JP6340543B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP6340543B2
JP6340543B2 JP2013236423A JP2013236423A JP6340543B2 JP 6340543 B2 JP6340543 B2 JP 6340543B2 JP 2013236423 A JP2013236423 A JP 2013236423A JP 2013236423 A JP2013236423 A JP 2013236423A JP 6340543 B2 JP6340543 B2 JP 6340543B2
Authority
JP
Japan
Prior art keywords
storage
refrigerator
cooling
storage space
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013236423A
Other languages
Japanese (ja)
Other versions
JP2015096774A (en
Inventor
森 貴代志
貴代志 森
上迫 豊志
豊志 上迫
健一 柿田
健一 柿田
雅至 中川
雅至 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2013236423A priority Critical patent/JP6340543B2/en
Publication of JP2015096774A publication Critical patent/JP2015096774A/en
Application granted granted Critical
Publication of JP6340543B2 publication Critical patent/JP6340543B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Description

本発明は、貯蔵室の収納量を検知する手段を備えた冷蔵庫に関する。   The present invention relates to a refrigerator provided with a means for detecting the storage amount of a storage room.

近年の家庭用冷蔵庫の冷却方法としては、冷気をファンで冷蔵庫内に循環させる間接冷却方式が一般的である。このような従来の冷蔵庫は、冷蔵庫内に、冷蔵室の温度を検知する冷蔵室温度センサと、冷凍室の温度を検知する冷凍室温度センサとを有している。また、従来の冷蔵庫は、これらのセンサから出力される検知結果に応じて温調制御することで、庫内の温度を適温に保っている。   As a method for cooling a domestic refrigerator in recent years, an indirect cooling method in which cold air is circulated in the refrigerator with a fan is generally used. Such a conventional refrigerator has a refrigerator temperature sensor for detecting the temperature of the refrigerator compartment and a freezer temperature sensor for detecting the temperature of the freezer compartment in the refrigerator. Moreover, the conventional refrigerator is keeping temperature in a warehouse at appropriate temperature by carrying out temperature control control according to the detection result output from these sensors.

例えば、庫内温度を均一に保つ冷蔵庫として、可動式の冷気吐出装置を設けた冷蔵庫がある(例えば、特許文献1を参照)。   For example, there is a refrigerator provided with a movable cold air discharge device as a refrigerator that keeps the inside temperature uniform (see, for example, Patent Document 1).

図13は、従来の冷蔵庫100の要部正面図であり、図14は、従来の冷蔵庫100の温度センサ等の構成部品の挙動を模式的に示す図である。   FIG. 13 is a front view of a main part of a conventional refrigerator 100, and FIG. 14 is a diagram schematically showing the behavior of components such as a temperature sensor of the conventional refrigerator 100. As shown in FIG.

図13に示すように、従来の冷蔵庫100においては、冷蔵室101内に設けられた可動式の冷気吐出装置102が、左右に冷気を供給して庫内温度の均一化を図っている。   As shown in FIG. 13, in the conventional refrigerator 100, the movable cold air discharge apparatus 102 provided in the refrigerator compartment 101 supplies cold air to right and left, and makes uniform the internal temperature.

また、図14に示したように、従来の冷蔵庫100においては、冷凍室の温度センサの検知する温度が所定の温度(ON温度)まで上昇すると圧縮機を駆動し、また、冷蔵室の温度センサの検知温度が所定値の温度(開温度)以上であれば、冷蔵室のダンパーを「閉→開」とする動作を行って、冷却ファンを駆動する(以下、この動作を「冷蔵室冷凍室同時冷却a」という)。   Further, as shown in FIG. 14, in the conventional refrigerator 100, the compressor is driven when the temperature detected by the temperature sensor of the freezer compartment rises to a predetermined temperature (ON temperature), and the temperature sensor of the refrigerator compartment If the detected temperature is equal to or higher than the predetermined temperature (open temperature), the operation of switching the damper of the refrigerator compartment from “closed to open” is performed to drive the cooling fan (hereinafter, this operation is referred to as “refrigerator compartment freezer compartment”). Simultaneous cooling a)).

その後、冷蔵室の温度センサの検知温度が所定の温度(閉温度)に到達すると、冷蔵室のダンパーを「開→閉」とする動作を行い、冷凍室側のみを冷却運転する。(以下、この動作を「冷凍室単独冷却b」という)。   After that, when the temperature detected by the temperature sensor in the refrigerator compartment reaches a predetermined temperature (closed temperature), an operation of opening the damper in the refrigerator compartment is performed “open → close”, and only the freezer compartment side is cooled. (Hereinafter, this operation is referred to as “freezer compartment cooling b”).

その後、冷凍室の温度センサの検知温度が所定の温度(OFF温度)に到達すると、圧縮機を停止する(以下、この動作を「冷却停止c」という)。   Thereafter, when the temperature detected by the temperature sensor in the freezer compartment reaches a predetermined temperature (OFF temperature), the compressor is stopped (hereinafter, this operation is referred to as “cooling stop c”).

そして、従来の冷蔵庫100は、その通常運転中に、冷蔵室冷凍室同時冷却a、冷凍室単独冷却b、冷却停止cの一連の動作を順に繰り返す。   And the conventional refrigerator 100 repeats a series of operation | movement of the refrigerator compartment simultaneous cooling a, the freezer compartment independent cooling b, and the cooling stop c in order during the normal driving | operation.

なお、冷凍室のダンパーを有する冷蔵庫100であれば、上記一連の動作に、冷蔵室のダンパーを「開」、冷凍室のダンパーを「閉」として、圧縮機および冷却ファンを駆動する動作が加えられる(以下、この動作を「冷蔵室単独冷却d」という)。   In the case of the refrigerator 100 having a freezer damper, the operation of driving the compressor and the cooling fan with the damper of the refrigerator compartment being “open” and the damper of the freezer compartment being “closed” is added to the above series of operations. (Hereinafter, this operation is referred to as “cooling room single cooling d”).

特開平8−247608号公報JP-A-8-247608

しかしながら、従来の冷蔵庫100は、庫内の収納状況に関わらず庫内全体を万遍なく冷却を行うため、収納物がない箇所に対しても冷気を供給し、「冷やしすぎ」が生じてい
る。
However, since the conventional refrigerator 100 uniformly cools the entire refrigerator regardless of the storage condition in the refrigerator, cold air is supplied even to places where no items are stored, resulting in “too cold”. .

また、近年就労形態が変化し、共働き世帯が増加している。また、大型スーパー等での買物の機会が増加している。これにより、休日に、一度に一週間分の食品等をまとめ買いする人々が増加しており、冷蔵庫100の収納量が今までよりも大きく変化する傾向があり、まとめ買い前日には極端に収納量が少ない場合も多く、一般家庭の生活パターンが変化しつつある。   In recent years, the working style has changed and the number of double-income households has increased. In addition, shopping opportunities at large supermarkets are increasing. As a result, the number of people who buy food for a week at a time on holidays is increasing, and the storage capacity of the refrigerator 100 tends to change more than before. In many cases, the life patterns of ordinary households are changing.

本発明は、上述した課題に鑑みてなされたものであり、省エネ性を高めながら、保鮮性を確保する使い勝手のよい冷蔵庫を提供することを目的とする。   This invention is made | formed in view of the subject mentioned above, and it aims at providing the easy-to-use refrigerator which ensures freshness, improving energy saving property.

上記従来の課題を解決するために、本発明の冷蔵庫は、断熱壁と断熱扉とによって区画され、収納物を収納する収納室と、前記収納室内の収納状況を推定する収納状況推定部と、前記収納状況推定部の推定結果を記憶する記憶部と、冷気の流れを切り替えるフラップの動作を制御する演算制御部と、を備え、前記収納室は、一つ又は複数の透過率50%以上の棚によって収納空間を上段部と下段部に区画すると共に、前記演算制御部は前記収納空間における前記収納状況推定部の推定結果に基づいて、前記フラップの動作を制御することで前記収納空間への冷却量を変化させ、前記フラップは、前記収納空間を上段部と下段部に区画する棚の水平投影面に跨ってダクト内に配置されるものである。 In order to solve the above conventional problems, the refrigerator of the present invention is defined by the heat insulating wall and the heat insulating door, an accommodation chamber for accommodating the stored items, the storage condition estimation unit that estimates a receiving situation before Symbol storage chamber the a housing status storage unit for storing the estimation result of the estimation unit, and a calculation control unit for controlling the operation of the flap to switch the flow of cold air, wherein the storage room, one or more of transmittance of 50% The storage space is partitioned into an upper stage and a lower stage by the above shelves, and the calculation control unit controls the operation of the flap based on the estimation result of the storage state estimation unit in the storage space, thereby the storage space. The amount of cooling is changed, and the flap is arranged in the duct across the horizontal projection surface of the shelf that divides the storage space into an upper step portion and a lower step portion .

これによって、収納空間における収納状況に合わせて、最適に電気機能部品の出力動作を制御することができる。   Thereby, the output operation of the electrical functional component can be optimally controlled in accordance with the storage situation in the storage space.

本発明の冷蔵庫は、収納空間における収納状況推定部の推定結果に基づいて、前記収納空間への冷却量を変化させることにより、収納物がない箇所への冷却量を低減することで、適切に冷却運転し、省エネ性能を向上できる。   The refrigerator of the present invention appropriately reduces the amount of cooling to a place where there is no storage by changing the amount of cooling to the storage space based on the estimation result of the storage state estimation unit in the storage space. Cooling operation can improve energy saving performance.

本発明の実施の形態1における冷蔵庫の正面図Front view of the refrigerator in Embodiment 1 of the present invention 本発明の実施の形態1における冷蔵庫の制御ブロック図Control block diagram of refrigerator in Embodiment 1 of the present invention (a)本発明の実施の形態1における冷蔵庫の図1のA−A線断面図、(b)本発明の実施の形態1における冷蔵庫の扉を開けたときの正面図(A) AA line sectional view of the refrigerator in Embodiment 1 of the present invention in FIG. 1, (b) Front view when the door of the refrigerator in Embodiment 1 of the present invention is opened. 本発明の実施の形態1における冷蔵庫の風路構成概略図Schematic diagram of air passage configuration of refrigerator in embodiment 1 of the present invention 本発明の実施の形態1における冷蔵庫の収納状況検知制御を示すフローチャートThe flowchart which shows the storage condition detection control of the refrigerator in Embodiment 1 of this invention. 本発明の実施の形態1における天面光源による収納状態検知特性図Storage state detection characteristic diagram with top light source in Embodiment 1 of the present invention 本発明の実施の形態1における下方の光源による収納状態検知動作の説明図Explanatory drawing of the accommodation state detection operation | movement by the lower light source in Embodiment 1 of this invention 本発明の実施の形態1における収納状態検知特性図Storage state detection characteristic diagram in Embodiment 1 of the present invention 本発明の実施の形態1における上段・下段の収納量比特性図Storage capacity ratio characteristic diagram of upper stage and lower stage in Embodiment 1 of the present invention 本発明の実施の形態1における収納物分布による温度センサの温度挙動模式図Schematic diagram of temperature behavior of temperature sensor based on distribution of contents in Embodiment 1 of the present invention 本発明の実施の形態1における収納物分布による温度センサの温度挙動模式図Schematic diagram of temperature behavior of temperature sensor based on distribution of contents in Embodiment 1 of the present invention 本発明の実施の形態1における収納物分布による温度センサの温度挙動模式図Schematic diagram of temperature behavior of temperature sensor based on distribution of contents in Embodiment 1 of the present invention 従来冷蔵庫の正面図Front view of conventional refrigerator 従来冷蔵庫の温度センサの温度挙動を模式的に示す図The figure which shows the temperature behavior of the temperature sensor of the conventional refrigerator typically

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.

(実施の形態1)
以下、本発明の実施の形態1について説明する。
(Embodiment 1)
Embodiment 1 of the present invention will be described below.

図1は本発明の実施の形態1における冷蔵庫の正面図、図2は同実施の形態における冷蔵庫の制御ブロック図、図3(a)は同実施の形態における図1のA−A線断面図、図3(b)は同実施の形態における図1の冷蔵室の扉を開けたときの正面図、図4は同実施の形態における収納状態検知の風路構成概略図、図5は同実施の形態における収納状態検知の制御フローチャート図、図5は同実施の形態における収納状態検知特性図、図6は同実施の形態における天面光源による収納状態検知特性図、図7は同実施の形態における下方の光源による収納状態検知動作の説明図、図8は同実施の形態における収納状態検知特性図、図9は同実施の形態における上段・下段の収納量比特性図、図10から図12は同実施の形態における本発明の実施の形態1における収納物分布による温度センサの温度挙動模式図である。   1 is a front view of a refrigerator according to Embodiment 1 of the present invention, FIG. 2 is a control block diagram of the refrigerator according to the embodiment, and FIG. 3A is a cross-sectional view taken along line AA of FIG. 3B is a front view when the door of the refrigerator compartment of FIG. 1 is opened in the same embodiment, FIG. 4 is a schematic diagram of the air passage configuration of the storage state detection in the same embodiment, and FIG. FIG. 5 is a storage state detection characteristic diagram in the same embodiment, FIG. 6 is a storage state detection characteristic diagram by a top light source in the same embodiment, and FIG. 7 is the same embodiment. 8 is an explanatory diagram of the storage state detection operation by the lower light source in FIG. 8, FIG. 8 is a storage state detection characteristic diagram in the embodiment, FIG. 9 is a storage ratio characteristic diagram in the upper stage and the lower stage, and FIGS. Is the implementation of the present invention in the same embodiment A temperature behavior schematic diagram of a temperature sensor according to stored items distributed in the first.

図1から図4において、冷蔵庫本体11である断熱箱体は、主に鋼板を用いた外箱と、ABSなどの樹脂で成形された内箱と、外箱と内箱の間に注入した断熱材で構成されている。   In FIG. 1 to FIG. 4, the heat insulating box body that is the refrigerator main body 11 includes an outer box mainly using a steel plate, an inner box formed of a resin such as ABS, and heat insulation injected between the outer box and the inner box. It is composed of materials.

冷蔵庫本体11である断熱箱体は、複数の収納室に断熱区画されており、最上部に冷蔵室12、その冷蔵室12の下部に製氷室13もしくは切換室14が横並びに設けられ、その製氷室13と切換室14の下部に冷凍室15、そして最下部に野菜室16が配置され、各収納室の前面には外気と区画するための断熱扉が冷蔵庫本体の前面開口部にそれぞれ構成されている。冷蔵室12の断熱扉である冷蔵室扉12aの中央部付近には、各室の庫内温度設定や製氷および急速冷却などの設定を行うことができ、また収納状態の検知結果や冷蔵庫の運転状況などを表示できる操作部17が配置されている。   The heat insulation box which is the refrigerator main body 11 is divided into a plurality of storage rooms, and is provided with a refrigerating room 12 at the top and an ice making room 13 or a switching room 14 at the bottom of the refrigerating room 12. A freezing room 15 is arranged at the lower part of the chamber 13 and the switching room 14, and a vegetable room 16 is arranged at the lowermost part, and a heat insulating door for partitioning with the outside air is formed at the front of each storage room at the front opening of the refrigerator body. ing. In the vicinity of the central portion of the refrigerator compartment door 12a, which is a heat insulating door of the refrigerator compartment 12, it is possible to make settings such as the temperature inside the compartment, ice making and quick cooling, and the detection result of the storage state and the operation of the refrigerator An operation unit 17 capable of displaying the situation and the like is arranged.

また、冷蔵庫本体11には、演算制御部1内に備えたメモリ2、タイマ4および、扉の開閉を検知する扉開閉検知センサ3を備えている。   In addition, the refrigerator main body 11 includes a memory 2 provided in the arithmetic control unit 1, a timer 4, and a door opening / closing detection sensor 3 that detects opening / closing of the door.

また、演算制御部1は、収納室内の収納状況を推定する収納状況推定部を備え、収納空間における収納状況推定部の推定結果に基づいて、電気機能部品の出力動作を制御し、収納空間への冷却量を変化させるものである。   In addition, the arithmetic control unit 1 includes a storage state estimation unit that estimates the storage state in the storage room, and controls the output operation of the electrical functional component based on the estimation result of the storage state estimation unit in the storage space, and returns to the storage space. The amount of cooling is changed.

冷蔵室12内には、収納物である食品を整理して収納できるように複数の庫内収納棚18が、また冷蔵室扉12aの庫内側の面には扉収納棚19が設けられ、これらはガラスや透明な樹脂など光の透過率が高い材質で構成されている。庫内収納棚18および扉収納棚19の表面は、一定の透過率を保ちながら光が拡散するように加工を行うことで、冷蔵室12内の明るさの分布を調節することが可能である。このときの透過率は50%以上であることが望ましく、透過率が低いときは光が届き難い場所ができるので収納状態の検知精度が低下する。冷蔵室12内には、上下に複数の収納棚18が設けられ、複数の収納空間を区画形成している。なお、一部の収納棚18は、上下に可動できるように構成されている。   In the refrigerator compartment 12, a plurality of storage shelves 18 are provided so that foods that are stored items can be organized and stored, and a door storage shelf 19 is provided on the inner surface of the refrigerator compartment door 12a. Is made of a material having high light transmittance such as glass or transparent resin. It is possible to adjust the distribution of brightness in the refrigerator compartment 12 by processing the surfaces of the storage rack 18 and the door storage rack 19 so that light diffuses while maintaining a certain transmittance. . The transmittance at this time is desirably 50% or more. When the transmittance is low, a place where light does not easily reach is formed, and the detection accuracy of the storage state is lowered. In the refrigerator compartment 12, a plurality of storage shelves 18 are provided on the top and bottom, and a plurality of storage spaces are defined. Note that some of the storage shelves 18 are configured to be movable up and down.

冷蔵室12内には、収納室内である庫内を明るく照らすために庫内照明20があり、収納された収納物である食品の視認性を向上させている。庫内照明20は、冷蔵庫内の扉開放側前面から見て、庫内奥行の1/2より扉側に、天面と左側壁面と右側壁面に配置されている。この庫内照明20の光源には天面LED20a、20b、および照明用LED20c、20d、20e、20f、および側面下方LED20g、20hなど複数のLEDを使用し、側壁面においては照明用LED20c〜20gのように縦方向に配列することで、高さ方向に長い冷蔵室12全体を満遍なく照射することができる。   In the refrigerator compartment 12, there is an interior lighting 20 for brightly illuminating the interior of the storage room, which improves the visibility of the food that is stored. The interior lighting 20 is arranged on the top surface, the left side wall surface, and the right side wall surface from the front side of the door opening side in the refrigerator, to the door side from 1/2 of the interior depth. A plurality of LEDs such as the top LEDs 20a and 20b, the lighting LEDs 20c, 20d, 20e, and 20f, and the side lower LEDs 20g and 20h are used as the light source of the interior lighting 20, and the lighting LEDs 20c to 20g are formed on the side wall surface. By arranging in this way in the vertical direction, the entire refrigerator compartment 12 that is long in the height direction can be irradiated uniformly.

庫内の下方、且つ庫内の奥行方向の1/2より扉側の位置に光センサである光センサ21a、21bが設置されている。これらの光センサは、本実施の形態では照度センサを用い、最も高感度となるピーク波長を500〜600nmとしたセンサが一般的である。なお、光センサのピーク感度波長は、他の波長帯でも良く、光源の発光波長などと合わせて決定するものである。   Optical sensors 21a and 21b, which are optical sensors, are installed below the interior of the chamber and at a position closer to the door than ½ of the depth direction in the chamber. As these optical sensors, an illuminance sensor is used in the present embodiment, and a sensor having a peak wavelength of 500 to 600 nm at which sensitivity is highest is common. Note that the peak sensitivity wavelength of the optical sensor may be another wavelength band, and is determined in accordance with the emission wavelength of the light source.

冷蔵室12を左右方向において2区画に区分したときは、天面LED20aと光センサ21bが右区画に配置され、天面LED20bと光センサ21aが左区画に配置される。また、前記収納室を上下方向において2区画に区分したときは、天面LED20a、bが上区画に配置され、側面下方LED20g、hと光センサ21a、b、が下区画に配置される。このように、前記複数の区画にLEDと光センサが配置されている。   When the refrigerator compartment 12 is divided into two sections in the left-right direction, the top LED 20a and the optical sensor 21b are arranged in the right compartment, and the top LED 20b and the optical sensor 21a are arranged in the left compartment. When the storage chamber is divided into two sections in the vertical direction, the top LEDs 20a and 20b are disposed in the upper section, and the side lower LEDs 20g and h and the optical sensors 21a and b are disposed in the lower section. Thus, LEDs and photosensors are arranged in the plurality of sections.

この光センサ21a、21bは、LED20a、20b、20g、20hの照射光が、収納室壁面での反射および収納物による反射・減衰を繰り返し、収納室内の明るさの分布が飽和した状態を測定・計算して収納状態を推定するものである。この原理に加え、複数の区画にLEDと光センサを配置したことで、収納物の配置によらず精度良く収納状態を検知することができる。   This optical sensor 21a, 21b measures the state in which the light distribution of the storage room is saturated, with the irradiation light of the LEDs 20a, 20b, 20g, 20h repeatedly reflected on the wall surface of the storage room and reflected / attenuated by the stored object. The storage state is estimated by calculation. In addition to this principle, by arranging LEDs and optical sensors in a plurality of sections, it is possible to detect the storage state with high accuracy regardless of the arrangement of the storage items.

光センサによる物体の検知は、例えばフォトインタラプタのように、遮蔽で光の強さが極端に減衰する現象を利用して一つの物体の存在をデジタル式に検知する方式、または多数のセンサ構成で複数の物体の存在を検知する方式が一般的である。このような構成は、収納室内の限られた場所の収納物の有無を検知することしかできず、収納室全体の収納状態を把握することはできない。しかし、本発明の構成は、少数のLEDとセンサで冷蔵室12という空間内の全体の収納状態をアナログ的に把握することを可能としている。   The detection of an object by an optical sensor is a method that digitally detects the presence of one object by utilizing the phenomenon that the intensity of light is extremely attenuated by shielding, such as a photo interrupter, or a number of sensor configurations. A method of detecting the presence of a plurality of objects is common. Such a configuration can only detect the presence or absence of stored items in a limited place in the storage chamber, and cannot grasp the storage state of the entire storage chamber. However, the configuration of the present invention makes it possible to grasp the entire storage state in the refrigerator compartment 12 in an analog manner with a small number of LEDs and sensors.

このシステムにおいては、光センサの直ぐ手前が収納食品によって塞がれると、検知できる光のレベルが極度に低下することに伴い、光の強さの変化率が低下するため、収納状態の検知に複雑な処理が必要になる。しかし、図3(a)に示したように、冷蔵室12内が収納物で満杯になっても、天面LED20a、20b、照明用LED20c〜20f、側面下方LED20g、20h、および光センサ21a、21bの取り付け位置には、庫内収納棚18と扉収納棚19の間に空間αがあるため、光センサが食品で塞がる可能性は低い。   In this system, if the food sensor closes the front of the light sensor, the level of light that can be detected decreases drastically and the rate of change in light intensity decreases. Complex processing is required. However, as shown in FIG. 3 (a), even if the refrigerator compartment 12 is filled with storage items, the top LEDs 20a and 20b, the lighting LEDs 20c to 20f, the side lower LEDs 20g and 20h, and the optical sensor 21a, Since there is a space α between the internal storage shelf 18 and the door storage shelf 19 at the attachment position of 21b, the possibility that the optical sensor is blocked with food is low.

また、この空間αは庫内収納棚18の前方側の端部を含む鉛直面18aよりも前方側で断熱扉である冷蔵室扉12aとの間に光センサ21a、21bが設置されていることによって形成されている。   Moreover, this space (alpha) has optical sensor 21a, 21b installed between the refrigerator compartment door 12a which is a heat insulation door in the front side rather than the vertical surface 18a including the edge part of the front side of the storage shelf 18 in the inside. Is formed by.

冷蔵室12内の最上部の後方領域に段部を有して形成された上部機械室内には、圧縮機30、および、水分除去を行うドライヤ等の冷凍サイクルの高圧側構成部品が収納されている。   The upper machine chamber formed with a step in the uppermost rear region in the refrigerator compartment 12 houses the compressor 30 and high-pressure side components of the refrigeration cycle such as a dryer for removing moisture. Yes.

そして、冷蔵室12内の最上部の棚18は、上部機械室の底面壁と略同一の高さに配置されている。すなわち、冷蔵室12内の最上部の収納空間は、背面に対向して上部機械室を備えている。したがって、冷蔵室12内の最上部の収納空間の奥行寸法は、下部の収納空間より小さく設定されている。   The uppermost shelf 18 in the refrigerator compartment 12 is disposed at substantially the same height as the bottom wall of the upper machine room. That is, the uppermost storage space in the refrigerator compartment 12 is provided with an upper machine room facing the back surface. Therefore, the depth dimension of the uppermost storage space in the refrigerator compartment 12 is set smaller than the lower storage space.

冷凍室15の背面には、冷気を生成する冷却室が設けられ、冷却室内には、冷却器、および、冷却器で冷却した冷却手段である冷気を、冷蔵室12、切換室14、製氷室13、野菜室16および冷凍室15に送風する冷却ファン31が配置されている。さらに冷却ファン31からの風量を調節する風量調節ダンパー32が風路内に設置されている。また、冷却器やその周辺に付着する霜や氷を除霜するためにラジアントヒータ、ドレンパンおよびドレンチューブ蒸発皿等が構成されている。   A cooling chamber for generating cold air is provided on the back surface of the freezing chamber 15. The cooling chamber is provided with a cooler and cold air that is cooling means cooled by the cooler, the refrigerator compartment 12, the switching chamber 14, and the ice making chamber. 13, A cooling fan 31 for blowing air to the vegetable compartment 16 and the freezing compartment 15 is disposed. Further, an air volume adjusting damper 32 for adjusting the air volume from the cooling fan 31 is installed in the air path. In addition, a radiant heater, a drain pan, a drain tube evaporating dish, and the like are configured to defrost frost and ice adhering to the cooler and its surroundings.

冷蔵室12は、冷蔵保存を行うために、冷却器から送られた冷気を遮断、又は開放する風量調節ダンパー32、冷気の流れを切り替えるフラップ33によって冷蔵室12内の冷却量を調節し、凍らない温度を下限として通常1℃〜5℃に温度制御されている。   The refrigerator compartment 12 adjusts the amount of cooling in the refrigerator compartment 12 by an air volume adjusting damper 32 that shuts off or opens the cool air sent from the cooler and a flap 33 that switches the flow of the cold air in order to perform refrigerated storage, and freezes it. The temperature is usually controlled at 1 ° C. to 5 ° C. with a lower temperature as the lower limit.

最下部の野菜室16は、冷蔵室12と同等またはやや高い2℃〜7℃に温度制御されている。   The temperature of the lowermost vegetable room 16 is controlled to 2 ° C. to 7 ° C. which is equal to or slightly higher than that of the refrigerator compartment 12.

また、冷凍室15は、冷凍温度帯に設定されており、冷凍保存のために通常−22℃〜−15℃に温度制御されているが、冷凍保存状態の向上のために、例えば−30℃や−2
5℃の低温に温度制御されるように設定される場合もある。
In addition, the freezer compartment 15 is set in a freezing temperature zone and is normally temperature-controlled at −22 ° C. to −15 ° C. for frozen storage, but for example, −30 ° C. to improve the frozen storage state. And -2
In some cases, the temperature is controlled to a low temperature of 5 ° C.

製氷室13は、冷蔵室12内の貯水タンク(図示せず)から送られた水により、室内上部に設けられた自動製氷機(図示せず)で氷をつくり、室内下部に配置した貯氷容器(図示せず)に貯蔵する。   The ice making chamber 13 is an ice storage container disposed in the lower part of the room by making ice with water supplied from a water storage tank (not shown) in the refrigerator compartment 12 by an automatic ice maker (not shown) provided in the upper part of the room. Store in (not shown).

切換室14は、1℃〜5℃に設定される冷蔵温度帯、2℃〜7℃に設定される野菜温度帯、通常−22℃〜−15℃に設定される冷凍の温度帯以外にも、冷蔵温度帯から冷凍温度帯の間で予め設定された温度帯に切り換えることができる。切換室14は、製氷室13に並設された、独立扉を備えた貯蔵室であり、引き出し式の扉を備えることが多い。   The switching chamber 14 has a refrigeration temperature zone set to 1 ° C to 5 ° C, a vegetable temperature zone set to 2 ° C to 7 ° C, and a freezing temperature zone usually set to -22 ° C to -15 ° C. The temperature can be switched to a preset temperature range between the refrigeration temperature range and the freezing temperature range. The switching chamber 14 is a storage chamber provided with an independent door, which is provided in parallel with the ice making chamber 13, and often includes a drawer-type door.

なお、本実施の形態では、切換室14を、冷蔵および冷凍の温度帯を含めた温度に調整可能な貯蔵室であるとしているが、冷蔵機能は冷蔵室12と野菜室16に、冷凍機能は冷凍室15に、それぞれ委ねて、冷蔵と冷凍の中間の温度帯のみの切り換えに特化した貯蔵室としてもよい。また、特定の温度帯、例えば、近年冷凍食品の需要が多くなってきたことに伴い、冷凍に固定された貯蔵室としてもよい。   In the present embodiment, the switching chamber 14 is a storage chamber that can be adjusted to a temperature including the temperature range of refrigeration and freezing, but the refrigeration function is in the refrigeration room 12 and the vegetable room 16, and the freezing function is It is good also as a storage room specialized in switching to the freezer compartment 15 only in the temperature zone of the middle of refrigeration and freezing, respectively. Moreover, it is good also as a storage room fixed to freezing in connection with a specific temperature range, for example, the demand for frozen foods increasing in recent years.

冷蔵室内は一つ又は複数の棚によって収納空間を区画されており、フラップ33は収納空間を区画形成する棚の水平投影面に跨ってダクト34内に配置され、ダクト34内において簡易な構成で風路内の冷気の流れを切り替えることができる。また、フラップ33は収納状況推定部の推定結果に基づいて、動作を行い、収納空間への冷却量を調節することができる。   The storage space is partitioned by one or a plurality of shelves in the refrigerator compartment, and the flap 33 is disposed in the duct 34 across the horizontal projection surface of the shelves that define the storage space, and has a simple configuration in the duct 34. The flow of cold air in the air passage can be switched. Moreover, the flap 33 can operate | move based on the estimation result of a storage condition estimation part, and can adjust the cooling amount to storage space.

例えば、上方に区画した収納空間の収納量が少ない場合には、フラップ33を閉として対象の収納空間への冷却量を低減することで、適切に冷却運転し、更に省エネ性能を向上できる。一方、対象の空間の収納量が多い、又は増加した場合には、フラップ33を開とすることで、庫内全体を冷却し、瞬時に冷却量を変化させることで、保鮮性を向上させることができる。   For example, when the storage amount of the storage space partitioned upward is small, the cooling operation can be appropriately performed and the energy saving performance can be further improved by reducing the cooling amount to the target storage space by closing the flap 33. On the other hand, when the amount of storage in the target space is large or increased, the flap 33 is opened to cool the entire interior, and the amount of cooling is changed instantaneously to improve the freshness. Can do.

本実施の形態では収納空間は上段部と下段部の2区画に分割するものとし、これにより、使用者が一番手の届きにくい上段と比較的に使い勝手の良い下段で風路を切り替え、例えば上段の収納量が少ない場合には、下段のみを冷却することで、省エネ性能と使い勝手を両立する最適な冷却運転を実現できる。   In this embodiment, the storage space is divided into two sections, an upper stage and a lower stage, so that the air path is switched between an upper stage that is most difficult for the user to reach and a lower stage that is relatively easy to use. When the storage capacity is small, only the lower stage is cooled, so that an optimal cooling operation that achieves both energy saving performance and usability can be realized.

なお、フラップ33の配置は、上述に限定されず、冷却器からの冷気を供給できる位置であれば、ダクト34内の何れの位置に、複数個配置しても構わない。   Note that the arrangement of the flaps 33 is not limited to the above, and a plurality of flaps 33 may be arranged at any position in the duct 34 as long as the cool air from the cooler can be supplied.

また、収納空間の区画は、上段部と下段部のみならず、左部と右部、手前部と奥部で区画し、それぞれの冷却量を調節してもよい。   Further, the storage space may be divided not only at the upper and lower steps, but also at the left and right portions, the front portion and the back portion, and the respective cooling amounts may be adjusted.

以上のように構成された冷蔵庫について、その動作および作用を説明する。   The operation | movement and effect | action are demonstrated about the refrigerator comprised as mentioned above.

本実施の形態では、庫内照明20のうち、天面LED20a、20b、および側面下方LED20g,20hを使用して収納状態を検知する。   In the present embodiment, the storage state is detected by using the top LEDs 20a and 20b and the lower side LEDs 20g and 20h in the interior lighting 20.

また、本実施の形態では、光センサ21のうち、光センサ21aを使用して収納状態を検知する。   Moreover, in this Embodiment, the accommodation state is detected using the optical sensor 21a among the optical sensors 21. FIG.

さらに収納状態の検知精度を高める必要があるときは、照明用LED20c〜fのように使用するLED光源を増加させればよい。また、光センサ21bのように使用する光セ
ンサを増加させてもよい。
When it is necessary to further increase the detection accuracy of the housed state, the number of LED light sources to be used may be increased like the lighting LEDs 20c to 20f. Moreover, you may increase the optical sensor to be used like the optical sensor 21b.

以下、図4、図5を用いて、天面LED20a、20b、側面下方LED20g、および光センサ21aによる収納状態検知動作を詳細に説明する。冷蔵室12は高さ方向に長いことが一般的であるため、主に冷蔵室12を上下2区画に区分した考え方で収納状態の検知例を記載する。   Hereinafter, the storage state detection operation by the top LEDs 20a and 20b, the side LED 20g, and the optical sensor 21a will be described in detail with reference to FIGS. Since the refrigerator compartment 12 is generally long in the height direction, an example of detecting the storage state will be described mainly based on the idea that the refrigerator compartment 12 is divided into two upper and lower sections.

まず、扉開閉検知センサ3により冷蔵室扉12aの開閉が検知されたとき(ステップ101)、収納物の出し入れの可能性があったと判定し、冷蔵室扉12aが閉じられてから所定時間をタイマ4で計時した後に(ステップ102)、収納状態の検知動作を開始する。   First, when opening / closing of the refrigerator compartment door 12a is detected by the door opening / closing detection sensor 3 (step 101), it is determined that there is a possibility that the stored item has been taken in and out, and a predetermined time is elapsed after the refrigerator compartment door 12a is closed. After counting time 4 (step 102), the storage state detection operation is started.

ここで、ステップ102にて所定時間を計時する理由を記載する。   Here, the reason for measuring the predetermined time in step 102 will be described.

ひとつには、低温となっている庫内収納棚18および扉収納棚19などが微小ながらも結露し、透過率が変化することで収納状態の検知に影響が出ることを配慮したもので、所定時間後に結露が解消されてから検知することを目的としている。   For example, the storage shelf 18 and the door storage shelf 19 that are at a low temperature are condensed even though they are minute, and the change in transmittance affects the detection of the storage state. The purpose is to detect after the condensation has been resolved after a period of time.

また、ひとつには、冷蔵室扉12aが開いているときに照明としてLEDが点灯し、その発熱による光度低下で収納状態の検知に影響が出ることを配慮したもので、所定時間後にLEDの温度上昇が解消されてから検知することを目的としている。なお、LEDの光度を安定させる他の手段として、LEDを冷蔵室扉12aが閉じられた後も暫く点灯し、あえて発熱させ、所定時間後にLEDの温度上昇が飽和して一定になった後、検知を開始してもLEDの光度は安定する。   Also, one of the considerations is that the LED is turned on as an illumination when the refrigerator compartment door 12a is opened, and the detection of the storage state is affected by a decrease in luminous intensity due to the heat generation. The purpose is to detect after the rise is resolved. As another means for stabilizing the luminous intensity of the LED, the LED is turned on for a while after the refrigerator compartment door 12a is closed, deliberately generates heat, and after a predetermined time, the temperature rise of the LED becomes saturated and constant, Even if the detection is started, the luminous intensity of the LED is stabilized.

収納状態検知動作を開始すると、最初に冷蔵庫の上区画である天面壁面に配置された天面LED20a、20bの光源を点灯する(ステップ103)。例えば図5のように庫内収納棚18上に収納物23aである食品が収納されたとき、天面LED20aから出力された光24a(以下、光の成分を図5に矢印で示す。点線は光度が減衰していることを示す。)は、収納物23aである食品に反射して減衰し、光24b、24cのように別方向へ拡散する。光24b、24cはさらに冷蔵室12の壁面や他の食品(図示せず)での反射を繰り返す。また、扉収納棚19の収納物23bで反射した光24dも減衰し、光24eのように別方向に拡散し、さらに冷蔵室12の壁面や他の食品(図示せず)での反射を繰り返す。このように反射を繰り返した後に、冷蔵室12内の明るさの分布は飽和・安定する。   When the storage state detection operation is started, the light sources of the top LEDs 20a and 20b arranged on the top wall that is the upper compartment of the refrigerator are first turned on (step 103). For example, as shown in FIG. 5, when a food item 23a is stored on the storage shelf 18, the light 24a output from the top LED 20a (hereinafter, the light component is indicated by an arrow in FIG. The light intensity is attenuated.) Is reflected and attenuated by the food that is the stored item 23a, and diffuses in another direction like the light 24b and 24c. The lights 24b and 24c are further repeatedly reflected on the wall surface of the refrigerator compartment 12 and other food (not shown). In addition, the light 24d reflected by the stored item 23b of the door storage shelf 19 is also attenuated, diffuses in another direction like the light 24e, and repeats reflection on the wall surface of the refrigerator compartment 12 and other food (not shown). . After repeating the reflection in this way, the brightness distribution in the refrigerator compartment 12 is saturated and stabilized.

なお、一般にLEDの照射光は所定の照射角度をもって発光するため、図5内に矢印で示した光は、LEDが放つ光の成分の一部である。以下、光の描写については同様である。   Note that light emitted from an LED generally emits light at a predetermined irradiation angle, and thus the light indicated by an arrow in FIG. 5 is a part of the light component emitted by the LED. The same applies to the description of light.

天面LED20a、20bは下方向を向き、光センサ21a、21bは水平方向を向き、それぞれが対向しない配置のため、ほとんどの光の成分はセンサに直接入射せず、壁面や収納物での反射を介するように構成されている。   Since the top LEDs 20a and 20b face downward and the optical sensors 21a and 21b face each other and do not face each other, most of the light components do not directly enter the sensor and are reflected by the walls and storage items. It is configured to pass through.

このとき測定した照度情報は検知データAとしてメモリ2に記録する(ステップ104)。   The illuminance information measured at this time is recorded in the memory 2 as detection data A (step 104).

次に、冷蔵庫の下区画である側面下方の壁面に配置された側面下方LED20gの光源を点灯する(ステップ105)。例えば図6のように庫内収納棚18上に収納物23cである食品が収納されたとき、LED20gから出力された光24f(以下、光の成分を図
7に矢印で示す。点線は光度が減衰していることを示す。)は、収納物23cである食品に反射して減衰し、光24gのように別方向へ拡散する。光24gはさらに冷蔵室12の壁面や他の食品(図示せず)での反射を繰り返す。また、収納物23dで反射した光24hも減衰し、光24i、24jのように別方向に拡散し、さらに冷蔵室12の壁面や他の食品(図示せず)での反射を繰り返す。このように反射を繰り返した後に、冷蔵室12内の明るさの分布は飽和・安定する。
Next, the light source of the side lower LED 20g disposed on the wall surface below the side which is the lower compartment of the refrigerator is turned on (step 105). For example, when a food item 23c is stored on the storage shelf 18 as shown in FIG. 6, the light 24f output from the LED 20g (hereinafter, the light component is indicated by an arrow in FIG. 7. The dotted line indicates the light intensity. Is attenuated by reflecting on the food that is the stored item 23c, and diffuses in another direction like light 24g. The light 24g repeats reflection on the wall surface of the refrigerator compartment 12 and other food (not shown). Further, the light 24h reflected by the stored item 23d is also attenuated, diffuses in another direction like the light 24i and 24j, and is repeatedly reflected on the wall surface of the refrigerator compartment 12 and other food (not shown). After repeating the reflection in this way, the brightness distribution in the refrigerator compartment 12 is saturated and stabilized.

側面下方LED20gを点灯するときは光センサ21aで検知し、それぞれが対向しない組合せで検知するので、ほとんどの光の成分はセンサに直接入射せず、壁面や収納物での反射を介するように構成されている。   When the side lower LED 20g is turned on, it is detected by the optical sensor 21a and detected by a combination that does not oppose each other, so that most of the light components do not directly enter the sensor, but are reflected through the reflection on the wall surface or stored items. Has been.

このとき測定した照度情報はメモリ2に記録する(ステップ106)。   The illuminance information measured at this time is recorded in the memory 2 (step 106).

次に、上区画の天面LED20a、20b、および下区画の側面下方LED20gの順次点灯による測定結果を組み合わせ、例えば検知データAと検知データBを平均した値を検知データCとすると(ステップ107)、この収納状態検知特性は図7に示すようになる。図7のように収納物の上下への配置の偏りに関わらず、精度良く収納状態を検知することができるようになる。このように求めた収納量データはメモリ2に記録する(ステップ108)。   Next, when the measurement results obtained by sequentially lighting the top LED 20a and 20b in the upper section and the lower LED 20g in the lower section are combined, for example, a value obtained by averaging the detection data A and the detection data B is set as the detection data C (step 107). The accommodation state detection characteristic is as shown in FIG. As shown in FIG. 7, the storage state can be detected with high accuracy regardless of the uneven arrangement of the storage items in the vertical direction. The storage amount data obtained in this way is recorded in the memory 2 (step 108).

なお、図7グラフの縦軸を「照度」としているが、収納物なし時を基準とした「相対照度」または「照度減衰率」など相対値とすれば、LEDが初期特性として持つ光度バラツキなどに対応しやすい。以下、「照度」に関する考え方は同様である。   In addition, although the vertical axis of the graph of FIG. 7 is “illuminance”, if relative values such as “relative illuminance” or “illuminance attenuation rate” with reference to the absence of stored items are taken as relative values, the light intensity variation that the LED has as an initial characteristic It is easy to cope with. Hereinafter, the concept regarding “illuminance” is the same.

また、ステップ107での計算においては、検知データAとBの単純な平均化ではなく、各データの収納状態検知への影響度を考慮し、例えば「(A×γ)+(B×δ)」と任意の係数γ、δを積算するなど、誤差が最小となるようにする。   Further, in the calculation in step 107, the detection data A and B are not simply averaged, but the degree of influence on the storage state detection of each data is taken into account. For example, “(A × γ) + (B × δ) And the arbitrary coefficients γ and δ are integrated so that the error is minimized.

なお、収納物の左右、または奥・手前への配置偏りについては、上述と同様の考え方で冷蔵室12を2区画に区分し、それぞれにLEDまたは光センサを設ければよい。   In addition, about the arrangement | positioning bias | inclination to the right and left or back and front of a stored item, the refrigerator compartment 12 should just be divided into 2 divisions by the same view as the above, and LED or an optical sensor should just be provided in each.

以降、ステップ103からステップ108のように、冷蔵室12内の全体の収納量を求める過程を「収納量検知シーケンス」と仮称する。   Hereinafter, the process of obtaining the total storage amount in the refrigerator compartment 12 as in Step 103 to Step 108 is referred to as a “storage amount detection sequence”.

次に、冷蔵庫11内の収納量の上下分布を求める。これは、冷蔵室12内を上段・下段に2分割したとき、上段に収納量が多いときは、天面LED20a、bを点灯したときの出力「検知データA」が低めとなり、下段に収納量が多いときは、下方LED20gを点灯したときの出力「検知データB」が低めとなる傾向を利用する。「検知データA−検知データB」の差分を「センサ出力差D」として算出すると(ステップ111)、「センサ出力差D」と「上段/下段の収納量比」との関係は図9のようになる。   Next, the vertical distribution of the storage amount in the refrigerator 11 is obtained. This is because when the inside of the refrigerator compartment 12 is divided into the upper stage and the lower stage, and the upper stage has a large amount of storage, the output “detection data A” when the top LEDs 20a and 20b are turned on is lower, and the lower stage contains the storage amount. When there are many, the tendency that output "detection data B" when lower LED20g is turned on becomes low is utilized. When the difference between “detection data A−detection data B” is calculated as “sensor output difference D” (step 111), the relationship between “sensor output difference D” and “upper / lower storage amount ratio” is as shown in FIG. become.

図9において、横軸「センサ出力差D」は、冷蔵室12内が空のときの出力を100%とした相対値の差分で表している。また、縦軸「収納量比(上段/下段)」は上段と下段の収納量が同程度のときを1として現している。この下段の収納量が多いときは1未満となり、上段の収納量が多いときは1より大きくなる。このように図9の収納量比特性は一次関数に近い特性を示すため、上段・下段の収納量分布を求めることができる(ステップ112)。   In FIG. 9, the horizontal axis “sensor output difference D” is expressed as a relative value difference with the output when the refrigerator compartment 12 is empty as 100%. In addition, the vertical axis “storage amount ratio (upper / lower)” represents 1 when the storage amounts in the upper and lower stages are approximately the same. When the lower storage amount is large, it is less than 1, and when the upper storage amount is large, it is larger than 1. As described above, the storage amount ratio characteristic of FIG. 9 shows a characteristic close to a linear function, so that the storage amount distribution of the upper and lower stages can be obtained (step 112).

さらに、収納量検知シーケンスで求めた収納量Cと、ステップ111で求めた収納量比から、上段の収納量Eおよび下段の収納量Fを具体的に算出し、それぞれメモリ2に記憶
する(ステップ113〜116)。
Further, the upper storage amount E and the lower storage amount F are specifically calculated from the storage amount C obtained in the storage amount detection sequence and the storage amount ratio obtained in step 111, and are respectively stored in the memory 2 (step 2). 113-116).

以上のように求めた上段・下段の各収納量分布判定結果を利用し、次のように冷却制御を適切化する。   The cooling control is optimized as follows using the storage amount distribution determination results of the upper and lower stages obtained as described above.

図10から図12に示すように、従来の冷蔵庫(破線)は、収納物の有無に関わらず、庫内全体を冷却するために、収納物がない箇所も冷却を行うことで、理想的な温度挙動(実線)と比較して「冷やしすぎ」が生じている。   As shown in FIG. 10 to FIG. 12, the conventional refrigerator (broken line) is ideal by cooling the place where there is no stored item in order to cool the entire interior regardless of the presence or absence of the stored item. Compared to the temperature behavior (solid line), “too cold” occurs.

図10において、本実施の形態の冷蔵庫は、扉開閉動作後の収納状況を検知し、上段の収納物が少ないと判定し、かつ対象の収納空間における温度が所定値以下の場合には、フラップ33を「開→閉」とする動作を行い、対象の収納空間への冷却量を低減する。   In FIG. 10, the refrigerator according to the present embodiment detects the storage state after the door opening / closing operation, determines that the upper storage item is small, and if the temperature in the target storage space is equal to or lower than the predetermined value, The operation of setting 33 to “open → close” is performed to reduce the amount of cooling to the target storage space.

この際に、合わせて、圧縮機30の回転数を低下、冷却ファン31の回転数を低下、冷蔵室12の風量調節ダンパー32の開度を小さくする等の動作によって冷却量を低減してもよい。これによって、適切に冷却運転し、更に省エネ性能を向上できる。   At this time, even if the amount of cooling is reduced by operations such as reducing the rotational speed of the compressor 30, lowering the rotational speed of the cooling fan 31, and reducing the opening degree of the air volume adjustment damper 32 in the refrigerator compartment 12. Good. As a result, the cooling operation can be appropriately performed, and the energy saving performance can be further improved.

その後、冷蔵室冷凍室同時冷却a時に、対象の空間に収納物が投入され、収納物がある、又は多いと判定した場合には、フラップ33を「閉→開」とする動作を行い、対象の空間への冷却量を増加させ、庫内全体を冷却する。これによって、収納物投入時などの十分な冷却が必要な場合にも、瞬時に冷却量を変化させることで、保鮮性を向上させることができる。この際に、合わせて、圧縮機30の回転数を増加、冷却ファン31の回転数を増加、冷蔵室12の風量調節ダンパー32の開度を大きくする等の動作によって冷却量を増加させてもよい。   After that, during the simultaneous cooling of the freezer compartment freezing room, when it is determined that the stored items are put into the target space and there are or many stored items, the flap 33 is operated to “close → open” The amount of cooling to the space is increased, and the entire interior is cooled. As a result, even when sufficient cooling is required, such as when the stored item is charged, the freshness can be improved by instantaneously changing the cooling amount. At this time, even if the cooling amount is increased by an operation such as increasing the rotational speed of the compressor 30, increasing the rotational speed of the cooling fan 31, or increasing the opening degree of the air volume adjustment damper 32 of the refrigerator compartment 12. Good.

また、図11において、冷凍室単独冷却b時に、上段に収納物が投入され、収納物が多いと判定した場合には、まず冷蔵室12の風量調節ダンパー32を「閉→開」の動作を行い、その後フラップ33を「閉→開」とする動作を行い、対象の空間への冷却量を増加させ、庫内全体を冷却する。この際に、合わせて、圧縮機30の回転数を増加、冷却ファン31の回転数を増加する等の動作によって冷却量を増加させてもよい。   In FIG. 11, when it is determined that the stored items are loaded in the upper stage and the stored items are large during the freezer compartment cooling alone b, first, the air volume adjustment damper 32 of the refrigerator compartment 12 is operated to “close → open”. After that, the operation of setting the flap 33 to “closed → open” is performed, the amount of cooling to the target space is increased, and the entire interior is cooled. At this time, the cooling amount may be increased by an operation such as increasing the rotation speed of the compressor 30 and increasing the rotation speed of the cooling fan 31.

また、図12において、冷却停止c時に、上段に収納物が投入され、収納物が多いと判定した場合には、圧縮機30が一定時間(例えば10分間)停止後であれば、温度センサ22が検知する温度に関係なく、圧縮機30を高回転で駆動し、冷蔵室12の風量調節ダンパー32を「閉→開」、フラップ33を「閉→開」とする動作を行う。これにより、圧縮機30の起動性を確保しながら、冷蔵室12に投入した収納物を素早く冷却することができるので、保鮮性を向上させることができる。   In FIG. 12, when it is determined that the stored items are loaded in the upper stage at the time of cooling stop c and the stored items are large, the temperature sensor 22 is detected after the compressor 30 has been stopped for a certain time (for example, 10 minutes). Regardless of the detected temperature, the compressor 30 is driven at a high speed, and the air volume adjustment damper 32 of the refrigerator compartment 12 is “closed → open” and the flap 33 is “closed → open”. Thereby, since the stored goods thrown into the refrigerator compartment 12 can be cooled quickly, ensuring the startability of the compressor 30, freshness can be improved.

以上の動作により、収納空間における収納状況に合わせて、最適に電気機能部品の出力動作を制御することで、適切に冷却運転をし、高い省エネ性能を実現する冷蔵庫を提供することができる。   By the above operation, it is possible to provide a refrigerator that appropriately performs cooling operation and realizes high energy saving performance by optimally controlling the output operation of the electric functional component in accordance with the storage condition in the storage space.

なお、本実施の形態の冷蔵庫における自動急冷、自動節電の冷却運転については、例えば、庫内温度設定の変更や急凍機能等の、使用者の意志による機能を優先させることも可能である。   As for the automatic rapid cooling and automatic power saving cooling operations in the refrigerator of the present embodiment, it is possible to prioritize functions based on the user's will, such as changing the internal temperature setting and quick freezing function.

なお、本実施の形態では、収納状況検知部を冷蔵室12に設けた例を示したが、本発明はこの例に限定されず、冷蔵室12、製氷室13、切換室14、冷凍室15および野菜室16の少なくとも一つに設けてもよい。   In the present embodiment, an example in which the storage state detection unit is provided in the refrigerator compartment 12 is shown, but the present invention is not limited to this example, and the refrigerator compartment 12, the ice making chamber 13, the switching chamber 14, and the freezer compartment 15 are provided. And at least one of the vegetable compartments 16.

なお、本実施の形態に示した冷蔵庫の構成に限定されず、従来一般的であった断熱箱体の最下部の貯蔵室後方領域に機械室を設けて圧縮機30を配置するタイプの冷蔵庫に適用することも可能である。   In addition, it is not limited to the structure of the refrigerator shown in this Embodiment, The refrigerator of the type which provides a machine room in the storage chamber back area | region of the lowest part of the heat insulation box which was common conventionally, and arrange | positions the compressor 30 is used. It is also possible to apply.

なお、上述の説明において、収納状況検知手段としては、庫内照明20と光センサ21とを備えた構成であるとして説明を行ったが、本発明の収納状況検知手段はこれに限定されない。例えば、庫内温度の変化や、冷却機能部品の動作時の電流変化等を用いて収納状況を検知する手段をも用いることが可能である。   In the above description, the storage state detection unit has been described as having a configuration including the interior lighting 20 and the optical sensor 21, but the storage state detection unit of the present invention is not limited thereto. For example, it is possible to use means for detecting the storage status using a change in the internal temperature or a change in current during operation of the cooling functional component.

また、光センサ21が備えられた貯蔵室である冷蔵室12の前面側に設けられた冷蔵室扉12aの外面に表示させる認知手段である操作部17によって、使用者に冷蔵室12内の収納物の状態を知らせることができる。   In addition, the operation unit 17 that is a recognition unit that displays on the outer surface of the refrigerator compartment door 12a provided on the front side of the refrigerator compartment 12, which is a storage compartment provided with the optical sensor 21, allows the user to store the inside of the refrigerator compartment 12. Can inform the state of things.

使用者は、この認知手段である操作部17に示された表示を確認して、冷蔵室扉12aを開放し、迷うことなく収納物が無い、又は少ないと表示された最上段の収納空間である収納棚18aへと食品を載置し、迅速に冷蔵室扉12aを閉めることができる。   The user confirms the display shown on the operation unit 17 that is the recognition means, opens the refrigerator compartment door 12a, and in the uppermost storage space displayed that there is no or little storage without hesitation. Food can be placed on a certain storage shelf 18a, and the refrigerator compartment door 12a can be quickly closed.

また、収納物が冷気吐口付近に収納されている場合や、収納物が詰めすぎとなっている場合には、冷蔵室扉12aの外面にある操作部17に、対象の収納空間が詰めすぎで増電運転になることを表示する。   Further, when the stored item is stored near the cold air outlet, or when the stored item is too packed, the target storage space is too packed in the operation unit 17 on the outer surface of the refrigerator compartment door 12a. Display that the operation is to increase.

ここで、収納物が詰めすぎである場合や、冷気吐出口の近傍に収納物が収納されている場合には、収納物が、冷気の通風抵抗となり、単位時間当たりの冷気循環量が低下して、冷却するのに時間が長くなる。また、冷気循環量が低下すると蒸発器の風量が低下して、熱交換量が低下するので、蒸発温度の低下を招き、冷凍サイクルの高低圧差圧の拡大により圧縮機入力も増加する。   Here, if the stored items are too packed, or if the stored items are stored in the vicinity of the cold air discharge port, the stored items will become the ventilation resistance of the cold air, and the amount of cold air circulation per unit time will decrease. Therefore, it takes longer time to cool. Further, when the amount of cool air circulation is reduced, the air volume of the evaporator is reduced and the heat exchange amount is reduced, so that the evaporation temperature is lowered and the compressor input is also increased due to the expansion of the high / low pressure differential pressure of the refrigeration cycle.

冷却時間を維持しようとすると、冷気を循環させるファンの回転数を増加させたり、圧縮機30の回転を増加させたりしなければならず、これもまた増電の要因となる。   In order to maintain the cooling time, it is necessary to increase the number of rotations of the fan that circulates the cool air or increase the rotation of the compressor 30, which also causes a power increase.

よって、これらの電力使用量が多くなる増電傾向を使用者に報知し、最適な収納物の配置を促すことで、冷蔵庫の実際の使用上において、省エネルギー化を図ることができ、より省エネルギーを実現した冷蔵庫を消費者に提供することができ、CO2削減に寄与することができる。   Therefore, by informing the user of the power increase tendency that the amount of power consumption increases and urging the optimal arrangement of storage items, it is possible to save energy in actual use of the refrigerator, and to further save energy. The realized refrigerator can be provided to consumers and can contribute to CO2 reduction.

なお、認知手段としては、操作部17に限定されず、例えば音声で注意を促す構成も可能である。収納状況情報を操作部17にインジケータで表示してもよい。これにより、使い勝手の向上を図ることができる。   In addition, as a recognition means, it is not limited to the operation part 17, For example, the structure which calls attention with an audio | voice is also possible. The storage status information may be displayed on the operation unit 17 with an indicator. Thereby, usability can be improved.

特に、本実施の形態の構成は、家庭用冷蔵庫のように、多種多様な食品が収納される可能性がある場合に、従来に比して効果が高い。   In particular, the configuration of the present embodiment is more effective than the conventional case when there is a possibility that a wide variety of foods may be stored, such as a household refrigerator.

以上述べたように、本発明の冷蔵庫は、各家庭の収納状況に合わせて、冷却量を適切化することができる。よって、収納状況検知機能を有し、その検知結果を用いて、節電運転等に運転モードを切換える家庭用冷蔵庫または業務用冷蔵庫等として有用である。   As described above, the refrigerator of the present invention can optimize the amount of cooling according to the storage situation of each household. Therefore, it is useful as a household refrigerator or a commercial refrigerator that has a storage state detection function and switches the operation mode to a power saving operation or the like using the detection result.

1 演算制御部
2 メモリ
3 扉開閉検知センサ
4 タイマ
11 冷蔵庫本体
12 冷蔵室
12a 冷蔵室扉
13 製氷室
14 切換室
15 冷凍室
16 野菜室
17 操作部
18a〜18d 収納棚
19 扉収納棚
20 庫内照明
20a、20b 天面LED
20c〜20f 照明用LED
20g、20h 側面下方LED
21a、21b 光センサ
22a、b 温度センサ
23a〜23h 収納物
24a〜24j 光
30 圧縮機
31 冷却ファン
32 風量調節ダンパー
33 フラップ
34 ダクト
DESCRIPTION OF SYMBOLS 1 Computation control part 2 Memory 3 Door opening / closing detection sensor 4 Timer 11 Refrigerator main body 12 Refrigeration room 12a Refrigeration room door 13 Ice making room 14 Switching room 15 Freezing room 16 Vegetable room 17 Operation part 18a-18d Storage shelf 19 Door storage shelf 20 In the store Lighting 20a, 20b Top LED
20c-20f LED for illumination
20g, 20h Side down LED
21a, 21b Optical sensor 22a, b Temperature sensor 23a-23h Storage 24a-24j Light 30 Compressor 31 Cooling fan 32 Air volume adjustment damper 33 Flap 34 Duct

Claims (3)

断熱壁と断熱扉とによって区画され、収納物を収納する収納室と、前記収納室内の収納状況を推定する収納状況推定部と、前記収納状況推定部の推定結果を記憶する記憶部と、冷気の流れを切り替えるフラップの動作を制御する演算制御部と、を備え、前記収納室は、一つ又は複数の透過率50%以上の棚によって収納空間を上段部と下段部に区画すると共に、前記演算制御部は前記収納空間における前記収納状況推定部の推定結果に基づいて、前記フラップの動作を制御することで前記収納空間への冷却量を変化させ、前記フラップは、前記収納空間を上段部と下段部に区画する棚の水平投影面に跨ってダクト内に配置されることを特徴とする冷蔵庫。 Are partitioned by the insulating wall and the heat insulating door, an accommodation chamber for accommodating the stored items, the storage condition estimation unit that estimates a receiving situation before Symbol storage chamber, a storage unit for storing a estimation result of the receiving state estimation unit, together with the arithmetic control unit for controlling the operation of the flap to switch the flow of cold air, and the storage chamber, partitions the accommodation space by one or more of transmittance of 50% or more of the shelf in the upper portion and the lower portion The calculation control unit changes the cooling amount to the storage space by controlling the operation of the flap based on the estimation result of the storage state estimation unit in the storage space, and the flap changes the storage space. The refrigerator characterized by being arrange | positioned in a duct ranging over the horizontal projection surface of the shelf divided into an upper stage part and a lower stage part . 前記演算制御部は前記収納空間内に食品が無い、又は少ないと判別した場合に、前記収納空間への冷却量を低減することを特徴とする請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, wherein the arithmetic control unit reduces the amount of cooling to the storage space when it is determined that there is no food in the storage space or there is little food. 前記収納状況推定部は、前記収納空間毎の収納量の比率を推定し、前記収納量の比率に応じて前記収納空間毎への冷却量の分配を変化させることを特徴とする請求項1または2に記載の冷蔵庫。 The storage state estimation unit estimates a storage amount ratio for each storage space, and changes distribution of a cooling amount to each storage space according to the storage amount ratio. 2. The refrigerator according to 2.
JP2013236423A 2013-11-15 2013-11-15 refrigerator Active JP6340543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013236423A JP6340543B2 (en) 2013-11-15 2013-11-15 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013236423A JP6340543B2 (en) 2013-11-15 2013-11-15 refrigerator

Publications (2)

Publication Number Publication Date
JP2015096774A JP2015096774A (en) 2015-05-21
JP6340543B2 true JP6340543B2 (en) 2018-06-13

Family

ID=53374145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013236423A Active JP6340543B2 (en) 2013-11-15 2013-11-15 refrigerator

Country Status (1)

Country Link
JP (1) JP6340543B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0541340Y2 (en) * 1988-09-12 1993-10-19
KR0155898B1 (en) * 1994-11-30 1999-01-15 김광호 Cool air vomite control apparatus and its control methdo of a refrigerator
JPH08303922A (en) * 1995-05-11 1996-11-22 Matsushita Refrig Co Ltd Refrigerator
JP2001289552A (en) * 2000-04-10 2001-10-19 Mitsubishi Electric Corp Refrigerator
ES2192998B1 (en) * 2002-04-10 2005-02-16 Jordi Garcia Alonso THERMAL CONDITIONING INSTALLATION FOR FURNITURE CONTAINERS OF FOOD ITEMS.
JP5316677B2 (en) * 2011-05-09 2013-10-16 パナソニック株式会社 refrigerator
JP5970653B2 (en) * 2011-10-14 2016-08-17 パナソニックIpマネジメント株式会社 refrigerator
JP2013204894A (en) * 2012-03-28 2013-10-07 Panasonic Corp Refrigerator
JP5478685B2 (en) * 2012-09-05 2014-04-23 三菱電機株式会社 refrigerator

Also Published As

Publication number Publication date
JP2015096774A (en) 2015-05-21

Similar Documents

Publication Publication Date Title
JP5789779B2 (en) refrigerator
JP5059975B2 (en) refrigerator
WO2014017050A1 (en) Refrigerator
JP5348350B2 (en) refrigerator
JP5630106B2 (en) refrigerator
WO2013125186A1 (en) Refrigerator
JP2015038409A (en) Refrigerator
JP5895117B2 (en) refrigerator
JP6478083B2 (en) refrigerator
WO2014129143A1 (en) Refrigerator
JP6340543B2 (en) refrigerator
JP6209726B2 (en) refrigerator
JP6221044B2 (en) refrigerator
JP6212697B2 (en) refrigerator
JP5895118B2 (en) refrigerator
JP2013204894A (en) Refrigerator
JP6314308B2 (en) refrigerator
JP6212696B2 (en) refrigerator
JP2024066783A (en) Refrigerators and Refrigerator Systems

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160519

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180409

R151 Written notification of patent or utility model registration

Ref document number: 6340543

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151