせることによって、高調波による拡張信号480とハイバンド残差信号482との間の利得形状をより正確に推定できるようになる場合がある。
[0074] 図5を参照すると、ハイバンド再構成のための位相調整パラメータを決定するように動作可能であるシステム500の特定の例示的な実施形態が示される。システム500は、非線形変換発生器407、包絡線追跡器402、雑音合成器440、第1の合成器454、第2の合成器456および混合器411のような図4に関して説明された構成要素を含むことができる。図4に関して説明された構成要素は、調整済みの高調波による拡張信号444に基づくハイバンド励起信号461の代わりに、高調波による拡張信号480に基づいてハイバンド励起信号580を生成することができる。ハイバンド励起信号580は、図1の第1の信号180に対応することができる。
[0075] また、システム500は図4の線形予測分析フィルタ404を含むことができる。ハイバンド信号124は、線形予測分析フィルタ404に与えられる場合があり、線形予測分析フィルタ404は、ハイバンド信号124に基づいてハイバンド残差信号482を生成するように構成され得る。ハイバンド残差信号482は、図1のハイバンド残差信号182に対応することができる。
[0076] また、システム500は、位相分析器590を含むことができる。位相分析器590は、図1の位相分析器190、図2の位相分析器290または図3の位相分析器390に対応することができ、実質的に同様に動作することができる。たとえば、位相分析器590は、ハイバンド残差信号482に基づいて位相調整パラメータ542を生成することができる。位相調整パラメータ542は、図2の位相調整パラメータ242または図3の位相調整パラメータ342に対応することができる。位相調整パラメータ542は、位相調整器592に、そしてハイバンドサイド情報172として図1のマルチプレクサ170に与えられ得る。
[0077] 位相調整器592は、図1の位相調整器192、図2の位相調整器292または図3の位相調整器392に対応することができ、実質的に同様に動作することができる。たとえば、位相調整器592は、調整済みハイバンド励起信号544を生成するために、位相調整パラメータ542に基づいて、ハイバンド励起信号580の位相を調整することができる。
[0078] 図5のシステム500は、位相調整パラメータ542に基づいて、ハイバンド励起信号580の位相を調整することによってハイバンド再構成を改善することができる。ハイバンド励起信号580の位相を調整することは、ハイバンド残差信号482とハイバンド励起信号580との間の位相不整合を低減することができる。ハイバンド励起信号580の位相を(図4の高調波による拡張信号480の位相の代わりに)調整することは、図4の白色雑音405のような雑音によって引き起こされる位相劣化を低減することができる。位相不整合を低減することは、利得形状推定を改善し、ハイバンド再構成中の可聴アーティファクトを低減することができる。
[0079] 図6を参照すると、位相調整パラメータを用いてオーディオ信号を再構成するように動作可能であるシステム600の特定の実施形態が示される。システム600は、第1の信号再構成回路(signal reconstruction circuitry)602と、位相調整器692とを含む。特定の実施形態では、システム600は、復号システムまたは復号装置に(たとえば、ワイヤレス電話またはCODEC内に)組み込まれ得る。他の特定の実施形態では、システム600は、セットトップボックス、音楽プレーヤ、ビデオプレーヤ、エンターテインメントユニット、ナビゲーションデバイス、通信デバイス、PDA、定置データユニット、またはコンピュータに組み込まれ得る。
[0080] 第1の信号再構成回路602は、図1のローバンドビットストリーム(low-band bit stream)142を受信することができ、ローバンドビットストリーム142に基づいて、再構成された第1の信号680(たとえば、図1〜図3の第1の信号180の再構成されたバージョン、図4の高調波による拡張信号480の再構成されたバージョン、図5のハイバンド励起信号580の再構成されたバージョン、またはその任意の組合せ)を生成するように構成され得る。たとえば、第1の信号再構成回路602は、図1のローバンド分析モジュール130内に含まれる構成要素に類似の構成要素を含むことができる。さらに、第1の信号再構成回路602は、図1のハイバンド分析モジュール150の1つまたは複数の構成要素を含むことができる。再構成された第1の信号680は位相調整器692に与えられ得る。
[0081] 第1の信号再構成回路602の第1の実施形態650は、ローバンド分析モジュール671および非線形変換発生器673を含むことができる。ローバンド分析モジュール671は、図1のローバンド分析モジュール130内に含まれる構成要素に類似の構成要素を含むことができ、実質的に同様に動作することができる。たとえば、ローバンド分析モジュール671は、ローバンドビットストリーム142に基づいてローバンド励起信号672を生成することができる。ローバンド励起信号672は非線形変換発生器673に与えられ得る。非線形変換発生器673は、図4の非線形変換発生器407と実質的に同様に動作することができる。たとえば、非線形変換発生器673は、高調波による拡張信号674(たとえば、第1の信号再構成回路602の第1の実施形態650による再構成された第1の信号680)を生成することができる。
[0082] 第1の信号再構成回路602の第2の実施形態652は、ローバンド分析モジュール671、非線形変換発生器643およびハイバンド励起発生器675を含むことができる。高調波による拡張信号674は、ハイバンド励起発生器675に与えられ得る。ハイバンド励起発生器675は、高調波による拡張信号674に基づいて、ハイバンド励起信号676(たとえば、第1の信号再構成回路602の第2の実施形態652による再構成された第1の信号680)を生成することができる。
[0083] また、位相調整パラメータ642は、位相調整器692に与えられ得る。位相調整パラメータ642は、図2〜図5の位相調整パラメータ242〜542のいずれかに対応することができる。たとえば、図1のハイバンドサイド情報172は、位相調整パラメータ642を表すデータを含むことができ、位相調整パラメータ642を表すデータはシステム600に送信され得る。位相調整器692は、調整済みの再構成された第1の信号644を生成するために、位相調整パラメータ642に基づいて再構成された第1の信号680を調整するように構成され得る。特定の実施形態では、位相調整器692は、図1〜図5の位相調整器192〜592のいずれかと実質的に同様に動作することができる。調整済みの再構成された第1の信号644は、ハイバンド信号再構成回路696に与えられ得る。ハイバンド信号再構成回路696は、再構成されたハイバンド信号624を生成するために、時間/フレーム利得調整、合成フィルタリング、またはその任意の組合せを実行することができる。再構成されたハイバンド信号624は、図1のハイバンド信号124の再構成されたバージョンとすることができる。
[0084] 図6のシステム600は、第1の信号180および位相調整パラメータ642を用いて、ハイバンド信号124を再構成することができる。位相調整パラメータ642を用いることは、スピーチエンコーダにおいて検出されたハイバンド残差信号182のエネルギーの時間的推移(temporal evolution)に基づいて、再構成された第1の信号680を調整することによって再構成の精度を改善することができる。たとえば、調整済みの再構成された第1の信号644の位相は、ハイバンド残差信号182の位相に近づくことができる。調整済みの再構成された第1の信号644およびハイバンド残差信号182の位相が近似的に等しいとき、ハイバンド信号再構成回路696は、ハイバンドサイド情報172を介して与えられたハイバンドに関連付けられる利得形状パラメータ(図示せず)に基づいて、調整済みの再構成された第1の信号644の利得をより正確に調整することができる。
[0085] 図7を参照すると、ハイバンド再構成のための位相調整パラメータを用いる方法700、710の特定の実施形態の流れ図が示される。第1の方法700は、図1のシステム100、図1〜図5の位相分析器190〜590、図1〜図5の位相調整器192〜592、および図4〜図5のシステム400、500によって実行され得る。第2の方法710は、図6のシステム600によって実行され得る。
[0086] 第1の方法700は、702において、ハイバンド残差信号に基づいて、エンコーダにおいて位相調整パラメータを決定することを含む。たとえば、図1を参照すると、位相分析器190は、第1の信号180の位相を調整するために、ハイバンド残差信号182に基づいて位相調整パラメータを決定することができる。第1の特定の実施形態では、位相分析器190は、ハイバンド残差信号182を時間ドメインから周波数ドメインに変換するために、ハイバンド残差信号182に対して変換演算を実行するように構成され得る。変換されたハイバンド残差信号182の変換係数は、それぞれの周波数におけるハイバンド残差信号182の位相情報および振幅情報を含むことができる。位相情報は、位相調整パラメータを生成するために量子化され得、位相調整パラメータは、位相調整器192に供給され得る(選択的周波数においてハイバンド残差信号182の位相を再現するために、第1の信号180の位相を調整するため)。
[0087] 第2の特定の実施形態では、位相分析器190は、ハイバンド残差信号182のエネルギーレベルを近似する正弦波形を生成することができる。たとえば、位相分析器190は、図3に関して説明されたような、ハイバンド残差信号182のスペクトルピークのエネルギーレベルを捕捉する支配的な正弦波形を繰返し探索することができる。各正弦波形の位相成分、振幅成分および周波数成分は、量子化され、位相調整器192に与えられ、ハイバンドサイド情報174としてマルチプレクサ170に与えられ得る。量子化された位相成分は、位相調整パラメータに対応することができる。
[0088] 704において、第1の信号の位相が、位相調整パラメータに基づいて調整され得る。第1の信号は、オーディオ信号のローバンド部分に関連付けられ得る。たとえば、図1を参照すると、位相調整器192は、ハイバンド残差信号182の位相をより厳密に再現するために、第1の信号180の位相を調整することができる。
[0089] 706において、オーディオ信号の符号化されたバージョンからオーディオ信号の再構成中に位相調整を可能にするために、位相調整パラメータは、オーディオ信号の符号化されたバージョンに挿入され得る。たとえば、図1のハイバンドサイド情報172は、図2〜図5の位相調整パラメータ242〜542のうちの1つまたは複数を含むことができる。マルチプレクサ170は、位相調整パラメータをビットストリーム199に挿入することができる。
[0090] 708において、位相調整パラメータは、ビットストリームの一部としてスピーチデコーダに送信され得る。たとえば、図1を参照すると、ビットストリーム199(位相調整パラメータを含む)は、デコーダ(たとえば、図6のシステム600)に送信され得る。
[0091] 第1の方法700は、ローバンド励起信号とともにデコーダに与えられる位相調整パラメータを生成することができる。デコーダは、位相調整パラメータおよびローバンド励起信号に基づいて、図1のハイバンド信号124の再構成されたバージョンを生成することができる。たとえば、ハイバンド信号124をデコーダに与えることは、相対的に大きい量の帯域幅を利用する場合がある;しかしながら、ローバンド励起信号および位相調整パラメータを与えることは、より小さな量の帯域幅を利用することができる。デコーダは、ハイバンド信号124の位相を再現するために、位相調整パラメータを用いて、ローバンド励起信号から生成された信号(たとえば、エンコーダにおいて図4に関して説明されたような高調波による拡張信号、および/またはエンコーダにおいて図5に関して説明されたようなハイバンド励起信号)を調整することができる。ハイバンド信号124の位相を再現することは、デコーダにおけるタイミング合わせを改善することができる。改善されたタイミング合わせによって、ハイバンド信号124の再構成されたバージョンを生成するために、デコーダにおいてより正確に利得を調整できるようになる場合がある。第1の方法700はエンコーダ機能に向けられるが、第2の方法710はデコーダ機能に向けられる。
[0092] 第2の方法710は、712において、スピーチエンコーダからの符号化されたオーディオ信号をデコーダにおいて受信することを含むことができる。符号化されたオーディオ信号は、スピーチエンコーダにおいて生成された第1の信号180の位相を調整するために、スピーチエンコーダにおいて生成されたハイバンド残差信号182に基づく位相調整パラメータ642(たとえば、図2〜図5の位相調整パラメータ242〜542のうちの1つまたは複数)を含むことができる。
[0093] 714において、符号化されたオーディオ信号に基づいて、再構成された第1の信号が生成され得る。再構成された第1の信号は、オーディオ信号のローバンド部分に関連付けられる、エンコーダにおいて生成された第1の信号の再構成されたバージョンに対応することができる。たとえば、図6を参照すると、第1の信号再構成回路602は、エンコーダからのローバンドビットストリーム142に基づいて、再構成された第1の信号680を生成することができる。
[0094] 716において、位相調整パラメータは、再構成された第1の信号の位相を調整するために、再構成された第1の信号に適用され得る。たとえば、図6を参照すると、位相調整器692は、再構成された第1の信号680の位相を調整するために、再構成された第1の信号680に位相調整パラメータ642を適用することができる。
[0095] 718において、位相調整済みの再構成された第1の信号に基づいて、オーディオ信号が再構成され得る。たとえば、位相調整済みの再構成された第1の信号644を生成するために、図6の位相調整器692は、位相調整パラメータ642に基づいて、再構成された第1の信号680の位相を調整することができる。位相調整済みの再構成された第1の信号644は、ハイバンド信号再構成回路696に与えられ得る。ハイバンド信号再構成回路696は、再構成されたハイバンド信号624を生成するために、時間/フレーム利得調整、合成フィルタリング、またはその任意の組合せを実行することができる。再構成されたハイバンド信号624は、図1のハイバンド信号124の再構成されたバージョンとすることができる。
[0096] 図7の方法700、710は、ハイバンド残差信号182と、ハイバンドサイド情報172を生成するために用いられる第1の信号180との間の位相不整合を低減することができる。たとえば、システム100は、ハイバンド残差信号182と高調波による拡張信号との間、またはハイバンド残差信号182と高調波による拡張信号から生成されたハイバンド励起信号との間の位相不整合を低減することができる。位相不整合を低減することは、利得形状推定を改善し、入力オーディオ信号102のハイバンド再構成中に可聴アーティファクトを低減することができる。位相調整パラメータは、入力オーディオ信号102のハイバンド再構成中に可聴アーティファクトを低減するためにデコーダに送信され得る。
[0097] 特定の実施形態では、図7の方法700、710は、中央処理装置(CPU)、デジタルシグナルプロセッサ(DSP)、またはコントローラなどの処理ユニットのハードウェア(たとえば、FPGAデバイス、ASICなど)によって実施される場合があるか、ファームウェアデバイスによって実施される場合があるか、その任意の組合せによって実施される場合がある。一例として、図7の方法700、710は、図8に関して説明されたように、命令を実行するプロセッサによって実行され得る。
[0098] 図8を参照すると、ワイヤレス通信デバイスの特定の例示的な実施形態のブロック図が示されており、全体的に800で示される。デバイス800は、メモリ832に結合されるプロセッサ810(たとえば、CPU)を含む。メモリ832は、図7の方法700、710のような本明細書において開示される方法およびプロセスを実行するために、プロセッサ810および/またはCODEC834によって実行可能な命令860を含むことができる。
[0099] 特定の実施形態では、CODEC834は、位相調整型符号化システム(phase-adjusted encoding system)882と、位相調整型復号システム(phase-adjusted decoding syste)884とを含むことができる。特定の実施形態では、位相調整型符号化システム882は、図1のシステム100、図2の位相分析器290、図2の位相調整器292、図3の位相分析器390、図3の位相調整器392の1つまたは複数の構成要素、および/または図4および図5のシステム400、500の1つまたは複数の構成要素を含む。たとえば、位相調整型符号化システム882は、図1のシステム100、図2の位相分析器290、図2の位相調整器292、図3の位相分析器390、図3の位相調整器392、図4および図5のシステム400、500、および図7の方法700に関連付けられる符号化動作を実行することができる。特定の実施形態では、位相調整型復号システム884は、図6のシステム600の1つまたは複数の構成要素を含むことができる。たとえば、位相調整型復号システム884は、図6のシステム600および図7の方法710に関連付けられる復号動作を実行することができる。
[00100] 位相調整型符号化システム882および/または位相調整復号システム884は、専用ハードウェア(たとえば、回路)を介して、1つまたは複数のタスクを実行するために命令を実行するプロセッサによって、またはその組合せによって実施され得る。一例として、メモリ832またはCODEC834内のメモリ890は、ランダムアクセスメモリ(RAM)、磁気抵抗ランダムアクセスメモリ(MRAM)、スピントルクトランスファーMRAM(STT−MRAM)、フラッシュメモリ、読出し専用メモリ(ROM)、プログラマブル読出し専用メモリ(PROM)、消去可能なプログラマブル読出し専用メモリ(EPROM)、電気的に消去可能な読出し専用メモリ(EEPROM(登録商標))、レジスタ、ハードディスク、取外し可能ディスク、またはコンパクトディスク読出し専用メモリ(CD−ROM)などのメモリデバイスとすることができる。メモリデバイスは、コンピュータ(たとえば、CODEC834内のプロセッサおよび/またはプロセッサ810)によって実行されるときに、コンピュータに図7の方法700、710のうちの1つを実行させる命令(たとえば、命令860または命令885)を含むことができる。一例として、メモリ832またはCODEC834内のメモリ890は、コンピュータ(たとえば、CODEC834内のプロセッサおよび/またはプロセッサ810)によって実行されるときに、コンピュータに図7の方法700、710の1つまたは複数を実行させる命令(たとえば、それぞれ命令860または命令885)を含む非一時的コンピュータ可読媒体(non-transitory computer-readable medium)とすることができる。
[00101] デバイス800は、CODEC834に、そしてプロセッサ810に結合されるDSP896を含むこともできる。特定の実施形態では、DSP896は、位相調整型符号化システム897および位相調整型復号システム898を含むことができる。特定の実施形態では、位相調整型符号化システム897は、図1のシステム100、図2の位相分析器290、図2の位相調整器292、図3の位相分析器390、図3の位相調整器392の1つまたは複数の構成要素、および/または図4および図5のシステム400、500の1つまたは複数の構成要素を含む。たとえば、位相調整型符号化システム897は、図1のシステム100、図2の位相分析器290、図2の位相調整器292、図3の位相分析器390、図3の位相調整器392、図4および図5のシステム400、500、および図7の方法700に関連付けられる符号化動作を実行することができる。特定の実施形態では、位相調整型復号システム898は、図6のシステム600の1つまたは複数の構成要素を含むことができる。たとえば、位相調整型復号システム898は、図6のシステム600および図7の方法710に関連付けられる復号動作を実行することができる。
[00102] 図8は、プロセッサ810とディスプレイ828とに結合されたディスプレイコントローラ826も示す。CODEC834は、図示されるように、プロセッサ810に結合され得る。スピーカ836およびマイクロフォン838がCODEC834に結合され得る。たとえば、マイクロフォン838は図1の入力オーディオ信号102を生成することができ、CODEC834は、入力オーディオ信号102に基づいて、受信機に送信するための出力ビットストリーム199を生成することができる。別の例として、スピーカ836は、CODEC834によって図1の出力ビットストリーム199から再構成された信号を出力するために使用されることがあり、出力ビットストリーム199は別のデバイスから受信される。また、図8は、ワイヤレスコントローラ840がプロセッサ810とワイヤレスアンテナ842とに結合され得ることを示す。
[00103] 特定の実施形態では、プロセッサ810、ディスプレイコントローラ826、メモリ832、CODEC834、およびワイヤレスコントローラ840は、システムインパッケージデバイスまたはシステムオンチップデバイス(たとえば、移動局モデム(MSM))822に含まれる。特定の実施形態では、タッチスクリーンおよび/またはキーパッドなどの入力デバイス830ならびに電源844が、システムオンチップデバイス822に結合される。さらに、特定の実施形態において、図8に例示されるように、ディスプレイ828、入力デバイス830、スピーカ836、マイクロフォン838、アンテナ842、および電源844は、システムオンチップデバイス822の外部に存在する。しかしながら、ディスプレイ828、入力デバイス830、スピーカ836、マイクロフォン838、アンテナ842、および電源844の各々は、インターフェースまたはコントローラなど、システムオンチップデバイス822の構成要素に結合され得る。
[00104] 上記の実施形態に関連して、オーディオ信号のローバンド部分に関連付けられる第1の信号の位相を調整するために、ハイバンド残差信号に基づいて位相調整パラメータを決定するための手段を含む第1の装置が開示される。たとえば、位相調整パラメータを決定するための手段は、図1〜図5の位相分析器190〜590、図8の位相調整型符号化システム882、図8のCODEC834、図8の位相調整型符号化システム897、位相調整パラメータを決定するように構成される1つまたは複数のデバイス(たとえば、非一時的コンピュータ可読記憶媒体(non-transitory computer readable storage medium)において命令を実行するプロセッサ)のうちのいずれか1つ、またはその任意の組合せを含むことができる。
[00105] また、第1の装置は、オーディオ信号の符号化されたバージョンからオーディオ信号の再構成中に位相調整を可能にするために、位相調整パラメータをオーディオ信号の符号化されたバージョンに挿入するための手段を含むことができる。たとえば、位相調整パラメータをオーディオ信号の符号化されたバージョンに挿入するための手段は、図1のマルチプレクサ170、図8の位相調整型符号化システム882、図8のCODEC834、図8の位相調整型符号化システム897、位相調整パラメータをオーディオ信号の符号化されたバージョンに挿入するように構成される1つまたは複数のデバイス(たとえば、非一時的コンピュータ可読記憶媒体において命令を実行するプロセッサ)のうちのいずれか1つ、またはその任意の組合せを含むことができる。
[00106] 上記の実施形態に関連して、エンコーダから符号化されたオーディオ信号を受信するための手段を含む第2の装置が開示され、符号化されたオーディオ信号は、エンコーダにおいて生成されたハイバンド残差信号に基づく位相調整パラメータを含む。位相調整パラメータは、スピーチエンコーダにおいて生成された第1の信号の位相を調整するために使用可能である。たとえば、符号化されたオーディオ信号を受信するための手段は、図6の第1の信号再構成回路602、図6の位相調整器692、図8の位相調整型復号システム884、受信機、図8のCODEC834、図8の位相調整型復号システム898、符号化されたオーディオ信号を受信するように構成される1つまたは複数のデバイス(たとえば、非一時的コンピュータ可読記憶媒体において命令を実行するプロセッサ)、またはその任意の組合せを含むことができる。
[00107] また、第2の装置は、位相調整パラメータに基づいて、符号化されたオーディオ信号からオーディオ信号を再構成するための手段も含むことができる。たとえば、オーディオ信号を再構成するための手段は、図6の第1の信号再構成回路602、図6の位相調整器692、図6のハイバンド信号再構成回路696、図8の位相調整型復号システム884、図8のCODEC834、図8の位相調整型復号システム898、オーディオ信号を再構成するように構成される1つまたは複数のデバイス(たとえば、非一時的コンピュータ可読記憶媒体において命令を実行するプロセッサ)、またはその任意の組合せを含むことができる。
[00108] 本明細書において開示される実施形態に関して説明された種々の例示的な論理ブロック、構成、モジュール、回路、およびアルゴリズムステップは、電子ハードウェア、ハードウェアプロセッサなどの処理デバイスによって実行されるコンピュータソフトウェア、または両方の組合せとして実現され得ることは、当業者にはさらに理解されよう。種々の例示的な構成要素、ブロック、構成、モジュール、回路、およびステップは、その機能の観点から包括的にこれまで説明されてきた。そのような機能をハードウェアとして実現するか、実行可能ソフトウェアとして実現するかは、特定の適用例およびシステム全体に課される設計制約によって決まる。当業者は、説明された機能を特定の適用例ごとに様々な方法において実現できるが、そのような実現の決定は、本開示の範囲からの逸脱を生じるものと解釈されるべきではない。
[00109] 本明細書において開示される実施形態に関して説明された方法またはアルゴリズムのステップは、ハードウェアにおいて直接、プロセッサによって実行されるソフトウェアモジュールにおいて、またはこれら2つの組合せにおいて具現され得る。ソフトウェアモジュールは、ランダムアクセスメモリ(RAM)、磁気抵抗ランダムアクセスメモリ(MRAM)、スピントルクトランスファーMRAM(STT−MRAM)、フラッシュメモリ、読取り専用メモリ(ROM)、プログラマブル読取り専用メモリ(PROM)、消去可能プログラマブル読取り専用メモリ(EPROM)、電気消去可能プログラマブル読取り専用メモリ(EEPROM)、レジスタ、ハードディスク、リムーバブルディスク、またはコンパクトディスク読取り専用メモリ(CD−ROM)などのメモリデバイス内に存在することができる。例示的なメモリデバイスは、プロセッサがメモリデバイスから情報を読み取り、メモリデバイスに情報を書き込むことができるように、プロセッサに結合される。代替形態では、メモリデバイスはプロセッサと一体にすることができる。プロセッサおよび記憶媒体は、ASIC内に存在することができる。ASICはコンピューティングデバイスまたはユーザ端末内に存在することができる。代替形態では、プロセッサおよび記憶媒体は、コンピューティングデバイスまたはユーザ端末内に個別構成要素として存在することができる。
[00110] 開示される実施形態のこれまでの説明は、開示された実施形態を当業者が実施または使用できるようにするために提供される。これらの実施形態に対する種々の変更は、当業者には容易に明らかになり、本明細書において規定される原理は、本開示の範囲から逸脱することなく、他の実施形態に適用され得る。したがって、本開示は、本明細書に示される実施形態に限定されることを意図するものではなく、以下の特許請求の範囲によって規定される原理および新規の特徴と一致する、取り得る最も広い範囲を与えられるべきである。
以下に、本願出願の当初の特許請求の範囲に記載された発明を付記する。
[C1]
ハイバンド残差信号に基づいて位相調整パラメータを、エンコーダにおいて、決定することと、
前記位相調整パラメータに基づいて第1の信号の位相を調整することと、前記第1の信号はオーディオ信号のローバンド部分に関連付けられる、
前記オーディオ信号の符号化されたバージョンから前記オーディオ信号の再構成中に位相調整を可能にするために、前記オーディオ信号の前記符号化されたバージョンに前記位相調整パラメータを挿入することと、
ビットストリームの一部としてスピーチデコーダに前記位相調整パラメータを送信することと
を備える、方法。
[C2]
前記第1の信号は高調波による拡張信号であるか、または前記高調波による拡張信号から生成されるハイバンド励起信号である、C1に記載の方法。
[C3]
前記第1の信号の特定の位相調整パラメータを決定することは、特定の周波数における前記ハイバンド残差信号の特定の位相を決定することを備え、前記特定の位相調整パラメータは、前記特定の周波数における前記ハイバンド残差信号の前記特定の位相に関連付けられる量子化された情報を含む、C1に記載の方法。
[C4]
前記特定の周波数における前記ハイバンド残差信号の前記特定の位相を決定することは、
前記ハイバンド残差信号を時間ドメインから周波数ドメインに変換するために、前記ハイバンド残差信号に関して変換演算を実行することと、
前記変換済みのハイバンド残差信号の特定の変換係数を選択することと
を備え、前記特定の変換係数は、前記特定の周波数に関連付けられ、前記特定の位相は前記特定の変換係数に基づいて決定される、C3に記載の方法。
[C5]
前記変換演算は高速フーリエ変換演算に対応する、C4に記載の方法。
[C6]
前記特定の周波数は、前記オーディオ信号のハイバンド部分におけるスピーチ基本ピッチ周波数の倍数に対応する、C3に記載の方法。
[C7]
前記位相調整パラメータは規則的な周波数間隔において決定される、C3に記載の方法。
[C8]
前記第1の信号の前記位相を調整することは、前記特定の位相調整パラメータに基づいて前記特定の周波数における前記第1の信号の第1の位相を調整することを備える、C3に記載の方法。
[C9]
前記特定の周波数における前記第1の信号の前記第1の位相を調整することは、
前記第1の信号を時間ドメインから周波数ドメインに変換するために、前記第1の信号に対して変換演算を実行することと、
位相調整済み信号を生成するために、前記第1の信号が前記周波数ドメインにある間に、前記特定の周波数における前記第1の信号の前記第1の位相を、前記特定の周波数における前記ハイバンド残差信号の前記特定の位相に対応する調整済み位相に置き換えることと、
前記位相調整済み信号を前記周波数ドメインから前記時間ドメインに変換するために、前記位相調整済み信号に対して逆変換演算を実行することと
を備える、C8に記載の方法。
[C10]
前記ハイバンド残差信号のエネルギーレベルを近似する第1のエネルギーレベルを有する少なくとも第1の正弦波形を生成することと、
前記少なくとも1つの正弦波形の特定の位相を決定することと、ここにおいて、前記位相調整パラメータの特定の位相調整パラメータは、前記第1の正弦波形の前記特定の位相に少なくとも部分的に基づく、
前記第1の信号のエネルギーレベルを近似する第2のエネルギーレベルを有する少なくとも第2の正弦波形を生成することと、
前記第2の正弦波形と前記第1の信号との間のエネルギー差を近似する残差波形を生成することと、
再構成済み正弦波形を生成するために、前記特定の位相調整パラメータに基づいて前記第1の正弦波形を再構成することと、
位相調整済みの第1の信号を生成するために、前記残差波形と前記再構成済み正弦波形とを合成することと
をさらに備える、C1に記載の方法。
[C11]
ハイバンド残差信号に基づいて位相調整パラメータを決定するように構成される位相分析器と、
前記位相調整パラメータに基づいて第1の信号の位相を調整するように構成される位相調整器と、前記第1の信号はオーディオ信号のローバンド部分に関連付けられる、
前記オーディオ信号の符号化されたバージョンから前記オーディオ信号の再構成中に位相調整を可能にするために、前記位相調整パラメータを前記オーディオ信号の前記符号化されたバージョンに挿入するように構成されるマルチプレクサと
を備える、装置。
[C12]
前記位相調整パラメータをビットストリームの一部としてスピーチデコーダに送信するように構成される送信機をさらに備える、C11に記載の装置。
[C13]
前記第1の信号は高調波による拡張信号であるか、または前記高調波による拡張信号から生成されるハイバンド励起信号である、C11に記載の装置。
[C14]
前記位相分析器は、特定の周波数における前記ハイバンド残差信号の特定の位相を決定するように構成され、特定の位相調整パラメータは、前記特定の周波数における前記ハイバンド残差信号の前記特定の位相に関連付けられる量子化された情報を含む、C11に記載の装置。
[C15]
前記特定の周波数における前記ハイバンド残差信号の前記特定の位相を決定することは、
前記ハイバンド残差信号を時間ドメインから周波数ドメインに変換するために、前記ハイバンド残差信号に対して変換演算を実行することと、
前記変換済みのハイバンド残差信号の特定の変換係数を選択することと、前記特定の変換係数は、前記特定の周波数に関連付けられ、前記特定の位相は前記特定の変換係数に基づいて決定される、
を備える、C14に記載の装置。
[C16]
前記変換演算は高速フーリエ変換演算に対応する、C15に記載の装置。
[C17]
前記特定の周波数は、前記オーディオ信号のハイバンド部分におけるスピーチ基本ピッチ周波数の倍数に対応する、C14に記載の装置。
[C18]
前記位相分析器は、規則的な周波数間隔において位相調整パラメータを決定するように構成され、前記特定の周波数は前記規則的な周波数間隔の1つの間隔によって規定される周波数に対応する、C14に記載の装置。
[C19]
前記位相調整器は、前記特定の位相調整パラメータに基づいて前記特定の周波数における前記第1の信号の第1の位相を調整するように構成される、C14に記載の装置。
[C20]
前記位相調整器はさらに、
前記第1の信号を時間ドメインから周波数ドメインに変換するために、前記第1の信号に対して変換演算を実行し、
位相調整済み信号を生成するために、前記第1の信号が前記周波数ドメインにある間に、前記特定の周波数における前記第1の信号の前記第1の位相を、前記特定の周波数における前記ハイバンド残差信号の前記特定の位相に置き換え、
前記位相調整済み信号を前記周波数ドメインから前記時間ドメインに変換するために、前記位相調整済み信号に対して逆変換演算を実行するように構成される、C19に記載の装置。
[C21]
ハイバンド残差信号に基づいて、位相調整パラメータを決定するための手段と、
前記位相調整パラメータに基づいて第1の信号の位相を調整するための手段と、前記第1の信号はオーディオ信号のローバンド部分に関連付けられる、
前記オーディオ信号の符号化されたバージョンから前記オーディオ信号の再構成中に位相調整を可能にするために、前記位相調整パラメータを前記オーディオ信号の前記符号化されたバージョンに挿入するための手段と、
前記位相調整パラメータをビットストリームの一部としてスピーチデコーダに送信するための手段とを備える、装置。
[C22]
前記第1の信号は高調波による拡張信号であるか、または前記高調波による拡張信号から生成されるハイバンド励起信号である、C21に記載の装置。
[C23]
前記第1の信号の特定の位相調整パラメータを決定するための前記手段は、特定の周波数における前記ハイバンド残差信号の特定の位相を決定するための手段を備え、前記特定の位相調整パラメータは、前記特定の周波数における前記ハイバンド残差信号の前記特定の位相に関連付けられる量子化された情報を含む、C21に記載の装置。
[C24]
前記特定の周波数における前記ハイバンド残差信号の前記特定の位相を決定するための前記手段は、
前記ハイバンド残差信号を時間ドメインから周波数ドメインに変換するために、前記ハイバンド残差信号に対して変換演算を実行するための手段と、
前記変換済みのハイバンド残差信号の特定の変換係数を選択するための手段と、前記特定の変換係数は、前記特定の周波数に関連付けられ、前記特定の位相は前記特定の変換係数に基づいて決定される、
を備える、C23に記載の装置。
[C25]
前記変換演算は高速フーリエ変換演算に対応する、C24に記載の装置。
[C26]
前記特定の周波数は、前記オーディオ信号のハイバンド部分におけるスピーチ基本ピッチ周波数の倍数に対応する、C23に記載の装置。
[C27]
前記位相調整パラメータは規則的な周波数間隔において決定される、C23に記載の装置。
[C28]
デコーダを備え、前記デコーダは、
エンコーダから符号化されたオーディオ信号を受信することと、前記符号化されたオーディオ信号は前記エンコーダにおいて生成されたハイバンド残差信号に基づく位相調整パラメータを備える、
前記符号化されたオーディオ信号に基づいて、再構成された第1の信号を生成することと、前記再構成された第1の信号は、オーディオ信号のローバンド部分に関連付けられる、前記エンコーダにおいて生成された第1の信号の再構成されたバージョンに対応する、
前記再構成された第1の信号の位相を調整するために、前記再構成された第1の信号に前記位相調整パラメータを適用することと、
前記位相調整済みの再構成された第1の信号に基づいて、前記オーディオ信号を再構成することと
を行うように構成される、装置。
[C29]
前記再構成された第1の信号は高調波による拡張信号である、C28に記載の装置。
[C30]
前記再構成された第1の信号は、高調波による拡張信号から生成されるハイバンド励起信号である、C28に記載の装置。

Claims (29)

  1. オーディオ信号のハイバンド部分に対して線形予測分析を実行することに基づいて、ハイバンド残差信号を生成することと、
    前記ハイバンド残差信号に基づいて位相調整パラメータを、エンコーダにおいて、決定することと、ここにおいて、前記位相調整パラメータのうちの少なくとも1つの位相調整パラメータは、前記ハイバンド残差信号のエネルギーレベルを近似する第1の正弦波形に少なくとも部分的に基づく、
    前記位相調整パラメータに基づいて第1の信号の位相を、前記エンコーダにおいて、調整することと、前記第1の信号は前記オーディオ信号のローバンド部分に基づき、位相調整済みの第1の信号は、前記第1の信号のエネルギーレベルを近似する第2の正弦波形に少なくとも部分的に基づいて生成される
    前記オーディオ信号の符号化されたバージョンから前記オーディオ信号の再構成中に位相調整を可能にするために、前記オーディオ信号の前記符号化されたバージョンに前記位相調整パラメータを挿入することと、前記オーディオ信号の前記符号化されたバージョンは、前記位相が調整された後の前記第1の信号に基づくサイド情報を含む、
    ビットストリームの一部としてスピーチデコーダに前記オーディオ信号の前記符号化されたバージョンにおける前記位相調整パラメータを送信することと
    を備える、方法。
  2. 高調波による拡張信号に基づくか、または前記高調波による拡張信号から生成されるハイバンド励起信号に基づいて、前記第1の信号を生成することをさらに備え、前記高調波による拡張信号は、前記オーディオ信号の前記ローバンド部分に基づく
    求項1に記載の方法。
  3. 定の位相調整パラメータを決定することは、特定の周波数における前記ハイバンド残差信号の特定の位相を決定することを備え、前記特定の位相調整パラメータは、前記特定の周波数における前記ハイバンド残差信号の前記特定の位相に関連付けられる量子化された情報を含む、請求項1に記載の方法。
  4. 前記特定の周波数における前記ハイバンド残差信号の前記特定の位相を決定することは、
    前記ハイバンド残差信号を時間ドメインから周波数ドメインに変換するために、前記ハイバンド残差信号に対して変換演算を実行することと、ここにおいて、前記変換演算は、高速フーリエ変換演算に対応する、
    前記変換されたハイバンド残差信号の特定の変換係数を選択することと
    を備え、前記特定の変換係数は、前記特定の周波数に関連付けられ、前記特定の位相は前記特定の変換係数に基づいて決定される、請求項3に記載の方法。
  5. 前記第1の信号の前記位相を調整することは、前記特定の位相調整パラメータに基づいて前記特定の周波数における前記第1の信号の第1の位相を調整することを備える、請求項3に記載の方法。
  6. 前記特定の周波数における前記第1の信号の前記第1の位相を調整することは、
    前記第1の信号を時間ドメインから周波数ドメインに変換するために、前記第1の信号に対して変換演算を実行することと、
    位相調整済み信号を生成するために、前記第1の信号が前記周波数ドメインにある間に、前記特定の周波数における前記第1の信号の前記第1の位相を、前記特定の周波数における前記ハイバンド残差信号の前記特定の位相に対応する調整済み位相に置き換えることと、
    前記位相調整済み信号を前記周波数ドメインから前記時間ドメインに変換するために、前記位相調整済み信号に対して逆変換演算を実行することと
    を備える、請求項に記載の方法。
  7. 記第1の正弦波形を生成することと、
    前記第1の正弦波形の特定の位相を決定することと、ここにおいて、前記少なくとも1つの位相調整パラメータは、前記第1の正弦波形の前記特定の位相に少なくとも部分的に基づく、
    記第2の正弦波形を生成することと、
    前記第2の正弦波形と前記第1の信号との間のエネルギー差を近似する残差波形を生成することと、
    再構成済み正弦波形を生成するために、前記特定の位相調整パラメータに基づいて前記第1の正弦波形を再構成することと、
    前記位相調整済みの第1の信号を生成するために、前記残差波形と前記再構成済み正弦波形とを合成することと
    をさらに備える、請求項1に記載の方法。
  8. 前記第1の信号の前記位相は、前記第1の信号の位相と少なくとも1つの特定の周波数範囲のための前記ハイバンド残差信号の位相とを合わせるように調整される、請求項1に記載の方法。
  9. 前記サイド情報は、推定された利得形状データを含む、請求項1に記載の方法。
  10. 前記位相調整パラメータの第1の位相調整パラメータは、前記ハイバンド残差信号のエネルギーレベルを近似する正弦波形に少なくとも部分的に基づく、請求項1に記載の方法。
  11. ハイバンド残差信号に基づいて位相調整パラメータを決定するように構成される位相分析器と、前記ハイバンド残差信号は、オーディオ信号のハイバンド部分に対して実行される線形予測分析に基づき、前記位相調整パラメータのうちの少なくとも1つの位相調整パラメータは、前記ハイバンド残差信号のエネルギーレベルを近似する第1の正弦波形に少なくとも部分的に基づく、
    前記位相調整パラメータに基づいて第1の信号の位相を調整するように構成される位相調整器と、前記第1の信号は前記オーディオ信号のローバンド部分に基づき、位相調整済みの第1の信号は、前記第1の信号のエネルギーレベルを近似する第2の正弦波形に少なくとも部分的に基づいて生成される
    前記オーディオ信号の符号化されたバージョンから前記オーディオ信号の再構成中に位相調整を可能にするために、前記位相調整パラメータを前記オーディオ信号の前記符号化されたバージョンに挿入するように構成されるマルチプレクサと、前記オーディオ信号の前記符号化されたバージョンは、前記位相が調整された後の前記第1の信号に基づくサイド情報を含む、
    を備える、装置。
  12. 第1の線形予測分析およびコーディングモジュールを含み、前記ハイバンド残差信号を生成するように構成される、ハイバンド分析モジュールと、
    前記オーディオ信号の前記符号化されたバージョンにおける前記位相調整パラメータをビットストリームの一部としてスピーチデコーダに送信するように構成される送信機をさらに備える、請求項11に記載の装置。
  13. 前記第1の信号は高調波による拡張信号であるか、または前記高調波による拡張信号から生成されるハイバンド励起信号である、請求項11に記載の装置。
  14. 前記位相分析器は、特定の周波数における前記ハイバンド残差信号の特定の位相を決定するように構成され、特定の位相調整パラメータは、前記特定の周波数における前記ハイバンド残差信号の前記特定の位相に関連付けられる量子化された情報を含む、請求項11に記載の装置。
  15. 前記特定の周波数における前記ハイバンド残差信号の前記特定の位相を決定することは、
    前記ハイバンド残差信号を時間ドメインから周波数ドメインに変換するために、前記ハイバンド残差信号に対して変換演算を実行することと、
    前記変換されたハイバンド残差信号の特定の変換係数を選択することと、前記特定の変換係数は、前記特定の周波数に関連付けられ、前記特定の位相は前記特定の変換係数に基づいて決定される、
    を備える、請求項14に記載の装置。
  16. 前記位相調整器は、前記特定の位相調整パラメータに基づいて前記特定の周波数における前記第1の信号の第1の位相を調整するように構成され前記位相調整器はさらに、
    前記第1の信号を時間ドメインから周波数ドメインに変換するために、前記第1の信号に対して変換演算を実行し、
    位相調整済み信号を生成するために、前記第1の信号が前記周波数ドメインにある間に、前記特定の周波数における前記第1の信号の前記第1の位相を、前記特定の周波数における前記ハイバンド残差信号の前記特定の位相に置き換え、
    前記位相調整済み信号を前記周波数ドメインから前記時間ドメインに変換するために、前記位相調整済み信号に対して逆変換演算を実行するように構成される、請求項14に記載の装置。
  17. アンテナと、
    前記アンテナに結合され、前記オーディオ信号の前記符号化されたバージョンを送信するように構成される送信機と
    をさらに備える、請求項11に記載の装置。
  18. 前記位相分析器、前記位相調整器、前記マルチプレクサ、および前記送信機は、モバイルデバイス内に組み込まれる、請求項17に記載の装置。
  19. 前記特定の周波数は、前記オーディオ信号のハイバンド部分におけるスピーチ基本ピッチ周波数の倍数に対応する、請求項14に記載の装置。
  20. 前記位相分析器は、規則的な周波数間隔において位相調整パラメータを決定するように構成され、前記特定の周波数は前記規則的な周波数間隔の1つの間隔によって規定される周波数に対応する、請求項14に記載の装置。
  21. ハイバンド残差信号に基づいて、位相調整パラメータを決定するための手段と、前記ハイバンド残差信号は、オーディオ信号のハイバンド部分に対して実行される線形予測分析に基づき、前記位相調整パラメータのうちの少なくとも1つの位相調整パラメータは、前記ハイバンド残差信号のエネルギーレベルを近似する第1の正弦波形に少なくとも部分的に基づく、
    前記位相調整パラメータに基づいて第1の信号の位相を調整するための手段と、前記第1の信号はオーディオ信号のローバンド部分に基づき、位相調整済みの第1の信号は、前記第1の信号のエネルギーレベルを近似する第2の正弦波形に少なくとも部分的に基づいて生成される、
    前記オーディオ信号の符号化されたバージョンから前記オーディオ信号の再構成中に位相調整を可能にするために、前記位相調整パラメータを前記オーディオ信号の前記符号化されたバージョンに挿入するための手段と、前記オーディオ信号の前記符号化されたバージョンは、前記位相が調整された後の前記第1の信号に基づくサイド情報を含む、
    前記オーディオ信号の前記符号化されたバージョンにおける前記位相調整パラメータをビットストリームの一部としてスピーチデコーダに送信するための手段とを備える、装置。
  22. 前記オーディオ信号の前記ローバンド部分に対して第1の分析を実行するための手段をさらに備え、ここにおいて前記第1の分析を実行するための前記手段は、第1の線形予測分析およびコーディングモジュールを備え、前記第1の分析に基づいて線形予測残差信号を生成するように構成され前記第1の信号は高調波による拡張信号であるか、または前記高調波による拡張信号から生成されるハイバンド励起信号である、請求項21に記載の装置。
  23. 決定するための前記手段、調整するための前記手段、挿入するための前記手段、および送信するための前記手段は、モバイルデバイスに組み込まれる、請求項22に記載の装置。
  24. 決定するための前記手段は、特定の周波数における前記ハイバンド残差信号の特定の位相を決定するための手段を備え、前記特定の周波数における前記ハイバンド残差信号の前記特定の位相を決定するための前記手段は、
    前記ハイバンド残差信号を時間ドメインから周波数ドメインに変換するために、前記ハイバンド残差信号に対して変換演算を実行するための手段と、
    前記変換されたハイバンド残差信号の特定の変換係数を選択するための手段と、前記特定の変換係数は、前記特定の周波数に関連付けられ、前記特定の位相は前記特定の変換係数に基づいて決定される、
    を備える、請求項21に記載の装置。
  25. 前記変換演算は高速フーリエ変換演算に対応し、前記特定の周波数は、前記オーディオ信号のハイバンド部分におけるスピーチ基本ピッチ周波数の倍数に対応する、請求項24に記載の装置。
  26. デコーダを備え、前記デコーダは、
    エンコーダから符号化されたオーディオ信号を受信することと、前記符号化されたオーディオ信号は、前記エンコーダにおいてオーディオ信号のハイバンド部分に対して行われる線形予測分析を介して生成されるハイバンド残差信号に基づく位相調整パラメータを備え、前記位相調整パラメータのうちの少なくとも1つの位相調整パラメータは、前記ハイバンド残差信号のエネルギーレベルを近似する第1の正弦波形に少なくとも部分的に基づき、前記符号化されたオーディオ信号は、前記エンコーダにおいて生成される第1の信号に基づくサイド情報をさらに備える、
    前記符号化されたオーディオ信号に基づいて、再構成された信号を生成することと、前記再構成された信号は、前記第1の信号の再構成されたバージョンに対応し、前記第1の信号は前記オーディオ信号のローバンド部分に基づき、位相調整済みの第1の信号は、前記第1の信号のエネルギーレベルを近似する第2の正弦波形に少なくとも部分的に基づいて生成される
    前記再構成された信号の位相を調整するために、前記再構成された信号に前記位相調整パラメータを適用することと、
    前記位相調整済みの再構成された信号に基づいて、および前記サイド情報に基づいて、前記オーディオ信号を再構成することと
    を行うように構成される、装置。
  27. 前記線形予測分析は、前記エンコーダのハイバンド分析モジュールの線形予測分析およびコーディングモジュールによって実行され、前記再構成された信号は高調波による拡張信号または高調波による拡張信号から生成されるハイバンド励起信号である、請求項26に記載の装置。
  28. アンテナと、
    前記アンテナに結合され、前記符号化されたオーディオ信号を受信するように構成される受信機と
    をさらに備える、請求項26に記載の装置。
  29. 前記デコーダおよび前記受信機は、モバイルデバイスに組み込まれる、請求項28に記載の装置。
JP2016533203A 2013-11-22 2014-11-21 ハイバンドコーディングにおける選択的位相補償 Expired - Fee Related JP6345780B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361907674P 2013-11-22 2013-11-22
US61/907,674 2013-11-22
US14/550,589 US9858941B2 (en) 2013-11-22 2014-11-21 Selective phase compensation in high band coding of an audio signal
PCT/US2014/066945 WO2015077641A1 (en) 2013-11-22 2014-11-21 Selective phase compensation in high band coding
US14/550,589 2014-11-21

Publications (3)

Publication Number Publication Date
JP2016539369A JP2016539369A (ja) 2016-12-15
JP2016539369A5 JP2016539369A5 (ja) 2018-03-22
JP6345780B2 true JP6345780B2 (ja) 2018-06-20

Family

ID=52114054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016533203A Expired - Fee Related JP6345780B2 (ja) 2013-11-22 2014-11-21 ハイバンドコーディングにおける選択的位相補償

Country Status (5)

Country Link
US (1) US9858941B2 (ja)
JP (1) JP6345780B2 (ja)
KR (1) KR20160087827A (ja)
CN (1) CN105765655A (ja)
WO (1) WO2015077641A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3011408A1 (fr) * 2013-09-30 2015-04-03 Orange Re-echantillonnage d'un signal audio pour un codage/decodage a bas retard
WO2015077641A1 (en) * 2013-11-22 2015-05-28 Qualcomm Incorporated Selective phase compensation in high band coding
EP2963645A1 (en) 2014-07-01 2016-01-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Calculator and method for determining phase correction data for an audio signal
CN107077849B (zh) * 2014-11-07 2020-09-08 三星电子株式会社 用于恢复音频信号的方法和设备
US10847170B2 (en) 2015-06-18 2020-11-24 Qualcomm Incorporated Device and method for generating a high-band signal from non-linearly processed sub-ranges
US10152977B2 (en) * 2015-11-20 2018-12-11 Qualcomm Incorporated Encoding of multiple audio signals
JP6611042B2 (ja) * 2015-12-02 2019-11-27 パナソニックIpマネジメント株式会社 音声信号復号装置及び音声信号復号方法
US10148416B2 (en) * 2016-09-02 2018-12-04 Intel Corporation Signal phase optimization in memory interface training
US10224042B2 (en) * 2016-10-31 2019-03-05 Qualcomm Incorporated Encoding of multiple audio signals
US10825467B2 (en) * 2017-04-21 2020-11-03 Qualcomm Incorporated Non-harmonic speech detection and bandwidth extension in a multi-source environment
US10957331B2 (en) * 2018-12-17 2021-03-23 Microsoft Technology Licensing, Llc Phase reconstruction in a speech decoder
US10847172B2 (en) * 2018-12-17 2020-11-24 Microsoft Technology Licensing, Llc Phase quantization in a speech encoder
CN118038877A (zh) * 2022-11-01 2024-05-14 抖音视界有限公司 一种音频信号的编码、解码方法及装置
EP4375999A1 (en) * 2022-11-28 2024-05-29 GN Audio A/S Audio device with signal parameter-based processing, related methods and systems

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4433434A (en) * 1981-12-28 1984-02-21 Mozer Forrest Shrago Method and apparatus for time domain compression and synthesis of audible signals
AU3702497A (en) 1996-07-30 1998-02-20 British Telecommunications Public Limited Company Speech coding
US5886276A (en) * 1997-01-16 1999-03-23 The Board Of Trustees Of The Leland Stanford Junior University System and method for multiresolution scalable audio signal encoding
SE512719C2 (sv) 1997-06-10 2000-05-02 Lars Gustaf Liljeryd En metod och anordning för reduktion av dataflöde baserad på harmonisk bandbreddsexpansion
US6266644B1 (en) * 1998-09-26 2001-07-24 Liquid Audio, Inc. Audio encoding apparatus and methods
CN1272911C (zh) * 2001-07-13 2006-08-30 松下电器产业株式会社 音频信号解码装置及音频信号编码装置
DE60202881T2 (de) * 2001-11-29 2006-01-19 Coding Technologies Ab Wiederherstellung von hochfrequenzkomponenten
US20030187663A1 (en) * 2002-03-28 2003-10-02 Truman Michael Mead Broadband frequency translation for high frequency regeneration
JP2004054526A (ja) * 2002-07-18 2004-02-19 Canon Finetech Inc 画像処理システム、印刷装置、制御方法、制御コマンド実行方法、プログラムおよび記録媒体
BRPI0412717A (pt) * 2003-07-18 2006-09-26 Koninkl Philips Electronics Nv métodos para codificar um sinal e para decodificar um fluxo de áudio, codoficador de áudio, reprodutor de áudio, sistema de áudio, fluxo de áudio, e, meio de armazenagem
KR100707174B1 (ko) * 2004-12-31 2007-04-13 삼성전자주식회사 광대역 음성 부호화 및 복호화 시스템에서 고대역 음성부호화 및 복호화 장치와 그 방법
CA2603246C (en) 2005-04-01 2012-07-17 Qualcomm Incorporated Systems, methods, and apparatus for anti-sparseness filtering
KR101171098B1 (ko) * 2005-07-22 2012-08-20 삼성전자주식회사 혼합 구조의 스케일러블 음성 부호화 방법 및 장치
US7953605B2 (en) * 2005-10-07 2011-05-31 Deepen Sinha Method and apparatus for audio encoding and decoding using wideband psychoacoustic modeling and bandwidth extension
US7546237B2 (en) * 2005-12-23 2009-06-09 Qnx Software Systems (Wavemakers), Inc. Bandwidth extension of narrowband speech
EP1987513B1 (fr) * 2006-02-06 2009-09-09 France Telecom Procede et dispositif de codage hierarchique d'un signal audio source, procede et dispositif de decodage, programmes et signal correspondants
CN101089951B (zh) * 2006-06-16 2011-08-31 北京天籁传音数字技术有限公司 频带扩展编码方法及装置和解码方法及装置
KR101565919B1 (ko) * 2006-11-17 2015-11-05 삼성전자주식회사 고주파수 신호 부호화 및 복호화 방법 및 장치
KR101411900B1 (ko) * 2007-05-08 2014-06-26 삼성전자주식회사 오디오 신호의 부호화 및 복호화 방법 및 장치
EP2144229A1 (en) 2008-07-11 2010-01-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Efficient use of phase information in audio encoding and decoding
JP4932917B2 (ja) * 2009-04-03 2012-05-16 株式会社エヌ・ティ・ティ・ドコモ 音声復号装置、音声復号方法、及び音声復号プログラム
US8484020B2 (en) * 2009-10-23 2013-07-09 Qualcomm Incorporated Determining an upperband signal from a narrowband signal
US8326607B2 (en) * 2010-01-11 2012-12-04 Sony Ericsson Mobile Communications Ab Method and arrangement for enhancing speech quality
EP2545551B1 (en) * 2010-03-09 2017-10-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Improved magnitude response and temporal alignment in phase vocoder based bandwidth extension for audio signals
JP5743137B2 (ja) * 2011-01-14 2015-07-01 ソニー株式会社 信号処理装置および方法、並びにプログラム
EP2631906A1 (en) * 2012-02-27 2013-08-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Phase coherence control for harmonic signals in perceptual audio codecs
WO2015077641A1 (en) * 2013-11-22 2015-05-28 Qualcomm Incorporated Selective phase compensation in high band coding
US9564141B2 (en) * 2014-02-13 2017-02-07 Qualcomm Incorporated Harmonic bandwidth extension of audio signals
US9542955B2 (en) * 2014-03-31 2017-01-10 Qualcomm Incorporated High-band signal coding using multiple sub-bands

Also Published As

Publication number Publication date
KR20160087827A (ko) 2016-07-22
US20150149156A1 (en) 2015-05-28
WO2015077641A1 (en) 2015-05-28
JP2016539369A (ja) 2016-12-15
US9858941B2 (en) 2018-01-02
CN105765655A (zh) 2016-07-13

Similar Documents

Publication Publication Date Title
JP6345780B2 (ja) ハイバンドコーディングにおける選択的位相補償
JP6538209B2 (ja) ノイズ変調とゲイン調整とを実行するシステムおよび方法
US10410652B2 (en) Estimation of mixing factors to generate high-band excitation signal
JP6196004B2 (ja) ハイバンド信号特性に基づいた時間利得調整
JP6526704B2 (ja) オーディオ信号を処理するための方法、装置、およびコンピュータ可読媒体
JP6396538B2 (ja) 複数のサブバンドを使用するハイバンド信号コーディング
JP6262337B2 (ja) ハイバンド時間的特性の改善された追跡のための利得形状推定
JP2016541032A5 (ja)
RU2667973C2 (ru) Способы и системы переключения технологий кодирования в устройстве
JP2016532912A (ja) スケーリングされた高帯域励磁を使用する音声信号の帯域幅拡張のための方法、装置、デバイス、コンピュータ可読媒体
EP3072130A1 (en) Selective phase compensation in high band coding

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171026

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180205

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180205

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180523

R150 Certificate of patent or registration of utility model

Ref document number: 6345780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees