JP6343946B2 - Rolled steel for case hardening and carburized parts using the same - Google Patents

Rolled steel for case hardening and carburized parts using the same Download PDF

Info

Publication number
JP6343946B2
JP6343946B2 JP2014016209A JP2014016209A JP6343946B2 JP 6343946 B2 JP6343946 B2 JP 6343946B2 JP 2014016209 A JP2014016209 A JP 2014016209A JP 2014016209 A JP2014016209 A JP 2014016209A JP 6343946 B2 JP6343946 B2 JP 6343946B2
Authority
JP
Japan
Prior art keywords
steel
less
carburized
mass
carburizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014016209A
Other languages
Japanese (ja)
Other versions
JP2015140481A (en
Inventor
恭平 中山
恭平 中山
森田 敏之
敏之 森田
井上 圭介
圭介 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2014016209A priority Critical patent/JP6343946B2/en
Publication of JP2015140481A publication Critical patent/JP2015140481A/en
Application granted granted Critical
Publication of JP6343946B2 publication Critical patent/JP6343946B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は冷間鍛造性に優れた肌焼用圧延鋼材及びこれを用いた浸炭部品に関する。 The present invention relates to a case-hardened rolled steel material having excellent cold forgeability and a carburized component using the same.

鋼材を歯車その他の部品形状に加工する手段の1つとして、高温下で鋼材を鍛造する熱間鍛造が広く行われている。
しかし熱間鍛造では被鍛材を高温に加熱しなければならないとともに、金型もまた加熱が必要であることから熱エネルギーを多く消費し、また加工の工数も多くなってしまう問題がある。
更に鍛造後における部品の切削加工にも多くの時間と手間を要してしまい、所要コストが高くなってしまう問題がある。
そこで加工手段として、熱間鍛造を冷間鍛造に置き換えることが進められている。冷間鍛造では加熱が不要であり、また切削加工を行うにしても加工量が少なくて済むことから所要コストを低減することができる。
As one of means for processing a steel material into a gear or other part shape, hot forging forging the steel material at a high temperature is widely performed.
However, in hot forging, the work material must be heated to a high temperature, and the mold also needs to be heated, so that there is a problem that a large amount of heat energy is consumed and the number of processing steps increases.
Furthermore, there is a problem that a lot of time and labor are required for cutting parts after forging, and the required cost increases.
Therefore, as a processing means, replacement of hot forging with cold forging is in progress. In cold forging, heating is unnecessary, and even if cutting is performed, the amount of processing is small, so that the required cost can be reduced.

しかしながら冷間鍛造では熱間鍛造と比較して被鍛材の変形抵抗が大きくなるため、金型の摩耗や割れが大きな問題となる。
この問題を解決するため、従来にあっては合金元素の添加を抑制することで素材(鋼材)の硬さを低下させ、鍛造加工する際の変形抵抗を小さくする手法が取られてきた。
しかしながら合金元素の添加を減らすことで硬さ,変形抵抗を小さくすることは、部品の強度を低下させてしまうことに繋がる。
However, in cold forging, the deformation resistance of the work material increases as compared with hot forging, so that wear and cracking of the mold become a serious problem.
In order to solve this problem, conventionally, a technique has been adopted in which the addition of alloying elements is suppressed to reduce the hardness of the material (steel material) and to reduce the deformation resistance during forging.
However, reducing the hardness and deformation resistance by reducing the addition of alloy elements leads to a reduction in the strength of the component.

尚、下記特許文献1には「冷間加工性と浸炭時の粗大粒防止特性に優れた肌焼用鋼材およびその製造方法」についての発明が示され、そこにおいて冷間加工性を確保するためCrを1.25%以下としてB添加で焼入性を確保し、また結晶粒の異常粒成長を抑制することを狙いとして、直径0.2μm以下のTiC,NbC析出物粒子を10個/μm以上とするようにTiやNbの析出物粒子量を規定する点が開示されている。
この特許文献1に記載のものでは、TiCを析出するためにTiを多く添加しており(Ti-Nバランスは本発明とは異なったものとなっている)、また本発明では不純物成分の扱いとなるNbを添加したものがあり、本発明とは異なる。
In addition, the following Patent Document 1 discloses an invention relating to “a steel material for skin hardening excellent in cold workability and coarse grain prevention characteristics during carburizing and a manufacturing method thereof”, in order to ensure cold workability there. 10% / μm 2 TiC and NbC precipitate particles with a diameter of 0.2 μm or less with the aim of ensuring hardenability by adding B with Cr being 1.25% or less and suppressing abnormal grain growth. The point which prescribes | regulates the amount of precipitate particles of Ti and Nb is disclosed.
In the one described in Patent Document 1, a large amount of Ti is added to precipitate TiC (Ti-N balance is different from that of the present invention). This is different from the present invention.

特開2004−183064号公報JP 2004-183064 A

本発明は以上のような事情を背景とし、合金元素を特に減らさなくても効果的に冷間鍛造性を良くすることができ、加工のための所要コストを低減することのできる肌焼用圧延鋼材及びこれを用いた浸炭部品を提供することを目的としてなされたものである。 The present invention is the background of the above circumstances, even without particular reduce the alloy element can be effectively improve the cold forgeability, for rolling hardening capable of reducing the required cost for processing It was made for the purpose of providing steel materials and carburized parts using the same.

而して請求項1は肌焼用圧延鋼材に関するもので、質量%でC:0.10〜0.30%,Si:0.01〜1.50%,Mn:0.40〜1.50%,S:0.01〜0.10%,P:0.03%以下,Cu:0.05〜1.00%,Ni:0.05〜1.00%,Cr:1.12〜2.00%,Mo:0.01〜0.50%,Nb:0.001%以下,s-Al:0.005〜0.050%,N:0.005〜0.030%,Ti:0.001〜0.150%,Zr:0.000〜0.300%,残部Fe及び不可避的不純物の組成を有し、且つTi,Zr,Nの含有量[Ti],[Zr],[N]が下記式(1)を満たす鋼から成り、
|[Ti]/47.9+[Zr]/91.2−[N]/14|/100≦3.5×10 -6 モル/g・・・式(1)
圧延直後の鋼材の組織がフェライト・パーライト組織で、光学顕微鏡の100倍視野且つ5視野での「JIS G 0552 鋼−結晶粒度の顕微鏡試験方法」に準じて測定されるフェライトの平均結晶粒度が8番以下であることを特徴とする。
請求項2は、質量%でC:0.10〜0.30%,Si:0.01〜1.50%,Mn:0.40〜1.50%,S:0.01〜0.l0%,P:0.03%以下,Cu:0.05〜1.00%,Ni:0.05〜1.00%,Cr:1.16〜2.00%,Mo:0.01〜0.50%,Nb:0.001%以下,s-A1:0.001〜0.008%,N:0.005〜0.030%,Ti:<0.001%,Zr:<0.001%,残部Fe及び不可避的不純物の組成を有する鋼から成り、
圧延直後の鋼材の組織がフェライト・パーライト組織で、光学顕微鏡の100倍視野且つ5視野での「JIS G 0552 鋼−結晶粒度の顕微鏡試験方法」に準じて測定されるフェライトの平均結晶粒度が8番以下であることを特徴とする。
請求項3は、請求項1,2の何れかにおいて、前記鋼が、質量%でB:0.001〜0.010%を更に含有していることを特徴とする。
Thus, claim 1 relates to a rolled steel material for case hardening , and in mass%, C: 0.10 to 0.30%, Si: 0.01 to 1.50%, Mn: 0.40 to 1.50%, S: 0.01 to 0.10%, P: 0.03 %, Cu: 0.05 to 1.00%, Ni: 0.05 to 1.00%, Cr: 1.12 to 2.00%, Mo: 0.01 to 0.50%, Nb: 0.001% or less, s-Al: 0.005 to 0.050%, N: 0.005 to 0.030%, Ti: 0.001 to 0.150%, Zr: 0.000 to 0.300%, the composition of the balance Fe and inevitable impurities, and the contents of Ti, Zr, and N [Ti], [Zr], [N] are It consists of steel that satisfies the following formula (1),
| [Ti] /47.9+ [Zr] /91.2− [N] /14|/100≦3.5×10 −6 mol / g (1)
The structure of the steel immediately after rolling is a ferrite-pearlite structure, and the average grain size of ferrite measured according to “JIS G 055 2 Steel—Microscopic Test Method for Grain Size” in a 100 × field of view and 5 fields of view of an optical microscope is No. 8 or less.
Claim 2 is, in mass%, C: 0.10 to 0.30%, Si: 0.01 to 1.50%, Mn: 0.40 to 1.50%, S: 0.01 to 0.10%, P: 0.03% or less, Cu: 0.05 to 1.00% , Ni: 0.05 to 1.00%, Cr: 1.16 to 2.00%, Mo: 0.01 to 0.50%, Nb: 0.001% or less, s-A1: 0.001 to 0.008%, N: 0.005 to 0.030%, Ti: <0.001%, Zr: <0.001%, consisting of steel with the balance Fe and inevitable impurity composition,
The structure of the steel immediately after rolling is a ferrite / pearlite structure, and the average grain size of ferrite measured according to “JIS G 0552 Steel—Microscopic Test Method for Grain Size” in a field of view of 100 times and 5 fields of an optical microscope is 8 It is characterized by being less than the number.
A third aspect of the present invention is characterized in that, in any one of the first and second aspects, the steel further contains B: 0.001 to 0.010% by mass%.

請求項は浸炭部品に関するもので、請求項1〜3の何れかに記載の肌焼用圧延鋼材を用いて、冷間鍛造にて部品形状に加工し、浸炭焼入れして成ることを特徴とする。 Claim 4 relates to carburized parts, wherein the case- hardened rolled steel material according to any one of claims 1 to 3 is processed into a part shape by cold forging and carburized and quenched. To do.

請求項のものは、質量%でC:0.10〜0.30%,Si:0.01〜1.50%,Mn:0.40〜1.50%,S:0.01〜0.10%,P:0.03%以下,Cu:0.05〜1.00%,Ni:0.05〜1.00%,Cr:1.12〜2.00%,Mo:0.01〜0.50%,Nb:0.001%以下,s-Al:0.005〜0.050%,N:0.005〜0.030%,Ti:0.001〜0.150%,Zr:0.000〜0.300%,残部Fe及び不可避的不純物の組成を有し、且つTi,Zr,Nの含有量[Ti],[Zr],[N]が下記式(1)を満たす鋼から成り、
|[Ti]/47.9+[Zr]/91.2−[N]/14|/100≦3.5×10 -6 モル/g・・・式(1)
冷間鍛造にて部品形状に加工し、浸炭焼入れして成る部品であって、浸炭焼入後における旧オーステナイト粒の粒界面積1mm2当りのTiC,AlN,ZrCの析出物粒子量が4.5×10-10モル以下であることを特徴とする。
請求項6のものは、質量%でC:0.10〜0.30%,Si:0.01〜1.50%,Mn:0.40〜1.50%,S:0.01〜0.l0%,P:0.03%以下,Cu:0.05〜1.00%,Ni:0.05〜1.00%,Cr:1.16〜2.00%,Mo:0.01〜0.50%,Nb:0.001%以下,s-A1:0.001〜0.008%,N:0.005〜0.030%,Ti:<0.001%,Zr:<0.001%,残部Fe及び不可避的不純物の組成を有する鋼から成り、
冷間鍛造にて部品形状に加工し、浸炭焼入れして成る部品であって、浸炭焼入後における旧オーステナイト粒の粒界面積1mm 2 当りのTiC,AlN,ZrCの析出物粒子量が4.5×10 -10 モル以下であることを特徴とする。
請求項7のものは、請求項5,6の何れかにおいて、前記鋼が、質量%でB:0.001〜0.010%を更に含有していることを特徴とする。
In the case of claim 5 , C: 0.10 to 0.30% in mass%, Si: 0.01 to 1.50%, Mn: 0.40 to 1.50%, S: 0.01 to 0.10%, P: 0.03% or less, Cu: 0.05 to 1.00% , Ni: 0.05-1.00%, Cr: 1.12-2.00%, Mo: 0.01-0.50%, Nb: 0.001% or less, s-Al: 0.005-0.050%, N: 0.005-0.030%, Ti: 0.001-0.150% , Zr: 0.000 to 0.300%, a steel having the balance of Fe and inevitable impurities, and the contents of Ti, Zr, and N [Ti], [Zr], and [N] satisfy the following formula (1) Consisting of
| [Ti] /47.9+ [Zr] /91.2− [N] /14|/100≦3.5×10 −6 mol / g (1)
Parts formed by cold forging and carburized and quenched, and the amount of precipitate particles of TiC, AlN, and ZrC per 1 mm 2 of grain interface area of prior austenite grains after carburizing and quenching is 4.5 × 10 -10 mol or less.
According to the sixth aspect, in mass%, C: 0.10 to 0.30%, Si: 0.01 to 1.50%, Mn: 0.40 to 1.50%, S: 0.01 to 0.10%, P: 0.03% or less, Cu: 0.05 to 1.00%, Ni: 0.05 to 1.00%, Cr: 1.16 to 2.00%, Mo: 0.01 to 0.50%, Nb: 0.001% or less, s-A1: 0.001 to 0.008%, N: 0.005 to 0.030%, Ti: <0.001 %, Zr: <0.001%, consisting of steel with the balance Fe and inevitable impurity composition,
Parts formed by cold forging and carburized and quenched, and the amount of precipitate particles of TiC, AlN, and ZrC per 1 mm 2 of grain interface area of prior austenite grains after carburizing and quenching is 4.5 × 10 -10 mol or less.
A seventh aspect is characterized in that, in any one of the fifth and sixth aspects, the steel further contains B: 0.001 to 0.010% by mass%.

請求項のものは、質量%でC:0.10〜0.30%,Si:0.01〜1.50%,Mn:0.40〜1.50%,S:0.01〜0.10%,P:0.03%以下,Cu:0.05〜1.00%,Ni:0.05〜1.00%,Cr:1.12〜2.00%,Mo:0.01〜0.50%,Nb:0.001%以下,s-Al:0.005〜0.050%,N:0.005〜0.030%,Ti:0.001〜0.150%,Zr:0.000〜0.300%,残部Fe及び不可避的不純物の組成を有し、且つTi,Zr,Nの含有量[Ti],[Zr],[N]が下記式(1)を満たす鋼から成り、
|[Ti]/47.9+[Zr]/91.2−[N]/14|/100≦3.5×10 -6 モル/g・・・式(1)
冷間鍛造にて部品形状に加工し、浸炭焼入れして成る部品であって、JIS G 0551に準拠して測定される浸炭焼入後における旧オーステナイト粒の平均結晶粒度が8番以下であることを特徴とする。
請求項9のものは、質量%でC:0.10〜0.30%,Si:0.01〜1.50%,Mn:0.40〜1.50%,S:0.01〜0.l0%,P:0.03%以下,Cu:0.05〜1.00%,Ni:0.05〜1.00%,Cr:1.16〜2.00%,Mo:0.01〜0.50%,Nb:0.001%以下,s-A1:0.001〜0.008%,N:0.005〜0.030%,Ti:<0.001%,Zr:<0.001%,残部Fe及び不可避的不純物の組成を有する鋼から成り、
冷間鍛造にて部品形状に加工し、浸炭焼入れして成る部品であって、JIS G 0551に準拠して測定される浸炭焼入後における旧オーステナイト粒の平均結晶粒度が8番以下であることを特徴とする。
請求項10のものは、請求項8,9の何れかにおいて、前記鋼が、質量%でB:0.001〜0.010%を更に含有していることを特徴とする。
According to the eighth aspect , C: 0.10 to 0.30% in mass%, Si: 0.01 to 1.50%, Mn: 0.40 to 1.50%, S: 0.01 to 0.10%, P: 0.03% or less, Cu: 0.05 to 1.00% , Ni: 0.05-1.00%, Cr: 1.12-2.00%, Mo: 0.01-0.50%, Nb: 0.001% or less, s-Al: 0.005-0.050%, N: 0.005-0.030%, Ti: 0.001-0.150% , Zr: 0.000 to 0.300%, a steel having the balance of Fe and inevitable impurities, and the contents of Ti, Zr, and N [Ti], [Zr], and [N] satisfy the following formula (1) Consisting of
| [Ti] /47.9+ [Zr] /91.2− [N] /14|/100≦3.5×10 −6 mol / g (1)
Parts formed by cold forging into parts and carburized and quenched, and the average grain size of prior austenite grains after carburizing and quenching measured according to JIS G 0551 is no more than 8 It is characterized by.
In the ninth aspect, C: 0.10 to 0.30%, Si: 0.01 to 1.50%, Mn: 0.40 to 1.50%, S: 0.01 to 0.10%, P: 0.03% or less, Cu: 0.05 to 1.00%, Ni: 0.05 to 1.00%, Cr: 1.16 to 2.00%, Mo: 0.01 to 0.50%, Nb: 0.001% or less, s-A1: 0.001 to 0.008%, N: 0.005 to 0.030%, Ti: <0.001 %, Zr: <0.001%, consisting of steel with the balance Fe and inevitable impurity composition,
Parts formed by cold forging into parts and carburized and quenched, and the average grain size of prior austenite grains after carburizing and quenching measured according to JIS G 0551 is no more than 8 It is characterized by.
A tenth aspect is characterized in that, in any one of the eighth and ninth aspects, the steel further contains B: 0.001 to 0.010% by mass%.

以上のように本発明の肌焼用圧延鋼材は、圧延(熱間圧延)直後の鋼材の組織がフェライト・パーライト組織で、フェライトの平均結晶粒度が8番以下であるようにするもので、結晶粒度の番号が小さく、結晶粒が大粒化されていることから冷間鍛造性が良く、かかる圧延鋼材を用いて良好に冷間鍛造を行うことができる。これによって加工に要するコストを安価とすることができる。
尚ここでのフェライトの平均結晶粒度とは、光学顕微鏡の100倍視野且つ5視野での「JIS G 0552 鋼−結晶粒度の顕微鏡試験方法」に準じて測定されるフェライトの平均結晶粒度である。
Hardened rolled steel for of the present invention as described above is rolled in (hot rolling) after the steel structure ferrite-pearlite structure, having an average grain size of the ferrite to be a number 8 or less, sintering Since the crystal grain size number is small and the crystal grains are enlarged, the cold forgeability is good, and the cold forging can be performed satisfactorily using such rolled steel. As a result, the cost required for processing can be reduced.
Here, the average grain size of ferrite is the average grain size of ferrite measured in accordance with “JIS G 055 2 steel—microscopic test method for grain size” in a 100 × field of view and 5 fields of view of an optical microscope. .

ここで結晶粒が大粒化することで冷間鍛造性が良くなるのは、以下の理由による。
鋼材試験片に力(例えば引張の力)を加えると、通常リューダース変形を生じる。詳しくは、力を加えてある応力(図1(A)中の上降伏点a)に達すると、そこで試験片の一部に集中してすべり帯が生じてそれが成長する(図1(B)(I)参照)。そして成長したすべり帯が図1(B)(II)に示すように断面積を覆ったところで降伏点(図1(A)の下降伏点b)に達し、その後変形帯は図1(B)(III)に示すように長さ方向に徐々に伝播し、最終的に図1(A)の歪み硬化開始点cに達する。
更に力を加え続けると歪みが発生して応力−歪み曲線は歪み硬化によって上向きの形となり、歪みの増加に応じて応力が増大し、最終的に破断に到る。
上記の伝播する変形帯はリューダース帯と呼ばれ、リューダース帯の伝播による変形はリューダース変形と呼ばれる。
上記の上降伏点aの応力,下降伏点bの応力の大きさは結晶粒の大きさに関係しており、一般則として、結晶粒が小さければ降伏点の応力は大となり、一方結晶粒が大きければ降伏点の応力は小となる。
以上のことから明らかなように、圧延直後のフェライト結晶粒の大きな本発明の肌焼用圧延鋼材は、冷間鍛造用に用いて好適なものである。
ここで圧延鋼材のフェライトの平均結晶粒度は、好ましくは7番以下,5番以上としておくのが良い。
Here, the reason why the cold forgeability is improved by increasing the crystal grains is as follows.
When a force (for example, a tensile force) is applied to a steel specimen, a Luders deformation usually occurs. Specifically, when a stress is applied (upper yield point a in FIG. 1 (A)), a slip band is concentrated on a part of the test piece and grows (FIG. 1 (B)). (See (I)). Then, the grown slip band reaches the yield point (the lower yield point b in FIG. 1A) when it covers the cross-sectional area as shown in FIGS. As shown in (III), it gradually propagates in the length direction and finally reaches the strain hardening starting point c in FIG.
When a force is further applied, strain is generated, and the stress-strain curve becomes an upward shape due to strain hardening. As the strain increases, the stress increases and finally breaks.
The above-mentioned propagating deformation band is called a Luders band, and deformation due to propagation of the Luders band is called Luders deformation.
The stress at the upper yield point a and the stress at the lower yield point b is related to the size of the crystal grain. As a general rule, if the crystal grain is small, the stress at the yield point is large. If is large, the stress at the yield point is small.
As is clear from the above, the case- rolled rolled steel material of the present invention having large ferrite crystal grains immediately after rolling is suitable for use in cold forging.
Here, the average grain size of ferrite in the rolled steel material is preferably 7 or less and 5 or more.

尚、フェライト・パーライト組織の鋼において、結晶粒度をフェライトの結晶粒度で規定しているのは、1つにはフェライトとパーライトの結晶粒の大きさはほぼ同等であること、他の1つは冷間鍛造性、具体的には変形のし易さを支配しているのが、より軟らかいフェライトであることによる。   It should be noted that in the ferrite-pearlite structure steel, the crystal grain size is defined by the ferrite crystal grain size in one, the size of the ferrite and pearlite crystal grains is almost the same, and the other is It is the softer ferrite that dominates the cold forgeability, specifically the ease of deformation.

請求項は浸炭部品に係るもので、この浸炭部品は、圧延直後の組織がフェライト・パーライト組織で、フェライトの結晶粒度が8番以下である鋼材を冷間鍛造にて部品形状に加工した上で浸炭焼入れしたものである。 Claim 4 relates to a carburized part. This carburized part is obtained by processing a steel material with a ferrite pearlite structure immediately after rolling into a part shape by cold forging. Carburized and hardened with

この浸炭部品は、フェライトの平均結晶粒度が8番以下の、結晶粒が大粒化された圧延鋼材を用いて冷間鍛造し得られるもので、その際の冷間鍛造性が良く、良好に所定の部品形状に加工成形できるのに加えて、結晶粒の大粒化によって冷間鍛造性を良くしてあるために、敢えて冷間鍛造性のために合金元素の添加量を少なくしなくても良く、そのことから冷間鍛造性を良好としつつ、浸炭部品の強度を高強度に維持することができる。   This carburized part is obtained by cold forging using a rolled steel material having an average crystal grain size of No. 8 or less and having a large crystal grain size. In addition to being able to be processed and molded into the shape of the parts, since the cold forgeability is improved by increasing the grain size, it is not necessary to reduce the amount of alloying elements for cold forgeability As a result, the strength of the carburized component can be maintained at a high strength while improving the cold forgeability.

請求項5〜7もまた浸炭部品に係るもので、析出物粒子の析出を極力少なくすること、即ち析出物粒子による結晶粒界のピンニングを極力しないようにすることを技術的思想とするものである。 Claim 5-7 also relates to a carburized part, to minimize the deposition of precipitates particles, i.e. by dispersoids which the technical idea that to avoid as much as possible pinning of the grain boundaries It is.

浸炭処理前の製造工程でAlN等の粒子を析出分散させて粒界をピンニング(ピン止め)する技術は、結晶粒の粗大化を抑制することを狙いとして広く実施されている。
しかしながらこの種の析出物粒子によって粒界をピンニング(ピン止め)する技術にあっては、局部的に結晶粒が異常に粗大化する異常粒成長の現象を十分には防ぐことができない。
A technique of precipitating and dispersing particles such as AlN in the manufacturing process before carburizing and pinning (pinning) grain boundaries is widely implemented with the aim of suppressing coarsening of crystal grains.
However, the technique of pinning grain boundaries with this kind of precipitate particles cannot sufficiently prevent the phenomenon of abnormal grain growth in which the crystal grains are locally coarsened abnormally.

ここで異常粒成長とは、浸炭初期には析出物粒子によるピンニング力が結晶粒成長の駆動力よりも大であったものが、浸炭中に力関係が逆転し、析出物粒子のピンニング力よりも結晶粒成長の駆動力が大となることによって起る現象で、こうした力関係の逆転は、浸炭中における析出物粒子の固溶、析出物粒子がオストワルド成長し粗大化することによってピンニング力が小さくなること等が要因となって生じる。
また冷間鍛造を施した部品では、鍛造時に部品内部に塑性歪分布が導入され、歪みが大きい領域では浸炭中に結晶粒成長の駆動力とピンニング力の逆転が起きることで、結晶粒の異常粒成長が起る。
Here, abnormal grain growth means that the pinning force due to the precipitate particles was larger than the driving force for grain growth at the beginning of carburizing, but the force relationship was reversed during carburizing, and the pinning force of the precipitate particles However, this reversal of the force relationship is caused by the solid solution of the precipitate particles during carburization, and the pinning force increases due to the Ostwald growth and coarsening of the precipitate particles. This is caused by a decrease in size.
Also, in parts subjected to cold forging, plastic strain distribution is introduced inside the part during forging, and in regions where the strain is large, the driving force of crystal grain growth and the reversal of pinning force occur during carburizing, resulting in abnormal grain Grain growth occurs.

図2(ロ)は、このような異常成長粒の発生をモデル的に示している。
図2(ロ)(A)は浸炭初期の状態を示したもので、pは析出物粒子(ピン止め粒子)を表している。浸炭初期の状態ではこれら析出物粒子pが多数粒界に介在して結晶粒qの粒界をピンニングし拘束しており、結晶粒qが大きくなろうとするのを妨げている。
ところが粒界をピンニングしている一部析出物粒子pが、浸炭中に固溶により消失し、析出物粒子pによるピンニング(拘束)が破れると(外れると)、ここにおいて粒界でのピンニングの外れた隣接結晶粒同士が合体して1つの結晶粒に粒成長する。
FIG. 2 (b) schematically shows the occurrence of such abnormally grown grains.
2 (B) and 2 (A) show the initial state of carburizing, and p represents precipitate particles (pinning particles). In the initial stage of carburizing, a large number of these precipitate particles p intervene at the grain boundaries to pin and constrain the grain boundaries of the crystal grains q, thereby preventing the crystal grains q from becoming large.
However, when some precipitate particles p pinning the grain boundaries disappear due to solid solution during carburizing, and the pinning (restraint) by the precipitate particles p is broken (disengaged), the pinning at the grain boundaries here. The separated adjacent crystal grains are combined to grow into one crystal grain.

このようにしてサイズ増大した結晶粒は粒成長のパワーを増し、相対的な析出物粒子pのピンニング力の低下の下に、析出物粒子pによる結晶粒界のピンニングを破って次々と隣の結晶粒を呑み込んで粒成長して行く。
即ち一旦析出物粒子pによる結晶粒界のピンニングが破れると、そのピンニングの破れた結晶粒界を中心として結晶粒の粒成長が連鎖的に発生し、図2(ロ)(B)に示すように異常粒成長が生じて遂には異常に巨大化した結晶粒Qが発生する。
The crystal grains thus increased in size increase the power of grain growth, and under the relative decrease in the pinning force of the precipitate particles p, break the pinning of the crystal grain boundaries by the precipitate particles p, one after another. Grab the crystal grains and grow.
That is, once the pinning of the crystal grain boundary by the precipitate particle p is broken, the grain growth of the crystal grain occurs in a chain with the broken crystal grain boundary as the center, as shown in FIGS. 2 (B) and 2 (B). When abnormal grain growth occurs, finally an abnormally large crystal grain Q is generated.

図2(ロ)(C)は、このような異常粒成長した実例(浸炭後結晶粒写真)を示したものである。
このような異常粒成長が起ると、局部的な焼入性の上昇のために熱処理歪みが生じて、これが騒音や振動の原因となったり、また疲労強度が低下してしまうといった問題が生ずる。
FIGS. 2 (B) and 2 (C) show examples of such abnormal grain growth (crystal grains after carburization).
When such abnormal grain growth occurs, heat distortion occurs due to local hardenability, which causes noise and vibration, and reduces fatigue strength. .

従来にあっては、こうした場合に析出物粒子をより多く分散析出させ、析出物粒子による粒界のピンニング力をより一層増大させることで対策しているが、そのような対策にては異常粒成長を十分に防止できない。
特に近年においては、浸炭時間の短縮を目的とした浸炭温度の高温化、部品製造コスト低減のための冷間鍛造化、生産中のCO2削減や強度の向上を目的とした真空浸炭等の環境対応技術が普及しているが、これらの技術の下では上記の異常粒成長がより生じ易い。
そこで請求項5〜7のものでは、浸炭後における旧オーステナイト粒の粒界面積1mm2当りのTiC,AlN,ZrCの合計の析出物粒子量が4.5×10-10モル(mol)以下となるように析出物粒子密度を少なくするもので、浸炭初期から「析出物粒子のピンニング力<結晶粒成長の駆動力」の状態とするものである。
Conventionally, in such a case, a measure is taken by dispersing and precipitating more precipitate particles and further increasing the pinning force of the grain boundaries by the precipitate particles. We cannot prevent growth enough.
In particular, in recent years, the temperature of carburizing temperature for the purpose of shortening carburizing time, cold forging to reduce parts manufacturing cost, vacuum carburizing for the purpose of CO 2 reduction and strength improvement during production, etc. Although corresponding technologies are widespread, the abnormal grain growth is more likely to occur under these technologies.
Accordingly, in claims 5 to 7 , the total amount of precipitate particles of TiC, AlN and ZrC per 1 mm 2 of grain interface area of the prior austenite grains after carburization is 4.5 × 10 −10 mol (mol) or less. In this case, the density of precipitate particles is reduced, and the state of “pinning force of precipitate particles <driving force of crystal grain growth” is established from the beginning of carburization.

以下この点を図2(イ)のモデル図に基づいて説明する。
図2(イ)のモデル図において(ここでは理解を容易にするため便宜的に析出物粒子が析出していないものとして示している)、(A)の浸炭初期においては、各結晶粒qはほぼ同じような大きさでそれぞれの結晶粒界で互いに接している。
析出物粒子によって結晶粒界をピンニングする従来の技術にあっては、その後、先に述べたように浸炭中に析出物粒子が一部固溶し消失する等によって、ある結晶粒が特異的に粒成長を続けて粗大化し、巨大結晶粒となる異常粒成長を生じる。
これに対して本発明のモデル図2(イ)の場合には、当初から析出物粒子が結晶粒界を拘束し、ピンニングしていないため、浸炭中に結晶粒qは析出物粒子によるピンニング作用を受けないで自由に粒成長しようとする。
This point will be described below with reference to the model diagram of FIG.
In the model diagram of FIG. 2 (a) (in this case, for the sake of easy understanding, it is shown that the precipitate particles are not precipitated for convenience), in the initial carburization of FIG. They are almost the same size and touch each other at each grain boundary.
In the conventional technique of pinning the grain boundary with the precipitate particles, after that, as described above, some of the crystal grains are specifically formed by, for example, partly dissolving and disappearing of the precipitate particles during carburization. Grain growth continues and coarsens, resulting in abnormal grain growth that becomes giant crystal grains.
On the other hand, in the case of the model FIG. 2 (a) of the present invention, since the precipitate particles restrain the crystal grain boundary from the beginning and are not pinned, the crystal grain q is pinned by the precipitate particles during carburizing. Try to grow grains freely without being affected.

ところが析出物粒子によるピンニング作用を受けずに、自由に粒成長しようとする点は何れの結晶粒qも同じであり、結果として何れの結晶粒qも、周りの他の結晶粒qの粒成長しようとする圧力を自身の粒成長に対する抑制圧力として受けることとなり、その結果何れかの結晶粒qが特異的に粒成長するといったことはできず、何れの結晶粒qも均等にある程度の大きさまで結晶粒成長できるに留まる。   However, any crystal grain q is the same in that it is intended to grow freely without receiving the pinning effect of the precipitate particles, and as a result, any crystal grain q grows in the other grains q around it. As a result, any crystal grain q cannot be specifically grown, so that any crystal grain q is equally large to a certain size. It can only grow crystal grains.

この結果、粒成長を止めるための析出物粒子が存在していないにも拘らず(寧ろそのような析出物粒子が存在していないからこそ)、各結晶粒qはそれぞれが互いに均等にある程度の大きさまで粒成長するのに留まって、何れか特定の結晶粒qが特異的に異常粒成長してしまうのが有効に抑制される。
因みに図2(イ)(C)は、析出物粒子の析出を極力少なくすることで異常粒成長が抑制されている実例写真(浸炭後結晶粒写真)を示したものである。
尚、析出物粒子を極力少なくすることで異常粒成長を抑制し、各結晶粒を均等に粒成長させ得る点は、本出願人の出願に係る特願2013-134262,特願2013-134263(何れも未公開)に開示されている。
As a result, although there are no precipitate particles to stop grain growth (because such precipitate particles do not exist), each crystal grain q is equal to each other to some extent. It is effectively restrained that any specific crystal grain q grows abnormally specifically by staying in the grain growth up to the size.
Incidentally, FIGS. 2 (A) and 2 (C) show an example photograph (crystal grain photograph after carburization) in which abnormal grain growth is suppressed by minimizing the precipitation of precipitate particles.
Incidentally, the abnormal grain growth can be suppressed by reducing the number of precipitate particles as much as possible, and each crystal grain can be grown uniformly. Japanese Patent Application Nos. 2013-134262 and 2013-134263 (2013-134263) None of them are disclosed to the public.

このような異常粒成長を抑制した状態の下での結晶粒成長は、本発明者らの研究によれば、浸炭後における旧オーステナイト粒の粒界面積1mm当りのTiC,AlN,ZrCの合計の析出物粒子量が4.5×10−10モル以下となるように鋼中の析出物粒子密度を極力少なくすることで達成できることを知得した。 According to the study by the present inventors, the growth of crystal grains under a state in which such abnormal grain growth is suppressed is the sum of TiC, AlN, and ZrC per 1 mm 2 of grain interface area of prior austenite grains after carburizing. It has been found that this can be achieved by reducing the precipitate particle density in the steel as much as possible so that the amount of precipitate particles in the steel is 4.5 × 10 −10 mol or less.

本発明において、TiC,AlN,ZrCの合計の析出物粒子量を旧オーステナイト粒の粒界面積1mm当りの単位面積で規定している理由は、
第1に、析出物粒子によるピンニング(ピン止め)の効果は粒界面積によって異なり、粒界面積が大きければ沢山の析出物粒子が必要で、逆に粒界面積が小さければ粒子の数は少なくて済むこと、
第2に、析出物粒子量はあくまで浸炭部品中に測定される析出物の粒子量であって、これには旧オーステナイト粒界に存在しているものも存在していないものも含まれている。但しその析出量が多ければ、当然に粒界に存在する量も多くなること、
第3に、本発明において問題となるのは結晶粒界における析出物粒子の量であるが、トータルの析出物量が多ければ結晶粒界に存在する析出物量も多くなるから、全体の析出物量を旧オーステナイト粒の単位面積当りに換算して整理することで、析出物粒子によるピンニングへの影響を判断できると考えられること、等による。
In the present invention, the reason why the total amount of precipitate particles of TiC, AlN, and ZrC is defined as a unit area per 1 mm 2 of grain interface area of prior austenite grains is as follows.
First, the effect of pinning by the precipitate particles varies depending on the grain interfacial area. If the grain interfacial area is large, many precipitate particles are required, and conversely, if the grain interfacial area is small, the number of particles is small. All you need to do is
Secondly, the amount of precipitate particles is only the amount of precipitate particles measured in the carburized parts, including those that are present in the prior austenite grain boundaries. . However, if the amount of precipitation is large, naturally the amount existing at the grain boundary also increases,
Third, the problem in the present invention is the amount of precipitate particles at the grain boundaries, but if the total amount of precipitates is large, the amount of precipitates present at the grain boundaries also increases. This is because it is considered that the influence of the precipitate particles on the pinning can be determined by converting the per unit area of the prior austenite grains.

本発明では、浸炭部品における旧オーステナイト粒の平均結晶粒度を8番以下としておくことができる(請求項8〜10)。
尚、旧オーステナイト粒の平均結晶粒度の測定方法は、フェライトの平均結晶粒度の測定方法に準じる。
このようにすることで浸炭前における平均結晶粒度番号を小さくしておくこと、即ち結晶粒を大粒化しておくことができ、これによって冷間鍛造性を良くすることができ、ひいては浸炭部品を容易に加工形成することができる。
In the present invention, the average grain size of the prior austenite grains in the carburized component can be set to No. 8 or less (claims 8 to 10 ).
In addition, the measuring method of the average grain size of prior austenite grains is in accordance with the measuring method of the average grain size of ferrite.
By doing so, the average grain size number before carburizing can be kept small, that is, the crystal grains can be made large, thereby improving the cold forgeability and thus making the carburized parts easy. Can be processed and formed.

本発明では、請求項5〜7に従って浸炭後における旧オーステナイト粒の粒界面積1mm2当りのTiC,AlN,ZrCの析出物粒子量が4.5×10-10モル以下であるようにすることによって、浸炭前における圧延直後のフェライト・パーライト組織から成る鋼材組織のフェライト平均粒度を8番以下とすること、或いは請求項8〜10に従って浸炭後における旧オーステナイト粒の平均結晶粒度が8番以下となるように、結晶粒の大きさを制御することができる。 In the present invention, the amount of precipitate particles of TiC, AlN, ZrC per 1 mm 2 of grain interface area of the prior austenite grains after carburizing according to claims 5 to 7 is 4.5 × 10 −10 mol or less. The average grain size of the prior austenite grains after carburization is made to be No. 8 or less according to claims 8 to 10 , or the average grain size of the prior austenite grains after carburizing according to claim 8-10. In addition, the size of the crystal grains can be controlled.

ところで、鋼材には一般的にNが含まれる。また脱酸のためにAlを添加することでAlも鋼材中に含まれる。Nは鋼に固溶してこれを強化する働きをなし、またAlNは鋼中に析出して結晶粒を微細化させる。
而してNの固溶強化,AlNの析出による結晶粒の微細化の作用は、何れも上記リューダース帯でのリューダース変形における降伏点を高め、冷間鍛造性を悪化させる方向に働く。
By the way, steel materials generally contain N. Moreover, Al is also contained in steel materials by adding Al for deoxidation. N functions as a solid solution in the steel and strengthens it, and AlN precipitates in the steel and refines the crystal grains.
Thus, the effects of solid solution strengthening of N and refinement of crystal grains due to precipitation of AlN both increase the yield point in the Luders deformation in the Luders zone and work to deteriorate the cold forgeability.

この場合、請求項1,5,8に規定する化学組成の鋼を用いて浸炭部品を得ることで、単に結晶粒の大粒化による冷間鍛造性の向上のみならず、NとAlNの影響を除くことで、つまりNの固溶強化及びAlNの析出による結晶粒の微細化の影響を除くことで、リューダース変形帯における降伏点を下げ、強度を低下させることなく冷間鍛造性を向上させることができる。
請求項1,5,8の化学組成の鋼では、上記の式(1)を充足するようにTi,Zr,Nの含有量を規制することで、結晶粒界のピンニングに働く析出物粒子密度を極力少なくすることができる。
This case, to obtain a carbon component immersion using steel having a chemical composition defined in claim 1, 5, 8, not only the improvement of cold forgeability due to large crystal grains, the influence of N and AlN In other words, by removing the effect of solid solution strengthening of N and refinement of crystal grains due to precipitation of AlN, the yield point in the Luders deformation zone is lowered and cold forgeability is improved without lowering the strength. Can be made.
In the steel having the chemical composition of claims 1, 5 and 8, the density of precipitate particles acting on the pinning of grain boundaries by regulating the content of Ti, Zr, and N so as to satisfy the above formula (1) Can be reduced as much as possible.

具体的には、例えばTi,Zrを添加することで、鋼の鋳造時に鋼中に含まれるNとTi,Zrとの結合により結晶粒界のピンニングに対して寄与しないTiN,ZrNを晶出せしめ、鋼中のNがAlと結合してピンニング作用を持つAlNを析出するのを抑制する。
但しTi,Zrを過剰に添加するとTiC,ZrCが析出し、これらがピンニング作用を有する析出物粒子となってしまうため、それらが過剰とならないように式(1)を満たすようにすることが重要である。
Specifically, for example, by adding Ti and Zr, TiN and ZrN that do not contribute to pinning of grain boundaries are crystallized by the combination of N and Ti and Zr contained in the steel at the time of casting the steel. Suppresses precipitation of AlN having a pinning action by combining N in steel with Al.
However, if Ti and Zr are added excessively, TiC and ZrC are precipitated and these become precipitate particles having a pinning action, so it is important to satisfy the formula (1) so that they do not become excessive. It is.

要するに式(1)は次のような意味を有している。
即ち鋼中にNがあったりAlがあったりすると、上記のようにNの固溶強化とAlNの析出による結晶粒の微細化の働きにより降伏点が高くなり、更には鋼中のCと反応してTiC,ZrCとなり得るTi,Zrが多くあったりすると、析出物粒子が鋼中に望ましくない量で析出してしまうことから、鋼中のNとTi及びZrを凝固時に晶出物として晶出せしめることで、固溶強化元素として働き、また析出物粒子形成元素として働くNやTi及びZrを固定し(消費し)、以て余剰のTi,Zr,Nを式(1)で規定して、その値を目標とする3.5×10−6モル/g以下とする。
In short, formula (1) has the following meaning.
That is, if there is N or Al in the steel, the yield point becomes high due to the solid solution strengthening of N and the refinement of crystal grains by precipitation of AlN as described above, and further, the reaction with C in the steel. If there is a large amount of Ti and Zr that can become TiC and ZrC, the precipitate particles will precipitate in an undesirable amount in the steel. Therefore, N, Ti and Zr in the steel are crystallized as a crystallized product during solidification. By letting out, N, Ti and Zr that act as solid solution strengthening elements and precipitate particle forming elements are fixed (consumed), and excess Ti, Zr, and N are defined by equation (1). The target value is 3.5 × 10 −6 mol / g or less.

以上のようにして請求項1,5,8の化学成分の鋼は、Nの固溶強化による降伏点の上昇と、AlNの析出による結晶粒の微細化による降伏点の上昇の働きを抑え込み、降伏点の応力の低下、冷間鍛造性をより一層向上せしめる。 As described above, the steel having the chemical components of claims 1, 5 and 8 suppresses the actions of the increase in the yield point due to the solid solution strengthening of N and the increase in the yield point due to the refinement of crystal grains due to the precipitation of AlN, Lowers yield point stress and further improves cold forgeability.

尚、浸炭部品用の鋼材を請求項2,6,9に規定する化学組成とすることで、結晶粒界のピンニングに働く析出物粒子の密度を極力少なくするようになすこともできる。
具体的にはこの請求項2,6,9では、鋼中のNを晶出物形成によって消費するTi及びZrを無添加とする一方で、これに伴って析出物粒子を形成するS-Alの添加量を微量とし、以て析出物粒子の密度を極力少なくするようにしている(但しこの請求項2,6,9の鋼では、Nの固溶強化による降伏点の上昇は残ってしまう)。
By setting the steel material for carburized parts to the chemical composition defined in claims 2, 6 and 9 , the density of the precipitate particles acting for pinning of the crystal grain boundaries can be reduced as much as possible.
Specifically, in the second , sixth and ninth claims, Ti and Zr which consume N by the formation of crystallized materials are not added, while S-Al which forms precipitate particles along with this. Therefore, the density of the precipitate particles is reduced as much as possible (however, in the steels of claims 2, 6 and 9 , the yield point rises due to the solid solution strengthening of N remains. ).

尚本発明では、上記鋼材に質量%でB:0.001〜0.010%を選択的成分として含有させるようになすことができる(請求項3,7,10)。 In the present invention, the steel material may contain B: 0.001 to 0.010 % by mass as a selective component (claims 3, 7, 10 ).

本発明では、旧オーステナイト粒の粒界面積,TiC,AlN,ZrCの析出物量を次のようにして求めることができる。
(粒界面積の求め方)
浸炭品の表面を垂直に切断し、浸炭品から観察用試料を切り出し、表層を含む断面を研磨し、旧オーステナイト粒界を現出させた後、JlS G 0551で規定された方法で平均結晶粒度nを測定する(測定の際、表層(浸炭層)を含めて測定してもよい)。そして以下の式より旧オーステナイト粒半径rを算出する。
r=(3/2×1/(2(n+3)×π))0.5 ・・・式(2)
尚、式(2)は以下のようにして求めたものである。
JlS G 0551における単位面積(1mm)当たりの結晶粒の数mと平均結晶粒度nとの間には、m=2(n+3)の関係がある。この関係式より、旧オーステナイト粒を半径rの球形と仮定した場合の結晶粒の断面積はπr=3/2×1/m=3/2×1/(2(n+3))となる。これより半径rは式(2)で表すことができる。
ここで係数3/2は、測定した断面が一般には結晶粒の中心からずれていることを考慮して定めた係数である。
In the present invention, the interfacial area of prior austenite grains and the amount of precipitates of TiC, AlN, and ZrC can be determined as follows.
(How to find the grain boundary area)
The surface of the carburized product is cut vertically, the observation sample is cut out from the carburized product, the cross section including the surface layer is polished, the former austenite grain boundary is revealed, and the average grain size is determined by the method specified in JlS G 0551. n is measured (in measurement, the surface layer (carburized layer) may be included). And the prior austenite grain radius r is calculated from the following formula.
r = (3/2 × 1 / (2 (n + 3) × π)) 0.5 (2)
Equation (2) is obtained as follows.
There is a relationship of m = 2 (n + 3) between the number m of crystal grains per unit area (1 mm 2 ) and the average crystal grain size n in JlS G 0551. From this relational expression, the cross-sectional area of the crystal grains when the prior austenite grains are assumed to be spherical with a radius r is πr 2 = 3/2 × 1 / m = 3/2 × 1 / (2 (n + 3) ). Accordingly, the radius r can be expressed by the formula (2).
Here, the coefficient 3/2 is a coefficient determined in consideration of the fact that the measured cross section is generally deviated from the center of the crystal grain.

そして粒界面積は、上記半径rを用いて以下の式(3)にて表すことができる。
粒界面積=(鋼材単位質量(1g)中に含まれる旧オーステナイト粒の個数)×旧オーステナイト粒1個の表面積×1/2=(1OOO/7.8)/(4/3×π×r)×4πr×1/2 ・・・式(3)
ここで(1OOO/7.8)は鋼の密度の逆数、1/2は隣接する結晶粒が互いに接していることを考慮した係数である。
従って上記式(2)及び式(3)より、旧オーステナイト粒の粒界面積は、平均結晶粒度nを測定することにより求めることができる。
The grain interface area can be expressed by the following formula (3) using the radius r.
Grain interface area = (Number of prior austenite grains contained in unit mass of steel (1 g)) x Surface area of one prior austenite grain x 1/2 = (1OOO / 7.8) / (4/3 x π x r 3 ) × 4πr 2 × 1/2 ... Formula (3)
Here, (1OOO / 7.8) is the reciprocal of the density of the steel, and 1/2 is a coefficient considering that adjacent crystal grains are in contact with each other.
Therefore, from the above formulas (2) and (3), the interfacial area of the prior austenite grains can be determined by measuring the average crystal grain size n.

(TiCの定量法)
10%アセチルアセトン-1%塩化テトラメチルアンモニウム-メタノール(1O%AA溶液)を用いた電解法により全析出物の抽出を行う。電解後、孔径O.2μmのニュークリポアフィルターによって吸引ろ過し、得られた残渣の一部を混酸分解による融解で溶液としたのち、全析出物中の金属元素成分をICP発光分析法によって定量し、所定質量当りのTiの析出物量を求めて単位g当りの析出物量に換算する。また得られた残渣の他の一部を1O%臭素-メタノール溶液に浸漬処理することによりTiNのみ残渣として抽出し、質量測定によって所定質量当りのTiNを定量し、単位g当りの量に換算する。そしてTiC量=(全Tiの析出物量)−(TiN量)からTiC量(単位g当りのTiC量)を求める。
(TiC quantitative method)
Extract all precipitates by electrolysis using 10% acetylacetone-1% tetramethylammonium chloride-methanol (1O% AA solution). After electrolysis, suction filtration is performed with a 0.22 μm pore pore filter, and a part of the resulting residue is made into a solution by melting by mixed acid decomposition. Then, the metal element components in the total precipitate are quantified by ICP emission spectrometry. Then, the amount of Ti precipitate per predetermined mass is obtained and converted to the amount of precipitate per unit g. In addition, another part of the obtained residue is immersed in a 10% bromine-methanol solution to extract only TiN as a residue, and TiN per predetermined mass is quantified by mass measurement and converted to the amount per unit g. . Then, the TiC amount (TiC amount per unit g) is obtained from TiC amount = (precipitate amount of all Ti) − (TiN amount).

(ZrCの定量法)
TiCと同様の方法で行う。
(Quantitative method of ZrC)
Perform in the same way as TiC.

(AlNの定量法)
14%ヨウ素-メタノール溶液による母材の溶解での残渣の一部をICP発光分析法により単位g当りの全A1(AlN,A1)の定量を行う。また残渣の他の一部を硫酸で酸分解することにより、窒化物と酸化物を分離すると残渣中には酸化物が残る。元素分析しA1量を定量すると、A1量を定量したことになる。よって、AlN量=全Al(AlN,A1)−A1量で求めることができる。
上記の方法で求めた粒界面積、析出物量より
旧オーステナイト粒界1mmあたりの析出物量=(析出物量)/(旧オーステナイト粒界面積)・・で求めることができる。
(Quantitative method of AlN)
A part of the residue obtained by dissolving the base material in a 14% iodine-methanol solution is quantified in total A1 (AlN, A1 2 O 3 ) per unit g by ICP emission spectrometry. Further, when the nitride and the oxide are separated by acid decomposition of the other part of the residue with sulfuric acid, the oxide remains in the residue. When the amount of A1 is quantified by elemental analysis, the amount of A1 2 O 3 is quantified. Therefore, the AlN amount = total Al (AlN, A1 2 O 3 ) −A1 2 O 3 amount can be obtained.
From the grain interfacial area and the amount of precipitate obtained by the above method, the amount of precipitate per 1 mm 2 of prior austenite grain boundary = (precipitate amount) / (old austenite grain interfacial area) can be obtained.

以下に本発明における各化学成分等の限定理由を説明する。
C:O.lO〜O.30%
Cは硬さ,強度を確保する上で0.10%以上含有させる。但し0.30%を超えて多量に含有させると、鋼材から歯車等の部品形状を冷間鍛造にて加工する際の加工性が低下するため、上限を0.30%とする。
The reasons for limiting each chemical component and the like in the present invention will be described below.
C: O.lO to O.30%
C is contained in an amount of 0.10% or more for securing hardness and strength. However, if it is contained in a large amount exceeding 0.30%, the workability when processing the shape of a part such as a gear from a steel material by cold forging is lowered, so the upper limit is made 0.30%.

Si:O.O1〜1.50%
Siは焼入性、強度確保のために0.01%以上含有させる必要がある。但し1.50%を超えて多量に含有させると鍛造性、被削性の低下をもたらすため、上限を1.50%とする。
Si: O.O1 ~ 1.50%
Si must be contained in an amount of 0.01% or more to ensure hardenability and strength. However, if it is contained in a large amount exceeding 1.50%, the forgeability and machinability are lowered, so the upper limit is made 1.50%.

Mn:O.40〜1.50%
MnはMnS等の介在物形態制御を図るとともに、焼入性を確保するために0.40%以上含有させる。またMnは0.40%未満であると芯部にフェライトを生成し、強度低下を生じるため、この意味においても0.40%以上を含有させる。但し1.50%を超えて多量に含有させると被削性の低下をもたらすため、上限を1.50%とする。
Mn: O.40 ~ 1.50%
Mn is included in an amount of 0.40% or more to control the form of inclusions such as MnS and to ensure hardenability. Further, if Mn is less than 0.40%, ferrite is generated in the core part and the strength is lowered. Therefore, 0.40% or more is also contained in this sense. However, if it is contained in a large amount exceeding 1.50%, the machinability is lowered, so the upper limit is made 1.50%.

S:O.O1〜O.10%
Sは被削性確保のため0.01%以上含有させる。但し0.10%を超えて多量に含有させると強度の低下をもたらすため、上限を0.10%とする。
S: O.O1 ~ O.10%
S is contained in an amount of 0.01% or more to ensure machinability. However, if it is contained in a large amount exceeding 0.10%, the strength is lowered, so the upper limit is made 0.10%.

P:O.03%以下
Pは本発明において強度低下をもたらす不純物成分であり、0.03%以下にこれを規制する。
P: O.03% or less P is an impurity component that causes a decrease in strength in the present invention, and is restricted to 0.03% or less.

Cu:O.05〜1.00%
Cuは0.05%以上含有させることで焼入性確保に有用である。一方1.00%を超えて多量に含有させると熱間加工性の低下をもたらすため、上限を1.00%以下とする。
Cu: O.05 ~ 1.00%
Cu is useful for ensuring hardenability by containing 0.05% or more. On the other hand, if the content exceeds 1.00%, hot workability is deteriorated, so the upper limit is made 1.00% or less.

Ni:O.05〜1.00%
Niは0.05%以上含有させることで焼入性確保に有用である。一方1.00%を超えて多量に含有させると、炭化物析出量が減少し強度低下を招くため、上限を1.00%とする。
Ni: O.05 ~ 1.00%
Ni is useful for ensuring hardenability by containing 0.05% or more. On the other hand, if it is contained in a large amount exceeding 1.00%, the amount of precipitated carbide decreases and the strength decreases, so the upper limit is made 1.00%.

Cr:1.12〜2.00%(請求項1,5,8)1.16〜2.00%(請求項2,6,9)
Crは焼入性を良くし、強度向上させるのに有効な元素で、そのために請求項1,5,8においては1.12%以上、請求項2,6,9においては1.16%以上含有させる。但し2.00%を超えて多量に含有させると加工性、特に被削性の低下を招くため、上限を2.00%とする。
Cr: 1.12 to 2.00% (Claims 1, 5 , and 8) , 1.16 to 2.00% (Claims 2, 6, and 9)
Cr is an element effective for improving the hardenability and improving the strength. For this reason, it is contained 1.12% or more in claims 1, 5 and 8, and 1.16% or more in claims 2, 6 and 9 . However, if it is contained in a large amount exceeding 2.00%, the workability, particularly machinability, is reduced, so the upper limit is made 2.00%.

Mo:0.01〜0.50%
Moは強度向上させる元素であり、0.01%以上含有させる。Moによる強度向上の効果をより求める場合には0.15%以上含有させることが望ましい。但し0.50%を超えて多量に含有させると、加工性の劣化を招くとともにコスト高をもたらすので、上限を0.50%とする。
Mo: 0.01-0.50%
Mo is an element that improves the strength and is contained in an amount of 0.01% or more. When the effect of improving the strength by Mo is further required, it is desirable to contain 0.15% or more. However, if it is contained in a large amount exceeding 0.50%, the workability is deteriorated and the cost is increased, so the upper limit is made 0.50%.

Nb:O.001%以下
本発明においてNbは不純物元素となるものであり、Nbが含有されているとNbCが析出し、結晶粒界をピンニングするため、0.001%以下に含有量を規制する。
Nb: O.001% or less In the present invention, Nb is an impurity element. If Nb is contained, NbC precipitates and pines the grain boundaries, so the content is regulated to 0.001% or less.

s-A1:0.005〜0.050%(請求項1,5,8),0.001〜0.008%(請求項2,6,9
Alは脱酸剤としての使用により鋼に含有される。請求項1,5,8においては0.005%以上、0.050%以下の範囲内の含有量とする。
一方請求項2,6,9においては、鋼の含有成分としてのZr,Tiが実質無添加となるため、AlNの生成を抑制するために含有量が0.008%以下に規制される。
s-A1: 0.005 to 0.050 % (Claims 1, 5 , and 8 ), 0.001 to 0.008 % (Claims 2, 6, and 9 )
Al is contained in steel by use as a deoxidizer. In claims 1, 5 and 8 , the content is in the range of 0.005% or more and 0.050% or less.
On the other hand, in claims 2, 6 and 9 , since Zr and Ti as the steel components are substantially not added, the content is restricted to 0.008% or less in order to suppress the formation of AlN.

N:0.005〜0.030%
Ti:0.001〜0.150%(請求項1,5,8),<0.001%(請求項2,6,9
Zr:0.000〜0.300%(請求項1,5,8),<0.001%(請求項2,6,9
これらN,Ti,Zrはそれぞれが互いに相互に作用し合うことで有害な析出物粒子の析出密度を極力少なくする。その条件は請求項1,5,8においては式(1)を満たす範囲内である。
また請求項2,6,9においても、同様に有害な析出物粒子の析出密度を極力少なくするために必要な範囲内である。
尚請求項1,5,8においては、Ti及びZrのうちTiだけを含有することで式(1)を満たすこともできる。この場合にはZrの含有は不要である。即ち請求項1,5,8においてはZrは任意成分であり、含有量は0.000を含む範囲である。
N: 0.005-0.030%
Ti: 0.001 to 0.150 % (Claims 1, 5 , and 8 ), <0.001% (Claims 2, 6, and 9 )
Zr: 0.000 to 0.300% (Claims 1, 5 , 8 ), <0.001% (Claims 2, 6, 9 )
These N, Ti, and Zr interact with each other to reduce the deposition density of harmful precipitate particles as much as possible. The conditions are within the range satisfying the formula (1) in claims 1, 5 and 8 .
Further , in the second , sixth and ninth aspects , it is within the range necessary for reducing the precipitation density of harmful precipitate particles as much as possible.
In claims 1, 5 and 8 , the formula (1) can be satisfied by containing only Ti of Ti and Zr. In this case, it is not necessary to contain Zr. That is, in claims 1, 5 and 8 , Zr is an optional component and the content is in a range including 0.000.

B:0.001〜0.010%
Bは焼入性を向上させる元素であり、必要に応じて0.001%以上含有させることができる。但し0.010%を超えて含有させた場合粒界にBの析出物を形成し、強度を低下させる。
B: 0.001 to 0.010%
B is an element that improves hardenability, and can be contained by 0.001% or more as necessary. However, when the content exceeds 0.010%, B precipitates are formed at the grain boundaries, and the strength is lowered.

TiC,AlN,ZrCの合計の析出物粒子量が4.5×10−10モル以下
浸炭後の部品の旧オーステナイト粒の粒界面積1mm当りのTiC,AlN,ZrNの合計の析出物粒子量が4.5×10−10モル以下であることは、浸炭初期から析出物粒子を極力少なくし、析出物粒子が結晶粒界を実質的にピンニングし拘束しないように若しくはピンニングの力を弱めるようにし、異常結晶粒の発生を防ぎつつ結晶粒を大粒化する上で重要である。
TiC, AlN, total dispersoids amount of 4.5 × 10 -10 mol or less carburization after prior austenite grain grain boundary area 1 mm 2 per TiC parts of ZrC, AlN, precipitate particles total amount of ZrN 4.5 X10 −10 mol or less means that the number of precipitate particles is reduced as much as possible from the beginning of carburization, and the precipitate particles do not substantially pinch and restrain the crystal grain boundaries, or the pinning force is weakened. This is important in increasing the size of crystal grains while preventing the generation of grains.

以上のような本発明によれば、合金元素を特に減らさなくても効果的に冷間鍛造性を良くすることができ、歯車等の浸炭部品を得るに際して、加工のための所要コストを低減することができる。   According to the present invention as described above, the cold forgeability can be effectively improved without particularly reducing the alloy elements, and the cost required for processing is reduced when obtaining carburized parts such as gears. be able to.

(A)鋼材の応力―歪み曲線の一例を示した図である。(B)リューダース変形を模式的に表した説明図である。(A) It is the figure which showed an example of the stress-strain curve of steel materials. (B) It is explanatory drawing which represented Luders deformation | transformation typically. (イ)ピンニング粒子(析出物粒子)を極力少なくしたときの結晶粒の変化挙動を模式的に示したモデル図である。(ロ)異常成長粒の発生を説明するために示した比較例の図である。(A) A model diagram schematically showing the change behavior of crystal grains when pinning particles (precipitate particles) are reduced as much as possible. (B) It is a figure of the comparative example shown in order to demonstrate generation | occurrence | production of abnormally grown grain. 実施例1についての応力−歪み曲線を、比較例1とともに示した図である。FIG. 4 is a diagram showing a stress-strain curve for Example 1 together with Comparative Example 1. 実施例における冷間鍛造の工程説明図である。It is process explanatory drawing of the cold forging in an Example.

表1に示す化学組成の鋼材を溶解し、1250℃に加熱し、4h保持した後、950℃以上で熱間圧延し、φ30mmの棒鋼にした。
この棒鋼から横断面での圧延後のフェライト粒度測定用の試料を切り出して作製した。鏡面研磨後、飽和ピクリン酸溶液で腐食し、光学顕微鏡の100倍の視野で25mmの視野において測定を行った。測定は5視野について行い、その平均値を求めた。
また、通常冷間鍛造される部品は鍛造前に軟化熱処理を行うので、この棒鋼を760℃×4hで保持した後に、15℃/hで650℃まで温度を下げ空冷する軟化熱処理を行った。
A steel material having the chemical composition shown in Table 1 was melted, heated to 1250 ° C., held for 4 hours, and then hot-rolled at 950 ° C. or higher to obtain a steel bar of φ30 mm.
A sample for measuring the ferrite grain size after rolling in a cross section was cut out from this steel bar. After mirror polishing, it was corroded with a saturated picric acid solution, and measurement was performed in a field of 25 mm 2 with a field of view 100 times that of an optical microscope. The measurement was performed for five visual fields, and the average value was obtained.
Further, since the parts that are normally cold forged are subjected to a softening heat treatment before forging, the steel bar was held at 760 ° C. × 4 h, and then subjected to a softening heat treatment in which the temperature was lowered to 650 ° C. at 15 ° C./h and air cooled.

軟化熱処理を施した棒鋼からφ15×22.5Lmmの冷間鍛造用試験片10(図4(I)参照)を作製した。この試験片10を図4(II),(III)に示すように一対の鍛造型12A,12Bを用いてプレスし、圧下率=70%,圧下速度(ひずみ速度)6.7(1/S)で冷間鍛造をして、降伏点(上降伏点)と最大変形抵抗を測定した。降伏点と最大変形抵抗は各鋼種n=3で試験を実施し、その平均を求めた。   A test piece 10 for cold forging having a diameter of 15 × 22.5 Lmm (see FIG. 4 (I)) was produced from the steel bar subjected to the softening heat treatment. This test piece 10 was pressed using a pair of forging dies 12A and 12B as shown in FIGS. 4 (II) and (III), and the reduction ratio = 70%, the reduction speed (strain speed) 6.7 (1 / S ) And cold forging, and measuring the yield point (upper yield point) and the maximum deformation resistance. The yield point and the maximum deformation resistance were tested for each steel type n = 3, and the average was obtained.

旧オーステナイト粒界1mm当りの析出物量を求めるため、冷間鍛造後の試験片で浸炭処理を行った。
浸炭処理はガス浸炭で、浸炭温度:950℃,浸炭ガス:プロパン,CP(カーボンポテンシャル):0.8%で3h保持し、その後更に850℃,CP=0.8%で0.5h保持した後、80℃の油で焼入れを行った。
In order to obtain the amount of precipitate per 1 mm 2 of the prior austenite grain boundary, carburizing treatment was performed on the test piece after cold forging.
Carburizing treatment is gas carburizing, carburizing temperature: 950 ° C., carburizing gas: propane, CP (carbon potential): maintained at 0.8% for 3 h, and then further maintained at 850 ° C., CP = 0.8% for 0.5 h. Thereafter, quenching was performed with 80 ° C. oil.

その後、縦断面の観察ができるように試験片を縦断方向に半分に切断した後、切断面を鏡面研磨し、過飽和ピクリン酸で腐食し、旧オーステナイト結晶粒界の現出を行って、結晶粒度の測定を行った。測定は縦断面の中心部について行い、JIS G 0551 に準じ、フェライト粒度測定と同様の方法に従って行い、5視野についての平均値を求めた。   Then, after cutting the test piece in half in the longitudinal direction so that the longitudinal section can be observed, the cut surface is mirror-polished, corroded with supersaturated picric acid, and the appearance of the prior austenite grain boundaries is revealed. Was measured. The measurement was carried out at the center of the longitudinal section, and in accordance with JIS G 0551, following the same method as the ferrite particle size measurement, the average value for 5 fields of view was obtained.

また前述した方法にて浸炭処理品に含まれるTiC,AlN,ZrCの析出物粒子量(mol)を定量化して鋼材100g当りに換算するとともに、測定した旧オーステナイト粒の平均結晶粒度nから求めた鋼材1g当りの旧オーステナイト粒の粒界面積(mm)を鋼材100g当りに換算し、これから旧オーステナイト粒界面積1mm当りの析出物粒子量を算出した。
これらの結果が表2に併せて示してある。
In addition, the amount of TiC, AlN, and ZrC precipitate particles (mol) contained in the carburized product was quantified by the above-described method and converted per 100 g of the steel material, and obtained from the measured average grain size n of the prior austenite grains. The grain boundary area (mm 2 ) of the prior austenite grains per gram of the steel material was converted to 100 g of the steel material, and the amount of precipitate particles per 1 mm 2 of the prior austenite grain interface area was calculated from this.
These results are also shown in Table 2.

表1,表2の結果に示しているように、比較例では式(1)の左辺の値が大きく、何れも請求項1,5,8の条件を満たしていないとともに、浸炭後における旧オーステナイト粒の粒界単位面積当りのTiC,AlN,ZrCの析出物粒子量が4.5×10-10モルを超えて多量である。
その結果比較例のものは、何れも鍛造前のフェライト結晶粒度が8番超で粒度番号が大きく、圧下率70%で軸方向に圧縮変形させる冷間鍛造を行った際の、降伏点(上降伏点)の応力が何れも600MPaを超えて大であり、冷間鍛造性において劣るものであった。
As shown in the results of Tables 1 and 2, in the comparative example, the value on the left side of the formula (1) is large, none of which satisfies the conditions of claims 1, 5 , and 8 , and the prior austenite after carburizing The amount of precipitate particles of TiC, AlN, and ZrC per grain boundary unit area of the grains exceeds 4.5 × 10 −10 mol and is large.
As a result, all of the comparative examples had a ferrite grain size before forging greater than 8 and a large grain size number, yield point (upper) when cold forging was performed by compressive deformation in the axial direction at a reduction rate of 70%. The stress at the yield point) was large exceeding 600 MPa, and the cold forgeability was inferior.

これら比較例のものに比べて、実施例のものは鍛造前のフェライト結晶粒度が何れも8番以下、詳しくはここでは6番以上の範囲内であり、軸方向に圧縮変形させる冷間鍛造を行った際の上降伏点の値が、何れも400MPaレベルで変形抵抗が小さく、冷間鍛造性に優れている。   Compared with those of the comparative examples, in the examples, the ferrite grain size before forging is 8 or less, more specifically, in the range of 6 or more here, and cold forging that compressively deforms in the axial direction is performed. The value of the upper yield point when performed is 400 MPa level, the deformation resistance is small, and the cold forgeability is excellent.

因みに図3は、冷間鍛造において圧縮変形の力を加えたときの比較例1と実施例1についての応力−歪み曲線を示している。
この図から、実施例1のものは上降伏点aが比較例1のものに比べて明らかに低下しており、実施例1のものは比較例1に比べて変形抵抗が小さく、冷間鍛造性に優れていることが見て取れる。
FIG. 3 shows stress-strain curves for Comparative Example 1 and Example 1 when compressive deformation force is applied in cold forging.
From this figure, in Example 1, the upper yield point a is clearly lower than that in Comparative Example 1, and in Example 1, the deformation resistance is smaller than that in Comparative Example 1, and cold forging is performed. It can be seen that it has excellent properties.

実施例1では、化学成分Ti,Zr,Nが式(1)を満たしており、AlNの析出物粒子の析出による結晶粒の微細化が抑制されることで変形抵抗が小さくされていることに加えて、鋼中へのNの固溶による変形抵抗も抑制されており、また炭化物TiC,ZrCそのものによる硬さ上昇も抑制されていることで、上降伏点の応力が比較例に比べて効果的に低減せしめられている。   In Example 1, the chemical components Ti, Zr, and N satisfy the formula (1), and the deformation resistance is reduced by suppressing the refinement of crystal grains due to the precipitation of AlN precipitate particles. In addition, the deformation resistance due to the solid solution of N in the steel is also suppressed, and the increase in hardness due to the carbides TiC and ZrC itself is also suppressed, so that the stress at the upper yield point is more effective than the comparative example. Has been reduced.

また各実施例は、浸炭後における旧オーステナイト粒の平均結晶粒度が8以下で且つ6〜4.3の範囲内に揃っており、結晶粒度のバラツキも少ない。   In each example, the average grain size of the prior austenite grains after carburization is 8 or less and in the range of 6 to 4.3, and there is little variation in grain size.

以上本発明の実施形態を詳述したがこれはあくまで一例示であり、本発明はその趣旨を逸脱しない範囲において種々変更を加えた態様で実施可能である。   Although the embodiment of the present invention has been described in detail above, this is merely an example, and the present invention can be implemented in variously modified forms without departing from the spirit of the present invention.

Claims (10)

質量%で
C:0.10〜0.30%
Si:0.01〜1.50%
Mn:0.40〜1.50%
S:0.01〜0.10%
P:0.03%以下
Cu:0.05〜1.00%
Ni:0.05〜1.00%
Cr:1.12〜2.00%
Mo:0.01〜0.50%
Nb:0.001%以下
s-Al:0.005〜0.050%
N:0.005〜0.030%
Ti:0.001〜0.150%
Zr:0.000〜0.300%
残部Fe及び不可避的不純物の組成を有し、
且つTi,Zr,Nの含有量[Ti],[Zr],[N]が下記式(1)を満たす鋼から成り、
|[Ti]/47.9+[Zr]/91.2−[N]/14|/100≦3.5×10-6モル/g・・・式(1)
圧延直後の鋼材の組織がフェライト・パーライト組織で、光学顕微鏡の100倍視野且つ5視野での「JIS G 0552 鋼−結晶粒度の顕微鏡試験方法」に準じて測定されるフェライトの平均結晶粒度が8番以下である冷間鍛造性に優れた肌焼用圧延鋼材
By mass% C: 0.10 to 0.30%
Si: 0.01 to 1.50%
Mn: 0.40 to 1.50%
S: 0.01-0.10%
P: 0.03% or less
Cu: 0.05-1.00%
Ni: 0.05-1.00%
Cr: 1.12 to 2.00%
Mo: 0.01-0.50%
Nb: 0.001% or less
s-Al: 0.005 to 0.050%
N: 0.005-0.030%
Ti: 0.001 to 0.150%
Zr: 0.000 to 0.300%
Having the composition of the balance Fe and inevitable impurities,
And Ti, Zr, the content of N [Ti], [Zr] , made of steel that meets the [N] is represented by the following formula (1),
| [Ti] /47.9+ [Zr] /91.2− [N] /14|/100≦3.5×10 −6 mol / g (1)
The structure of the steel immediately after rolling is a ferrite-pearlite structure, and the average grain size of ferrite measured according to “JIS G 055 2 Steel—Microscopic Test Method for Grain Size” in a 100 × field of view and 5 fields of view of an optical microscope is Rolled steel for case hardening excellent in cold forgeability that is No. 8 or less.
質量%で
C:0.10〜0.30%
Si:0.01〜1.50%
Mn:0.40〜1.50%
S:0.01〜0.l0%
P:0.03%以下
Cu:0.05〜1.00%
Ni:0.05〜1.00%
Cr:1.16〜2.00%
Mo:0.01〜0.50%
Nb:0.001%以下
s-A1:0.001〜0.008%
N:0.005〜0.030%
Ti:<0.001%
Zr:<0.001%
残部Fe及び不可避的不純物の組成を有する鋼から成り、
圧延直後の鋼材の組織がフェライト・パーライト組織で、光学顕微鏡の100倍視野且つ5視野での「JIS G 0552 鋼−結晶粒度の顕微鏡試験方法」に準じて測定されるフェライトの平均結晶粒度が8番以下である冷間鍛造性に優れた肌焼用圧延鋼材
By mass% C: 0.10 to 0.30%
Si: 0.01 to 1.50%
Mn: 0.40 to 1.50%
S: 0.01 ~ 0.10%
P: 0.03% or less
Cu: 0.05-1.00%
Ni: 0.05-1.00%
Cr: 1.16 to 2.00%
Mo: 0.01-0.50%
Nb: 0.001% or less
s-A1: 0.001 to 0.008%
N: 0.005-0.030%
Ti: <0.001%
Zr: <0.001%
Made of steel to have a composition the balance Fe and unavoidable impurities,
The structure of the steel immediately after rolling is a ferrite-pearlite structure, and the average grain size of ferrite measured according to “JIS G 055 2 Steel—Microscopic Test Method for Grain Size” in a 100 × field of view and 5 fields of view of an optical microscope is Rolled steel for case hardening excellent in cold forgeability that is No. 8 or less.
前記鋼が、質量%で
B:0.001〜0.010%
を更に含有していることを特徴とする請求項1,2の何れかに記載の肌焼用圧延鋼材
The steel, B in mass%: 0.001 to 0.010%
Further hardened rolled steel for according to claim 1, characterized in that it contains a.
請求項1〜3の何れかに記載の肌焼用圧延鋼材を用いて、冷間鍛造にて部品形状に加工し、浸炭焼入れして成る浸炭部品。 A carburized part formed by cold forging and carburizing and quenching using the rolled steel material for case hardening according to any one of claims 1 to 3 . 質量%で
C:0.10〜0.30%
Si:0.01〜1.50%
Mn:0.40〜1.50%
S:0.01〜0.10%
P:0.03%以下
Cu:0.05〜1.00%
Ni:0.05〜1.00%
Cr:1.12〜2.00%
Mo:0.01〜0.50%
Nb:0.001%以下
s-Al:0.005〜0.050%
N:0.005〜0.030%
Ti:0.001〜0.150%
Zr:0.000〜0.300%
残部Fe及び不可避的不純物の組成を有し、
且つTi,Zr,Nの含有量[Ti],[Zr],[N]が下記式(1)を満たす鋼から成り、
|[Ti]/47.9+[Zr]/91.2−[N]/14|/100≦3.5×10-6モル/g・・・式(1)
冷間鍛造にて部品形状に加工し、浸炭焼入れして成る部品であって、浸炭焼入後における旧オーステナイト粒の粒界面積1mm2当りのTiC,AlN,ZrCの析出物粒子量が4.5×10-10モル以下であることを特徴とする浸炭部品。
By mass% C: 0.10 to 0.30%
Si: 0.01 to 1.50%
Mn: 0.40 to 1.50%
S: 0.01-0.10%
P: 0.03% or less
Cu: 0.05-1.00%
Ni: 0.05-1.00%
Cr: 1.12 to 2.00%
Mo: 0.01-0.50%
Nb: 0.001% or less
s-Al: 0.005 to 0.050%
N: 0.005-0.030%
Ti: 0.001 to 0.150%
Zr: 0.000 to 0.300%
Having the composition of the balance Fe and inevitable impurities,
And Ti, Zr, the content of N [Ti], [Zr] , made of steel that meets the [N] is represented by the following formula (1),
| [Ti] /47.9+ [Zr] /91.2− [N] /14|/100≦3.5×10 −6 mol / g (1)
Parts formed by cold forging and carburized and quenched, and the amount of precipitate particles of TiC, AlN, and ZrC per 1 mm 2 of grain interface area of prior austenite grains after carburizing and quenching is 4.5 × Carburized parts characterized by being 10-10 mol or less.
質量%で
C:0.10〜0.30%
Si:0.01〜1.50%
Mn:0.40〜1.50%
S:0.01〜0.l0%
P:0.03%以下
Cu:0.05〜1.00%
Ni:0.05〜1.00%
Cr:1.16〜2.00%
Mo:0.01〜0.50%
Nb:0.001%以下
s-A1:0.001〜0.008%
N:0.005〜0.030%
Ti:<0.001%
Zr:<0.001%
残部Fe及び不可避的不純物の組成を有する鋼から成り、
冷間鍛造にて部品形状に加工し、浸炭焼入れして成る部品であって、浸炭焼入後における旧オーステナイト粒の粒界面積1mm2当りのTiC,AlN,ZrCの析出物粒子量が4.5×10-10モル以下であることを特徴とする浸炭部品。
By mass% C: 0.10 to 0.30%
Si: 0.01 to 1.50%
Mn: 0.40 to 1.50%
S: 0.01 ~ 0.10%
P: 0.03% or less
Cu: 0.05-1.00%
Ni: 0.05-1.00%
Cr: 1.16 to 2.00%
Mo: 0.01-0.50%
Nb: 0.001% or less
s-A1: 0.001 to 0.008%
N: 0.005-0.030%
Ti: <0.001%
Zr: <0.001%
Made of steel to have a composition the balance Fe and unavoidable impurities,
Parts formed by cold forging and carburized and quenched, and the amount of precipitate particles of TiC, AlN, and ZrC per 1 mm 2 of grain interface area of prior austenite grains after carburizing and quenching is 4.5 × Carburized parts characterized by being 10-10 mol or less.
前記鋼が、質量%で
B:0.001〜0.010%
を更に含有していることを特徴とする請求項5,6の何れかに記載の浸炭部品。
The steel is mass% B: 0.001 ~ 0.010%
The carburized part according to any one of claims 5 and 6 , further comprising:
質量%で
C:0.10〜0.30%
Si:0.01〜1.50%
Mn:0.40〜1.50%
S:0.01〜0.10%
P:0.03%以下
Cu:0.05〜1.00%
Ni:0.05〜1.00%
Cr:1.12〜2.00%
Mo:0.01〜0.50%
Nb:0.001%以下
s-Al:0.005〜0.050%
N:0.005〜0.030%
Ti:0.001〜0.150%
Zr:0.000〜0.300%
残部Fe及び不可避的不純物の組成を有し、
且つTi,Zr,Nの含有量[Ti],[Zr],[N]が下記式(1)を満たす鋼から成り、
|[Ti]/47.9+[Zr]/91.2−[N]/14|/100≦3.5×10-6モル/g・・・式(1)
冷間鍛造にて部品形状に加工し、浸炭焼入れして成る部品であって、JIS G 0551に準拠して測定される浸炭焼入後における旧オーステナイト粒の平均結晶粒度が8番以下であることを特徴とする浸炭部品。
By mass% C: 0.10 to 0.30%
Si: 0.01 to 1.50%
Mn: 0.40 to 1.50%
S: 0.01-0.10%
P: 0.03% or less
Cu: 0.05-1.00%
Ni: 0.05-1.00%
Cr: 1.12 to 2.00%
Mo: 0.01-0.50%
Nb: 0.001% or less
s-Al: 0.005 to 0.050%
N: 0.005-0.030%
Ti: 0.001 to 0.150%
Zr: 0.000 to 0.300%
Having the composition of the balance Fe and inevitable impurities,
And Ti, Zr, the content of N [Ti], [Zr] , made of steel that meets the [N] is represented by the following formula (1),
| [Ti] /47.9+ [Zr] /91.2− [N] /14|/100≦3.5×10 −6 mol / g (1)
Parts formed by cold forging into parts and carburized and quenched, and the average grain size of prior austenite grains after carburizing and quenching measured according to JIS G 0551 is no more than 8 Carburized parts characterized by
質量%で
C:0.10〜0.30%
Si:0.01〜1.50%
Mn:0.40〜1.50%
S:0.01〜0.l0%
P:0.03%以下
Cu:0.05〜1.00%
Ni:0.05〜1.00%
Cr:1.16〜2.00%
Mo:0.01〜0.50%
Nb:0.001%以下
s-A1:0.001〜0.008%
N:0.005〜0.030%
Ti:<0.001%
Zr:<0.001%
残部Fe及び不可避的不純物の組成を有する鋼から成り、
冷間鍛造にて部品形状に加工し、浸炭焼入れして成る部品であって、JIS G 0551に準拠して測定される浸炭焼入後における旧オーステナイト粒の平均結晶粒度が8番以下であることを特徴とする浸炭部品。
By mass% C: 0.10 to 0.30%
Si: 0.01 to 1.50%
Mn: 0.40 to 1.50%
S: 0.01 ~ 0.10%
P: 0.03% or less
Cu: 0.05-1.00%
Ni: 0.05-1.00%
Cr: 1.16 to 2.00%
Mo: 0.01-0.50%
Nb: 0.001% or less
s-A1: 0.001 to 0.008%
N: 0.005-0.030%
Ti: <0.001%
Zr: <0.001%
Made of steel to have a composition the balance Fe and unavoidable impurities,
Parts formed by cold forging into parts and carburized and quenched, and the average grain size of prior austenite grains after carburizing and quenching measured according to JIS G 0551 is no more than 8 Carburized parts characterized by
前記鋼が、質量%で
B:0.001〜0.010%
を更に含有していることを特徴とする請求項8,9の何れかに記載の浸炭部品。
The steel is mass% B: 0.001 ~ 0.010%
The carburized component according to claim 8 , further comprising:
JP2014016209A 2014-01-30 2014-01-30 Rolled steel for case hardening and carburized parts using the same Active JP6343946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014016209A JP6343946B2 (en) 2014-01-30 2014-01-30 Rolled steel for case hardening and carburized parts using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014016209A JP6343946B2 (en) 2014-01-30 2014-01-30 Rolled steel for case hardening and carburized parts using the same

Publications (2)

Publication Number Publication Date
JP2015140481A JP2015140481A (en) 2015-08-03
JP6343946B2 true JP6343946B2 (en) 2018-06-20

Family

ID=53771045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014016209A Active JP6343946B2 (en) 2014-01-30 2014-01-30 Rolled steel for case hardening and carburized parts using the same

Country Status (1)

Country Link
JP (1) JP6343946B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07207423A (en) * 1994-01-17 1995-08-08 Nippon Steel Corp Production of case hardening steel parts
JP3819529B2 (en) * 1997-04-28 2006-09-13 株式会社神戸製鋼所 Case-hardened steel with excellent cold workability
JPH1112684A (en) * 1997-06-19 1999-01-19 Kobe Steel Ltd Case hardening steel for cold forging
JP3733504B2 (en) * 1997-09-02 2006-01-11 住友金属工業株式会社 Carburized parts with excellent bending strength and impact properties
JP4448456B2 (en) * 2004-01-29 2010-04-07 新日本製鐵株式会社 Case-hardened steel with excellent coarse grain prevention and fatigue characteristics during carburizing and its manufacturing method
JP5385656B2 (en) * 2009-03-27 2014-01-08 株式会社神戸製鋼所 Case-hardened steel with excellent maximum grain reduction characteristics

Also Published As

Publication number Publication date
JP2015140481A (en) 2015-08-03

Similar Documents

Publication Publication Date Title
JP4775506B1 (en) Bearing steel
JP5458048B2 (en) Case-hardened steel, its manufacturing method, and machine structural parts using case-hardened steel
JP5123335B2 (en) Crankshaft and manufacturing method thereof
CN100453684C (en) Cold formable spring steel wire excellent in cold cutting capability and fatigue properties and manufacturing process thereof
JPWO2007114490A1 (en) Heat-treated steel for high-strength springs
KR20080057205A (en) High strength spring steel and high strength spring heat-treated steel wire
JP5913214B2 (en) Bolt steel and bolts, and methods for producing the same
JP5541418B2 (en) Spring steel and spring
JP5163242B2 (en) Case-hardened steel
CN108315637B (en) High carbon hot-rolled steel sheet and method for producing same
JP6468402B2 (en) Case-hardened steel, method for producing the same, and method for producing gear parts
JP5824443B2 (en) Method of manufacturing steel wire for spring
KR20130108403A (en) Rolled steel bar or wire for hot forging
JP5801529B2 (en) Non-heat treated steel for hot forging with high bending fatigue strength and small deformation due to repeated stress, and method for producing the same
JP6337580B2 (en) Carburized parts
JP6394035B2 (en) Case-hardened steel
JP5871085B2 (en) Case-hardened steel with excellent cold forgeability and ability to suppress grain coarsening
JP6237277B2 (en) Case-hardened steel and carburized parts using the same
JP2004027334A (en) Steel for induction tempering and method of producing the same
JP5326885B2 (en) Rolled steel for hot forging and method for producing the same
EP3020841B1 (en) Coil spring, and method for manufacturing same
JP6465206B2 (en) Hot-rolled bar wire, parts and method for producing hot-rolled bar wire
JP2009256769A (en) Method for producing steel material for carburizing
JP6343946B2 (en) Rolled steel for case hardening and carburized parts using the same
CN108350544B (en) Steel wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161121

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20161222

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180507

R150 Certificate of patent or registration of utility model

Ref document number: 6343946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150