JP6338846B2 - Conductive filler powder - Google Patents

Conductive filler powder Download PDF

Info

Publication number
JP6338846B2
JP6338846B2 JP2013243692A JP2013243692A JP6338846B2 JP 6338846 B2 JP6338846 B2 JP 6338846B2 JP 2013243692 A JP2013243692 A JP 2013243692A JP 2013243692 A JP2013243692 A JP 2013243692A JP 6338846 B2 JP6338846 B2 JP 6338846B2
Authority
JP
Japan
Prior art keywords
powder
phase
pure
conductive filler
atomized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013243692A
Other languages
Japanese (ja)
Other versions
JP2015101767A (en
Inventor
哲嗣 久世
哲嗣 久世
哲朗 仮屋
哲朗 仮屋
山本 隆久
隆久 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2013243692A priority Critical patent/JP6338846B2/en
Publication of JP2015101767A publication Critical patent/JP2015101767A/en
Application granted granted Critical
Publication of JP6338846B2 publication Critical patent/JP6338846B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、導電性と放熱性に優れ、かつ製造コストが低く、医療用センサーや電子機器などに用いる導電フィラー粉末に関する。   The present invention relates to a conductive filler powder that is excellent in conductivity and heat dissipation, has low manufacturing cost, and is used for medical sensors, electronic devices, and the like.

従来、導電性接着剤として利用される導電フィラー粉末では、配合される導電性フィラーとして、銀粒子が広く利用されている。銀自体、熱伝導性、電気伝導性に優れた金属であり、また、銀粒子の表面に形成される酸化被膜層の伸長も進み難いという利点を具えている。加えて、延性、展性に優れており、銀粒子相互の接触で凝集後、その銀粒子相互の接触部面積の拡大が容易に進むため、良好な導電性を示す導電性接着層が形成される。   Conventionally, in conductive filler powders used as conductive adhesives, silver particles are widely used as conductive fillers to be blended. Silver itself is a metal excellent in thermal conductivity and electrical conductivity, and has an advantage that the extension of the oxide film layer formed on the surface of silver particles is difficult to proceed. In addition, it is excellent in ductility and malleability, and after agglomeration due to contact between silver particles, the contact area between the silver particles easily expands, so that a conductive adhesive layer showing good conductivity is formed. The

このような導電フィラー粉末は、純Agを用いたり、母材となる金属にAgをコーティングすることで得られるが、純Agはコスト面、Agコーティングはプロセス面がコスト高になる。この問題を同時に解決する、急速冷却によって粉末表面にAgが濃化した導電フィラー用粉末の詳細な検討例は存在しない。   Such a conductive filler powder can be obtained by using pure Ag or by coating Ag on a metal as a base material. However, pure Ag is costly, and Ag coating is expensive in terms of process. There is no detailed examination example of a conductive filler powder in which Ag is concentrated on the powder surface by rapid cooling, which simultaneously solves this problem.

現状、導電フィラー粉末は、母材金属と銀との総重量を100としたとき、母材の重量比率が50以下であることを特徴とすることが知られている(例えば、特許文献1参照。)。   Currently, it is known that the conductive filler powder is characterized in that the weight ratio of the base material is 50 or less when the total weight of the base metal and silver is 100 (see, for example, Patent Document 1). .)

また、粉末表面のAg濃度が平均の銀濃度に対して高い、かつ、内部から表面に向けて、銀濃度が次第に増加するという合金粉末が記載されている(例えば、特許文献2参照。)。しかし、粉末最表層におけるAgの比率やAgと母材合金との存在率が明確にされていない。   Further, an alloy powder is described in which the Ag concentration on the powder surface is higher than the average silver concentration, and the silver concentration gradually increases from the inside toward the surface (see, for example, Patent Document 2). However, the ratio of Ag in the outermost layer of the powder and the abundance ratio of Ag and the base alloy are not clarified.

特開2006−302525号公報JP 2006-302525 A 特開2011−249257号公報JP 2011-249257 A

ところで、従来の母材金属からなる芯材の表面を銀粒子で被覆してなる導電性フィラーでは、銅系金属を芯材にすることで、電子部品の電極に用いられるSn(スズ)電極とフィラーとの間の電位差を小さくし、ガルバニック腐食を防止するようにしている。   By the way, in the conductive filler formed by covering the surface of the core material made of the conventional base metal with silver particles, the Sn (tin) electrode used for the electrode of the electronic component can be obtained by using the copper-based metal as the core material. The potential difference with the filler is reduced to prevent galvanic corrosion.

しかしながら、このものは、芯材の表面に銀粒子を配置したものであるため、合金粉末製造後に、得られた合金粉末に銀をコーティングする製法が存在する。   However, since this is one in which silver particles are arranged on the surface of the core material, there is a production method in which the obtained alloy powder is coated with silver after the production of the alloy powder.

上記の様な、粉末に銀をコーティングする製法は、アトマイズした粉末を製造し、回収後、コーティングを施す装置で処理するため、コストや時間が問題になる。また、コーティング処理を避けるために、金属粉末の代わりに銀粉末を用いることは、尚更コスト面が問題になる。   In the production method of coating silver on the powder as described above, since the atomized powder is manufactured, and after collection, the powder is processed by an apparatus for coating, cost and time become problems. In addition, in order to avoid the coating process, the use of silver powder instead of metal powder causes a further cost problem.

本発明は、前記の課題を解決するものとして、コーティング処理することなく、アトマイズ製法のみで純Agと同程度の伝導率を示すことを目的とする。   In order to solve the above-described problems, the present invention aims to exhibit a conductivity equivalent to that of pure Ag only by an atomizing method without performing a coating treatment.

上述のような問題を解消するために、発明者らは鋭意開発を進めた結果、Ag含有率が1〜30質量%のM−Ag合金(ただし、MはFe、Niより選ばれた1種以上の金属)からなるアトマイズ合金粉末の最表層に、Mに対するAgの質量比X=(MAg/MM)が1.0以上のAgM相、または純Ag相を10%以上存在させた、優れた伝導率をもつ導電フィラー粉末の生成を可能にした。 In order to solve the problems as described above, the inventors have intensively developed, and as a result, an M-Ag alloy having an Ag content of 1 to 30% by mass (where M is one selected from Fe and Ni). In the outermost layer of the atomized alloy powder made of the above metal), the AgM ratio X = (M Ag / M M ) of Ag to M was 1.0% or more, or 10% or more of the pure Ag phase was present. It enabled the production of conductive filler powder with excellent conductivity.

粉末最表層とは、粉末1粒子の最表面から粉末内部にかけて20nmまでの間のことを表す。   The powder outermost layer represents the distance between the outermost surface of one powder particle and the inside of the powder up to 20 nm.

そこで、本発明の課題を解決するための手段としては、請求項1の手段では、Ag含有率が1〜30質量%のM−Ag合金(ただし、MはFe、Niより選ばれた1種以上の金属)からなるアトマイズ合金粉末であって、該アトマイズ合金粉末は粉砕工程を加えないアトマイズままで、Mに対するAgの質量比X=(MAg/MM)が1.0以上のAgM相と純Ag相のうちの1種以上をアトマイズ粉末最表層に有することを特徴とする導電フィラー粉末である。好ましくは、X=4.0以上である。粉末最表層とは、粉末最表面から内部に20nmまでの層をいう。 Therefore, as means for solving the problems of the present invention, in the means of claim 1, an M-Ag alloy having an Ag content of 1 to 30% by mass (where M is one selected from Fe and Ni). An atomized alloy powder comprising the above metals), the atomized alloy powder being atomized without adding a pulverization step, and an AgM phase with a mass ratio X of Ag to M = (M Ag / M M ) of 1.0 or more The conductive filler powder is characterized by having at least one of the pure Ag phase and the atomized powder outermost layer. Preferably, X = 4.0 or more. The powder outermost layer refers to a layer of 20 nm from the outermost surface of the powder to the inside.

請求項2の手段では、前記アトマイズ合金粉末は、比Xが1.0以上のAgM相と純Ag相の1種以上を合計で粉末最表層の10%以上に存在することを特徴とする請求項1に記載の導電フィラー粉末である。   According to a second aspect of the present invention, the atomized alloy powder is characterized in that one or more of an AgM phase and a pure Ag phase having a ratio X of 1.0 or more are present in a total of 10% or more of the powder outermost layer. Item 2. The conductive filler powder according to Item 1.

請求項3の手段では、前記アトマイズ合金粉末は、Fe、NiとAgの他に、Al、Zn、In、Sn、Biの中から1種以上を合計で10質量%の範囲内で添加することを特徴とする請求項1または2に記載の導電フィラー粉末である。   According to a third aspect of the present invention, the atomized alloy powder is added in the range of 10% by mass in total of at least one of Al, Zn, In, Sn, and Bi in addition to Fe, Ni, and Ag. The conductive filler powder according to claim 1, wherein:

アトマイズ合金粉末はガスアトマイズ合金粉末、ディスクアトマイズ合金粉末等があるがこの限りではない。   The atomized alloy powder includes gas atomized alloy powder, disk atomized alloy powder, and the like, but is not limited thereto.

Fe、Niは溶解中にAgと液相分離の組織を形成するのに有効であり、Agが多く、かつFe、Niが少ないAgFe、AgNi相または純Ag相が粉末最表層を占めることで、純Fe、純Niよりも接触抵抗を減少させ、電気伝導度を高める。特に最表層のAgFe、AgNi相のFe、Niに対するAgの質量比Xが1.0以上、好ましくは4.0以上の場合、さらに好ましくは6.0以上の場合、または表面に純Ag相が形成される場合、純Agとほぼ遜色ない優れた電気伝導度を得ることができる。これは、比Xが1.0以上の場合、酸化物を形成し難くなり、また酸化物を形成する場合でも、比抵抗の低いAg系の酸化物が形成されるためである。比Xが4.0以上の場合、前述の効果をもった、Agが多く、かつFe、Niが少ないAgFe、AgNi相または純Ag相同士が多く接するため、優れた電気伝導度を示す。比Xが6.0以上になると、さらに多く接するため、純Agとほぼ遜色ない優れた電気伝導度を示す。   Fe and Ni are effective to form a structure of Ag and liquid phase separation during dissolution, and AgFe, AgNi phase or pure Ag phase with a large amount of Ag and a small amount of Fe and Ni occupies the outermost layer of the powder. Contact resistance is reduced and electric conductivity is increased compared to pure Fe and pure Ni. Particularly when the mass ratio X of Ag with respect to the outermost layer AgFe, AgNi phase Fe, Ni is 1.0 or more, preferably 4.0 or more, more preferably 6.0 or more, or the surface has a pure Ag phase. When formed, an excellent electrical conductivity substantially comparable to pure Ag can be obtained. This is because when the ratio X is 1.0 or more, it is difficult to form an oxide, and even when an oxide is formed, an Ag-based oxide having a low specific resistance is formed. When the ratio X is 4.0 or more, AgFe, AgNi phase, or pure Ag phase having a large amount of Ag and having a small amount of Fe and Ni are in contact with each other, and thus exhibits excellent electrical conductivity. When the ratio X is 6.0 or more, more contact is made, so that excellent electrical conductivity almost equal to that of pure Ag is exhibited.

また、Fe、Niに対するAgの質量比Xが1.0以上のAgFe、AgNi相、または純Ag相が、粉末最表層の面積比率が10%以上を占めることで、Agが少なく、かつFe、Niが多いFeAg相、NiAg相、または純Fe相、純Ni相である粉末内層に、存在するFe、Niが大気に露出することを極力防止することができる。その結果、Ag同士の金属接合が良好に行われ、接合の信頼性を確保できる。   Further, the AgFe, AgNi phase, or pure Ag phase having a mass ratio X of Ag with respect to Fe and Ni of 1.0 or more occupies 10% or more of the area ratio of the powder outermost layer, so that Ag is small and Fe, It is possible to prevent as much as possible that Fe and Ni present in the powder inner layer of FeAg phase, NiAg phase, pure Fe phase, and pure Ni phase with much Ni are exposed to the atmosphere. As a result, the metal bonding between Ag is performed well, and the bonding reliability can be ensured.

Al、Zn、In、Sn、Biの添加は、溶湯の粘性を下げて微粉末を作り易くするためや、低い温度で金属結合させて導電性を向上させるためである。   The addition of Al, Zn, In, Sn, and Bi is to reduce the viscosity of the molten metal to make it easy to make fine powder, and to improve conductivity by metal bonding at a low temperature.

以上述べたように、本発明は純Agと遜色ない電気伝導度をもち、かつアトマイズままの合金粉末で、Agコーティングが不要な導電フィラー粉末を提供できる極めて優れた効果を奏するものである。   As described above, the present invention has an extremely excellent effect of providing a conductive filler powder that has an electrical conductivity comparable to that of pure Ag and is an atomized alloy powder that does not require Ag coating.

本発明に係るアトマイズ合金粉末の断面の模式図を示す図である。It is a figure which shows the schematic diagram of the cross section of the atomized alloy powder which concerns on this invention. 図1のアトマイズ合金粉末の断面図の円で囲む粉末最表層部分の拡大図を示す。The enlarged view of the powder outermost layer part enclosed with the circle | round | yen of the sectional drawing of the atomized alloy powder of FIG. 1 is shown.

以下に、本発明について詳細に説明する。
導電フィラー粉末の電気伝導度は電子の移動量で決まってくる。電子を多量に移動、かつ移動を阻害するようなものの存在がない状態が求められる。そこで、導電フィラー材料に純Au、純Ag、純Cuを使用すれば良いのだが、純Auと純Agはコスト面に、純Cuは酸化のされ易さに問題がある。そこで、電子をより多く移動できる合金の研究を進めたところ、それら合金の中でもFe、Ni系合金表面にAgを存在させた合金が有望であることがわかった。
The present invention is described in detail below.
The electric conductivity of the conductive filler powder is determined by the amount of electron movement. There is a demand for a state in which a large amount of electrons are moved and there is no such thing that inhibits the movement. Therefore, pure Au, pure Ag, and pure Cu may be used as the conductive filler material. However, pure Au and pure Ag have a problem in terms of cost, and pure Cu is easily oxidized. Then, the research of the alloy which can move more electrons was advanced, and it turned out that the alloy which made Ag exist on the Fe and Ni type-alloy surface among these alloys is promising.

本発明の特徴は、Fe、Niに対するAgの質量比を1.0以上に制御したAgFe、AgNi相、または純Ag相を粉末最表層に存在させることである。   The feature of the present invention is that AgFe, AgNi phase, or pure Ag phase in which the mass ratio of Ag to Fe and Ni is controlled to 1.0 or more is present in the powder outermost layer.

また、溶融金属が冷却される際、Fe、Niが多くAgが少ないFeAg相、NiAg相、または純Fe相、純Ni相が高融点であるため先に凝固し始め、凝固したFeAg相、NiAg相、または純Fe相、純Ni相の周囲に、低融点で、かつ、Fe、Niに対して溶解中に液相分離し易いAgが多くFe、Niが少ないAgFe相、AgNi相、または純Ag相が覆う形で凝固する。   In addition, when the molten metal is cooled, the FeAg phase, NiAg phase, or pure Fe phase, and pure Ni phase with high Fe and Ni and low Ag start to solidify first because of the high melting point, and solidified FeAg phase, NiAg The AgFe phase, the AgNi phase, or the pure Fe phase, the pure Fe phase, or the pure Ni phase, which has a low melting point and is easy to liquid-phase separate during dissolution in Fe and Ni It solidifies in a form covered with the Ag phase.

上記組織に加えて、Agの比率を制御することで、さらに導電フィラー粉末の改善が見込まれる。Ag含有率が少なすぎると、粉末最表層にAgが多く、かつFe、Niが少ないAgFe相、AgNi相または純Ag相が現れにくくなる。また、Ag含有率が多すぎると、粉末最表層にAgが多く含まれるAgFe相、AgNi相または純Ag相が現れ易くなるが、コスト面で問題がある。このことより、粉末全体のAg含有率は1〜30質量%とする。   In addition to the above structure, further improvement of the conductive filler powder is expected by controlling the Ag ratio. If the Ag content is too low, an AgFe phase, an AgNi phase or a pure Ag phase with a large amount of Ag and a small amount of Fe and Ni will not easily appear in the powder outermost layer. On the other hand, if the Ag content is too high, an AgFe phase, AgNi phase or pure Ag phase containing a large amount of Ag in the powder outermost layer tends to appear, but there is a problem in terms of cost. From this, Ag content rate of the whole powder shall be 1-30 mass%.

組織の制御については、上記に定めた成分の制御に加えて、原料金属を溶解した後の凝固時の冷却速度の制御によって可能である。製造方法としては、ガスアトマイズ法、ディスクアトマイズ法、水アトマイズ法等があるが、この限りではない。   The tissue can be controlled by controlling the cooling rate at the time of solidification after dissolving the raw metal in addition to the control of the components defined above. Examples of the production method include a gas atomization method, a disk atomization method, and a water atomization method, but are not limited thereto.

ガスアトマイズ法は、溶融金属を出湯する際に噴霧ガスの圧力を調整することで、溶融金属の凝固速度を変化させることができる。例えば、噴霧ガスの圧力を下げることや他の製造条件最適化を図ることで、溶融金属の凝固する冷却速度が遅くなり、AgFe、AgNi粉末の最表層にAgが多くFe、Niが少ないAgFe相、AgNi相または純Ag相が偏析しやすくなる。   The gas atomization method can change the solidification rate of the molten metal by adjusting the pressure of the spray gas when the molten metal is discharged. For example, by reducing the pressure of the atomizing gas and optimizing other manufacturing conditions, the cooling rate at which the molten metal solidifies becomes slow, and the AgFe phase has a high amount of Ag and Fe and Ni in the outermost layer of the AgFe and AgNi powders. , AgNi phase or pure Ag phase is easily segregated.

ディスクアトマイズ法は、溶融金属を出湯する際に噴霧ガスを用いないので、ガスアトマイズ法と比較すると冷却速度を遅く制御できる。これより、他の製造条件の最適化と合わせて、AgFe、AgNi粉末の表層にAgが多くFe、Niが少ないAgFe、AgNi相または純Ag相が偏析しやすくなる。   The disc atomizing method does not use a spray gas when discharging molten metal, so that the cooling rate can be controlled slower than the gas atomizing method. Accordingly, in combination with optimization of other production conditions, AgFe, AgNi phase or pure Ag phase with a large amount of Ag and Fe and Ni in the surface layer of the AgFe and AgNi powders easily segregates.

それぞれのアトマイズ時に、Al、Zn、In、Sn、Biを添加することで、溶湯の粘性を下げ微粉末を作り易くし、低い温度で金属結合させ導電性を向上させることが可能になる。   By adding Al, Zn, In, Sn, and Bi at each atomization, it is possible to reduce the viscosity of the molten metal to facilitate the production of fine powder, and to improve the conductivity by metal bonding at a low temperature.

Agの比率を制御して作製した導電フィラー粉末を用いることにより、アトマイズままの合金粉末で、Agコーティングが不要であり、かつ純Agと遜色ない優れた電気伝導度を示す粉末が得られる。   By using a conductive filler powder produced by controlling the Ag ratio, an atomized alloy powder that does not require Ag coating and exhibits excellent electrical conductivity comparable to pure Ag can be obtained.

以下、本発明について、実施例により具体的に説明する。
表1に示す組成の導電フィラー粉末を、ガスアトマイズ法およびディスクアトマイズ法により作製した。
Hereinafter, the present invention will be specifically described with reference to examples.
Conductive filler powder having the composition shown in Table 1 was produced by a gas atomizing method and a disk atomizing method.

ガスアトマイズ法については、所定組成の原料を、底部に細孔を設けた石英坩堝内に入れ、Arガス雰囲気中で高周波誘導溶解炉により加熱溶融した後、Arガス雰囲気中で、ガス噴射により出湯させて、急冷凝固することで、ガスアトマイズ微粉末を得た。   As for the gas atomization method, a raw material having a predetermined composition is placed in a quartz crucible having pores at the bottom, heated and melted in a high-frequency induction melting furnace in an Ar gas atmosphere, and then heated in an Ar gas atmosphere by gas injection. Then, gas atomized fine powder was obtained by rapid solidification.

ガス噴射圧を調整することで、急冷凝固する速度を変化させることができる。ガス噴射圧を下げると、ガスによる溶融金属の冷却が小さくなるので、急冷凝固する速度は遅くなる。対して、ガス噴射圧を上げると、ガスによる溶融金属の冷却が大きくなるので、急冷凝固する速度は早くなる。   The rate of rapid solidification can be changed by adjusting the gas injection pressure. When the gas injection pressure is lowered, the cooling of the molten metal by the gas is reduced, so that the rapid solidification rate is reduced. On the other hand, when the gas injection pressure is increased, the cooling of the molten metal by the gas increases, so that the rapid solidification speed increases.

ディスクアトマイズ法については、所定組成の原料を、底部に細孔を設けた石英坩堝内に入れ、Arガス雰囲気中で高周波誘導溶解炉により加熱溶融した後、Arガス雰囲気中で、40000〜60000r.p.m.の回転ディスク上に出湯させて、急冷凝固させることでディスクアトマイズ微粉末を得た。   In the disk atomization method, a raw material having a predetermined composition is placed in a quartz crucible having pores at the bottom, heated and melted in a high-frequency induction melting furnace in an Ar gas atmosphere, and then in an Ar gas atmosphere, 40000 to 60000 r. p. m. The hot water was discharged onto a rotating disk of No. 1 and rapidly solidified to obtain a disk atomized fine powder.

表1、表2に示す比Xは、粉末1粒子の最表層(表面から内部に20nm)中における、MAg(Agの質量%)と、MM(Mの質量%、ただし、MはFe、Niより選ばれた1種以上の金属)との関係式
X=MAg/MM
から得られる率を、任意箇所20点を計測したTEM像の分析結果より求めている。
The ratio X shown in Tables 1 and 2 indicates that M Ag (mass% of Ag) and M M (mass% of M) in the outermost layer (20 nm from the surface to the inside) of powder 1 particle, where M is Fe , One or more metals selected from Ni)
X = M Ag / M M
Is obtained from the analysis result of the TEM image obtained by measuring 20 arbitrary points.

表1、表2に示す存在率Yは、Fe、Niに対するAgの質量比Xが1.0以上のAgFe、AgNi相、または純Ag相が、粉末1粒子の最表層(表面から内部に20nm)中に存在する率を、任意箇所20点を計測した透過性電子顕微鏡像(TEM像)の分析結果より求めている。   The abundance ratio Y shown in Tables 1 and 2 indicates that the AgFe, AgNi phase, or pure Ag phase having a mass ratio X of Ag with respect to Fe and Ni is 1.0 or more is the outermost layer of the powder 1 particle (20 nm from the surface to the inside. ) Is determined from the analysis result of a transmission electron microscope image (TEM image) obtained by measuring 20 arbitrary points.

ガスアトマイズ法、ディスクアトマイズ法などで作製したアトマイズ合金粉末を評価するために、東陽テクニカ製の粉体インピーダンス測定用4端子サンプルホルダーを用いて、アトマイズ合金粉末の電気伝導度を測定した。   In order to evaluate the atomized alloy powder produced by the gas atomizing method, the disk atomizing method, etc., the electric conductivity of the atomized alloy powder was measured using a 4-terminal sample holder for powder impedance measurement manufactured by Toyo Technica.

電気伝導度測定に用いるアトマイズ合金粉末は、篩を用いて45μm以下の粒度に揃えた後、直径25mm、高さ10mmの円柱状のサンプルホルダーに充填させた後、高さ方向上下から4Nmの荷重をかけた。   The atomized alloy powder used for electrical conductivity measurement is aligned to a particle size of 45 μm or less using a sieve, and then loaded into a cylindrical sample holder having a diameter of 25 mm and a height of 10 mm, and then a load of 4 Nm from the top and bottom in the height direction. I applied.

電気伝導度測定は、荷重方向上に電流Iのプラス端子と電圧Vのプラス端子を、荷重方向下に電流Iのマイナス端子と電圧Vのマイナス端子を取り付けて、電流を流して電圧を測定する四端子法を用いた。   For electrical conductivity measurement, a positive terminal of current I and a positive terminal of voltage V are attached in the load direction, a negative terminal of current I and a negative terminal of voltage V are attached in the lower direction of load, and the voltage is measured by flowing current. A four probe method was used.

Figure 0006338846
Figure 0006338846

Figure 0006338846
Figure 0006338846

表1は、本発明における実施例1〜24を、表2は比較例1〜26を表す。これらの特性として、フィラー材に対するAgが1質量%以上で30質量%以下、比Xが1.0以上で、フィラー材であるAgFe、AgNi相、または純Agの合計存在率Yが10%以上、さらに、Agと同程度の電気伝導度4000AV-1-1を示すものを評価Aとする。評価Bは電気伝導度が3500AV-1-1以上であり、評価Cは電気伝導度が3000AV-1-1以上である。また、フィラー材に対するAgが1質量%未満もしくは30質量%超、比Xが1.0未満、フィラー材であるAgFe、AgNi相、または純Ag相の合計存在率Yが10%未満のどれかに該当し、さらに、電気伝導度4000AV-1-1以上を示すものは評価Dであり、評価Eは電気伝導度2000AV-1-1以上であり、評価Fは電気伝導度1000AV-1-1以上であり、評価Gは電気伝導度1000AV-1-1未満である。なお、表1、表2では、電気伝導度を単に伝導度として記載している。また、表1、表2において、比Xにおける下線は比Xの値が1.0未満を示す。フィラー材の組織におけるAgの値の下線は、1質量%未満または30質量%超を示す。表1、表2において、最表層中に純Agが存在する場合は有を、純Agがない場合は無と記載している。 Table 1 represents Examples 1 to 24 in the present invention, and Table 2 represents Comparative Examples 1 to 26. As these characteristics, Ag with respect to the filler material is 1 mass% or more and 30 mass% or less, the ratio X is 1.0 or more, and the total abundance Y of the filler material of AgFe, AgNi phase, or pure Ag is 10% or more. Further, an evaluation A having an electric conductivity of 4000 AV −1 m −1 comparable to that of Ag is set as evaluation A. In the evaluation B, the electric conductivity is 3500AV −1 m −1 or more, and in the evaluation C, the electric conductivity is 3000 AV −1 m −1 or more. Also, the Ag relative to the filler material is less than 1% by mass or more than 30% by mass, the ratio X is less than 1.0, and the filler material AgFe, AgNi phase, or the total abundance Y of the pure Ag phase is less than 10%. In addition, those having electrical conductivity of 4000 AV −1 m −1 or higher are evaluated D, evaluation E is electrical conductivity of 2000 AV −1 m −1 or higher, and evaluation F is electrical conductivity of 1000 AV −1. and a m -1 or more, evaluation G is less than the electrical conductivity 1000AV -1 m -1. In Tables 1 and 2, electric conductivity is simply described as conductivity. In Tables 1 and 2, the underline in the ratio X indicates that the value of the ratio X is less than 1.0. The underline of the Ag value in the structure of the filler material indicates less than 1% by mass or more than 30% by mass. In Tables 1 and 2, “Yes” is indicated when pure Ag is present in the outermost layer, and “None” is indicated when no pure Ag is present.

すなわち、一番良い実施例が評価Aであり、二番目に良い実施例が評価B、三番目に良い実施例が評価Cである。また、比較例で一番良いのは評価D、二番目に良い比較例が評価E、三番目に良い比較例が評価F、四番目に良い比較例が評価Gである。評価Cは、評価Dよりも良い特性を示している。   That is, the best example is evaluation A, the second best example is evaluation B, and the third best example is evaluation C. The best comparative example is evaluation D, the second best comparative example is evaluation E, the third best comparative example is evaluation F, and the fourth best comparative example is evaluation G. Evaluation C shows better characteristics than evaluation D.

例えば、実施例24は、フィラー材に対するAgが30質量%であり、比Xが9.0、存在率Yが85%であり、条件を満たしている。このような本発明の条件を満たし、かつ電気伝導度が4150S/mである本発明は、一番良い特性を示した。   For example, in Example 24, Ag relative to the filler material is 30% by mass, the ratio X is 9.0, and the abundance Y is 85%, which satisfies the conditions. The present invention satisfying such conditions of the present invention and having an electric conductivity of 4150 S / m exhibited the best characteristics.

比較例1〜26はAg含有率が1質量%未満、あるいは30質量%よりも大きいため、または、比Xが1.0未満であるため本条件を満たさない。   Comparative Examples 1 to 26 do not satisfy this condition because the Ag content is less than 1% by mass or greater than 30% by mass, or the ratio X is less than 1.0.

例えば、比較例8では、Ag含有率が30%、存在率Yが10%を満たしているが、比Xが1.0以上を満たしておらず、電気伝導度が1430AV-1-1と良い特性を示していない。 For example, in Comparative Example 8, the Ag content is 30% and the abundance Y is 10%, but the ratio X is not more than 1.0 and the electrical conductivity is 1430AV −1 m −1 . It does not show good characteristics.

以上のように、本発明では、図2に示すように、Fe、Niに対するAgの質量比Xが1.0以上のAgFe、AgNi相、または純Ag相3を、図1に示すアトマイズ合金粉末1の粉末最表層2に存在させるように制御することで、純Agと遜色ない電気伝導度を有し、かつアトマイズままの合金粉末で、Agコーティングが不要な導電フィラー粉末の提供が可能となる。   As described above, according to the present invention, as shown in FIG. 2, the atomized alloy powder shown in FIG. It is possible to provide an electrically conductive filler powder that has an electrical conductivity comparable to that of pure Ag and is an atomized alloy powder that does not require Ag coating. .

1 アトマイズ合金粉末
2 粉末最表層(20nm)
3 M(ただし、MはFe、Niより選ばれた1種以上の金属)に対するAgの質量比Xが1.0以上のAgM相、または純Ag相
A 拡大部分
1 Atomized alloy powder 2 Powder outermost layer (20 nm)
3 Ag (where M is one or more metals selected from Fe and Ni) AgM phase having an Ag mass ratio X of 1.0 or more, or pure Ag phase A A enlarged portion

Claims (3)

導電性フィラー用で、Ag含有率が1〜30質量%のM−Ag合金(ただし、MはFe、Niより選ばれた1種以上の金属)からなるアトマイズ合金粉末であって、該アトマイズ合金粉末は粉砕工程を加えないアトマイズままで、Mに対するAgの質量比X=(MAg/MM)が1.0以上のAgM相と純Ag相のうちの1種以上をアトマイズ粉末最表層に有することを特徴とする導電フィラー粉末。ただし、粉末最表層とは、粉末最表面から内部に20nmまでの層をいう。 An atomized alloy powder made of an M-Ag alloy (wherein M is one or more metals selected from Fe and Ni) for an electrically conductive filler and having an Ag content of 1 to 30% by mass, the atomized alloy The powder remains atomized without adding a pulverization step, and one or more of AgM phase and pure Ag phase with Ag mass ratio X = (M Ag / M M ) of 1.0 or more are used as the outermost layer of atomized powder. Conductive filler powder characterized by having. However, the powder outermost layer refers to a layer of 20 nm from the outermost surface of the powder to the inside. 前記アトマイズ合金粉末は、比Xが1.0以上のAgM相が粉末最表層の10%以上に存在することを特徴とする請求項1に記載の導電フィラー粉末。   2. The conductive filler powder according to claim 1, wherein the atomized alloy powder has an AgM phase having a ratio X of 1.0 or more in 10% or more of the outermost layer of the powder. 前記アトマイズ合金粉末は、Al、Bi、Sn、In、Znの中から1種以上を合計で10質量%までの範囲で添加することを特徴とする請求項1または2に記載の導電フィラー粉末。   3. The conductive filler powder according to claim 1, wherein the atomized alloy powder is one or more of Al, Bi, Sn, In, and Zn added in a total amount of up to 10 mass%.
JP2013243692A 2013-11-26 2013-11-26 Conductive filler powder Active JP6338846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013243692A JP6338846B2 (en) 2013-11-26 2013-11-26 Conductive filler powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013243692A JP6338846B2 (en) 2013-11-26 2013-11-26 Conductive filler powder

Publications (2)

Publication Number Publication Date
JP2015101767A JP2015101767A (en) 2015-06-04
JP6338846B2 true JP6338846B2 (en) 2018-06-06

Family

ID=53377736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013243692A Active JP6338846B2 (en) 2013-11-26 2013-11-26 Conductive filler powder

Country Status (1)

Country Link
JP (1) JP6338846B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672242B2 (en) * 1988-08-23 1994-09-14 旭化成工業株式会社 Conductive metal powder, its manufacturing method and use
JP2708606B2 (en) * 1990-05-22 1998-02-04 旭化成工業株式会社 Copper alloy conductive paste and conductor using the paste
JP2010084216A (en) * 2008-10-02 2010-04-15 Olympus Corp Method and device for producing metal powder

Also Published As

Publication number Publication date
JP2015101767A (en) 2015-06-04

Similar Documents

Publication Publication Date Title
JP6493561B2 (en) High entropy alloy member, method for producing the alloy member, and product using the alloy member
TWI535855B (en) Solder alloy, solder composition, solder paste and electronic circuit substrate
JP5155743B2 (en) Copper powder for conductive paste and conductive paste
JP7042945B2 (en) Silver-coated metal powder and its manufacturing method
JP2017150086A (en) Silver coated copper alloy powder and manufacturing method therefor
JP2017528327A (en) Lead-free solder alloy composition and method for producing lead-free solder alloy
JP6224933B2 (en) Silver-coated copper alloy powder and method for producing the same
CN109843479A (en) Metal increasing material manufacturing metal powder and the molding made using the metal powder
JP2015021145A (en) Silver-coated copper alloy powder and method for producing the same
JP5932638B2 (en) Copper powder for conductive paste and conductive paste
JP2006225731A (en) Copper powder
JP6338846B2 (en) Conductive filler powder
JP6412401B2 (en) Metal powder and method for producing the same
WO2015053222A1 (en) Agcu-based conductive filler powder
JP6546384B2 (en) Conductive filler powder
JP2015196877A (en) POWDER FOR AgCuBi-BASED CONDUCTIVE FILLER
CN108885948A (en) Prepare the method and slider material of the slider material based on siller tin oxide or Ag-ZnO
JP6445854B2 (en) Conductive filler powder
WO2016052643A1 (en) Powder for conductive fillers
JP2017007885A (en) Powder for conductive filler
JP6581771B2 (en) Conductive filler powder
JP2018123375A (en) Porous powder and method for producing the same
JP2015232160A (en) Powder for conductive filler
JP2017134889A (en) Powder for conductive filler
JP6726020B2 (en) Powder for conductive filler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180509

R150 Certificate of patent or registration of utility model

Ref document number: 6338846

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250